EP3255088B1 - Verwendung von vulkanisierbaren zusammensetzungen und vulkanisaten in kontakt mit kühlmittel enthaltend silan-beschichteten wollastonit - Google Patents
Verwendung von vulkanisierbaren zusammensetzungen und vulkanisaten in kontakt mit kühlmittel enthaltend silan-beschichteten wollastonit Download PDFInfo
- Publication number
- EP3255088B1 EP3255088B1 EP16001280.3A EP16001280A EP3255088B1 EP 3255088 B1 EP3255088 B1 EP 3255088B1 EP 16001280 A EP16001280 A EP 16001280A EP 3255088 B1 EP3255088 B1 EP 3255088B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- parts
- rubber
- vulcanizable composition
- coolant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
- C08L15/005—Hydrogenated nitrile rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/16—Cooling
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/005—Stabilisers against oxidation, heat, light, ozone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3432—Six-membered rings
- C08K5/3437—Six-membered rings condensed with carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/37—Thiols
- C08K5/378—Thiols containing heterocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/02—Copolymers with acrylonitrile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/16—Cooling
- B29C2035/1616—Cooling using liquids
Definitions
- the present invention relates to the use of a vulcanizable composition comprising rubber, silane-coated wollastonite and peroxide compound for the production of vulcanizates which are in contact with coolant.
- the invention further relates to the use of a vulcanizate, produced from a vulcanizable composition comprising rubber, silane-coated wollastonite and peroxide compound, as a component, preferably as a seal or as a hose which is in contact with coolant.
- vulcanizates for use as a radiator hose, heating hose, radiator housing or radiator seal are increasing.
- suitable vulcanizates must have sufficient resistance to aging both in hot air and in coolant, i.e. Have 25% or less change in elongation after 21 days (504 hours) at 150 ° C in hot air and 25% or less change in elongation after 21 days (504 hours) at 150 ° C in coolant.
- coolant a liquid substance or a mixture of substances which is used to remove heat.
- the coolant is able to transport the enthalpy along the temperature gradient to a point of lower temperature in a cooling cycle.
- Cooling liquids can cool the goods to be cooled directly or via a heat exchanger.
- coolants are for compositions comprising water, a freezing point, preferably alkyl glycol or salts, particularly preferably ethylene glycol or propylene glycol, and a corrosion inhibitor, preferably neutralized organic acids, particularly preferably sodium ethyl hexanoate.
- silicates were used as additives in conventional coolants.
- the silicate prevents corrosion by building up an aluminum silicate protective layer on aluminum parts, but it degrades quickly and must therefore be replaced regularly. Newer coolant generations therefore contain organic compounds for corrosion protection instead of the silicate, since these last longer.
- So-called OAT organic acid technology
- OAT organic acid technology
- neutralized organic Acids such as sodium ethyl hexanoate are used as additives.
- the free acid is formed from the salt of ethylhexanoic acid over time. This acid can lead to premature aging in conventional vulcanizates.
- An example of a coolant concentrate with OAT technology is G13 from Volkswagen, which contains ethylene glycol and sodium ethylhexanoate as the main components and mixed with water results in a coolant according to the invention.
- WO-A-2010/030860 discloses in Examples 2 and 3 a vulcanizable composition based on hydrogenated nitrile rubber (HNBR) containing silane-coated wollastonite (400 wollastocoat 10022), an acid acceptor, a metal salt and a stabilizer.
- HNBR hydrogenated nitrile rubber
- silane-coated wollastonite 400 wollastocoat 10022
- an acid acceptor 400 wollastocoat 10022
- the composition of Example 3 also has a reduced and thus improved swelling in water.
- WO-A-2010/030860 contains zinc oxide (ZnO) and Therban HT in both the compositions of Example 2 and in Example 3 in addition to the silane-coated wollastonite.
- vulcanizable compositions containing HNBR and silane-coated wollastonite in combination with a metal salt and an acid acceptor to increase the aging stability is described.
- the WO-A-2010/030860 provides no indication of the use of the vulcanizable composition and its vulcanizates in contact with coolant and their resistance to coolants.
- WO-A-2015/146862 discloses HNBR compositions containing 3 to 20 phr wollastonite and 72 to 87 phr carbon black for abrasion resistance and pressure resistance. The use of these compositions in contact with coolants and their swelling behavior therein are not disclosed.
- CN-A-103408810 discloses a seal based on a composition containing, inter alia, nitrile rubber (NBR) and modified wollastonite with improved mechanical properties as well as improved abrasion resistance and heat resistance. The use of this composition in contact with coolants and their swelling behavior therein are not disclosed.
- NBR nitrile rubber
- KR20130003554 discloses a sealant composition containing HNBR and ethylene glycol as an anti-freeze additive. Silane-coated wollastonite is not disclosed.
- US 2006/142467 A1 discloses a rubber composition containing a cross-linked fluoroelastomer mixture dispersed in a thermoplastic material mixture.
- the object of the present invention was therefore to provide vulcanizable compositions for the production of vulcanizates which have an aging resistance of 25% or less change in elongation at break after 21 days (504 hours) at 150 ° C. in hot air and 25% or less change in elongation at break 21 days (504 hours) at 150 ° C in coolant, and thus can be used in contact with coolants with OAT technology.
- those vulcanizable compositions are preferably provided which lead to vulcanizates which have a comparable or improved swelling in coolant than vulcanizable compositions of the prior art.
- those vulcanizable compositions are particularly preferably provided which lead to vulcanizates which additionally have a Shore A hardness of less than 70 , so that the material is sufficiently elastic.
- vulcanizable compositions and their vulcanizates according to the present invention has the effect that the components produced from the vulcanizates have a lower aging than conventional vulcanizates without silane-coated wollastonite.
- vulcanizable compositions according to the invention causes a comparatively small swelling of the vulcanizate in the coolant and a smaller change in the elongation of the vulcanizate when stored in hot air and coolant compared to known vulcanizable compositions.
- At least one typical rubber is used as component (a) .
- Rubber as component (a) is, for example, nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene vinyl acetate (EVA; EVM), natural rubber (NR), chloroprene rubber (BR), butyl rubber (IIR), polyisoprene rubber (IR), styrene-butadiene rubber (SBR), chloroprene rubber (CR) , Ethylene-acrylate rubber (AEM) or acrylate rubber (ACM) as well as any mixtures of the aforementioned rubbers.
- NBR nitrile rubber
- HNBR hydrogenated nitrile rubber
- EPM ethylene-propylene rubber
- EPDM ethylene-propylene-diene rubber
- EVM ethylene vinyl acetate
- EVM ethylene vinyl acetate
- natural rubber NR
- component (a) is particularly preferred.
- the Mooney viscosity is determined in accordance with ASTM standard D 1646.
- HNBR hydrogenated nitrile rubbers
- hydrolysis or “hydrogenated” means at least 50%, preferably at least 85%, particularly preferably at least 95% of the double bonds originally present in the nitrile rubber.
- ⁇ -unsaturated nitrile may be any known ⁇ , ⁇ -unsaturated nitrile used are preferably (C 3 -C 5) - ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile, methacrylonitrile, ethacrylonitrile or mixtures thereof. Acrylonitrile is particularly preferred.
- the conjugated diene can be of any nature. (C 4 -C 6 ) conjugated dienes are preferably used. 1,3-Butadiene, isoprene, 2,3-dimethylbutadiene, piperylene or mixtures thereof are particularly preferred. 1,3-Butadiene and isoprene or mixtures thereof are particularly preferred. 1,3-Butadiene is very particularly preferred.
- the proportions of conjugated diene and ⁇ , ⁇ -unsaturated nitrile in the hydrogenated nitrile rubbers can be varied within a wide range.
- the proportion of or the total of the conjugated dienes is usually in the range from 40 to 90% by weight and preferably in the range from 50 to 80% by weight, based on the total polymer.
- the proportion of or the sum of the ⁇ , ⁇ -unsaturated nitriles is usually in the range from 10 to 60% by weight and preferably in the range from 20 to 50% by weight, based on the total polymer.
- the additional monomers can be present in amounts in the range from 0.1 to 40% by weight, preferably in the range from 1 to 30% by weight, based on the total polymer.
- Rhodium or titanium are usually used as catalysts, but platinum, iridium, palladium, rhenium, ruthenium, osmium, cobalt or copper can also be used either as metal or, preferably, in the form of metal compounds (see, for example, US-A-3,700,637 , DE-A-25 39 132 , EP-A-134 023 , DE-OS-35 41 689 , DE-OS-35 40 918 , EP-A-298 386 , DE-OS-35 29 252 , DE-OS-34 33 392 , US-A-4,464,515 and US-A-4,503,196 ).
- Suitable catalysts and solvents for a hydrogenation in a homogeneous phase are described below and are also from DE-A-25 39 132 and the EP-A-0 471 250 known
- Preferred catalysts are tris (triphenylphosphine) rhodium (I) chloride, tris (triphenylphosphine) rhodium (III) chloride and tris (dimethyl sulfoxide) rhodium (III) chloride, and tetrakis (triphenylphosphine) rhodium hydride of the formula ((C 6 H 5 ) 3 P) 4 RhH and the corresponding compounds in which the triphenylphosphine has been wholly or partly replaced by tricyclohexylphosphine.
- the catalyst can be used in small amounts. An amount in the range of 0.01 to 1% by weight, preferably in the range of 0.03 to 0.5% by weight and particularly preferably in the range from 0.1 to 0.3% by weight, based on the weight of the polymer, are suitable.
- cocatalyst which is a ligand of the formula R 1 m B, where R 1 , m and B have the meanings given above for the catalyst.
- M is preferably 3
- B is phosphorus and the radicals R 1 can be the same or different.
- They are preferably co-catalysts with trialkyl, tricycloalkyl, triaryl, triaralkyl, diarylmonoalkyl, diarylmonocycloalkyl, dialkylmonoaryl, dialkylmonocycloalkyl, dicycloalkylmonoaryl or dicyclalkylmonoaryl radicals.
- co-catalysts can be found, for example, in US-A-4,631,315 .
- the preferred co-catalyst is triphenylphosphine.
- the cocatalyst is preferably used in amounts in a range from 0.3 to 5% by weight, particularly preferably in the range from 0.5 to 4% by weight, based on the weight of the nitrile rubber to be hydrogenated.
- the weight ratio of the rhodium-containing catalyst to the cocatalyst is furthermore preferably in the range from 1: 3 to 1:55, particularly preferably in the range from 1: 5 to 1:45.
- 0.1 to 33 parts by weight of the co-catalyst are suitably obtained, preferably 0.5 to 20 and very particularly preferably 1 to 5 parts by weight, in particular more than 2 but less than 5 parts by weight of the co-catalyst per 100 parts by weight of the nitrile rubber to be hydrogenated.
- heterogeneous catalysts When heterogeneous catalysts are used to produce hydrogenated nitrile rubbers by hydrogenating the corresponding nitrile rubbers, they are usually supported catalysts based on palladium.
- the Mooney viscosity is determined in accordance with ASTM standard D 1646.
- the hydrogenated nitrile rubber according to the invention has a residual double bond (RDB) content of 10% or less, preferably 7% or less, particularly preferably 1% or less.
- RDB residual double bond
- the hydrogenated nitrile rubbers which can be used in the vulcanizable composition according to the invention have a glass transition temperature of less than -10 ° C., preferably less than -15 ° C., particularly preferably less than -20 ° C., measured via DSC at a heating rate of 20 K / min.
- Examples of commercially available hydrogenated nitrile rubbers are fully and partially hydrogenated nitrile rubbers with acrylonitrile contents in the range from 17 to 50% by weight (Therban® range from ARLANXEO Deutschland GmbH and Zetpol® range from Nippon Zeon Corporation).
- An example of hydrogenated butadiene / acrylonitrile / acrylate polymers is the Therban® LT series from ARLANXEO Deutschland GmbH, for example Therban® LT 2157 and Therban® LT 2007.
- An example of carboxylated hydrogenated nitrile rubbers is the Therban® XT series from ARLANXEO Deutschland GmbH.
- An example of hydrogenated nitrile rubbers with low Mooney viscosities and therefore improved processability is a product from the Therban® AT series, for example Therban® AT 3404.
- the hydrogenated nitrile rubber can contain one or more further polymerizable monomers in the form of carboxylic acids or carboxylic acid esters .
- Suitable polymerizable carboxylic acids are mono- or dicarboxylic acids with 3 to 18 carbon atoms, which are unsaturated in the ⁇ , ⁇ -position, and their esters.
- Preferred ⁇ , ⁇ -unsaturated carboxylic acids are acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, crotonic acid and mixtures thereof.
- Esters of the ⁇ , ⁇ -unsaturated carboxylic acids having 3 to 18 carbon atoms preferably include the alkyl esters and the alkoxyalkyl esters of the aforementioned carboxylic acids.
- Preferred esters of ⁇ , ⁇ -unsaturated carboxylic acids with 3 to 18 carbon atoms are methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate and polyethylene glycol (meth) acrylate (PEG (meth) acrylate) with 1 to 8 ethylene glycol repeating units .
- Preferred alkoxyalkyl esters are Polyethylene glycol (meth) acrylate (PEG (meth) acrylate) with 1 to 8 ethylene glycol repeat units and butyl acrylates.
- the vulcanizable composition according to the invention contains at least one silane-coated wollastonite as component (b).
- the silanes used to coat wollastonites are silanes with at least one functionalization which can react with the filler surface and preferably with a second functionalization which, after vulcanization, connects the modified filler to the polymer matrix, such as vinyl groups.
- Preferred silanes are epoxysilane, methacrylsilane, vinylsilane or aminosilane.
- Particularly preferred silanes are epoxysilane, methacrylsilane and vinylsilane.
- a very particularly preferred silane is vinyl silane.
- compositions containing rubber, peroxide compound and wollastonite with a vinylsilane coating lead to a further improvement in aging.
- Vulcanizates with vinylsilane-coated wollastonite show the best balance between change in elongation at break, volume swelling and change in tensile strength after aging for 1008 hours in G13 and are therefore better than vulcanizates with epoxysilane-coated wollastonite or methacylsilane-coated wollastonite.
- Wollastonites are naturally occurring calcium silicate minerals of the formula CaSiO 3 . Wollastonites have a white color and a basic pH of greater than 7. The wollastonites used in the examples have an aspect ratio of 3: 1 to 5: 1. Silane-coated wollastonite is commercially available under the Tremin® brand name from Quarzwerke.
- compositions according to the invention based on 100 parts by weight of the rubbers (a), 35 to 150 parts by weight, particularly preferably 50 to 100 parts by weight, of at least one silane-coated wollastonite are used.
- At least one peroxide compound is used as the crosslinking agent as component (c) .
