[go: up one dir, main page]

EP3243920B1 - Spheroidal cast alloy - Google Patents

Spheroidal cast alloy Download PDF

Info

Publication number
EP3243920B1
EP3243920B1 EP17162715.1A EP17162715A EP3243920B1 EP 3243920 B1 EP3243920 B1 EP 3243920B1 EP 17162715 A EP17162715 A EP 17162715A EP 3243920 B1 EP3243920 B1 EP 3243920B1
Authority
EP
European Patent Office
Prior art keywords
weight
alloy
nodular cast
perlitic
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17162715.1A
Other languages
German (de)
French (fr)
Other versions
EP3243920A1 (en
Inventor
Konrad Papis
Sebastian Wierschke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GF Casting Solutions Kunshan Co Ltd
GF Casting Solutions Leipzig GmbH
Original Assignee
GF Casting Solutions Kunshan Co Ltd
GF Casting Solutions Leipzig GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GF Casting Solutions Kunshan Co Ltd, GF Casting Solutions Leipzig GmbH filed Critical GF Casting Solutions Kunshan Co Ltd
Priority to EP17162715.1A priority Critical patent/EP3243920B1/en
Publication of EP3243920A1 publication Critical patent/EP3243920A1/en
Priority to BR102018004643A priority patent/BR102018004643A2/en
Priority to US15/921,842 priority patent/US20180274066A1/en
Priority to MX2018003248A priority patent/MX2018003248A/en
Priority to KR1020180033303A priority patent/KR20180108495A/en
Priority to CN201810244212.2A priority patent/CN108624803A/en
Priority to JP2018056599A priority patent/JP7369513B2/en
Application granted granted Critical
Publication of EP3243920B1 publication Critical patent/EP3243920B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • C21D5/04Heat treatments of cast-iron of white cast-iron
    • C21D5/06Malleabilising
    • C21D5/14Graphitising