- peroxide compound (c) Bis (2,4-dichlorobenzoyl) peroxide, dibenzoyl peroxide, bis (4-chlorobenzoyl) peroxide, 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane, tert-butyl perbenzoate, 2.2 -Bis (tert-butylperoxy) -butene, 4,4-di-tert-butylperoxynonylvalerate, dicumyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, tert-butylcumyl peroxide, 1,3 -Bis (tert-butylperoxyisopropyl) benzene, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (tert-butyl)
- the at least one peroxide compound of the vulcanizable composition according to the invention is preferably an organic peroxide, in particular dicumyl peroxide, tert-butyl cumyl peroxide, bis- (tert-butyl-peroxy-isopropyl) benzene, di-tert-butyl peroxide, 2,5-dimethylhexane-2,5- dihydroperoxide, 2,5-dimethylhexin-3,2,5-dihydroperoxide, Dibenzoyl peroxide, bis (2,4-dichlorobenzoyl) peroxide, tert-butyl perbenzoate, 4,4-di (tert-butylperoxy) valeric acid butyl ester and / or 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane .
- organic peroxide in particular dicumyl peroxide, tert-butyl cumy
- Component (c) in the vulcanizable compositions according to the invention is preferably in an amount of 1 to 20 parts by weight, particularly preferably in an amount of 2 to 10 parts by weight, based on 100 parts by weight of the rubbers (a) , in front.
- the vulcanizable composition can contain further rubber additives.
- Typical rubber additives include, for example: polymers which do not fall under the definition of component (a) according to the invention, filler activators, oils, in particular processing oils or extender oils, plasticizers, processing aids, accelerators, multifunctional crosslinking agents, anti-aging agents, ozone protection agents, antioxidants, mold release agents, retarders, and others Stabilizers and antioxidants, dyes, fibers comprising organic and inorganic fibers and fiber pulp, vulcanization activators, and additional polymerizable monomers, dimers, trimers or oligomers.
- Possible filler activators are, in particular, organic silanes such as vinyltrimethyloxysilane, vinyldimethoxymethylsilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N-cyclohexyl-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, isooctyltrimethoxysilane, isooctyltriethoxysilane , Hexadecyltrimethoxysilane or (octadecyl) methyldimethoxysilane.
- organic silanes such as vinyltrimethyloxysilane, vinyldimethoxymethylsilane, vinyltriethoxysilane, vinyltris (2-methoxy
- filler activators are, for example, surface-active substances such as triethanolamine or ethylene glycols with molecular weights of 74 to 10,000 g / mol.
- the amount of filler activators is usually 0.5 to 10 parts by weight, based on 100 parts by weight of the rubbers (a) .
- Suitable anti-aging agents are in particular those which trap as few radicals as possible during peroxidic vulcanization. These are in particular oligomerized 2,2,4-trimethyl-1,2-dihydroquinoline (TMQ), styrenated diphenylamine (DDA), octylated diphenylamine (OCD), cumylated diphenylamine (CDPA), 4- and 5-methyl mercaptobenzimidazole (MB2) or Zinc salt of 4- and 5-methyl mercaptobenzimidazole (ZMB2).
- the known phenolic anti-aging agents such as steric, can also be used hindered phenols or anti-aging agents based on phenylenediamine. Combinations of the anti-aging agents mentioned can also be used, preferably CDPA in combination with ZMB2 or MB2, particularly preferably CDPA with MB2.
- the anti- aging agents are usually used in amounts of 0.1 to 5 parts by weight, preferably 0.3 to 3 parts by weight, based on 100 parts by weight of the rubbers (a).
- Suitable mold release agents are: saturated or partially unsaturated fatty and oleic acids or their derivatives (in the form of fatty acid esters, fatty acid salts, fatty alcohols or fatty acid amides), products that can be applied to the mold surface, such as products based on low molecular weight silicone compounds, and products based on them of fluoropolymers and products based on phenolic resins.
- the mold release agents are used as a mixture component in amounts of 0.2 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the rubbers (a).
- Such preferred embodiments have improved hot air aging after 504 hours at 150 ° C.
- the invention further relates to a process for the preparation of the aforementioned vulcanizable compositions according to the invention by mixing all components (a), (b) and (c) and, if appropriate, (d). This can be done using devices and mixing devices known to those skilled in the art.
- the order in which the components are mixed with one another is not of fundamental importance, but is in each case coordinated with the available mixing units and temperature control.
- components (a), (b) and (c) and, if appropriate, (d) can be mixed using the typical mixing systems which are common in the rubber industry.
- I) discontinuously mixing units in the form of mixing rollers or internal mixers and ii) continuously mixing units such as mixing extruders can be used.
- the rubber (a) is preferably initially introduced, masticated, and then all other components apart from the vulcanization chemicals (peroxide compound and coagent) are added. After an appropriate mixing time, the mixture is ejected. The peroxide compound and the coagent are mixed in on a roller in a second step. (The speed of the roller is controlled so that stable skins are obtained.
- the vulcanizable compositions are obtained e.g. in the form of so-called “skins", feed strips or feed bodies, or also as pellets or granules. These can then be pressed or injection molded into molds and crosslinked according to the radical dispensers used under suitable conditions.
- the invention also relates to the production of vulcanizates by subjecting the aforementioned vulcanizable compositions to an energy input, in particular a temperature treatment.
- the energy input can take place, for example, in the form of thermal energy.
- the vulcanized products are produced by means of temperature treatment by vulcanizing the compositions according to the invention in a customary manner in suitable molds at a temperature in the range from preferably 120 to 200 ° C., particularly preferably 140 exposed to 180 ° C.
- the vulcanization can be effected by any method such as press vulcanization, steam vulcanization and the like.
- the peroxide compounds (c) lead to a radical crosslinking between and with the rubbers used (a).
- the invention also relates to the crosslinked rubbers, ie vulcanizates, which can be obtained by crosslinking the aforementioned vulcanizable compositions and the use of vulcanizates to produce a component which is in contact with coolant.
- These components are preferably seals, cooling seals, hoses, radiator hoses, motor vehicle cooling water hoses, heating hoses and radiator housings.
- the vulcanizates obtained by vulcanizing the vulcanizable composition can be processed into a radiator hose, a heater hose, a radiator housing, a radiator seal or the like by a conventional method, and these products are particularly excellent products having the properties described above. In particular, such vulcanizates have improved resistance to aging.
- the invention thus furthermore relates to the use of 35 to 150 parts by weight of silane-coated woolastonite, preferably vinylsilane-coated wollastonite, based on 100 parts by weight of the rubbers (a) in a vulcanizable composition comprising at least one rubber (a) and at least one peroxide compound (c) for improving the aging resistance in hot air after 21 days at 150 ° C and in coolant after 21 days at 150 ° C of vulcanizates in contact with coolants, produced by vulcanizing the vulcanizable composition.
- silane-coated woolastonite preferably vinylsilane-coated wollastonite
- the invention further relates to cooling units which i) have at least one vulcanizate, produced from a vulcanizable mixture comprising the aforementioned components (a), (b) and (c) and ii) coolants.
- cooling units are cooling devices for motor vehicles.
- Examples 7 * and 8 * below are comparative examples not according to the invention, examples 1 to 6 and 9 are examples according to the invention.
- the comparative examples are marked in the following tables with a * after the example number.
- An GK 1.5 E internal mixer (manufacturer: HF Mixing Group) was used as the primary mixing unit. The speed was 40 min -1 , the cooling water inlet temperature 40 ° C.
- the rubber (a) was initially masticated for 1 minute, after which all the other components apart from the vulcanization chemicals (peroxide compound and coagent) were added.
- the stamp was pulled and swept 3 minutes after the start of the mixing. After a mixing time of 250 seconds, the mixture was ejected.
- the peroxide compound and the coagent were mixed in in a second step at 30 ° C. on the roller. (Manufacturer Comforter, roller diameter 20 cm). The friction was 1: 1.11.
- Zinc oxide activ Zinc oxide (ZnO), commercially available from LANXESS Deutschland GmbH TAIC 70% KETTLITZ-TAIC 70; Coagent; available from Kettlitz-Chemie GmbH & Co. KG TOTM Uniplex® 546; available from Rheinchemie Rheinau GmbH Rhenofit TRIM / S 70% trimethylolpropane trimethacrylate on 30% silica; Coagent; available from Rhein Chemie Rheinau GmbH Perkadox® 14-40 Di (tert-butylperoxyisopropyl) benzene 40% supported on silica; available from Akzo Nobel Polymer Chemicals BV G13 / water mixture G13 coolant additive available from Volkswagen; 50 parts by volume of deionized water and 50 parts by volume of G13 coolant additive were mixed for the storage experiments 2-ethylhexanoic acid available from Sigma Aldrich Ethylene glycol available from Sigma Aldrich
- the amounts of the parts by weight in the examples relate to 100 parts by weight of the rubber (a).
- the vulcanization process in the MDR (Moving Die Rheometer) and its analytical data were measured on a Monsanto Rheometer MDR 2000 according to ASTM D5289-95.
- Shore A hardness was measured according to ASTM-D2240-81.
- the hot air aging was carried out according to DIN 53508/2000.
- the procedure 4.1.1 “Storage in a heating cabinet with forced ventilation” was used.
- the storage in the G13 / water mixture was carried out in pressure vessels with a liquid to sample ratio of 150: 1. ⁇ b> ⁇ u> Table 1 ⁇ /u>: ⁇ /b> Composition of the vulcanizable compositions. Examples 1 2nd 3rd 4th 5 6 7 * 8th* 9 [Parts by weight]
- Example 7 * serves as a comparison test with Examples 1 to 6, since it contains no silane-coated wollastonite (Tremin®).
- Temin® silane-coated wollastonite
- the amount of 65 parts by weight of wollastonite based on 100 parts by weight of HNBR in Examples 1 to 6 was compensated for in Example 7 * by the filler N990.
- Example 8 * The vulcanizable composition of Example 8 * serves as a comparison test to Example 9, since it contains no silane-coated wollastonite (Tremin®).
- Temin® silane-coated wollastonite
- the amount of 65 parts by weight of wollastonite in Example 9 was balanced in Example 8 * by 50 parts by weight of the filler N550 in order to achieve similar tensile strength values. You need significantly less N550 than Tremin® to get similar hardness and tensile strength.
- the vulcanization measurement was carried out in a Monsanto MDR 2000 rheometer at a test temperature of 180 ° C over a test time of 15 minutes.
- the test series shows that the compositions (1 to 6) produced according to the invention have a vulcanization behavior comparable to that of comparative example (7 *).
- the rubber mixture (9) according to the invention likewise has a vulcanization behavior comparable to that of the comparative example (8 *).
- the vulcanizable compositions were then vulcanized in a plate press under a pressure of 170 bar at 180 ° C. for 10 minutes.
- test values given in Table 3 were determined at 23 ° C. on the vulcanizates tempered for 4 hours at 160 ° C. ⁇ b> ⁇ u> Table 3 ⁇ /u>: ⁇ /b> Properties of the vulcanized compositions 1 to 9 after vulcanization (10 minutes) at 180 ° C (test temperature: 23 ° C) Train test 1 2nd 3rd 4th 5 6 7 * 8th* 9 2 mm plates vulcanized at 180 ° C for 10 min M 10 MPa 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.7 0.7 M 25 MPa 1.5 1.7 1.4 1.4 1.3 1.4 1.4 1.3 1.2 M 50 MPa 2.4 3.3 2.6 2.1 2nd 2nd 2.2 2.2 1.8 M 100 MPa 4.3 8.1 7.1 3.5 3.3 3.3 5.1 6.2 2.6 M 300 MPa 10.9 17.5 19.8 9 8.9 8.7 17.6 - 7.8 EB % 441 310 300 466 458 467 363 249 468 TS MPa 27
- the unaged comparative vulcanizate 7 * has a lower elongation at break and tensile strength than the vulcanizates 4 to 6 according to the invention.
- the unaged comparative vulcanizate 8 * has a much lower elongation at break with the same tensile strength than the vulcanizates 9 according to the invention.
- the two comparison vulcanizates have a hardness (H) of 70 or more, while the vulcanizates 1 to 6 and 9 according to the invention have a hardness of less than 70.
- the elongation at break (EB) in comparison test 7 without silane-coated wollastonite with -37% change after aging in hot air for 504 hours is an insufficient value.
- the vulcanizates with silane-coated wollastonite of Examples 1 to 6 have significantly lower and thus better decrease in elongation at break.
- the hardness (H) of the examples according to the invention is comparable to comparative example 7.
- Example 6 with EST-coated wollastonite and without zinc has the lowest value with -8% change in elongation at break and thus provides the best hot air aging.
- Example 9 according to the invention with silane-coated wollastonite has, compared to comparative example 8 * without silane-coated wollastonite, a significantly improved elongation at break after aging for 504 hours in an ethylene glycol / water / 2-ethylhexanoic acid mixture.
- Example 9 according to the invention has an improved swelling ( ⁇ V).
- Vulcanizates with VST-coated wollastonite show the best balance between change in elongation at break, volume swelling and change in tensile strength after aging for 1008 hours in G13 and are therefore better than vulcanizates with epoxysilane-coated wollastonite or methacylsilane-coated wollastonite.
- Comparative Example 7 * with a change in elongation at break of 19% after aging for 504 hours in G13, has the highest and thus the worst value.
- Examples 4 to 6 according to the invention show a significantly smaller change in the elongation at break.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
- Die vorliegende Erfindung betrifft die Verwendung einer vulkanisierbaren Zusammensetzung enthaltend Kautschuk, Silan-beschichteten Wollastonit und Peroxidverbindung zur Herstellung von Vulkanisaten die in Kontakt mit Kühlmittel stehen.
- Die Erfindung betrifft ferner die Verwendung eines Vulkanisats, hergestellt aus einer vulkanisierbaren Zusammensetzung enthaltend Kautschuk, Silan-beschichteten Wollastonit und Peroxidverbindung, als Bauteil, bevorzugt als Dichtung oder als Schlauch, das in Kontakt mit Kühlmittel steht.
- Die Anforderungen an Vulkanisate zur Verwendung als Kühlerschlauch, Heizungsschlauch, Kühlergehäuse oder Kühlerdichtung werden immer höher. So müssen zur Erfüllung von Sicherheitsnormen geeignete Vulkanisate eine ausreichende Alterungsbeständigkeit sowohl in Heißluft als auch in Kühlmittel, d.h. 25 % oder weniger Änderung der Bruchdehnung nach 21 Tagen (504 Stunden) bei 150 °C in Heißluft und 25 % oder weniger Änderung der Bruchdehnung nach 21 Tagen (504 Stunden) bei 150 °C in Kühlmittel aufweisen.
- Der Fachmann versteht unter Kühlmittel einen flüssigen Stoff oder ein Stoffgemisch, das zum Abtransport von Wärme eingesetzt wird. Das Kühlmittel ist in der Lage, in einem Kühlzyklus die Enthalpie entlang des Temperaturgradienten zu einer Stelle niedrigerer Temperatur zu transportieren. Kühlflüssigkeiten können dabei das Kühlgut direkt oder über einen Wärmetauscher kühlen.
Im Rahmen dieser Erfindung stehen Kühlmittel für Zusammensetzungen enthaltend Wasser, einen Gefrierpunktserniedriger, bevorzugt Alkylglycol oder Salze, besonders bevorzugt Ethylenglycol oder Propylenglycol, und einen Korrosionsinhibitor, bevorzugt neutralisierte organische Säuren, besonders bevorzugt Natriumethylhexanoat.
In herkömmlichen Kühlmitteln wurden früher Silikate als Zusatz eingesetzt. Das Silikat verhindert durch den Aufbau einer Al-Silikat-Schutzschicht auf Aluminiumteilen zwar Korrosion, allerdings baut es schnell ab und muss daher regelmäßig erneuert werden. Neuere Kühlmittelgenerationen enthalten daher statt des Silikats organische Verbindungen für den Korrosionsschutz, da diese länger vorhalten.
Seit einiger Zeit wird dabei die sogenannte OAT (organic acid technology) in Kühlmitteln eingesetzt. Bei dieser Technologie werden neutralisierte organische Säuren, wie zum Beispiel Natriumethylhexanoat als Zusatz verwendet. Bei erhöhter Temperatur entsteht allerdings im Laufe der Zeit aus dem Salz der Ethylhexansäure die freie Säure. Diese Säure kann zu vorzeitiger Alterung bei herkömmlichen Vulkanisaten führen. Ein Beispiel für ein Kühlmittelkonzentrat mit OAT-Technologie ist G13 von Volkswagen, das als Hauptkomponenten Ethylenglykol und Natriumethylhexanoat enthält und mit Wasser vermengt ein erfindungsgemäßes Kühlmittel ergibt. - Es besteht somit eine Nachfrage nach Vulkanisaten, die die hohen Anforderungen an die Alterungsbeständigkeit sowohl in Heißluft als auch in Kühlmittel erfüllen. Insbesondere ist eine hohe Alterungsbeständigkeit in solchen Kühlmitteln erstrebenswert, die hohe Mengen an organischen Säuren wie beispielsweise 2-Ethylhexansäure oder Sebacinsäure aufweisen. Darüber hinaus müssen die weiteren typischen Gummieigenschaften wie etwa Zugfestigkeit, Dehnung und Druckverformungsrest verglichen mit herkömmlichen Standardtypen ausreichend gut sein.
-
WO-A-2010/030860 offenbart in den Beispielen 2 und 3 eine vulkanisierbare Zusammensetzung auf Basis von hydriertem Nitrilkautschuk (HNBR) enthaltend Silan-beschichteten Wollastonit (400 Wollastocoat 10022), einen Säureakzeptor, ein Metallsalz und einen Stabilisator. Diese Zusammensetzung weist eine schnelle Vulkanisation auf sowie verbesserte Verarbeitbarkeit, Hitzestabilität und einen niedrigen Druckverformungsrest. Die Zusammensetzung des Beispiels 3 weist zusätzlich auch eine verringerte und somit verbesserte Quellung in Wasser auf.WO-A-2010/030860 weist sowohl in den Zusammensetzungen des Beispiels 2 als auch in Beispiel 3 neben dem Silan-beschichteten Wollastonit Zinkoxid (ZnO) und Therban HT auf. Mit anderen Worten wird die Verwendung von vulkanisierbaren Zusammensetzungen enthaltend HNBR und Silan-beschichteten Wollastonit in Kombination mit einem Metallsalz und einem Säureakzeptor zur Erhöhung der Alterungsstabilität beschrieben. DieWO-A-2010/030860 liefert keinen Hinweis auf die Verwendung der vulkanisierbaren Zusammensetzung und ihrer Vulkanisate in Kontakt mit Kühlmittel sowie deren Beständigkeit gegenüber Kühlmitteln. -
WO-A-2015/146862 offenbart HNBR Zusammensetzungen enthaltend 3 bis 20 phr Wollastonit sowie 72 bis 87 phr Ruß für Abriebfestigkeit und Druckbeständigkeit. Die Verwendung dieser Zusammensetzungen in Kontakt mit Kühlmitteln und ihr Quellverhalten darin sind nicht offenbart. -
CN-A-103408810 offenbart eine Dichtung basierend auf einer Zusammensetzung enthaltend unter anderem Nitrilkautschuk (NBR) und modifizierten Wollastonit mit verbesserten mechanischen Eigenschaften sowie verbesserter Abriebfestigkeit und Wärmebeständigkeit. Die Verwendung dieser Zusammensetzung in Kontakt mit Kühlmitteln und deren Quellverhalten darin sind nicht offenbart. -
KR20130003554 -
US 2011/251320 A1 offenbart in den Beispielen eine vulkanisierbare Zusammensetzung enthaltend - (a) einen hydrierten Nitrilkautschuk (92 + 15 bzw. 100 Teile Therban),
- (b) einen silanbeschichteten Wollastonit (je 30 Teile Wollastocoat 10022) und
- (c) eine Peroxidverbindung (bis(t-Butylperoxy)diisopropylbenzol.
sowie je 3 Teile Zinkoxid. -
US 2001/000343 A1 offenbart Vulkanisate, hergestellt aus einer vulkanisierbaren Zusammensetzung, weiche - (a) ein Fluorelastomer,
- (b) einen silanbeschichteten Wollastonit, und
- (c) eine Peroxidverbindung enthält.
-
US 2005/159557 A1 offenbart Zusammensetzungen, enthaltend - (a) ein Fluorelastomer,
- (b) eine Peroxidverbindung, und
- (c) mindestens einen mineralischen Füllstoff, z.B. Wollastonit.
-
US 2006/142467 A1 offenbart eine Kautschukzusammensetzung, die eine vernetzte Fluorelastomer-Mischung enthält, die in einer thermoplastischen Materialmischung dispergiert ist. - Allen Dokumenten des Standes der Technik ist gemein, dass keine vulkanisierbaren Zusammensetzungen auf Basis von HNBR bekannt sind, die den aktuellen, hohen Anforderungen der Anwendung in Kontakt mit Kühlmitteln entsprechen.
- Die Aufgabe der vorliegenden Erfindung war es somit, vulkanisierbare Zusammensetzungen zur Herstellung von Vulkanisaten bereitzustellen, die eine Alterungsbeständigkeit von 25 % oder weniger Änderung der Bruchdehnung nach 21 Tagen (504 Stunden) bei 150°C in Heißluft und 25 % oder weniger Änderung der Bruchdehnung nach 21 Tagen (504 Stunden) bei 150 °C in Kühlmittel aufweisen, und somit in Kontakt mit Kühlmitteln mit OAT Technologie verwendet werden können.
In einer weiteren Aufgabe werden bevorzugt solche vulkanisierbaren Zusammensetzungen bereitgestellt, die zu Vulkanisaten führen, die eine vergleichbare oder verbesserte Quellung in Kühlmittel aufweisen als vulkanisierbare Zusammensetzungen des Standes der Technik.
In einer weiteren Aufgabe werden besonders bevorzugt solche vulkanisierbaren Zusammensetzungen bereitgestellt, die zu Vulkanisaten führen, die zusätzlich eine Shore A Härte von weniger als 70 aufweisen, damit das Material ausreichend elastisch ist. - Überraschenderweise wurde gefunden, dass durch Kombination von Kautschuk mit Silan-beschichtetem Wollastonit und Peroxidverbindungen Zusammensetzungen erhalten werden, die zu Vulkanisaten führen, die die genannten Anforderungen erfüllen und somit für die Verwendung in Kontakt mit Kühlmitteln geeignet sind.
- Gegenstand der Erfindung ist die Verwendung einer vulkanisierbaren Zusammensetzung, zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht, dadurch gekennzeichnet, dass die vulkanisierbare Zusammensetzung
- (a) mindestens einen Kautschuk, bevorzugt mindestens einen hydrierten Nitrilkautschuk oder EPDM, besonders bevorzugt hydrierten Nitrilkautschuk
- (b) mindestens einen Silan-beschichteten Wollastonit, bevorzugt mindestens einen Vinylsilan-beschichteten Wollastonit, und
- (c) mindestens eine Peroxidverbindung
enthält.
Diese Lösung war insofern überraschend, als nicht jede vulkanisierbare Zusammensetzung, die bereits für gute Alterungsbeständigkeit oder gute Kühlmittelbeständigkeit bekannt war, für die hohen Anforderungen an die Verwendung von Vulkanisaten im Kontakt mit Kühlmittel geeignet ist. - Die Verwendung von vulkanisierbaren Zusammensetzungen und deren Vulkanisaten gemäß der vorliegenden Erfindung bewirkt, dass die aus den Vulkanisaten hergestellten Bauteile eine geringere Alterung aufweisen als herkömmliche Vulkanisate ohne Silan-beschichteten Wollastonit.
- Bevorzugt ist die Verwendung einer vulkanisierbaren Zusammensetzung, zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht, dadurch gekennzeichnet, dass die vulkanisierbare Zusammensetzung
- (a) 100 Gew.-Teile mindestens eines Kautschuks, insbesondere hydrierten Nitrilkautschuk oder EPDM, besonders bevorzugt hydrierten Nitrilkautschuk
- (b) 35 bis 150 Gew.-Teile, bevorzugt 50 bis 100 Gew.-Teile mindestens eines Silan-beschichteten Wollastonites, insbesondere Epoxysilan-, Methacrylsilan- oder Vinylsilan-beschichteten Wollastonits oder Mischungen davon,
- (c) 1 bis 20 Gew.-Teile, bevorzugt 2 bis 10 Gew.-Teile mindestens einer Peroxidverbindung,
- (d) 0 bis 100 Gew.-Teile, bevorzugt 1 bis 80 Gew.-Teile eines oder mehrerer üblicher Kautschukadditive, bevorzugt eines oder mehrerer Füllstoffe, insbesondere Ruß, Kieselsäure, Magnesiumoxid oder Aluminiumoxid, eines oder mehrerer Füllstoffaktivatoren, insbesondere auf Basis eines organischen Silans, eines oder mehrerer Alterungsschutzmittel, insbesondere oligomerisiertes 2,2,4-Trimethyl-1,2-dihydro-chinolin (TMQ), styrolisiertes Diphenylamin (DDA), octyliertes Diphenylamin (OCD), cumyliertes Diphenylamin (CDPA) oder Zinksalz von 4- und 5-Methylmercaptobenzimidazol (Vulkanox ZMB2) oder 4- und 5-Methylmercaptobenzimidazol und/oder eines oder mehrerer Formtrennmittel oder Verarbeitungshilfsmittel bezogen auf 100 Gew.-Teile der Kautschuke (a), enthält.
- Besonders bevorzugt ist die Verwendung von vulkanisierbaren Zusammensetzungen zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht enthaltend
- (a) 100 Gew.-Teile eines hydrierten Nitrilkautschuks,
- (b) 35 bis 150 Gew.-Teile, bevorzugt 50 bis 100 Gew.-Teile mindestens eines Silan-beschichteten Wollastonites, insbesondere Epoxysilan-, Methacrylsilan- oder Vinylsilan-beschichteten Wollastonites oder Mischungen davon,
- (c) 1 bis 20 Gew.-Teile, bevorzugt 2 bis 10 Gew.-Teile mindestens einer Peroxidverbindung,
- (d) 0 bis 100 Gew.-Teile, bevorzugt 1 bis 80 Gew.-Teile eines oder mehrerer üblicher Kautschukadditive, bevorzugt eines oder mehrerer Füllstoffe, insbesondere Ruß, Kieselsäure, Magnesiumoxid oder Aluminiumoxid, eines oder mehrerer Füllstoffaktivatoren, insbesondere auf Basis eines organischen Silans, eines oder mehrerer Alterungsschutzmittel, insbesondere oligomerisiertes 2,2,4-Trimethyl-1,2-dihydro-chinolin (TMQ), styrolisiertes Diphenylamin (DDA), octyliertes Diphenylamin (OCD), cumyliertes Diphenylamin (CDPA) oder Zinksalz von 4- und 5-Methylmercaptobenzimidazol (Vulkanox ZMB2) oder 4- und 5-Methylmercaptobenzimidazo und/oder eines oder mehrerer Formtrennmittel oder Verarbeitungshilfsmittel.
- Die erfindungsgemäße Verwendung der vulkanisierbaren Zusammensetzungen bewirkt, dass eine vergleichbar geringe Quellung des Vulkanisats im Kühlmittel und eine geringere Änderung der Dehnung des Vulkanisats bei Lagerung in Heißluft und Kühlmittel auftritt im Vergleich zu bekannten vulkanisierbaren Zusammensetzungen.
- Als Komponente (a) wird mindestens ein typischer Kautschuk eingesetzt. Kautschuk als Komponente (a) ist beispielsweise Nitrilkautschuk (NBR), hydrierter Nitrilkautschuk (HNBR), Ethylen-Propylen-Kautschuk (EPM), Ethylen-Propylen-Dien-Kautschuk (EPDM), Ethylen-Vinylacetat (EVA; EVM), Naturkautschuk (NR), Chloropren-Kautschuk (BR), Butylkautschuk (IIR), Polyisopren-Kautschuk (IR), Styrol-Butadienkautschuk (SBR), Chloropren-Kautschuk (CR), Ethylen-Acrylat-Kautschuk (AEM) oder Acrylat-Kautschuk (ACM) sowie beliebige Mischungen der zuvor genannten Kautschuke.
- Die Verwendung von hydriertem Nitrilkautschuk, EPM oder EPDM als Komponente (a) ist bevorzugt
- Die Verwendung von hydriertem Nitrilkautschuk als Komponente (a) ist besonders bevorzugt.
- Möglich ist auch die Verwendung eines Blends von hydriertem Nitrilkautschuk mit Ethylen-Vinylacetat-Kautschuk, bevorzugt können dabei bis zu 20 Teile HNBR durch die gleiche Menge EVM ersetzt werden.
- Die Mooney-Viskosität (ML 1+4 gemessen bei 100°C) des eingesetzten Kautschuks (a) oder, sofern mehrere Kautschuke (a) eingesetzt werden, der gesamten Mischung aller Kautschuke (a) liegt in einem Bereich von 10 bis 120, bevorzugt in einem Bereich von 20 bis 110, besonders bevorzugt in einem Bereich von 30 bis 100. Die Bestimmung der Mooney-Viskosität erfolgt dabei gemäß ASTM Norm D 1646.
- Die genannten Kautschuke (a) sind teilweise kommerziell erhältlich, aber ferner in allen Fällen nach dem Fachmann über die Literatur zugänglichen Herstellverfahren zugänglich.
- Unter hydrierten Nitrilkautschuken (HNBR) sind im Rahmen dieser Anmeldung Co- und/oder Terpolymere auf der Basis mindestens eines konjugierten Diens und mindestens eines α,β-ungesättigten Nitrilmonomeren sowie gegebenenfalls weiterer copolymerisierbarer Monomeren zu verstehen, bei denen die einpolymerisierten Dieneinheiten ganz oder teilweise hydriert sind.