Definitions

  • the invention relates to a spheroidal cast iron alloy with pearlitic-ferritic structure for cast iron products with a high static strength even in the as-cast state without subsequent heat treatment of a 0.2% proof stress ⁇ 600 MPa and a tensile strength ⁇ 750 MPa with good ductility from an elongation at break of 2% to 10%, including the non-iron components C, Si, P, Mg, S, Mn and Ni as well as the usual impurities.
  • Possible applications for motor vehicle construction include chassis components such as wheel carriers, vehicle structural parts and crankshafts.
  • the Ni-Mn range serves to adjust the variable ratio of strength to elongation.
  • the non-iron components are preferably 3.1 to 4% by weight of C and 1.8 to 3% by weight of Si.
  • a material of this composition with this structure is characterized by a tensile strength of 650 to 850 MPa and a 0.2% proof stress of ⁇ 500 MPa with an elongation at break of 14.5 to 7%.
  • Another cast iron alloy is known, which is described as high and wear-resistant and corrosion-resistant. It is composed of 3 to 4.2% by weight of C, 1 to 3.5% by weight of Si, 1 to 6% by weight of Ni, ⁇ 5% by weight of Cr, ⁇ 3% by weight of Cu, ⁇ 3% by weight of Mo, ⁇ 1 wt% Mn, ⁇ 1 wt% V, ⁇ 0.4 %
  • P ⁇ 0.1% by weight S, ⁇ 0.08% by weight Mg, ⁇ 0.3% by weight Sn and manufacturing-related impurities.
  • a high-strength, higher-alloy spheroidal cast iron alloy is known, the non-iron components of which comprise 2.6 to 4% by weight of C, 1.5 to 4% by weight of Si, 6 to 11% by weight of Ni, ⁇ 7% by weight of Co, ⁇ 0.4% by weight of Mo, ⁇ 1 wt% Mn and ⁇ 0.2 wt% Cr.
  • the high tensile strength of ⁇ 1000 MPa is due to a fine-grained bainitic structure, the target structure having to be set by means of a required heat treatment in the form of tempering, which in turn requires additional effort.
  • 35 04 A describes an iron-based, higher-alloy cast material, the non-iron components of which comprise 0.8 to 3.5% by weight of C, 1 to 7% by weight of Si, 5 to 15% by weight of Ni, ⁇ 1% by weight of Mn, ⁇ 2% by weight of Cr, ⁇ 0.1% by weight of at least one element from the group Mg, Ca and Ce and ⁇ 2% by weight of at least one element from the group Mo, Nb, Ti and V.
  • the material has a hardness of at least 250 HV with a microstructure of at least 30% martensite, the Graphite formation is predominantly spherolithic.
  • a lapping wheel is named as the target product, preferably for use in semiconductor production.
  • a higher strength bainitic nodular cast iron alloy is known, the nodular iron alloy being non-iron components 2.9 to 3.9 wt.% C, 1.7 to 2.6 wt.% Si, 3.2 to 7 wt.% Ni, 0.15 to 0.4 wt.% Mo, ⁇ 0.2 wt. % Cr and ⁇ 1 wt% Mn contains.
  • the alloy is characterized by a high tensile strength ⁇ 820 MPa, a 0.2% proof stress of ⁇ 520 MPa with an elongation at break of at least 2%.
  • heat treatment is necessary; in addition, locally used cooling molds may be necessary for larger wall thicknesses.
  • DE 180 85 15 A1 a high-strength spheroidal cast iron alloy, the non-iron components of which comprise 2.9 to 3.9% by weight of C, 1.7 to 2.6% by weight of Si, 3.2 to 7% by weight of Ni, 0.15 to 0.4% by weight of Mo, ⁇ 0.1% by weight of Mg, 0 to 1% by weight of Mn and 0 to 0.25% by weight of Cr with a total content of Mo and Cr of at most 0.5% by weight.
  • This material has a tensile strength of ⁇ 1000 MPa and a 0.2% proof stress of ⁇ 750 MPa with an elongation at break of at least 4%.
  • the central feature of the material is heat treatment in the form of tempering for several hours at temperatures of 200 to 315 ° C, since the specified values cannot be achieved without tempering the matrix structure.
  • Out EP 1 834 005 B1 is a higher strength, predominantly pearlitic spheroidal graphite cast iron alloy for applications in motor vehicle construction.
  • This contains the non-iron components 3.0 to 3.7 wt.% C, 2.6 to 3.4 wt.% Si, 0.02 to 0.05 %
  • P 0.025 to 0.045% by weight Mg, 0.01 to 0.03% by weight Cr, 0.003 to 0.017% by weight Al, 0.0005 to 0.012% by weight S and 0.0004 to 0.002% by weight B, 0.1 to 1.5% by weight % Cu, 0.1 to 1.0% by weight Mn and unavoidable impurities.
  • the chassis components produced in this composition already have a tensile strength of 600 to 900 MPa in the as-cast state without additional heat treatment, a 0.2% proof stress of 400 to 600 with an elongation at break of 14 to 5%.
  • the spheroidal cast alloy according to the invention comprising 2.8 to 3.7% by weight of C, 1.5 to 4% by weight of Si, 1 to 6.2% by weight of Ni, 0.02 to 0.05% by weight of P, 0.025 to 0.06% by weight of Mg, 0.01 to 0.03% by weight of Cr, 0.003 to 0.3% by weight of AI, 0.0005 to 0.012% by weight of S, 0.03 to 1.5% by weight of Cu and 0.1 to 2% by weight of Mn, remainder Fe and inevitable impurities, the spheroidal cast iron alloy being in the cast state Without subsequent heat treatment, a high static strength of a 0.2% proof stress ⁇ 600 MPa and a tensile strength ⁇ 750 MPa with a good ductility of an elongation at break A5 of 2 to 10% is achieved, whereby the matrix structure surrounding the spherulitic graphite precipitates is pearlitic-ferritic with> 50% pearlite, the pearlite being finely streaked and the matrix structure surrounding the
  • the nodular cast iron alloy is preferably designed as a sand nodular cast iron alloy.
  • the core idea of the invention is to provide a spheroidal cast iron alloy which, owing to suitably coordinated compositions of the spheroidal cast iron alloy according to the invention and the resulting combinations of mechanical properties, can be used in motor vehicle construction, for example for axle and chassis parts which have to deform plastically in the event of a collision of the motor vehicle must not break, but also for structural parts and crankshafts that are exposed to high dynamic loads.
  • the spheroidal cast alloy according to the invention in view of its mechanical properties and possible uses, already suffices for moderate alloy additions compared to austenitic spheroidal cast iron alloys.
  • Ni and Si are known to increase the 0.2% proof stress. This is attributed on the one hand to solid-solution strengthening (Si and Ni), on the other hand to pearlite refinement by lowering the austenite-ferrite transition temperature to lower temperatures (Ni). It is advantageous that the alloy has the highest possible 0.2% proof stress with not too low elongation at break values (high lightweight construction potential). This is achieved primarily in that the spheroidal cast iron alloy has 1 to 6.2% by weight of Ni, preferably 2.5 to 5.2% by weight of Ni and particularly preferably 4 to 5.2% by weight of Ni.
  • the spheroidal cast iron alloy according to the invention has a clear advantage over the alloy DE 10 2004 040 056 A1 With similar Ni content limits, a safe martensite structure is achieved even with small wall thicknesses of approx. 8 mm without the need for subsequent tempering.
  • the spheroidal cast iron alloy according to the invention this is possible by maintaining certain compositional ratios of Ni, Si and Mn contents.
  • the sum of the contents of Ni and Si is ⁇ 9% by weight, at the same time the ratio (Ni + 0.5 ⁇ Mn) / (1.5 ⁇ Si) do not exceed 1.5.
  • Levels of Si ⁇ 1.5% by weight increase the risk of carbide formation, in the worst case white solidification can result.
  • Si> 4% by weight lead to a significant decrease in the elongation at break and also increase the risk of martensite formation due to the reduced carbon solubility in the austenite.
  • Si content should also be limited for the reason that silicon shifts the austenite-ferrite transition temperature to higher temperatures and thus counteracts the pearlite refinement sought by adding nickel.
  • Alloying from 0.03 to 1.5% by weight of Cu is carried out - in particular with low Ni contents with respect to the limits specified for the spheroidal cast iron alloy according to the invention with high Si contents at the same time - in order to ensure that Achievement of the mechanical properties predominantly pearlitic structure with> 50% pearlite, rest ferrite, ferrite globular.
  • Mn is a scrap companion in increasing proportions. Mn up to a moderate content is advantageous for increasing the yield strength. Mn also lowers the martensite start temperature and can thus help to reduce the risk of martensite formation in thin parts with faster cooling parts.
  • the upper limit for the spheroidal cast alloy according to the invention of 2% by weight of Mn is due to a strong embrittlement due to carbide formation, but an increase in segregating grain boundary carbides, in particular with simultaneously higher Si contents, is already evident at lower Mn contents.
  • Alloying from 0.003 to 0.3% by weight of Al can be carried out in order to achieve a further increase in strength by solid-solution strengthening.
  • the Al content is to be limited to ⁇ 0.3% by weight, since Al also acts as a ferrite stabilizer and thus contrary to the predominantly pearlitic microstructure formation with> 50% pearlite, which is necessary for the mechanical properties.
  • P is to be limited due to the well-known embrittling effect of low-melting P-rich phases, which can form at grain boundaries (former, P-enriched residual melt areas).
  • the graphite portion is spherical immediately after the casting process in the as-cast state, ie after casting and cooling in the mold, to more than 90% of the graphite present.
  • the matrix structure of the cast part immediately after the casting process in the as-cast state i.e. after casting and cooling in the mold, 50 to 90% pearlitic.
  • the structure of the cast part immediately after the casting process in the as-cast state i.e. after casting and cooling in the mold, 200 to 1200 spherulites per mm2.
  • the graphite particles preferably have a size distribution of at least 5% of size 8, 40% to 70% of size 7 and at most 35% of size 6 according to DIN EN ISO 945.
  • the cast part has a Brinell hardness of 260 to 320 HBW.
  • the yield strength Rp0.2 is shown as a function of the elongation at break A5.
  • the described exemplary embodiment of the spheroidal cast iron alloy according to the invention and representatives of the spheroidal cast iron alloys standardized in DIN EN 1563 and DIN EN 1564 are entered.
  • the gray lines in Figure 2 combine the minimum values according to the DIN EN 1563 standard for spheroidal graphite cast iron of grades produced in the as-cast state.
  • the solid black line in Figure 2 combines the minimum values according to the DIN EN 1564 standard for spheroidal graphite cast iron of heat-treated ADI grades.
  • Patented nodular cast iron alloys from Georg Fischer shown in black on the dashed line ( EP 1 834 005 B1 and EP 1 270 747 B1 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Die Erfindung bezieht sich auf eine Sphärogusslegierung mit perlitisch-ferritischem Gefüge für Gusseisenprodukte mit einer bereits im Gusszustand ohne anschliessende Wärmebehandlung hohen statischen Festigkeit von einer 0.2%-Dehngrenze ≥ 600 MPa und einer Zugfestigkeit ≥ 750 MPa bei gleichzeitig guter Duktilität von einer Bruchdehnung 2 % bis 10 %, umfassend die Nicht-Eisenbestandteile C, Si, P, Mg, S, Mn und Ni sowie die üblichen Verunreinigungen. Einsatzmöglichkeiten für den Kraftfahrzeugbau sind beispielsweise Fahrwerkskomponenten wie Radträger, Fahrzeug-Strukturteile sowie Kurbelwellen.The invention relates to a spheroidal cast iron alloy with pearlitic-ferritic structure for cast iron products with a high static strength even in the as-cast state without subsequent heat treatment of a 0.2% proof stress ≥ 600 MPa and a tensile strength ≥ 750 MPa with good ductility from an elongation at break of 2% to 10%, including the non-iron components C, Si, P, Mg, S, Mn and Ni as well as the usual impurities. Possible applications for motor vehicle construction include chassis components such as wheel carriers, vehicle structural parts and crankshafts.

Im Kraftfahrzeugbau werden zunehmend höherfeste Gusseisenlegierungen verwendet, die sich zur Potentialausschöpfung einer Gewichtsreduzierung durch höhere Festigkeiten auszeichnen. Aus Kostengründen im Fokus stehen dabei möglichst der Verzicht auf jegliche Wärmbehandlungsprozesse sowie ein Erreichen der geforderten mechanischen Eigenschaften bei lediglich moderaten Legierzusätzen.In automotive engineering, higher strength cast iron alloys are increasingly being used, which are characterized by higher strengths in order to exploit the potential for weight reduction. For cost reasons, the focus here is on avoiding any heat treatment processes and achieving the required mechanical properties with only moderate alloy additives.

Aus der EP 1 225 239 A1 ist eine höherfeste bainitische Sphärogusslegierung mit als Nicht-Eisenbestandteilen 2 bis 4 % Gew.% Ni und 0.05 bis 0.45 Gew.% Mn bekannt, die Ni-Mn-Spanne dient der Einstellung des variierbaren Verhältnisses von Festigkeit zu Dehnung. Zur Umsetzung der Erfindung bevorzugt sind die Nicht-Eisenbestandteile 3.1 bis 4 % Gew.% C und 1.8 bis 3 Gew.% Si. Ein Werkstoff dieser Zusammensetzung mit diesem Gefüge zeichnet sich aus durch eine Zugfestigkeit von 650 bis 850 MPa und eine 0.2%-Dehngrenze von ≥ 500 MPa bei einer Bruchdehnung von 14.5 bis 7 %. Diese Eigenschaften werden zwar ohne Wärmebehandlung erreicht, die erreichbaren Festigkeiten sind aber bedingt durch die Legierungszusammensetzung begrenzt.From the EP 1 225 239 A1 is a higher strength bainitic nodular cast iron alloy with 2 to 4% by weight of Ni and 0.05 to 0.45% by weight of Mn known as non-iron constituents, the Ni-Mn range serves to adjust the variable ratio of strength to elongation. To implement the invention, the non-iron components are preferably 3.1 to 4% by weight of C and 1.8 to 3% by weight of Si. A material of this composition with this structure is characterized by a tensile strength of 650 to 850 MPa and a 0.2% proof stress of ≥ 500 MPa with an elongation at break of 14.5 to 7%. Although these properties are achieved without heat treatment, the achievable strengths are limited due to the alloy composition.

Aus der DE 10 2004 040 056 A1 ist eine weitere Gusseisenlegierung bekannt, die als Hoch- und verschleissfest sowie korrosionsbeständig beschrieben wird. Sie setzt sich zusammen aus 3 bis 4.2 Gew.% C, 1 bis 3.5 Gew.% Si, 1 bis 6 Gew.% Ni, ≤5 Gew.% Cr, ≤3 Gew.% Cu, ≤3 Gew.% Mo, ≤1 Gew.% Mn, ≤1 Gew.% V, ≤0.4 Gew.% P, ≤0.1 Gew.% S, ≤0.08 Gew.% Mg, ≤0.3 Gew.% Sn und herstellungsbedingte Verunreinigungen enthält. Diese weiten Legierungsbereiche resultieren in vielfältigen Matrixzusammensetzungen von > 50 % nadeligem Ferrit mit unterschiedlichen Anteilen an Austenit (< 20 %), Martensit (< 30 %), Perlit (<50 %) und Karbiden (< 15 %), die Graphitausbildung ist nicht auf Kugelgraphit beschränkt sondern kann auch vermikularer und lamellarer Art sein. Erreichbare Biegebruchfestigkeiten am Anwendungsbeispiel eines Kolbenringes betragen > 1100 MPa, die Härte liegt bei 320 HB2.5, hervorgehoben wird eine nicht näher spezifizierte hohe Zähigkeit/Duktilität. Die Bruchdehnung dürfte insbesondere bei Legierungsvarianten mit Karbidgehalten von bis zu 15 % im Gefüge jedoch deutlich reduziert sein. Im Fall von kleinen Wandstärken (Modul ≤ 1.5 cm) kann zudem ein zusätzlicher Prozessschritt in Form eines Anlassens bei Temperaturen < 700 ° C nötig sein.From the DE 10 2004 040 056 A1 Another cast iron alloy is known, which is described as high and wear-resistant and corrosion-resistant. It is composed of 3 to 4.2% by weight of C, 1 to 3.5% by weight of Si, 1 to 6% by weight of Ni, ≤5% by weight of Cr, ≤3% by weight of Cu, ≤3% by weight of Mo, ≤1 wt% Mn, ≤1 wt% V, ≤0.4 % By weight P, ≤0.1% by weight S, ≤0.08% by weight Mg, ≤0.3% by weight Sn and manufacturing-related impurities. These wide alloy ranges result in diverse matrix compositions of> 50% acicular ferrite with different proportions of austenite (<20%), martensite (<30%), pearlite (<50%) and carbides (<15%), the graphite formation is not on Spheroidal graphite is limited but can also be vermicular and lamellar. Achievable bending strengths using the example of a piston ring are> 1100 MPa, the hardness is 320 HB2.5, emphasizing an unspecified high toughness / ductility. However, the elongation at break is likely to be significantly reduced, particularly in the case of alloy variants with carbide contents of up to 15%. In the case of small wall thicknesses (module ≤ 1.5 cm), an additional process step in the form of tempering at temperatures <700 ° C may also be necessary.

Aus der CA 122 40 66 A1 / US 448 49 53 A ist eine höherfeste Sphärogusslegierung bekannt, wobei die Sphärogusslegierung als Nicht-Eisenbestandteile 3 bis 3.6 Gew.% C, 3.5 bis 5 Gew.% Si, 0.7 bis 5 Gew.% Ni, 0 bis 0.3 Gew.% Mo, 0.2 bis 0.4 Gew.% Mn, ≤0.06 Gew.% P und ≤0.015 Gew.% S enthält. Nachteilig hierbei ist, dass zur Erreichung der angegebenen Zugfestigkeit ≥ 950 MPa, 0.2%-Dehngrenze ≥ 550 MPa und Bruchdehnung von 6 bis 10 % ein ferritisch-bainitisches Gefüge vonnöten ist, welches eine ausferritisierende Wärmebehandlung zwingend erfordert.From the CA 122 40 66 A1 / US 448 49 53 A is known a higher strength spheroidal cast iron alloy, the spheroidal cast iron alloy as non-iron components 3 to 3.6 wt.% C, 3.5 to 5 wt.% Si, 0.7 to 5 wt.% Ni, 0 to 0.3 wt.% Mo, 0.2 to 0.4 wt. % Mn, ≤0.06% by weight P and ≤0.015% by weight S contains. The disadvantage here is that to achieve the specified tensile strength ≥ 950 MPa, 0.2% proof stress ≥ 550 MPa and elongation at break of 6 to 10%, a ferritic-bainitic structure is required, which requires an ausritizing heat treatment.