- Unter "Hydrierung" oder "hydriert" wird im Rahmen dieser Anmeldung eine Umsetzung der im Nitrilkautschuk ursprünglich vorhandenen Doppelbindungen zu mindestens 50 %, bevorzugt mindestens 85 %, besonders bevorzugt mindestens 95 % verstanden.
- Als α,β-ungesättigtes Nitril kann jedes bekannte α,β-ungesättigte Nitril eingesetzt werden, bevorzugt sind (C3-C5)-α,β-ungesättigte Nitrile wie Acrylnitril, Methacrylnitril, Ethacrylnitril oder Mischungen davon. Besonders bevorzugt ist Acrylnitril.
- Das konjugierte Dien kann von jeder Natur sein. Bevorzugt werden (C4-C6) konjugierte Diene eingesetzt. Besonders bevorzugt sind 1,3-Butadien, Isopren, 2,3-Dimethylbutadien, Piperylen oder Gemische daraus. Insbesondere bevorzugt sind 1,3-Butadien und Isopren oder Gemische daraus. Ganz besonders bevorzugt ist 1,3-Butadien.
- Die Anteile an konjugiertem Dien und α,β-ungesättigtem Nitril in den hydrierten Nitrilkautschuken können in weiten Bereichen variiert werden. Der Anteil des oder der Summe der konjugierten Diene liegt üblicherweise im Bereich von 40 bis 90 Gew.-% und bevorzugt im Bereich von 50 bis 80 Gew.-%, bezogen auf das Gesamtpolymer. Der Anteil des oder der Summe der α,β-ungesättigten Nitrile liegt üblicherweise im Bereich von 10 bis 60 Gew.-% und bevorzugt im Bereich von 20 bis 50 Gew.-%, bezogen auf das Gesamtpolymer. Die zusätzlichen Monomere können in Mengen im Bereich von 0,1 bis 40 Gew.-%, bevorzugt im Bereich von 1 bis 30 Gew.-%, bezogen auf das Gesamtpolymer, vorliegen. In diesem Fall werden entsprechende Anteile des oder der konjugierten Diene und/oder des oder der α,β-ungesättigten Nitrile durch die Anteile der zusätzlichen Monomere ersetzt, wobei sich die Anteile aller Monomere jeweils zu 100 Gew.-% aufsummieren.
- Die Herstellung solcher hydrierter Nitrilkautschuke, die für die erfindungsgemäßen vulkanisierbaren Zusammensetzungen geeignet sind, ist dem Fachmann hinlänglich geläufig.
- Die zunächst erfolgende Herstellung der Nitrilkautschuke durch Polymerisation der vorgenannten Monomere ist in der Literatur (z.B. Houben-Weyl, Methoden der Organischen Chemie Bd.14/1, Georg Thieme Verlag Stuttgart 1961) umfangreich beschrieben.
- Die anschließende Hydrierung der vorstehend beschriebenen Nitrilkautschuke zu hydriertem Nitrilkautschuk kann in der dem Fachmann bekannten Art und Weise erfolgen.
- Es ist prinzipiell möglich, die Hydrierung von Nitrilkautschuken unter Einsatz homogener oder heterogener Hydrierkatalysatoren durchzuführen.
- Wie in
WO-A-01/77185 US-A-3,700,637 ,DE-A-25 39 132 ,EP-A-134 023 DE-OS-35 41 689 DE-OS-35 40 918 EP-A-298 386 DE-OS-35 29 252 DE-OS-34 33 392 US-A-4,464,515 undUS-A-4,503,196 ). - Geeignete Katalysatoren und Lösungsmittel für eine Hydrierung in homogener Phase werden im Folgenden beschrieben und sind auch aus
DE-A-25 39 132 und derEP-A-0 471 250 bekannt - Die selektive Hydrierung kann beispielsweise in Gegenwart eines Rhodium-haltigen Katalysators erreicht werden. Einsetzbar ist beispielsweise ein Katalysator der allgemeinen Formel
(R1 mB)lRhXn
worin - R1
- gleich oder verschieden sind und eine C1-C8 Alkylgruppe, eine C4-C8 Cycloalkylgruppe, eine C6-C15 Aryl-Gruppe oder eine C7-C15 Aralkylgruppe darstellen,
- B
- Phosphor, Arsen, Schwefel oder eine Sulfoxid-Gruppe S=O bedeutet,
- X
- Wasserstoff oder ein Anion, vorzugsweise Halogen und besonders bevorzugt Chlor oder Brom, bedeutet
- l
- 2,3 oder 4 ist
- m
- 2 oder 3 ist und
- n
- 1,2 oder 3, bevorzugt 1 oder 3 ist.
- Bevorzugte Katalysatoren sind Tris(triphenylphosphin)-rhodium(I)-chlorid, Tris(triphenyl-phosphin)-rhodium(III)-chlorid und Tris(dimethylsulfoxid)-rhodium(III)-chlorid sowie Tetrakis- (triphenylphosphin)-rhodium-hydrid der Formel ((C6H5)3P)4RhH und die entsprechenden Verbindungen, in denen das Triphenylphosphin ganz oder teilweise durch Tricyclohexylphosphin ersetzt wurde. Der Katalysator kann in kleinen Mengen benutzt werden. Eine Menge im Bereich von 0,01 bis 1 Gew.-%, bevorzugt im Bereich von 0,03 bis 0,5 Gew.-% und besonders bevorzugt im Bereich von 0,1 bis 0,3 Gew.-% bezogen auf das Gewicht des Polymers sind geeignet.
- Üblicherweise ist es sinnvoll, den Katalysator zusammen mit einem Co-Katalysator zu verwenden, der ein Ligand der Formel R1 mB ist, wobei R1, m und B die zuvor für den Katalysator genannten Bedeutungen besitzen. Bevorzugt ist m gleich 3, B gleich Phosphor und die Reste R1 können gleich oder verschieden sein. Bevorzugt handelt es sich um Co-Katalysatoren mit Trialkyl-, Tricycloalkyl-, Triaryl-, Triaralkyl-, Diarylmonoalkyl-, Diarylmonocycloalkyl-, Dialkylmonoaryl-, Dialkyl-monocycloalkyl-, Dicycloalkylmonoaryl- oder Dicyclalkylmonoaryl-Resten.
- Beispiele für Co-Katalysatoren finden sich beispielsweise in
US-A-4,631,315 . Bevorzugter Co-Katalysator ist Triphenylphosphin. Der Co-Katalysator wird bevorzugt in Mengen in einem Bereich von 0,3 bis 5 Gew.-%, besonders bevorzugt im Bereich von 0,5 bis 4 Gew.-%, bezogen auf das Gewicht des zu hydrierenden Nitrilkautschuks eingesetzt. Bevorzugt ist ferner das Gewichtsverhältnis des Rhodium-haltigen Katalysators zum Co-Katalysator im Bereich von 1:3 bis 1:55, besonders bevorzugt im Bereich von 1:5 bis 1:45. Bezogen auf 100 Gewichtsteile des zu hydrierenden Nitrilkautschuks werden geeigneter Weise 0,1 bis 33 Gewichtsteile des Co-Katalysators, bevorzugt 0,5 bis 20 und ganz besonders bevorzugt 1 bis 5 Gewichtsteile, insbesondere mehr als 2 aber weniger als 5 Gewichtsteile Co-Katalysators bezogen auf 100 Gewichtsteile des zu hydrierenden Nitrilkautschuks eingesetzt. - Die praktische Durchführung solcher Hydrierungen ist dem Fachmann z.B. aus
US-A-6,683,136 hinlänglich bekannt. Sie erfolgt üblicherweise, indem man den zu hydrierenden Nitrilkautschuk in einem Lösungsmittel wie Toluol oder Monochlorbenzol bei einer Temperatur im Bereich von 100 °C bis 150 °C und einem Druck im Bereich von 50 bar bis 150 bar für 2 Stunden bis 10 Stunden mit Wasserstoff beaufschlagt. - Bei Einsatz heterogener Katalysatoren zur Herstellung hydrierter Nitrilkautschuke durch Hydrierung der entsprechenden Nitrilkautschuke handelt es sich üblicherweise um geträgerte Katalysatoren auf der Basis von Palladium.
- Die Mooney-Viskosität (ML 1+4 gemessen bei 100 °C) des eingesetzten hydrierten Nitrilkautschuks (a) oder, sofern mehrere hydrierte Nitrilkautschuke (a) eingesetzt werden, der gesamten Mischung aller hydrierten Nitrilkautschuke (a) liegt in einem Bereich von 10 bis 120, bevorzugt in einem Bereich von 15 bis 100. Die Bestimmung der Mooney-Viskosität erfolgt dabei gemäß ASTM Norm D 1646.
- Der erfindungsgemäße hydrierte Nitrilkautschuk weist einen Gehalt an Restdoppelbindungen (RDB) von 10 % oder weniger, bevorzugt von 7 % oder weniger, besonders bevorzugt von 1 % oder weniger auf.
- Die in der erfindungsgemäßen vulkanisierbaren Zusammensetzung einsetzbaren hydrierten Nitrilkautschuke besitzen eine Glastemperatur kleiner -10 °C, bevorzugt kleiner -15 °C, besonders bevorzugt kleiner -20 °C gemessen über DSC bei einer Heizrate von 20 K/min.
- Beispiele für kommerziell erhältliche hydrierte Nitrilkautschuke sind voll- und teilhydrierte Nitrilkautschuke mit Acrylnitrilgehalten im Bereich 17 bis 50 Gew.-% (Therban®-Palette der ARLANXEO Deutschland GmbH sowie Zetpol®-Palette der Nippon Zeon Corporation). Ein Beispiel für hydrierte Butadien/Acrylnitril/AcrylatPolymere ist die Therban® LT-Serie der ARLANXEO Deutschland GmbH, beispielsweise Therban® LT 2157 sowie Therban® LT 2007. Ein Beispiel für carboxylierte hydrierte Nitrilkautschuke ist die Therban® XT-Serie der ARLANXEO Deutschland GmbH. Ein Beispiel für hydrierte Nitrilkautschuke mit geringen Mooney-Viskositäten und daher verbesserter Verarbeitbarkeit ist ein Produkt aus der Therban® AT-Serie, beispielweise Therban® AT 3404.
- Der hydrierte Nitrilkautschuk kann neben Wiederholungseinheiten mindestens eines ungesättigten Nitrils und mindestens eines konjugierten Diens ein oder mehrere weitere einpolymerisierbare Monomere in Form von Carbonsäuren oder Carbonsäureester enthalten.
- Geeignete einpolymerisierbare Carbonsäuren sind Mono- oder Dicarbonsäuren mit 3 bis 18 C-Atomen, die in α,β-Position ungesättigt sind, und deren Ester. Bevorzugte α,β-ungesättigte Carbonsäuren sind Acrylsäure, Methacrylsäure, Itaconsäure, Fumarsäure, Maleinsäure, Crotonsäure und Mischungen davon.
- Ester der α,β-ungesättigten Carbonsäuren mit 3 bis 18 C-Atomen umfassen vorzugsweise die Alkylester und die Alkoxyalkylester der zuvor genannten Carbonsäuren. Bevorzugte Ester der α,β-ungesättigten Carbonsäuren mit 3 bis 18 C-Atomen sind Methylacrylat, Ethylacrylat, Butylacrylat, 2-Ethylhexylacrylat, Octylacrylat und Polyethylenglycol-(Meth)acrylat (PEG-(Meth)acrylat) mit 1 bis 8 Ethylenglycol-Wiederholungseinheiten. Bevorzugte Alkoxyalkylester sind Polyethylenglycol-(Meth)acrylat (PEG-(Meth)acrylat) mit 1 bis 8 Ethylenglycol-Wiederholungseinheiten und Butylacrylate.
- Bevorzugte Ester der α,β-ethylenisch ungesättigte Dicarbonsäure Monoester sind beispielsweise
- ∘ Alkyl-, insbesondere C4-C18-Alkyl-, bevorzugt n-Butyl-, tert.-Butyl-, n-Pentyl- oder n-Hexyl-, besonders bevorzugt Mono-n-butylmaleat, Mono-n-butylfumarat, Mono-n-butylcitraconat, Mono-n-butylitaconat;
- ∘ Alkoxyalkyl-, insbesondere C1-C18-Alkoxyalkyl-, bevorzugt C4-C12-Alkoxyalkyl-,
- ∘ Polyethylenglycolester (PEG) mit 1 bis 8 Ethylenglycol-Wiederholungseinheiten
- ∘ Hydroxyalkyl-, insbesondere C4-C18-Hydroxyalkyl-, bevorzugt C4-C12-Hydroxyalkyl-,
- ∘ Cycloalkyl-, insbesondere C5-C18-Cycloalkyl-, bevorzugt C6-C12-Cycloalkyl, besonders bevorzugt Monocyclopentylmaleat, Monocyclohexylmaleat, Monocycloheptylmaleat, Monocyclopentylfumarat, Monocyclohexylfumarat, Monocycloheptylfumarat, Monocyclopentylcitraconat, Monocyclohexylcitraconat, Monocycloheptylcitraconat, Monocyclopentylitaconat, Monocyclohexylitaconat und Monocycloheptylitaconat,
- ∘ Alkylcycloalkyl-, insbesondere C6-C12-Alkylcycloalkyl-, bevorzugt C7-C10-Alkylcycloalkyl, besonders bevorzugt Monomethylcyclopentylmaleat und Monoethylcyclohexylmaleat, Monomethylcyclopentylfumarat und Monoethylcyclohexylfumarat, Monomethylcyclopentylcitraconat und Monoethylcyclohexylcitraconat; Monomethylcyclopentylitaconat und Monoethylcyclohexylitaconat;
- ∘ Aryl-, insbesondere C6-C14-Aryl-Monoester, bevorzugt Maleinsäuremonoarylester, Fumarsäuremonoarylester, Citraconsäuremonoarylester oder Itaconsäuremonoarylester, besonders bevorzugt Monophenylmaleat oder Monobenzylmaleat, Monophenylfumarat oder Monobenzylfumarat, Monophenylcitraconat oder Monobenzylcitraconat, Monophenylitaconat oder Monobenzylitaconat oder Mischungen davon,
- ∘ ungesättigte Polycarboxylsäurepolyalkylester wie beispielsweise Dimethylmaleat, Dimethylfumarat, Dimethylitaconate oder Diethylitaconate; oder
- ∘ aminogruppenhaltige α,β-ethylenisch ungesättigte Carboxylsäureester wie beispielsweise Dimethylaminomethylacrylat oder Diethylaminoethylacrylat.
- Die erfindungsgemäße vulkanisierbare Zusammensetzung enthält als Komponente (b) mindestens einen Silan-beschichteten Wollastonit.
- Die Silane, die zur Beschichtung der Wollastonite verwendet werden, sind Silane mit zumindest einer Funktionalisierung, die mit der Füllstoffoberfläche reagieren kann und bevorzugt mit einer zweiten Funktionalisierung, welche nach der Vulkanisation den modifizierten Füllstoff mit der Polymermatrix verbindet, wie beispielsweise Vinylgruppen.