Aus der US 370 22 69 A ist eine hochfeste höherlegierte Sphärogusslegierung bekannt, deren Nicht-Eisenbestandteile umfassen 2.6 bis 4 Gew.% C, 1.5 bis 4 Gew.% Si, 6 bis 11 Gew.% Ni, ≤ 7 Gew.% Co, ≤0.4 Gew.% Mo, ≤1 Gew.% Mn und ≤0.2 Gew.% Cr. Die hohe Zugfestigkeit von ≥ 1000 MPa ist bedingt durch ein feinkörniges bainitisches Gefüge, wobei das Zielgefüge mittels einer erforderlichen Wärmebehandlung in Form eines Anlassens eingestellt werden muss, was wiederum eines Mehraufwands bedarf.From the US 370 22 69 A a high-strength, higher-alloy spheroidal cast iron alloy is known, the non-iron components of which comprise 2.6 to 4% by weight of C, 1.5 to 4% by weight of Si, 6 to 11% by weight of Ni, ≤ 7% by weight of Co, ≤0.4% by weight of Mo, ≤1 wt% Mn and ≤0.2 wt% Cr. The high tensile strength of ≥ 1000 MPa is due to a fine-grained bainitic structure, the target structure having to be set by means of a required heat treatment in the form of tempering, which in turn requires additional effort.

In der US 585 35 04 A wird ein eisenbasiertes höherlegiertes Gussmaterial beschrieben, dessen Nicht-Eisenbestandteile umfassen 0.8 bis 3.5 Gew.% C, 1 bis 7 Gew.% Si, 5 bis 15 Gew.% Ni, ≤1 Gew.% Mn, ≤2 Gew.% Cr, ≤0.1 Gew.% von mindestens einem Element der Gruppe Mg, Ca und Ce und ≤2 Gew.% von mindestens einem Element der Gruppe Mo, Nb, Ti und V. Der Werkstoff weist eine Härte von mindestens 250 HV bei einem Gefügeanteil von mindestens 30 % Martensit aus, die Graphitausbildung ist überwiegend sphärolithisch. Als Zielprodukt wird eine Läppscheibe benannt, vorzugsweise für den Einsatz in der Halbleiterfertigung. Trotz einer optionalen Wärmebehandlung ist aufgrund der in der Legierung enthaltenen 5 bis 10 % Karbide und der zu grossen Teilen martensitischen Matrix von einer nur geringen Bruchdehnung auszugehen. Dies schliesst aus Sicherheitsgründen eine Verwendung für dynamisch beanspruchte Kraftfahrzeug-Gussprodukte wie Struktur-/Fahrwerksteile aus.In the US 585 35 04 A describes an iron-based, higher-alloy cast material, the non-iron components of which comprise 0.8 to 3.5% by weight of C, 1 to 7% by weight of Si, 5 to 15% by weight of Ni, ≤1% by weight of Mn, ≤2% by weight of Cr, ≤0.1% by weight of at least one element from the group Mg, Ca and Ce and ≤2% by weight of at least one element from the group Mo, Nb, Ti and V. The material has a hardness of at least 250 HV with a microstructure of at least 30% martensite, the Graphite formation is predominantly spherolithic. A lapping wheel is named as the target product, preferably for use in semiconductor production. Despite an optional heat treatment, due to the 5 to 10% carbide contained in the alloy and the largely martensitic matrix, only a low elongation at break can be assumed. For safety reasons, this excludes use for dynamically stressed automotive cast products such as structural / chassis parts.

Aus der US 354 94 30 A ist eine höherfeste bainitische Sphärogusslegierung bekannt, wobei die Sphärogusslegierung als Nicht-Eisenbestandteile 2.9 bis 3.9 Gew.% C, 1.7 bis 2.6 Gew.% Si, 3.2 bis 7 Gew.% Ni, 0.15 bis 0.4 Gew.% Mo, ≤0.2 Gew.% Cr und ≤1 Gew.% Mn enthält. Die Legierung zeichnet sich aus durch eine hohe Zugfestigkeit ≥ 820 MPa, eine 0.2%-Dehngrenze von ≥ 520 MPa bei einer Bruchdehnung von mindestens 2 %. Um diese Eigenschaften zu erreichen ist eine Wärmebehandlung erforderlich, zudem können bei grösseren Wandstärken lokal eingesetzte Kühlkokillen nötig sein.From the US 354 94 30 A a higher strength bainitic nodular cast iron alloy is known, the nodular iron alloy being non-iron components 2.9 to 3.9 wt.% C, 1.7 to 2.6 wt.% Si, 3.2 to 7 wt.% Ni, 0.15 to 0.4 wt.% Mo, ≤0.2 wt. % Cr and ≤1 wt% Mn contains. The alloy is characterized by a high tensile strength ≥ 820 MPa, a 0.2% proof stress of ≥ 520 MPa with an elongation at break of at least 2%. In order to achieve these properties, heat treatment is necessary; in addition, locally used cooling molds may be necessary for larger wall thicknesses.

Ferner beschreibt DE 180 85 15 A1 eine hochfeste Sphärogusslegierung, deren Nicht-Eisenbestandteile umfassen 2.9 bis 3.9 Gew.% C, 1.7 bis 2.6 Gew.% Si, 3.2 bis 7 Gew.% Ni, 0.15 bis 0.4 Gew.% Mo, ≤0.1 Gew.% Mg, 0 bis 1 Gew.% Mn und 0 bis 0.25 Gew.% Cr bei einem Gesamtgehalt von Mo und Cr von höchstens 0.5 Gew.%. Dieser Werkstoff weist eine Zugfestigkeit von ≥ 1000 MPa und eine 0.2%-Dehngrenze von ≥ 750 MPa bei einer Bruchdehnung von mindestens 4 % auf. Zentrales Merkmal des Werkstoffes ist jedoch eine Wärmebehandlung in Form eines mehrstündigen Anlassens bei Temperaturen von 200 bis 315 °C, da ohne ein Anlassen des Matrixgefüges die angegebenen Kennwerte nicht zu erreichen sind.Also describes DE 180 85 15 A1 a high-strength spheroidal cast iron alloy, the non-iron components of which comprise 2.9 to 3.9% by weight of C, 1.7 to 2.6% by weight of Si, 3.2 to 7% by weight of Ni, 0.15 to 0.4% by weight of Mo, ≤0.1% by weight of Mg, 0 to 1% by weight of Mn and 0 to 0.25% by weight of Cr with a total content of Mo and Cr of at most 0.5% by weight. This material has a tensile strength of ≥ 1000 MPa and a 0.2% proof stress of ≥ 750 MPa with an elongation at break of at least 4%. The central feature of the material, however, is heat treatment in the form of tempering for several hours at temperatures of 200 to 315 ° C, since the specified values cannot be achieved without tempering the matrix structure.

Aus EP 1 834 005 B1 ist eine höherfeste, überwiegend perlitische Sphärogusslegierung für Anwendungen im Kraftfahrzeugbau bekannt. Diese enthält die Nicht-Eisenbestandteile 3.0 bis 3.7 Gew.% C, 2.6 bis 3.4 Gew.% Si, 0.02 bis 0.05 Gew.% P, 0.025 bis 0.045 Gew.% Mg, 0.01 bis 0.03 Gew.% Cr, 0.003 bis 0.017 Gew.% Al, 0.0005 bis 0.012 Gew.% S und 0.0004 bis 0.002 Gew.% B, 0.1 bis 1.5 Gew.% Cu, 0.1 bis 1.0 Gew.% Mn und unvermeidbare Verunreinigungen. Die in dieser Zusammensetzung erzeugten Fahrwerkskomponenten weisen bereits im Gusszustand ohne eine zusätzliche Wärmebehandlung eine Zugfestigkeit von 600 bis 900 MPa, eine 0.2%-Dehngrenze von 400 bis 600 bei einer Bruchdehnung von 14 bis 5 % auf.Out EP 1 834 005 B1 is a higher strength, predominantly pearlitic spheroidal graphite cast iron alloy for applications in motor vehicle construction. This contains the non-iron components 3.0 to 3.7 wt.% C, 2.6 to 3.4 wt.% Si, 0.02 to 0.05 % By weight P, 0.025 to 0.045% by weight Mg, 0.01 to 0.03% by weight Cr, 0.003 to 0.017% by weight Al, 0.0005 to 0.012% by weight S and 0.0004 to 0.002% by weight B, 0.1 to 1.5% by weight % Cu, 0.1 to 1.0% by weight Mn and unavoidable impurities. The chassis components produced in this composition already have a tensile strength of 600 to 900 MPa in the as-cast state without additional heat treatment, a 0.2% proof stress of 400 to 600 with an elongation at break of 14 to 5%.

Ebenso offenbaren die DE 10 2008 050152 A1 und EP 1 225 239 A1 Gusseisenlegierungen mit Kugelgraphit.They also reveal DE 10 2008 050152 A1 and EP 1 225 239 A1 Spheroidal graphite cast iron alloys.

Ausgehend von diesem Stand der Technik ist es zentrale Aufgabe der Erfindung, eine hochfeste Sphärogusslegierung anzugeben, deren Anforderungen an die 0.2%-Dehngrenze, Zugfestigkeit und Bruchdehnung bereits im Gusszustand ohne weiteres Zutun erreicht werden, die vorteilhaft im Gegensatz zu den bekannten hochfesten Gusseisenlegierungen wie z.B. ADI-Werkstoffen (=Austempered Ductile Iron) also keiner gesonderten Wärmebehandlung bedarf.Starting from this prior art, it is a central object of the invention to provide a high-strength spheroidal cast iron alloy, the requirements for the 0.2% proof stress, tensile strength and elongation at break can be achieved without further action even in the as-cast state, which are advantageous in contrast to the known high-strength cast iron alloys such as e.g. ADI materials (= Austempered Ductile Iron) therefore do not require any special heat treatment.

Diese Aufgabe wird durch die erfindungsgemässe Sphärogusslegierung beinhaltend 2.8 bis 3.7 Gew.% C, 1.5 bis 4 Gew.% Si, 1 bis 6.2 Gew.% Ni, 0.02 bis 0.05 Gew.% P, 0.025 bis 0.06 Gew.% Mg, 0.01 bis 0.03 Gew.% Cr, 0.003 bis 0.3 Gew.% AI, 0.0005 bis 0.012 Gew.% S, 0.03 bis 1.5 Gew.% Cu und 0.1 bis 2 Gew.% Mn, Rest Fe und unvermeidbare Verunreinigungen erreicht, wobei die Sphärogusslegierung im Gusszustand ohne anschliessende Wärmebehandlung eine hohe statische Festigkeit von einer 0.2%-Dehngrenze ≥600 MPa und einer Zugfestigkeit ≥ 750 MPa bei gleichzeitig guter Duktilität von einer Bruchdehnung A5 von 2 bis 10 % erreicht, wobei das die sphärolithischen Graphitausscheidungen umgebende Matrixgefüge ist dabei perlitisch-ferritisch ausgebildet mit > 50 % Perlit, wobei der Perlit feinstreifig und der Ferrit globular vorliegen.This object is achieved by the spheroidal cast alloy according to the invention comprising 2.8 to 3.7% by weight of C, 1.5 to 4% by weight of Si, 1 to 6.2% by weight of Ni, 0.02 to 0.05% by weight of P, 0.025 to 0.06% by weight of Mg, 0.01 to 0.03% by weight of Cr, 0.003 to 0.3% by weight of AI, 0.0005 to 0.012% by weight of S, 0.03 to 1.5% by weight of Cu and 0.1 to 2% by weight of Mn, remainder Fe and inevitable impurities, the spheroidal cast iron alloy being in the cast state Without subsequent heat treatment, a high static strength of a 0.2% proof stress ≥600 MPa and a tensile strength ≥ 750 MPa with a good ductility of an elongation at break A5 of 2 to 10% is achieved, whereby the matrix structure surrounding the spherulitic graphite precipitates is pearlitic-ferritic with> 50% pearlite, the pearlite being finely streaked and the ferrite globular.

Auch dadurch unterscheidet sich die erfindungsgemässe Sphärogusslegierung neben den mechanischen Eigenschaften und dem Verzicht auf die Karbidbildner Mo, Nb, Ti und V deutlich von der aus US 585 35 04 A bekannten Legierung mit einem teilweise überlappenden Ni-Legierungsbereich. Ebenso liegt hierin ein Unterschied zu der aus DE 10 2004 040 056 A1 bekannten Gusseisenlegierung begründet, da sich mechanische Eigenschaften eines nadeligen Ferrits deutlich von denen eines globular ausgebildeten Ferrits unterscheiden.This also clearly distinguishes the spheroidal cast iron alloy according to the invention from the mechanical properties and the absence of the carbide formers Mo, Nb, Ti and V. US 585 35 04 A known alloy with a partially overlapping Ni alloy range. There is also a difference here to the out DE 10 2004 040 056 A1 known cast iron alloy, because mechanical properties of a needle-like ferrite differ significantly from those of a globular ferrite.

Vorzugsweise ist die Sphärogusslegierung als Sand-Sphärogusslegierung ausgebildet.The nodular cast iron alloy is preferably designed as a sand nodular cast iron alloy.

Der Kerngedanke der Erfindung ist es, eine Sphärogusslegierung anzugeben, die aufgrund geeignet abgestimmter Zusammensetzungen der erfindungsgemässen Sphärogusslegierung und den daraus resultierenden Kombinationen mechanischer Eigenschaften im Kraftfahrzeugbau eingesetzt werden kann beispielsweise für Achs- und Fahrwerksteile, welche sich im Falle eines Zusammenstosses des Kraftwagens plastisch verformen müssen und nicht brechen dürfen, aber auch für Strukturteile und Kurbelwellen, welche hohen dynamischen Belastungen ausgesetzt sind.The core idea of the invention is to provide a spheroidal cast iron alloy which, owing to suitably coordinated compositions of the spheroidal cast iron alloy according to the invention and the resulting combinations of mechanical properties, can be used in motor vehicle construction, for example for axle and chassis parts which have to deform plastically in the event of a collision of the motor vehicle must not break, but also for structural parts and crankshafts that are exposed to high dynamic loads.