Bevorzugte Silane sind Epoxysilan, Methacrylsilan, Vinylsilan oder Aminosilan. Besonders bevorzugte Silane sind Epoxysilan, Methacrylsilan und Vinylsilan.
Ganz besonders bevorzugtes Silan ist Vinylsilan. - Zusammensetzungen enthaltend Kautschuk, Peroxidverbindung und Wollastonit mit Vinylsilan-Beschichtung führen zu einer weiteren Verbesserung der Alterung. Vulkanisate mit Vinylsilan-beschichtetem Wollastonit weisen nach Alterung für 1008 Stunden in G13 die beste Balance zwischen Änderung der Bruchdehnung, Volumenquellung und Änderung der Zugfestigkeit auf und sind somit besser als Vulkanisate mit Epoxysilan-beschichtetem Wollastonit oder Methacylsilanbeschichtetem Wollastonit.
- Wollastonite sind natürlich vorkommende Calciumsilikat-Mineralien der Formel CaSiO3. Wollastonite haben eine weiße Farbe und einen basischen pH-Wert von größer 7. Die in den Beispielen verwendeten Wollastonite haben ein Seitenverhältnis (Aspect ratio) von 3:1 bis 5:1. Silan-beschichteter Wollastonit ist kommerziell erhältlich unter dem Markennamen Tremin® der Firma Quarzwerke.
- In den erfindungsgemäßen Zusammensetzungen werden, bezogen auf 100 Gew.-Teile der Kautschuke (a), 35 bis 150 Gew.-Teile, besonders bevorzugt 50 bis 100 Gew.-Teile mindestens eines Silan-beschichteten Wollastonites verwendet.
- Als Komponente (c) wird mindestens eine Peroxidverbindung als Vernetzungsmittel eingesetzt.
- Als Peroxidverbindung (c) sind beispielsweise die folgenden Peroxidverbindungen geeignet:
Bis-(2,4-dichlorbenzoyl)-peroxid, Dibenzoylperoxid, Bis-(4-chlorbenzoyl)peroxid, 1,1-Bis-(tert-butylperoxy)-3,3,5-trimethylcyclohexan, tert-Butylperbenzoat, 2,2-Bis-(tert-butylperoxy)-buten, 4,4-Di-tert-butylperoxynonylvalerat, Dicumylperoxid, 2,5-Dimethyl-2,5-di-(tert-butylperoxy)-hexan, tert-Butylcumylperoxid, 1,3-Bis-(tert-butylperoxyisopropyl)-benzol, Di-tert-butylperoxid, 2,5-Dimethyl-2,5-di(tert-butylperoxy)-hexin, tert-Butylhydroperoxid, Wasserstoffperoxid, Methylethylketonperoxid, Lauroylperoxid, Decanoylperoxid, 3,5,5-Trimethyl-hexanoylperoxid, Di-(2-ethylhexyl)-peroxydicarbonat, Poly(tert-butyl peroxycarbonat), Ethyl-3,3-di-(tert-butylperoxy)-butyrat, Ethyl-3,3-di-(tert-amylperoxy)-butyrat, n-Butyl-4,4-di-(tert-butylperoxy)-valerat, 2,2-Di-(tert-butylperoxy)-butan, 1,1-Di-(tert-butylperoxy)-cyclohexan, 3,3,5-Tri-methylcyclohexan, 1,1-Di-(tert-amylperoxy)cyclohexan, tert-Butyl-peroxybenzoat, tert-Butyl-peroxyacetat, tert-Butyl-peroxy-3,5,5-trimethylhexanoat, tert-Butyl peroxyisobutyrat, tert-Butyl-peroxy-2-ethylhexanoat, tert-Butyl-peroxypivalat, tert-Amyl-peroxypivalat, tert-Butyl-peroxyneodecanoat, Cumylperoxyneodecanoat, 3-Hydroxy-1,1-di-methylbutyl-peroxyneodecanoat, tert-Butylperoxybenzoat, tert-Butyl-peroxyacetat, tert-Amyl-peroxy-3,5,5-trimethylhexanoat, tert-Butyl-peroxyisobutyrat, tert-Butyl-peroxy-2-ethylhexanoat, Cumylperoxyneodecanoat, 3-Hydroxy-1,1-di-methylbutyl-peroxy-neodecanoat, 2,5-Dimethyl-2,5-di-(tert-butyl-peroxy)-hexyn-(3-di-tert-amyl)-peroxid, 2,5-Dimethyl-2,5-di-(tert-butylperoxy)-hexan, tert-Amyl-hydroperoxid, Cumolhydroperoxid, 2,5-Dimethyl-2,5-di-(hydroperoxy)-hexan, Diisopropylbenzol-monohydroperoxid sowie Kaliumperoxodisulfat. - Die mindestens eine Peroxidverbindung der erfindungsgemäßen vulkanisierbaren Zusammensetzung ist vorzugsweise ein organisches Peroxid, insbesondere Dicumylperoxid, tert-Butylcumylperoxid, Bis-(tert-butyl-peroxy-isopropyl)benzol, Di-tert-butylperoxid, 2,5-Dimethylhexan-2,5-dihydroperoxid, 2,5-Dimethylhexin-3,2,5-dihydroperoxid, Dibenzoylperoxid, Bis-(2,4-dichlorobenzoyl)peroxid, tert-Butylperbenzoat, 4,4-Di(tert-butylperoxy)valeriansäurebutylester und/oder 1,1-Bis(tert-butylperoxy)-3,3,5-trimethylcyclohexan bedeutet.
- Die Komponente (c) liegt in den erfindungsgemäßen vulkanisierbaren Zusammensetzungen bevorzugt in einer Menge von 1 bis 20 Gew.-Teilen, besonders bevorzugt in einer Menge von 2 bis 10 Gew.-Teilen, bezogen auf 100 Gew.-Teile der Kautschuke (a), vor.
- Darüber hinaus kann die vulkanisierbare Zusammensetzung weitere Kautschukadditive enthalten. Übliche Kautschukadditive schließen beispielsweise ein: Polymere, die nicht unter die erfindungsgemäße Definition der Komponente (a) fallen, Füllstoffaktivatoren, Öle, insbesondere Verarbeitungsöle oder Extenderöle, Weichmacher, Verarbeitungshilfsmittel, Beschleuniger, multifunktionelle Vernetzer, Alterungsschutzmittel, Ozonschutzmittel, Antioxidationsmittel, Formtrennmittel, Retarder, weitere Stabilisatoren und Antioxidantien, Farbstoffe, Fasern umfassend organische und anorganische Fasern sowie Faserpulpe, Vulkanisationsaktivatoren, und zusätzliche polymerisierbare Monomere, Dimere, Trimere oder Oligomere.
- Als Füllstoffaktivatoren kommen insbesondere organische Silane, wie beispielsweise Vinyltrimethyloxysilan, Vinyldimethoxymethylsilan, Vinyltriethoxysilan, Vinyltris(2-methoxy-ethoxy)silan, N-Cyclohexyl-3-aminopropyltrimethoxysilan, 3-Aminopropyltrimethoxysilan, Methyltrimethoxysilan, Methyltriethoxysilan, Dimethyldimethoxysilan, Dimethyldiethoxysilan, Trimethylethoxysilan, Isooctyltrimethoxysilan, Isooctyltriethoxysilan, Hexadecyltrimethoxysilan oder (Octadecyl)methyldimethoxysilan in Betracht. Weitere Füllstoffaktivatoren stellen zum Beispiel grenzflächenaktive Substanzen wie Triethanolamin oder Ethylenglycole mit Molekulargewichten von 74 bis 10.000 g/mol dar. Die Menge an Füllstoffaktivatoren beträgt üblicherweise 0,5 bis 10 Gew.-Teile, bezogen auf 100 Gew.-Teile der Kautschuke (a).
- Als Alterungsschutzmittel kommen insbesondere solche in Frage, die bei der peroxidischen Vulkanisation möglichst wenig Radikale abfangen. Dies sind insbesondere oligomerisiertes 2,2,4-Trimethyl-1,2-dihydro-chinolin (TMQ), styrolisiertes Diphenylamin (DDA), octyliertes Diphenylamin (OCD) cumyliertes Diphenylamin (CDPA), 4- und 5-Methylmercaptobenzimidazol (MB2) oder Zinksalz von 4- und 5-Methylmercaptobenzimidazol (ZMB2). Daneben können auch die bekannten phenolischen Alterungsschutzmittel eingesetzt werden, wie sterisch gehinderte Phenole bzw. Alterungsschutzmittel auf Basis von Phenylendiamin. Es können auch Kombinationen der genannten Alterungsschutzmittel eingesetzt werden, bevorzugt CDPA in Kombination mit ZMB2 oder MB2, besonders bevorzugt CDPA mit MB2.
- Die Alterungsschutzmittel werden üblicherweise in Mengen von 0,1 bis 5 Gew.-Teile, bevorzugt von 0,3 bis 3 Gew.-Teile, bezogen auf 100 Gew.-Teile der Kautschuke (a) eingesetzt.
- Als Formtrennmittel kommen beispielsweise in Betracht: Gesättigte oder teilweise ungesättigte Fett- und Ölsäuren oder deren Derivate (in Form von Fettsäureestern, Fettsäuresalzen, Fettalkoholen oder Fettsäureamiden), weiterhin auf die Formoberfläche applizierbare Produkte, wie beispielsweise Produkte auf Basis von niedermolekularen Silikonverbindungen, Produkte auf Basis von Fluorpolymeren sowie Produkte auf Basis von Phenolharzen.
- Die Formtrennmittel werden als Mischungsbestandteil in Mengen von 0,2 bis 10 Gew.-Teile, bevorzugt 0,5 bis 5 Gew.-Teile, bezogen auf 100 Gew.-Teile der Kautschuke (a) eingesetzt.
- Auch die Verstärkung der Vulkanisate mit Festigkeitsträgern aus Glas nach der Lehre von
US-A-4,826,721 ist möglich sowie die Verstärkung mit aromatischen Polyamiden (Aramid). - In einer bevorzugten Ausführungsform wird eine vulkanisierbare Zusammensetzung zur Herstellung eines Vulkanisat, das mit Kühlmittel in Kontakt steht, verwendet, dadurch gekennzeichnet, dass die vulkanisierbare Zusammensetzung
- (a) 100 Gew.-Teile mindestens eines Kautschuks, bevorzugt hydrierten Nitrilkautschuks,
- (b) 35 bis 150 Gew.-Teile, bevorzugt 50 bis 100 Gew.-Teile mindestens eines Silan-beschichteten Wollastonites, bevorzugt Epoxysilan-, Methacrylsilan- oder Vinylsilan-beschichteten Wollastonits oder Mischungen davon,
- (c) 1 bis 20 Gew.-Teile, bevorzugt 2 bis 10 Gew.-Teile mindestens einer Peroxidverbindung,
- (d) 0 bis 100 Gew.-Teile, bevorzugt 1 bis 80 Gew.-Teile eines oder mehrerer üblicher Kautschukadditive, bevorzugt eines oder mehrerer Füllstoffe, insbesondere Ruß, Kieselsäure, Magnesiumoxid oder Aluminiumoxid, eines oder mehrerer Füllstoffaktivatoren, insbesondere auf Basis eines organischen Silans, eines oder mehrerer Alterungsschutzmittel, insbesondere oligomerisiertes 2,2,4-Trimethyl-1,2-dihydro-chinolin (TMQ), styrolisiertes Diphenylamin (DDA), octyliertes Diphenylamin (OCD), cumyliertes Diphenylamin (CDPA) oder Zinksalz von 4- und 5-Methylmercaptobenzimidazol (Vulkanox ZMB2) oder 4- und 5-Methylmercaptobenzimidazol und/oder eines oder mehrerer Formtrennmittel oder Verarbeitungshilfsmittel bezogen auf 100 Gew.-Teile der Kautschuke (a) enthält,
wobei der Gehalt an Zinkionen weniger als 1,5 Gew.-Teile bezogen auf 100 Gew.-Teile der Kautschuke (a) beträgt und die vulkanisierbare Zusammensetzung bevorzugt frei von Zinkionen ist. - Solche bevorzugten Ausführungsformen weisen eine verbesserte Heißluftalterung nach 504 Stunden bei 150 °C auf.
- Eine besonders bevorzugte Ausführungsform stellt die Verwendung von vulkanisierbaren Zusammensetzungen zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht, dar, enthaltend
- (a) 100 Gew.-Teile mindestens eines hydrierten Nitrilkautschukes,
- (b) 50 bis 85 Gew.-Teile mindestens eines Silan-beschichteten Wollastonits,
- (c) 2 bis 10 Gew.-Teile mindestens einer Peroxidverbindung,
- Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung der vorgenannten erfindungsgemäßen vulkanisierbaren Zusammensetzungen, indem man alle Komponenten (a), (b) und (c) sowie gegebenenfalls (d) mischt. Dies kann unter Einsatz von dem Fachmann bekannten Vorrichtungen und Mischapparaturen erfolgen.
- Die Reihenfolge, in der die Komponenten miteinander gemischt werden, ist nicht von grundlegender Bedeutung, sondern wird jeweils abgestimmt auf die zur Verfügung stehenden Mischaggregate und Temperaturführung.
- Die Mischung der Komponenten (a), (b) und (c) und gegebenenfalls (d) kann dabei, je nach Temperatur, unter Verwendung der typischen, in der Kautschukindustrie gängigen Mischsystemen erfolgen. Einsatzbar sind i) diskontinuierlich mischende Aggregate in Form von Mischwalzen oder Innenmischern sowie ii) kontinuierlich mischende Aggregate wie Mischextruder.
- Besonders bewährt hat es sich, die Mischung der Komponenten (a), (b) und (c) sowie gegebenenfalls (d) bei einer vorgegebenen Mischertemperatur im Bereich von ca. 30 bis 40 °C durchzuführen, da hier mit den oben genannten, in der kautschukverarbeitenden Industrie gängigen Mischaggregaten genügend hohe Scherkräfte appliziert können, um eine gute Durchmischung zu erreichen.
- Bevorzugt wird der Kautschuk (a) vorgelegt, mastiziert, und danach alle weiteren Komponenten bis auf die Vulkanisationschemikalien (Peroxidverbindung und Coagens) hinzugefügt. Nach angemessener Mischzeit wird die Mischung ausgeworfen.
Die Peroxidverbindung und das Coagens wird in einem zweiten Schritt auf einer Walze eingemischt. (Die Drehzahl der Walze wird dabei so gesteuert, dass stabile Felle erhalten werden.. - In der Praxis erhält man nach dem Mischen der erfindungsgemäßen Komponenten die vulkanisierbaren Zusammensetzungen z.B. in Form sogenannter "Felle", Fütterstreifen oder Fütterkörper, oder auch als Pellets oder Granulate. Dies können anschließend in Formen gepresst oder spritzgegossen werden und werden entsprechend den eingesetzten Radikalspendern bei geeigneten Bedingungen vernetzt.