Erwähnenswert ist, dass der erfindungsgemässen Sphärogusslegierung angesichts ihrer mechanischen Eigenschaften und Einsatzmöglichkeiten verglichen mit austenitischen Sphärogusslegierungen bereits moderate Legierungszusätze genügen.It is worth mentioning that the spheroidal cast alloy according to the invention, in view of its mechanical properties and possible uses, already suffices for moderate alloy additions compared to austenitic spheroidal cast iron alloys.

Ni und Si sind bekannt dafür, die 0.2%-Dehngrenze zu erhöhen. Dies wird einerseits auf die Mischkristallverfestigung zurückgeführt (Si und Ni), andererseits auf eine Perlitfeinung durch Absenkung der Austenit-Ferrit-Umwandlungstemperatur hin zu niedrigeren Temperaturen (Ni). Es ist von Vorteil, dass die Legierung eine möglichst hohe 0.2%-Dehngrenze bei nicht zu geringen Bruchdehnungswerten aufweist (hohes Leichtbaupotential). Dies wird in erster Linie dadurch erreicht, dass die Sphärogusslegierung 1 bis 6.2 Gew.% Ni, vorzugsweise 2.5 bis 5.2 Gew.% Ni und besonders bevorzugt 4 bis 5.2 Gew.% Ni aufweist.
Insbesondere in Verbindung mit 1.5 bis 4 Gew.% Si, vorzugsweise 2 bis 3.5 Gew.% Si und besonders bevorzugt 2.2 bis 3.3 Gew.% Si werden gute Festigkeitseigenschaften bei nicht zu geringen Bruchdehnungswerten erreicht. So liegt beispielsweise im Vergleich zu der aus EP 1 225 239 A1 bekannten bainitischen Legierung, die ebenfalls keine Wärmebehandlung benötigt, die 0.2%-Dehngrenze der erfindungsgemässen perlitisch-ferritischen Sphärogusslegierung mit ≥600 MPa gegenüber ≥ 500 MPa deutlich höher (Zugfestigkeit ebenso etwas höher). So enthalten die in EP 1 225 239 A1 genannten Ausführungsbeispiele keine Werte der 0.2%-Dehngrenze oberhalb von 550 MPa.
Ni and Si are known to increase the 0.2% proof stress. This is attributed on the one hand to solid-solution strengthening (Si and Ni), on the other hand to pearlite refinement by lowering the austenite-ferrite transition temperature to lower temperatures (Ni). It is advantageous that the alloy has the highest possible 0.2% proof stress with not too low elongation at break values (high lightweight construction potential). This is achieved primarily in that the spheroidal cast iron alloy has 1 to 6.2% by weight of Ni, preferably 2.5 to 5.2% by weight of Ni and particularly preferably 4 to 5.2% by weight of Ni.
Particularly in connection with 1.5 to 4% by weight of Si, preferably 2 to 3.5% by weight of Si and particularly preferably 2.2 to 3.3% by weight of Si, good strength properties are achieved with not too low elongation at break values. For example, compared to that EP 1 225 239 A1 known bainitic alloy, which also does not require heat treatment, the 0.2% proof stress of the pearlitic-ferritic spheroidal cast iron alloy according to the invention with ≥600 MPa significantly higher than ≥ 500 MPa (tensile strength also slightly higher). So included in EP 1 225 239 A1 mentioned embodiments no values of the 0.2% proof stress above 550 MPa.

Die Einhaltung der angegebenen unteren und oberen Grenzen für die Nicht-Eisenbestandteile Si und Ni sind entscheidend für das perlitisch-ferritische Zielgefüge und somit für die Erreichung der mechanischen Eigenschaften der erfindungsgemässen Sphärogusslegierung.
Bei Ni-Gehalten < 1 Gew.% ist keine merkliche Dehngrenzensteigerung zu verzeichnen, Gehalte > 6.2 Gew.% sind aufgrund eines erhöhten Risikos der Martensitbildung zu vermeiden. Hinsichtlich dieses Risikos der Martensitbildung weist die erfindungsgemässe Sphärogusslegierung einen deutlichen Vorteil auf gegenüber der Legierung aus DE 10 2004 040 056 A1 mit ähnlichen Ni-Gehaltsgrenzen, so wird selbst bei geringen Wandstärken von ca. 8 mm ein sicher martensitfreies Gefüge erreicht ohne die Notwendigkeit eines nachfolgenden Anlassens. In einer bevorzugten Ausführung der erfindungsgemässen Sphärogusslegierung ist dies möglich durch Einhaltung bestimmter Zusammensetzungsverhältnisse an Ni-, Si- und Mn-Gehalten. So ist es zu bevorzugen, dass für ein im Gusszustand martensitfreies perlitisch-ferritisches Gefü ge der erfindungsgemässen Sphärogusslegierung die Summe der Gehalte an Ni und Si ≤ 9 Gew.% beträgt, gleichzeitig sollte das Verhältnis (Ni+0.5Mn)/(1.5Si) nicht den Wert 1.5 überschreiten.
Gehalte an Si < 1.5 Gew.% erhöhen das Risiko der Karbidbildung, im schlimmsten Fall kann eine Weisserstarrung die Folge sein. Gehalte an Si > 4 Gew.% führen zu einem deutlichen Absinken der Bruchdehnung und erhöhen aufgrund der verringerten Kohlenstofflöslichkeit im Austenit ebenfalls das Risiko der Martensitbildung. Zudem ist der Si-Gehalt auch aus dem Grund zu begrenzen, als dass Silizium die Austenit-Ferrit-Umwandlungstemperatur hin zu höheren Temperaturen verschiebt und somit der über Nickel-Zugaben angestrebten Perlitfeinung entgegen wirkt.
Compliance with the specified lower and upper limits for the non-iron components Si and Ni are decisive for the pearlitic-ferritic target structure and thus for the achievement of the mechanical properties of the spheroidal cast iron alloy according to the invention.
With Ni contents <1% by weight, there is no noticeable increase in yield strength, contents> 6.2% by weight should be avoided due to an increased risk of martensite formation. With regard to this risk of martensite formation, the spheroidal cast alloy according to the invention has a clear advantage over the alloy DE 10 2004 040 056 A1 With similar Ni content limits, a safe martensite structure is achieved even with small wall thicknesses of approx. 8 mm without the need for subsequent tempering. In a preferred embodiment of the spheroidal cast iron alloy according to the invention, this is possible by maintaining certain compositional ratios of Ni, Si and Mn contents. Thus, it is preferable that for a pearlitic-ferritic structure of the spheroidal cast alloy according to the invention which is free of martensite in the cast state, the sum of the contents of Ni and Si is ≤ 9% by weight, at the same time the ratio (Ni + 0.5 Mn) / (1.5 Si) do not exceed 1.5.
Levels of Si <1.5% by weight increase the risk of carbide formation, in the worst case white solidification can result. Levels of Si> 4% by weight lead to a significant decrease in the elongation at break and also increase the risk of martensite formation due to the reduced carbon solubility in the austenite. In addition, the Si content should also be limited for the reason that silicon shifts the austenite-ferrite transition temperature to higher temperatures and thus counteracts the pearlite refinement sought by adding nickel.

Das Zulegieren von 0.03 bis 1.5 Gew.% Cu erfolgt - insbesondere bei bezogen auf die für die erfindungsgemässe Sphärogusslegierung angegebenen Grenzen niedrigen Ni-Gehalten bei gleichzeitig hohen Si-Gehalten - zur Sicherung des für die Erreichung der mechanischen Eigenschaften überwiegend perlitischen Gefüges mit > 50 % Perlit, Rest Ferrit, dabei Ferrit globular ausgebildet.Alloying from 0.03 to 1.5% by weight of Cu is carried out - in particular with low Ni contents with respect to the limits specified for the spheroidal cast iron alloy according to the invention with high Si contents at the same time - in order to ensure that Achievement of the mechanical properties predominantly pearlitic structure with> 50% pearlite, rest ferrite, ferrite globular.

Mn ist in zunehmenden Anteilen ein Schrottbegleiter. Für eine Steigerung der Dehngrenze ist Mn bis zu einem moderaten Gehalt vorteilhaft. Mn senkt zudem die Martensit-Starttemperatur und kann somit dazu beitragen, in schneller abkühlenden dünnwandigen Bauteil-Partien die Gefahr von Martensitbildung zu reduzieren. Die Obergrenze für die erfindungsgemässe Sphärogusslegierung von 2 Gew.% Mn ist durch eine starke Versprödung durch Karbidbildung bedingt, eine Zunahme von seigernden Korngrenzkarbiden insbesondere bei gleichzeitig höheren Si-Gehalten ist jedoch bereits bei tieferen Mn-Gehalten zu verzeichnen.Mn is a scrap companion in increasing proportions. Mn up to a moderate content is advantageous for increasing the yield strength. Mn also lowers the martensite start temperature and can thus help to reduce the risk of martensite formation in thin parts with faster cooling parts. The upper limit for the spheroidal cast alloy according to the invention of 2% by weight of Mn is due to a strong embrittlement due to carbide formation, but an increase in segregating grain boundary carbides, in particular with simultaneously higher Si contents, is already evident at lower Mn contents.

Das Zulegieren von 0.003 bis 0.3 Gew.% Al kann erfolgen, um eine weitere Festigkeitssteigerung durch Mischkristallverfestigung zu erreichen. Der Gehalt an Al ist jedoch auf < 0.3 Gew.% zu begrenzen, da Al gleichzeitig als Ferritstabilisator wirkt und somit entgegen der für die mechanischen Eigenschaften notwendigen, überwiegend perlitischen Gefügeausbildung mit > 50 % Perlit.Alloying from 0.003 to 0.3% by weight of Al can be carried out in order to achieve a further increase in strength by solid-solution strengthening. However, the Al content is to be limited to <0.3% by weight, since Al also acts as a ferrite stabilizer and thus contrary to the predominantly pearlitic microstructure formation with> 50% pearlite, which is necessary for the mechanical properties.

Die Einhaltung der angegebenen oberen Grenzen für die Nicht-Eisenbestandteile Mn, Cu, Mg, Cr, Al, P, S sind entscheidend für die Erreichung der mechanischen Eigenschaften sowie die Bearbeitbarkeit von Gussteilen aus der erfindungsgemässen Sphärogusslegierung. Überhöhte Gehalte an Cu, Mg, Al und S können die Graphitausbildung negativ beeinflussen, entsprechende Abweichungen der Graphitgestalt von der angestrebten sphärolithischen Form führen zu deutlichen Verschlechterungen von Bruchdehnung und erreichbarer Festigkeit. Versprödend wirkt ebenfalls Cr, seinerseits durch Förderung der Karbidbildung.Compliance with the specified upper limits for the non-iron components Mn, Cu, Mg, Cr, Al, P, S are decisive for achieving the mechanical properties and the machinability of cast parts made of the spheroidal cast alloy according to the invention. Excessive levels of Cu, Mg, Al and S can have a negative impact on the formation of graphite, and corresponding deviations in the graphite shape from the spherulitic shape aimed for lead to significant deterioration in elongation at break and achievable strength. Cr is also embrittling, in turn by promoting carbide formation.

Zu begrenzen ist P aufgrund der hinlänglich bekannten versprödenden Wirkung niedrigschmelzender P-reicher Phasen, die sich an Korngrenzen ausbilden können (ehemalige, P-angereicherte Restschmelzebereiche).P is to be limited due to the well-known embrittling effect of low-melting P-rich phases, which can form at grain boundaries (former, P-enriched residual melt areas).

Vorzugsweise ist der Graphitanteil unmittelbar nach dem Giessprozess im Gusszustand, d.h. nach Giessen und Abkühlen in der Form, zu mehr als 90 % des vorhandenen Graphits kugelförmig ausgebildet.Preferably, the graphite portion is spherical immediately after the casting process in the as-cast state, ie after casting and cooling in the mold, to more than 90% of the graphite present.

Vorteilhaft ist es, wenn das Matrixgefüge des Gussteiles unmittelbar nach dem Giessprozess im Gusszustand, d.h. nach Giessen und Abkühlen in der Form, zu 50 bis 90 % perlitisch ausgebildet ist.It is advantageous if the matrix structure of the cast part immediately after the casting process in the as-cast state, i.e. after casting and cooling in the mold, 50 to 90% pearlitic.

In einer vorteilhaften Ausführung weist das Gefüge des Gussteiles unmittelbar nach dem Giessprozess im Gusszustand, d.h. nach Giessen und Abkühlen in der Form, 200 bis 1200 Sphärolithen pro mm2 auf.In an advantageous embodiment, the structure of the cast part immediately after the casting process in the as-cast state, i.e. after casting and cooling in the mold, 200 to 1200 spherulites per mm2.

Vorzugsweise weisen die Graphitteilchen eine Grössenverteilung von mindestens 5 % der Grösse 8, 40 % bis 70 % der Grösse 7 und höchstens 35 % der Grösse 6 gemäss DIN EN ISO 945 auf.The graphite particles preferably have a size distribution of at least 5% of size 8, 40% to 70% of size 7 and at most 35% of size 6 according to DIN EN ISO 945.

Vorteilhaft ist es, wenn das Gussteil eine Brinellhärte von 260 bis 320 HBW aufweist.It is advantageous if the cast part has a Brinell hardness of 260 to 320 HBW.

Ein Ausführungsbeispiel der Erfindung wird wie folgt beschrieben, wobei sich die Erfindung nicht nur auf oder durch das folgende Ausführungsbeispiel beschränkt.An embodiment of the invention is described as follows, the invention not being limited to or by the following embodiment.