- Gegenstand der Erfindung ist ferner die Herstellung von Vulkanisaten, indem man die zuvor genannten vulkanisierbare Zusammensetzungen der einem Energieeintrag, insbesondere einer Temperaturbehandlung, unterwirft.
- Der Energieeintrag kann beispielsweise in Form von thermischer Energie erfolgen. Die Herstellung der vulkanisierten Erzeugnissen mittels Temperaturbehandlung wird durchgeführt, indem man die erfindungsgemäßen vulkanisierbaren Zusammensetzungen in üblicher Weise in geeigneten Formwerkzeugen einer Temperatur im Bereich von bevorzugt 120 bis 200 °C, besonders bevorzugt von 140 bis 180 °C aussetzt. Die Vulkanisation kann mit Hilfe eines beliebigen Verfahrens, wie Pressvulkanisieren, Dampfvulkanisieren und dergleichen, bewirkt werden.
- Im Rahmen der Vernetzung der erfindungsgemäßen vulkanisierbaren Zusammensetzung führen die Peroxidverbindungen (c) zu einer radikalischen Vernetzung zwischen und mit den eingesetzten Kautschuken (a).
- Gegenstand der Erfindung sind ferner auch die vernetzten Kautschuke, d.h. Vulkanisate, die durch Vernetzung der zuvor genannten vulkanisierbaren Zusammensetzungen erhältlich sind sowie die Verwendung von Vulkanisaten zur Herstellung eines Bauteils das mit Kühlmittel in Kontakt steht.
- Insbesondere ist Gegenstand der Erfindung die Verwendung eines Vulkanisats, hergestellt aus einer vulkanisierbaren Zusammensetzung zur Herstellung eines Bauteils, von dem zumindest das Vulkanisat mit Kühlmittel in Kontakt steht, dadurch gekennzeichnet, dass die vulkanisierbare Zusammensetzung
- (a) mindestens einen Kautschuk, bevorzugt mindestens einen hydrierten Nitrilkautschuk oder EPDEM, besonders bevorzugt hydrierter Nitrilkauitschuk,
- (b) mindestens einen Silan-beschichteten Wollastonit, bevorzugt mindestens einen Vinylsilan-beschichteten Wollastonit, und
- (c) mindestens eine Peroxidverbindung enthält.
- Gegenstand der Erfindung sind ferner auch Bauteile umfassend ein Vulkanisat das in Kontakt mit einem Kühlmittel steht, hergestellt aus einer vulkanisierbaren Zusammensetzung, dadurch gekennzeichnet, dass die vulkanisierbare Zusammensetzung
- (a) mindestens einen hydrierten Nitrilkautschuk oder EPDM, besonders bevorzugt hydrierten Nitrilkautschuk,
- (b) mindestens einen Silan-beschichteten Wollastonit, bevorzugt mindestens einen Vinylsilan-beschichteten Wollastonit, und
- (c) mindestens eine Peroxidverbindung enthält.
- Bevorzugt handelt es sich bei diesen Bauteilen um Dichtungen, Kühierdichtungen, Schläuche, Kühlerschläuche, Kraftfahrzeug-Kühlwasserschläuche, Heizungsschläuche und Kühlergehäuse.
- Die durch das Vulkanisieren der vulkanisierbaren Zusammensetzung erhaltenen Vulkanisate kann durch ein übliches Verfahren zu einem Kühlerschlauch, einem Heizungsschlauch, einem Kühlergehäuse, einer Kühlerdichtung oder dergleichen verarbeitet werden, und diese Produkte sind besonders ausgezeichnete Produkte mit den vorstehend beschriebenen Eigenschaften. Insbesondere weisen solche Vulkanisate eine verbesserte Alterungsbeständigkeit auf.
- Gegenstand der Erfindung ist somit ferner die Verwendung von 35 bis 150 Gew.-Teile Silan-beschichtetem Wöllastonit, bevorzugt Vinylsilan-beschichtetem Wollastonit, bezogen auf 100 Gew.-Teile der Kautschuke (a) in einer vulkanisierbaren Zusammensetzung enthaltend mindestens einen Kautschuk (a) und mindestens eine Peroxidverbindung (c) zur Verbesserung der Alterungsbeständigkeit in Heißluft nach 21 Tagen bei 150 °C und in Kühlmittel nach 21 Tagen bei 150 °C von Vulkanisaten in Kontakt mit Kühlmitteln, hergestellt durch Vulkanisation der vulkanisierbaren Zusammensetzung.
- Die prinzipielle Herstellung derartiger Dichtungen und Schläuche ist dem Fachmann bekannt. Für die Herstellung von Riemen kann der Fachmann unter Einsatz der erfindungsgemäßen vulkanisierbaren Zusammensetzungen beispielsweise analog zur Offenbarung der
US-A-4,715,607 verfahren. - Gegenstand der Erfindung sind ferner Kühlaggregate die i) mindestens ein Vulkanisat, hergestellt aus einer vulkanisierbaren Mischung enthaltend die zuvor genannten Komponente (a), (b) und (c) und ii) Kühlmittel aufweisen. Beispiele für solche Kühlaggregate sind Kühlvorrichtungen für Kraftfahrzeuge.
- Gegenstand der Erfindung sind somit ferner vulkanisierbare Zusammensetzungen enthaltend
- (a) 100 Gew.-Teile hydrierten Nitrilkautschuk,
- (b) 50 bis 85 Gew.-Telle eines Epoxysilan-, Methacrylsilan- oder Vinylsilan-beschichteten Wollastonits oder Mischungen davon,
- (c) 2 bis 10 Gew.-Teile mindestens einer Peroxidverbindung,
- Bei den nachfolgenden Beispielen 7* und 8* handelt es sich um nicht erfindungsgemäße Vergleichsbeispiele, bei den Beispielen 1 bis 6 und 9 um erfindungsgemäße Beispiele. Die Vergleichsbeispiele sind in den folgenden Tabellen mit einem * hinter der Beispielsnummer gekennzeichnet.
- Als primäres Mischaggregat wurde ein Innenmischer vom Typ GK 1,5 E (Hersteller: HF Mixing Group) eingesetzt. Die Drehzahl betrug 40 min-1, die Kühlwassereintrittstemperatur 40 °C.
- Hierbei wurde der Kautschuk (a) vorgelegt 1 Minute mastiziert, danach alle weiteren Komponenten bis auf die Vulkanisationschemikalien (Peroxidverbindung und Coagens) hinzugefügt. 3 Minuten nach Mischungsbeginn wurde der Stempel gezogen und gefegt. Nach 250 Sekunden Mischzeit wurde die Mischung ausgeworfen.
- Die Peroxidverbindung und das Coagens wurde in einem zweiten Schritt bei 30 °C auf der Walze eingemischt. (Hersteller Tröster, Walzendurchmesser 20 cm). Die Friktion betrug 1 : 1,11.
- Die Drehzahl der Walze wurde dabei so gesteuert, dass stabile Felle erhalten wurden. Nachfolgend wurde in Plattenpressen eine Vulkanisation dieser Felle bei 180 °C für 15 min vorgenommen.
Eingesetzte Komponenten: Therban® 3907 hydrierter Nitrilkautschuk, ACN-Gehalt: 39 Gew.-%, Mooney Viskosität ML 1+4 @100°C: 70 ME, Restdoppelbindungsgehalt: max. 0,9 %. Dieser Kautschuk ist kommerziell erhältlich von der ARLANXEO Deutschland GmbH Therban® 3407 hydrierter Nitrilkautschuk, ACN-Gehalt: 34 Gew.-%, Mooney Viskosität ML 1+4 @100°C: 70 ME, Restdoppelbindungsgehalt: max. 0,9 %. erhältlich bei ARLANXEO Deutschland GmbH Tremin® 283-600 EST Epoxysilan-beschichteter Wollastonit, erhältlich bei Quarzwerke Tremin® 283-600 MST Methacrylsilan-beschichteter Wollastonit, erhältlich bei Quarzwerke Tremin® 283-600 VST Vinylsilan-beschichteter Wollastonit, erhältlich bei Quarzwerke N550 Corax® N 550 Ruß; erhältlich bei Orion Engineered Carbon N774 Corax® N 774 Ruß; erhältlich bei Orion Engineered Carbon N990 Luvomaxx MT N-990 Ruß, erhältlich von Lehmann und Voss Luvomaxx® CDPA 4,4'-Bis-(1,1-dimethylbenzyl)-diphenylamin, erhältlich von Lehmann und Voss Vulkanox® MB2 4- und 5-Methyl-2-mercapto-benzimidazol; erhältlich von der Lanxess Deutschland GmbH Vulkanox® ZMB2/C5 Zinksalz von 4- und 5-Methyl-2-mercaptobenzthiazol; erhältlich von LANXESS Deutschland GmbH Maglite® DE Magnesiumoxid, erhältlich von CP Hall. Zinkoxid activ Zinkoxid (ZnO), kommerziell erhältlich von LANXESS Deutschland GmbH TAIC 70% KETTLITZ-TAIC 70; Coagens; erhältlich von Kettlitz-Chemie GmbH & Co. KG TOTM Uniplex® 546; erhältlich von Rheinchemie Rheinau GmbH Rhenofit TRIM/S 70 % Trimethylolpropantrimethacrylat auf 30 % Silica; Coagens; erhältlich von der Rhein Chemie Rheinau GmbH Perkadox® 14-40 Di(tert.-butylperoxyisopropyl)benzol 40% geträgert auf Kieselsäure; erhältlich von Akzo Nobel Polymer Chemicals BV G13/Wasser-Gemisch G13 Kühlmittelzusatz erhältlich von Volkswagen; für die Lagerungsversuche wurden 50 Vol.-Teile deionisiertes Wasser und 50 Vol.-Teile G13 Kühlmittelzusatz gemischt 2-Ethylhexansäure erhältlich von Sigma Aldrich Ethylenglykol erhältlich von Sigma Aldrich - Die Mengenangebe der Gewichtsteile in den Beispielen bezieht sich auf 100 Gewichtsteile des Kautschuks (a).
Der Vulkanisationsverlauf im MDR (Moving Die Rheometer) und dessen analytischen Daten wurden an einem Monsanto-Rheometer MDR 2000 nach ASTM D5289-95 gemessen. - Die Zugversuche zur Bestimmung der Spannung in Abhängigkeit von der Deformation wurden nach DIN 53504 bzw. ASTM D412-80 durchgeführt.
- Die Härte nach Shore A wurde nach ASTM-D2240-81 gemessen.
- Die Heißluftalterung erfolgte nach DIN 53508 / 2000. Es wurde das Verfahren 4.1.1 "Lagerung im Wärmeschrank mit zwangsläufiger Durchlüftung" angewandt.
- Die Lagerungen im G13/Wasser-Gemisch erfolgten in Druckbehältern mit einem Verhältnis Flüssigkeit zu Probenkörper von 150:1.
Tabelle 1: Zusammensetzung der vulkanisierbaren Zusammensetzungen. Beispiele 1 2 3 4 5 6 7* 8* 9 [Gewichtsteile] Therban® 3907 100 100 100 100 100 100 100 Therban® 3407 100 100 Tremin® 283-600 EST 65 65 65 65 65 Tremin® 283-600 MST 65 Tremin® 283-600 VST 65 N550 50 N774 14 14 14 15 15 15 15 15 N990 65 Luvomaxx® CDPA 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,1 1,5 Vulkanox® MB2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 Vulkanox® ZMB2 0,4 0,4 Maglite® DE 3 3 3 3 3 3 3 Zinkoxide active 3 TAIC 70% 1,5 TOTM 5 Rhenofit® TRIM/S 1,5 1,5 1,5 1,5 1,5 1,5 1,5 3 Perkadox® 14-40 8 8 8 7,5 7,5 7,5 7,5 8 7,5 - Die vulkanisierbare Zusammensetzung des Beispiels 7* dient als Vergleichsversuch zu den Beispielen 1 bis 6, da es kein Silan-beschichtetes Wollastonit (Tremin®) enthält. Die Menge von 65 Gew.-Teilen Wollastonit bezogen auf 100 Gew.-Teile HNBR in den Beispielen 1 bis 6 wurde im Beispiel 7* durch den Füllstoff N990 ausgeglichen.
- Die vulkanisierbare Zusammensetzung des Beispiels 8* dient als Vergleichsversuch zu dem Beispiel 9, da es kein Silan-beschichtetes Wollastonit (Tremin®) enthält. Die Menge von 65 Gew.-Teilen Wollastonit im Beispiel 9 wurde im Beispiel 8* durch 50 Gew.-Teile des Füllstoffs N550 ausgeglichen um ähnliche Zugfestigkeitswerte zu erreichen. Man benötigt signifikant weniger N550 als Tremin® um ähnliche Härte und Zugfestigkeit zu erhalten.
- Die Vulkanisationsmessung erfolgte in einem Monsanto-Rheometer MDR 2000 bei einer Prüftemperatur von 180 °C über eine Prüfzeit von 15 min.
Tabelle 2: Vulkanisationsverhalten der vulkanisierbaren Zusammensetzungen MDR 180°C 1 2 3 4 5 6 7* 8* 9 S' min dNm 1,37 1,36 1,38 1,43 1,47 1,46 1,85 2,21 1,38 S' max dNm 24,73 24,77 25,34 23,75 23,35 22,76 27,57 30,04 20,49 Delta S' dNm 23,36 23,41 23,96 22,32 21,88 21,3 25,72 27,83 19,11 TS 1 s 31 31 31 33 33,6 33,6 29,4 28 37 TS 2 s 37 37 37 39,6 40,2 40,8 36 34 46 t 50 s 94 94 94 98,49 95,8 97,03 95,7 113 107 t 90 s 268 266 267 294 271 271 270,54 324 298 t 95 s 346 342 344 387 350 348 349,92 418 387 S' min ist das minimale Drehmoment der Vernetzungsisotherme
S' max ist das maximale Drehmoment der Vernetzungsisotherme
Delta S' Differenz von S'max und S'min
t50: Zeitpunkt, bei dem 50% des Endumsatzes erreicht sind
t90: Zeitpunkt, bei dem 90% des Endumsatzes erreicht sind
t95: Zeitpunkt, bei dem 95% des Endumsatzes erreicht sind - Die Versuchsserie zeigt, dass die erfindungsgemäß hergestellten Zusammensetzungen (1 bis 6) ein mit dem Vergleichsbeispiel (7*) vergleichbares Vulkanisationsverhalten aufweisen. Ebenso weist die erfindungsgemäße Kautschukmischung (9) ein mit dem Vergleichsbeispiel (8*) vergleichbares Vulkanisationsverhalten auf.
- Die vulkanisierbaren Zusammensetzungen wurden anschließend in einer Plattenpresse unter einem Druck von 170 bar bei 180 °C 10 min vulkanisiert.
- An den für 4 Stunden bei 160 °C getemperten Vulkanisaten wurden bei 23 °C die in Tabelle 3 angegebenen Prüfwerte bestimmt.
Tabelle 3: Eigenschaften der vulkanisierten Zusammensetzungen 1 bis 9 nach Vulkanisation (10 Minuten) bei 180 °C (Prüftemperatur: 23 °C) Zug prüfung 1 2 3 4 5 6 7* 8* 9 2 mm Platten bei 180 °C für 10 min vulkanisiert M 10 MPa 0,8 0,9 0,8 0,8 0,8 0,8 0,8 0,7 0,7 M 25 MPa 1,5 1,7 1,4 1,4 1,3 1,4 1,4 1,3 1,2 M 50 MPa 2,4 3,3 2,6 2,1 2 2 2,2 2,2 1,8 M 100 MPa 4,3 8,1 7,1 3,5 3,3 3,3 5,1 6,2 2,6 M 300 MPa 10,9 17,5 19,8 9 8,9 8,7 17,6 -- 7,8 EB % 441 310 300 466 458 467 363 249 468 TS MPa 27 18 20 24 24 24 18 25,5 24,3 H ShA 68 69 69 66 66 65 70 71 61,8 - Das ungealterte Vergleichsvulkanisat 7* weist eine geringere Bruchdehnung und Zugfestigkeit auf als die erfindungsgemäßen Vulkanisate 4 bis 6.
Das ungealterte Vergleichsvulkanisat 8* weist eine wesentlich geringere Bruchdehnung bei gleicher Zugfestigkeit auf als die erfindungsgemäßen Vulkanisate 9.
Die beiden Vergleichsvulkanisate weisen eine Härte (H) von 70 oder mehr auf, während die erfindungsgemäßen Vulkanisate 1 bis 6 und 9 eine Härte von weniger als 70 aufweisen.Tabelle 4: Eigenschaften der vulkanisierten Zusammensetzungen 1 bis 7 nach Heißluftalterung bei 150 °C / 504 h (Prüftemperatur: 23 °C) Zugprüfung 1 2 3 4 5 6 7* Alterung der Vulkanisate in Heißluft, 504 h bei 150 °C M 10 MPa 1,2 1,2 1,1 1,2 1,2 1,2 1,3 M 25 MPa 2,4 2,6 2,3 2,5 2,5 2,5 2,5 M 50 MPa 4,9 5,5 5 5 5 5 4,8 M 100 MPa 8,6 10,9 10,9 9,2 9 9 10,4 M 300 MPa 14,1 16,4 -- 14,1 13,7 13,6 - EB % 375 233 254 383 396 429 228 TS MPa 18 15,4 17,1 17,5 17,4 19,4 18,5 H ShA 76 76 76 76 76 76 80 Tabelle 5: Änderung der Eigenschaften der vulkanisierten Zusammensetzungen 1 bis 7 nach Heißluftalterung bei 150 °C / 504 h (Prüftemperatur: 23 °C) Änderung 1 2 3 4 5 6 7* Alterung der Vulkanisate in Heißluft, 504 h bei 150 °C Δ EB % -15 -25 -15 -18 -14 -8 -37 Δ TS % -33 -13 -14 -28 -28 -18 2 Δ H ShA 8 8 7 10 11 11 10 - Die Bruchdehnung (EB) stellt beim Vergleichsversuch 7 ohne Silan-beschichtetes Wollastonit mit -37 % Änderung nach Alterung in Heißluft für 504 Stunden einen ungenügenden Wert dar. Im Gegensatz dazu weisen die Vulkanisate mit Silan-beschichtetem Wollastonit der Beispiele 1 bis 6 deutlich niedrigeren und somit besseren Abfall der Bruchdehnung auf. Die Härte (H) der erfindungsgemäßen Beispiele ist vergleichbar mit dem Vergleichsbeispiel 7.
Beispiel 6 mit EST-beschichtetem Wollastonit und ohne Zink weist mit -8 % Änderung der Bruchdehnung den geringsten Wert auf und liefert somit die beste Heißluftalterung.Tabelle 6: Eigenschaften der vulkanisierten Zusammensetzungen 8 und 9 und deren Änderung nach Alterung in Ethylenglykol/Wasser/2-Ethylhexansäure bei 120 °C / 504 h (Prüftemperatur: 23 °C) Zug prüfung 8* 9 Alterung der Vulkanisate in Ethylenglykol/Wasser/2-Ethylhexansäure, 504 h bei 120 °C M 10 MPa 0,5 0,4 M 25 MPa 1 0,7 M 50 MPa 2,1 0,9 M 100 MPa 7,4 1,3 M 300 MPa - 6 EB % 190 466 ΔEB % -24 0 TS MPa 18,8 19 ΔTS % -26 -22 H ShA 57 47 ΔH ShA -15 ΔV % 47,1 19,1 - Das erfindungsgemäße Beispiel 9 mit Silan-beschichtetem Wollastonit weist im Vergleich zum Vergleichsbeispiel 8* ohne Silan-beschichtetem Wollastonit eine deutliche verbesserte Bruchdehnung nach Alterung für 504 Stunden in einer Ethylenglykol/Wasser/2-Ethylhexansäure-Mischung auf.
Zusätzlich weist das erfindungsgemäße Beispiel 9 eine verbesserte Quellung (ΔV) auf.Tabelle 7: Vergleich der Beschichtungen - Eigenschaften der vulkanisierten Zusammensetzungen 1 bis 3 nach Alterung bei 150 °C / 1008 h in G13/Wasser-Gemisch (Prüftemperatur: 23 °C) Zugprüfung 1 2 3 Alterung der Vulkanisate in G13, 1008 h bei 150 °C M 10 MPa 0,8 1 1 M 25 MPa 1,4 1,7 1,8 M 50 MPa 1,8 2,6 2,9 M 100 MPa 2,6 4,5 5,5 M 300 MPa 6,9 8,4 11,3 EB % 414 467 381 TS MPa 12,1 13,6 13,2 H ShA 71 70 72 Tabelle 8: Vergleich der Beschichtungen - Änderung der Eigenschaften der vulkanisierten Zusammensetzungen 1 bis 3 nach Alterung bei 150 °C / 1008 h in G13/Wasser-Gemisch (Prüftemperatur: 23 °C) Änderung 1 2 3 Alterung der Vulkanisate in G13, 1008 h bei 150 °C Δ EB % -6 51 27 Δ TS % -55 -23 -33 Δ H ShA 3 2 3 Δ V % 19 20 10 - Vulkanisate mit VST-beschichtetem Wollastonit weisen nach Alterung für 1008 Stunden in G13 die beste Balance zwischen Änderung der Bruchdehnung, Volumenquellung und Änderung der Zugfestigkeit auf und sind somit besser als Vulkanisate mit Epoxysilan-beschichtetem Wollastonit oder Methacylsilanbeschichtetem Wollastonit.
Tabelle 9: Eigenschaften der vulkanisierten Zusammensetzungen 4 bis 7 nach Alterung bei 150 °C / 504 h in G13/Wasser-Gemisch (Prüftemperatur: 23 °C) Zugprüfung 4 5 6 7* Alterung der Vulkanisate in G13, 504 h bei 150 °C M 10 MPa 1,1 0,9 0,9 0,9 M 25 MPa 1,9 1,6 1,6 1,5 M 50 MPa 3 2,5 2,4 2,3 M 100 MPa 5,2 4,1 3,9 4,8 M 300 MPa 11 9,2 8,7 16 EB % 466 475 485 432 TS MPa 25,4 23,6 24,5 17,4 H ShA 72 69 68 72 Tabelle 10: Änderung der Eigenschaften der vulkanisierten Zusammensetzungen 4 bis 7* nach Alterung bei 150 °C / 504 h in G13/Wasser-Gemisch (Prüftemperatur: 23 °C) Änderung 4 5 6 7* Alterung der Vulkanisate in G13, 504 h bei 150 °C Δ EB % 0 4 4 19 Δ TS % 5 -2 4 -4 Δ H ShA 6 3 3 2 Δ V % 3 3 3 1 - Das Vergleichsbeispiel 7* weist mit einer Änderung der Bruchdehnung von 19 % nach Alterung für 504 Stunden in G13 den höchsten und somit schlechtesten Wert auf. Die erfindungsgemäßen Beispiele 4 bis 6 weisen eine deutlich geringere Änderung der Bruchdehnung auf.
Claims (16)
- Verwendung einer vulkanisierbaren Zusammensetzung zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht, dadurch gekennzeichnet, dass die vulkanisierbare Zusammensetzung(a) mindestens einen Kautschuk, bevorzugt mindestens einen hydrierten Nitrilkautschuk oder EPDM, besonders bevorzugt hydrierten Nitrilkautschuk,(b) mindestens einen Silan-beschichteten Wollastonit, bevorzugt mindestens einen Vinylsilan-beschichteten Wollastonit, und(c) mindestens eine Peroxidverbindung
enthält. - Verwendung einer vulkanisierbaren Zusammensetzung zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine Kautschuk (a) mindestens ein hydrierter Nitrilkautschuk ist, bei dem es sich um ein ganz- oder teilweise hydrierts Co- oder Terpolymer auf der Basis mindestens eines konjugierten Diens und mindestens eines α,β-ungesättigten Nitrilmonomeren sowie gegebenenfalls weiterer copolymerisierbarer Monomere handelt.
- Verwendung einer vulkanisierbaren Zusammensetzung zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht nach Anspruche 1 oder 2, dadurch gekennzeichnet, dass der mindestens eine Kautschuk (a) mindestens ein hydrierter Nitrilkautschuk ist, bei dem die Mooney-Viskosität (ML 1+4 @ 100 °C) im Bereich von 10 bis 120 ME, bevorzugt im Bereich von 15 bis 100 ME liegt, wobei die Bestimmung der Mooney-Viskosität gemäß ASTM Norm D1646 erfolgt.
- Verwendung einer vulkanisierbaren Zusammensetzung zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Menge des mindestens einen Silanbeschichteten Wollastonits (b) 35 bis 150 Gew.-Teile, bevorzugt 50 bis 100 Gew.-Teile bezogen auf 100 Gew.-Teile der Kautschuke (a) beträgt.
- Verwendung einer vulkanisierbaren Zusammensetzung zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die mindestens eine Peroxidverbindung (c) ein organisches Peroxid, bevorzugt Dicumylperoxid, t-Butylcumylperoxid, Bis-(t-butyl-peroxy-isopropyl)benzol, Di-t-butylperoxid, 2,5-Dimethylhexan-2,5-dihydroperoxid, 2,5-Dimethylhexin-3,2,5-di-hydroperoxid, Dibenzoylperoxid, Bis-(2,4-dichlorobenzoyl)peroxid, t-Butylperbenzoat, 4,4-Di(t-butylperoxy)valeriansäurebutylester oder 1,1-Bis(t-butylperoxy)-3,3,5-trimethylcyclohexan ist.
- Verwendung einer vulkanisierbaren Zusammensetzung zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als weitere Komponente (d) mindestens ein Füllstoff eingesetzt wird, bei dem es sich um einen Ruß oder mineralischen Füllstoff, bevorzugt einen basischen mineralischen Füllstoff handelt.
- Verwendung einer vulkanisierbaren Zusammensetzung zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Komponente (d) mindestens ein Alterungsschutzmittel eingesetzt wird, welches ausgewählt ist aus der Gruppe bestehend aus Diphenylamin, Mercaptobenzimidazol, subsitutierte Phenole und Mischungen davon.
- Verwendung einer vulkanisierbaren Zusammensetzung zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Zusammensetzung(a) 100 Gew.-Teile mindestens eines Kautschuks, bevorzugt mindestens eines hydrierten Nitrilkautschuks oder EPDM, besonders bevorzugt hydrierten Nitrilkautschuk,(b) 35 bis 150 Gew.-Teile, bevorzugt 50 bis 100 Gew.-Teile mindestens eines Silan-beschichtetes Wollastonits, bevorzugt mindestens eines Vinylsilan-beschichtetes Wollastonits,(c) 1 bis 20 Gew.-Teile, bevorzugt 2 bis 10 Gew.-Teile mindestens einer Peroxidverbindung,(d) 0 bis 100 Gew.-Teile, bevorzugt 1 bis 80 Gew.-Teile eines oder mehrerer üblicher Kautschukadditive, bevorzugt ein oder mehrerer Füllstoffe, insbesondere Ruß, Kieselsäure, Magnesiumoxid oder Aluminiumoxid, eines oder mehrerer Füllstoffaktivatoren, insbesondere auf Basis eines organischen Silans, eines oder mehrerer Alterungsschutzmittel, insbesondere oligomerisiertes 2,2,4-Trimethyl-1,2-dihydro-chinolin (TMQ), styrolisiertes Diphenylamin (DDA), octyliertes Diphenylamin (OCD), cumyliertes Diphenylamin (CDPA) oder Zinksalz von 4- und 5-Methylmercaptobenzimidazol (Vulkanox ZMB2) oder 4- und 5-Methylmercaptobenzimidazo und/oder eines oder mehrerer Formtrennmittel oder Verarbeitungshilfsmittel bezogen auf 100 Gew.-Teile der Kautschuke (a), enthält.
- Verwendung einer vulkanisierbaren Zusammensetzung zur Herstellung eines Vulkanisats, das mit Kühlmittel in Kontakt steht nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die vulkanisierbare Zusammensetzung(a) 100 Gew.-Teile mindestens eines Kautschuks, bevorzugt hydrierten Nitrilkautschuks,(b) 35 bis 150 Gew.-Teile, bevorzugt 50 bis 100 Gew.-Teile mindestens eines Silan-beschichteten Wollastonites, bevorzugt Epoxysilan-, Methacrylsilan- oder Vinylsilan-beschichteten Wollastonits oder Mischungen davon,(c) 1 bis 20 Gew.-Teile, bevorzugt 2 bis 10 Gew.-Teile mindestens einer Peroxidverbindung,(d) 0 bis 100 Gew.-Teile, bevorzugt 1 bis 80 Gew.-Teile eines oder mehrerer üblicher Kautschukadditive, bevorzugt eines oder mehrerer Füllstoffe, insbesondere Ruß, Kieselsäure, Magnesiumoxid oder Aluminiumoxid, eines oder mehrerer Füllstoffaktivatoren, insbesondere auf Basis eines organischen Silans, eines oder mehrerer Alterungsschutzmittel, insbesondere oligomerisiertes 2,2,4-Trimethyl-1,2-dihydro-chinolin (TMQ), styrolisiertes Diphenylamin (DDA), octyliertes Diphenylamin (OCD), cumyliertes Diphenylamin (CDPA) oder Zinksalz von 4- und 5-Methylmercaptobenzimidazol (Vulkanox ZMB2) oder 4- und 5-Methylmercaptobenzimidazol und/oder eines oder mehrerer Formtrennmittel oder Verarbeitungshilfsmittel bezogen auf 100 Gew.-Teile der Kautschuke (a) enthält,
wobei der Gehalt an Zinkionen weniger als 1,5 Gew.-Teile bezogen auf 100 Gew.-Teile der Kautschuke (a) beträgt und die vulkanisierbare Zusammensetzung bevorzugt frei von Zinkionen ist. - Verwendung eines Vulkanisats, hergestellt aus einer vulkanisierbaren Zusammensetzung wie in den Ansprüchen 1 bis 9 definiert zur Herstellung eines Bauteils, von dem zumindest das Vulkanisat mit Kühlmittel in Kontakt steht.
- Verwendung nach Anspruch 10, dadurch gekennzeichnet, dass das Bauteil ein Schlauch, ein Heizungsschlauch, ein Kühlschlauch, eine Dichtung oder eine Kühldichtung ist.
- Verwendung nach einem der Ansprüche 1 bis 11, wobei das Kühlmittel Wasser, einen Gefrierpunktserniedriger, bevorzugt Alkylglycol oder Salze, besonders bevorzugt Ethylenglycol oder Propylenglycol, und einen Korrosionsinhibitor, bevorzugt neutralisierte organische Säuren, besonders bevorzugt Natriumethylhexanoat enthält.
- Vulkanisierbare Zusammensetzung enthaltend(a) 100 Gew.-Teile hydrierten Nitrilkautschuk,(b) 50 bis 85 Gew.-Teile eines Epoxysilan-, Methacrylsilan- oder Vinylsilan-beschichteten Wollastonits oder Mischungen davon,(c) 2 bis 10 Gew.-Teile mindestens einer Peroxidverbindung,
wobei der Gehalt an Zinkionen weniger als 1,5 Gew.-Teile bezogen auf 100 Gew.-Teile der Kautschuke (a) beträgt. - Bauteil umfassend ein Vulkanisat das in Kontakt mit einem Kühlmittel steht, hergestellt aus einer vulkanisierbaren Zusammensetzung, dadurch gekennzeichnet, dass die vulkanisierbare Zusammensetzung(a) mindestens einen hydrierten Nitrilkautschuk oder EPDM,(b) mindestens einen Silan-beschichteten Wollastonit, bevorzugt mindestens einen Vinylsilan-beschichteten Wollastonit, und(c) mindestens eine Peroxidverbindung enthält.
- Kühlaggregat umfassend(i) mindestens ein Bauteil gemäß Anspruch 14 und(ii) Kühlmittel,
wobei das mindestens eine Vulkanisat in Kontakt mit dem Kühlmittel ii) steht. - Verwendung von 35 bis 150 Gew.-Teile Silan-beschichtetem Wollastonit, bevorzugt Vinylsilan-beschichtetem Wollastonit, bezogen auf 100 Gew.-Teile des mindestens einen Kautschuks (a) in einer vulkanisierbaren Zusammensetzung enthaltend mindestens einen Kautschuk (a) und mindestens eine Peroxidverbindung (c) zur Verbesserung der Alterungsbeständigkeit in Heißluft nach 21 Tagen bei 150 °C und in Kühlmittel nach 21 Tagen bei 150 °C von Vulkanisaten in Kontakt mit Kühlmitteln, hergestellt durch Vulkanisation der vulkanisierbaren Zusammensetzung.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16001280.3A EP3255088B1 (de) | 2016-06-07 | 2016-06-07 | Verwendung von vulkanisierbaren zusammensetzungen und vulkanisaten in kontakt mit kühlmittel enthaltend silan-beschichteten wollastonit |
EP17725997.5A EP3464452A1 (de) | 2016-06-07 | 2017-05-31 | Verwendung von vulkanisierbaren zusammensetzungen und vulkanisaten in kontakt mit kühlmittel enthaltend silan-beschichteten wollastonit |
KR1020187035083A KR102320627B1 (ko) | 2016-06-07 | 2017-05-31 | 실란-코팅된 규회석을 포함하는, 가황성 조성물 및 냉각제와 접촉하는 가황물의 용도 |
JP2018563879A JP6802294B2 (ja) | 2016-06-07 | 2017-05-31 | シラン被覆ウォラストナイトを含む、クーラントと接触する加硫可能な組成物および加硫物の使用 |
US16/305,249 US20200131349A1 (en) | 2016-06-07 | 2017-05-31 | Use of vulcanizable compositions and vulcanizates in contact with coolant, comprising silane-coated wollastonite |
CN201780035047.3A CN109312118B (zh) | 2016-06-07 | 2017-05-31 | 包含硅烷涂覆的硅灰石的可固化组合物和固化橡胶与冷却剂接触的用途 |
PCT/EP2017/063177 WO2017211645A1 (de) | 2016-06-07 | 2017-05-31 | Verwendung von vulkanisierbaren zusammensetzungen und vulkanisaten in kontakt mit kühlmittel enthaltend silan-beschichteten wollastonit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16001280.3A EP3255088B1 (de) | 2016-06-07 | 2016-06-07 | Verwendung von vulkanisierbaren zusammensetzungen und vulkanisaten in kontakt mit kühlmittel enthaltend silan-beschichteten wollastonit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3255088A1 EP3255088A1 (de) | 2017-12-13 |
EP3255088B1 true EP3255088B1 (de) | 2020-04-29 |
Family
ID=56134058
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16001280.3A Active EP3255088B1 (de) | 2016-06-07 | 2016-06-07 | Verwendung von vulkanisierbaren zusammensetzungen und vulkanisaten in kontakt mit kühlmittel enthaltend silan-beschichteten wollastonit |
EP17725997.5A Withdrawn EP3464452A1 (de) | 2016-06-07 | 2017-05-31 | Verwendung von vulkanisierbaren zusammensetzungen und vulkanisaten in kontakt mit kühlmittel enthaltend silan-beschichteten wollastonit |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17725997.5A Withdrawn EP3464452A1 (de) | 2016-06-07 | 2017-05-31 | Verwendung von vulkanisierbaren zusammensetzungen und vulkanisaten in kontakt mit kühlmittel enthaltend silan-beschichteten wollastonit |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200131349A1 (de) |
EP (2) | EP3255088B1 (de) |
JP (1) | JP6802294B2 (de) |
KR (1) | KR102320627B1 (de) |
CN (1) | CN109312118B (de) |
WO (1) | WO2017211645A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3781624B1 (de) | 2018-04-19 | 2022-06-29 | ARLANXEO Deutschland GmbH | Verwendung von vulkanisaten mit hnbr-peg-acrylat-copolymer in kontakt mit einem kühlmittel |
CN115010994B (zh) * | 2022-05-13 | 2023-12-05 | 江西广源化工有限责任公司 | 一种改性超细硅灰石粉体及其制备方法和应用 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3700637A (en) | 1970-05-08 | 1972-10-24 | Shell Oil Co | Diene-nitrile rubbers |
DE2539132C2 (de) | 1975-09-03 | 1987-04-09 | Bayer Ag, 5090 Leverkusen | Verwendung hydrierter Dien-Copolymere als temperaturbeständige Materialien auf dem Dichtungssektor |
CA1220300A (en) | 1982-12-08 | 1987-04-07 | Polysar Limited | Polymer hydrogenation process |
CA1203047A (en) | 1982-12-08 | 1986-04-08 | Hormoz Azizian | Polymer hydrogenation process |
DE3329974A1 (de) | 1983-08-19 | 1985-02-28 | Bayer Ag, 5090 Leverkusen | Herstellung von hydrierten nitrilkautschuken |
DE3433392A1 (de) | 1984-09-12 | 1986-03-20 | Bayer Ag, 5090 Leverkusen | Hydrierung nitrilgruppenhaltiger ungesaettigter polymerer |
DE3529252A1 (de) | 1985-08-16 | 1987-02-19 | Bayer Ag | Verfahren zur selektiven hydrierung ungesaettigter verbindungen |
DE3540918A1 (de) | 1985-11-19 | 1987-05-21 | Bayer Ag | Verfahren zur selektiven hydrierung ungesaettigter verbindungen |
DE3541689A1 (de) | 1985-11-26 | 1987-05-27 | Bayer Ag | Verfahren zur selektiven hydrierung nitrilgruppenhaltiger ungesaettigter polymerer |
US4715607A (en) | 1986-02-18 | 1987-12-29 | Acushnet Company | Golf ball composition |
DE3618907A1 (de) | 1986-06-05 | 1987-12-10 | Bayer Ag | Verbundwerkstoffe aus vorbehandeltem fasermaterial und vulkanisaten aus hnbr |
US4816525A (en) | 1987-07-06 | 1989-03-28 | University Of Waterloo | Polymer hydrogenation process |
DE4025781A1 (de) | 1990-08-15 | 1992-02-20 | Bayer Ag | Hydrierte butadien/isopren/(meth-)acrylnitril- copolymerisate |
US6326436B2 (en) * | 1998-08-21 | 2001-12-04 | Dupont Dow Elastomers, L.L.C. | Fluoroelastomer composition having excellent processability and low temperature properties |
CA2304501A1 (en) | 2000-04-10 | 2001-10-10 | Bayer Inc. | Process for hydrogenating carboxylated nitrile rubber, the hydrogenated rubber and its uses |
CA2329844A1 (en) | 2000-12-28 | 2002-06-28 | Bayer Inc. | Esbo enhanced hydrogenation |
US7138470B2 (en) * | 2004-01-16 | 2006-11-21 | 3M Innovative Properties Company | Fluoroelastomers with improved low temperature property and method for making the same |
US7449523B2 (en) * | 2004-12-27 | 2008-11-11 | Freudenberg-Nok General Partnership | Fluorocarbon elastomer compositions containing wear reducing additives |
DE102005062075A1 (de) * | 2005-12-22 | 2007-06-28 | Lanxess Deutschland Gmbh | Neue Kautschuk-Thermoplast-Mehrkomponenten-Systeme, daraus herstellte Kautschuk-Thermoplast-Verbund-Formteile, Verfahren zu ihrer Herstellung und ihre Verwendung |
KR101409075B1 (ko) * | 2008-09-12 | 2014-06-23 | 란세스 인크. | 향상된 내열성, 압축영구변형률, 및 가공성을 가지는 신규 엘라스토머 조성물 |
JP5291608B2 (ja) * | 2009-12-11 | 2013-09-18 | オムロン株式会社 | ゴム組成物およびその利用 |
KR20130003554A (ko) | 2011-06-30 | 2013-01-09 | 평화오일씰공업주식회사 | 차량의 써머스탯 가스켓의 고무 조성물 |
CN103408810A (zh) | 2013-07-01 | 2013-11-27 | 芜湖市银鸿液压件有限公司 | 一种液压缸用密封垫及其制备方法 |
MX375901B (es) | 2014-03-28 | 2025-03-07 | Nok Corp | Composicion de hnbr y cuerpo reticulado de hnbr. |
-
2016
- 2016-06-07 EP EP16001280.3A patent/EP3255088B1/de active Active
-
2017
- 2017-05-31 US US16/305,249 patent/US20200131349A1/en not_active Abandoned
- 2017-05-31 CN CN201780035047.3A patent/CN109312118B/zh active Active
- 2017-05-31 WO PCT/EP2017/063177 patent/WO2017211645A1/de unknown
- 2017-05-31 EP EP17725997.5A patent/EP3464452A1/de not_active Withdrawn
- 2017-05-31 KR KR1020187035083A patent/KR102320627B1/ko active Active
- 2017-05-31 JP JP2018563879A patent/JP6802294B2/ja active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN109312118B (zh) | 2021-04-06 |
WO2017211645A1 (de) | 2017-12-14 |
EP3255088A1 (de) | 2017-12-13 |
US20200131349A1 (en) | 2020-04-30 |
JP2019518840A (ja) | 2019-07-04 |
KR20190018136A (ko) | 2019-02-21 |
KR102320627B1 (ko) | 2021-11-04 |
CN109312118A (zh) | 2019-02-05 |
JP6802294B2 (ja) | 2020-12-16 |
EP3464452A1 (de) | 2019-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1770119B1 (de) | Vernetzbare Exlastomerzusammensetzungen, Verfahren zu deren Herstellung und deren Verwendung | |
EP2658909B1 (de) | Vulkanisierbare zusammensetzungen auf basis epoxygruppen-haltiger nitrilkautschuke | |
WO2017129494A1 (de) | Vulkanisierbare zusammensetzungen auf basis von hydriertem nitrilkautschuk, verfahren zu deren herstellung und deren verwendung | |
EP3333196B1 (de) | Hydrierte nitril-dien-carbonsäureester-copolymere | |
EP2868677A1 (de) | Nitrilgruppenhaltiger Copolymerkautschuk | |
EP2471851A1 (de) | Vulkanisierbare Zusammensetzungen auf Basis Epoxygruppen-haltiger Nitrilkautschuke | |
EP3684604B1 (de) | Vulkanisierbare hnbr-zusammensetzung mit hoher wärmeleitfähigkeit | |
DE3881038T2 (de) | Kautschukmischung. | |
EP3255088B1 (de) | Verwendung von vulkanisierbaren zusammensetzungen und vulkanisaten in kontakt mit kühlmittel enthaltend silan-beschichteten wollastonit | |
EP3728452A1 (de) | Hnbr-vulkanisat mit verbesserter heissluftbeständigkeit | |
EP3668922B1 (de) | Vulkanisierbare zusammensetzungen enthaltend hydrierten nitrilkautschuk, daraus hergestellte vulkanisate und deren verwendung | |
EP2751188B1 (de) | Vulkanisierbare zusammensetzungen auf basis von epoxygruppen-haltigen ethylen-vinylacetat-copolymerisaten | |
EP1770103B1 (de) | Peroxydisch vernetzte hydrierte Vinylpolybutadiene sowie deren Verwendung zur Herstellung von technischen Gummiartikeln mit gutem Rückverformungsverhalten über einen breiten Temperaturbereich | |
DE68914639T2 (de) | Hochdruckschlauch. | |
EP3994207B1 (de) | Hnbr-vulkanisate mit polycyclischen aromatischen kohlenwasserstoffen | |
EP2267037B1 (de) | Verwendung von ganz oder teilweise hydrierten Nitrilkautschuken |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180613 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190509 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08L 9/02 20060101AFI20190913BHEP Ipc: C08L 21/00 20060101ALI20190913BHEP Ipc: C08L 15/00 20060101ALI20190913BHEP Ipc: C08K 5/14 20060101ALI20190913BHEP Ipc: C08K 3/34 20060101ALI20190913BHEP Ipc: C08K 9/06 20060101ALI20190913BHEP |
|
INTG | Intention to grant announced |
Effective date: 20191021 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTG | Intention to grant announced |
Effective date: 20200309 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016009699 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1263214 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200730 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200831 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200829 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016009699 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200607 |
|
26N | No opposition filed |
Effective date: 20210201 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200607 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1263214 Country of ref document: AT Kind code of ref document: T Effective date: 20210607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210607 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230608 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230412 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240328 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240402 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240513 Year of fee payment: 9 |