Eine Y2-Probe wurde aus der erfindungsgemässen Sphärogusslegierung in Sand abgegossen. Die chemische Zusammensetzung beträgt 2.87 Gew.% C, 5.12 Gew.% Ni, 3.25 Gew.% Si, 0.03 Gew.% Cu, 0.22 Gew.% Mn, 0.046 Gew. % Mg, 0.037 Gew.% P, 0.022 Gew.% Cr, 0.013 Gew.% Al und 0.003 Gew.% S, Rest Fe und den ü blichen Verunreinigungen. Die Summe der Gehalte Ni+Si beträgt somit ≈ 8.4 Gew.% (≤ 9 Gew.% bevorzugt), das Verhältnis (Ni+0.5Mn)/(1.5Si) ≈ 1.1 (≤ 1.5 bevorzugt). Das Gussstück wurde im Gusszustand untersucht auf Sphärolithenzahl, Graphitgehalt, Graphitform und Graphitgrösse, Perlitgehalt, sowie auf Kennwerte aus dem Zugversuch, auf die Brinellhärte und Schlagarbeit. Die Sphärolithenzahl beträgt 218 Sphärolithen pro mm2, der Graphitgehalt 10.6 %. Die Graphitform nach DIN EN ISO 945 ist zu 94 % von der Form VI. Die Grössenverteilung nach DIN EN ISO 945 ist 8 % der Grösse 8, 57 % der Grösse 7 und 33 % der Grösse 6. Der Perlitgehalt der Matrix beträgt 79 % (Gefügeaufnahme siehe Abbildung 1, Restbestandteil: Ferrit, globular ausgebildet). Die Brinellhärte beträgt 310 +/- 2 HBW5/750. Die Schlagarbeit einzelner Proben betrug bei Raumtemperatur 30.1 J, respektive 12.5 J bei -30 °C. Die Raumtemperatur-Zugversuche nach DIN EN ISO 6892-1 ergaben folgende Kennwerte:

  • 0.2%-Dehngrenze: 658 bis 663 MPa,
  • Zugfestigkeit: 884 bis 889 MPa,
  • Bruchdehnung: 6.2 bis 7.9 %,
  • Elastizitätsmodul (ermittelt über Regression im Bereich 100 - 300 MPa): 175 bis 186 GPa.
Aus derselben Schmelze des beschriebenen Beispiels der erfindungsgemässen Sphärogusslegierung wurden auch Zugprobenrohlinge abgegossen, deren Gusswandstärke im Prüfbereich ca. 8 mm betrug. Daraus entnommene 6mm-Zugproben bestätigen die Y2-Proben-Resultate, erreicht werden konnten eine 0.2%-Dehngrenze von 652 MPa und eine Zugfestigkeit von 872 MPa bei einer Bruchdehnung von 6.9 %.
Damit liegen die Proben dieser Beispielvariante der erfindungsgemässen Sphärogusslegierung hinsichtlich der Zugprüfkennwerte bereits im Gusszustand in der Grössenordnung von ADI (=Austempered Ductile Iron), einem durch eine sehr aufwendige Wärmebehandlung erzeugten, in grösseren Wanddicken nur durch Zulegieren der Elemente Ni und/oder Mo realisierbaren und damit erwartungsgemäss teureren Sphärogusswerkstoff, der in Europa unter EN 1564 genormt ist.A Y2 sample was cast in sand from the spheroidal graphite alloy according to the invention. The chemical composition is 2.87% by weight C, 5.12% by weight Ni, 3.25% by weight Si, 0.03% by weight Cu, 0.22% by weight Mn, 0.046% by weight Mg, 0.037% by weight P, 0.022% by weight Cr, 0.013% by weight Al and 0.003% by weight S, balance Fe and the usual impurities. The sum of the Ni + Si contents is thus ≈ 8.4% by weight (≤ 9% by weight preferred), the ratio (Ni + 0.5 Mn) / (1.5 Si) ≈ 1.1 (≤ 1.5 preferred). The casting was examined in the as-cast state for the number of spherulites, graphite content, graphite shape and size, pearlite content, as well as for characteristic values from the tensile test, the Brinell hardness and impact energy. The number of spherulites is 218 spherulites per mm2, the graphite content 10.6%. The graphite form according to DIN EN ISO 945 is 94% of Form VI. The size distribution according to DIN EN ISO 945 is 8% of size 8, 57% of size 7 and 33% of size 6. The pearlite content of the matrix is 79% (micrograph see illustration 1 , Residual component: ferrite, globular design). The Brinell hardness is 310 +/- 2 HBW5 / 750. The impact energy of individual samples was 30.1 J at room temperature, or 12.5 J at -30 ° C. The room temperature tensile tests according to DIN EN ISO 6892-1 gave the following characteristic values:
  • 0.2% proof stress: 658 to 663 MPa,
  • Tensile strength: 884 to 889 MPa,
  • Elongation at break: 6.2 to 7.9%,
  • Elastic modulus (determined by regression in the range 100-300 MPa): 175 to 186 GPa.
From the same melt of the described example of the spheroidal cast iron alloy according to the invention, tensile test specimens were cast, the casting wall thickness of which was approximately 8 mm in the test area. 6mm tensile specimens taken from this confirm the Y2 specimen results, a 0.2% proof stress of 652 MPa and a tensile strength of 872 MPa with an elongation at break of 6.9% were achieved.
Thus, the samples of this example variant of the spheroidal cast iron alloy according to the invention with regard to the tensile test parameters are already in the cast state in the order of magnitude of ADI (= tempered ductile iron), which is produced by a very complex heat treatment and can be produced in greater wall thicknesses only by alloying the elements Ni and / or Mo and thus, as expected, more expensive ductile iron material, which is standardized in Europe under EN 1564.

Zur Veranschaulichung ist in Abbildung 2 die Dehngrenze Rp0.2 als Funktion der Bruchdehnung A5 dargestellt. Eingetragen ist das beschriebene Ausführungsbeispiel der erfindungsgemässen Sphärogusslegierung sowie Vertreter der in DIN EN 1563 und DIN EN 1564 genormten Sphärogusslegierungen. Die grauen Linien in Abbildung 2 verbinden die Mindestwerte gemäss der Norm DIN EN 1563 für Gusseisen mit Kugelgraphit von im Gusszustand hergestellten Sorten. Die durchgezogene schwarze Linie in Abbildung 2 verbindet die Mindestwerte gemäss der Norm DIN EN 1564 für Gusseisen mit Kugelgraphit von wärmebehandelten ADI-Sorten. Schwarz auf gestrichelter Linie dargestellt sind patentierte Sphärogusslegierungen der Firma Georg Fischer ( EP 1 834 005 B1 und EP 1 270 747 B1 ).For illustration, see Figure 2 the yield strength Rp0.2 is shown as a function of the elongation at break A5. The described exemplary embodiment of the spheroidal cast iron alloy according to the invention and representatives of the spheroidal cast iron alloys standardized in DIN EN 1563 and DIN EN 1564 are entered. The gray lines in Figure 2 combine the minimum values according to the DIN EN 1563 standard for spheroidal graphite cast iron of grades produced in the as-cast state. The solid black line in Figure 2 combines the minimum values according to the DIN EN 1564 standard for spheroidal graphite cast iron of heat-treated ADI grades. Patented nodular cast iron alloys from Georg Fischer (shown in black on the dashed line ( EP 1 834 005 B1 and EP 1 270 747 B1 ).

Claims (12)

  1. Nodular cast alloy which has a perlitic-ferritic microstructure for cast iron products and has a high strength combined with good ductility and toughness even in the cast state, comprising, as nonferrous constituents, C, Si, Ni, Mn, Cu, Mg, Cr, Al, P, S and normal impurities, characterized in that the nodular cast alloy contains
    from 2.8 to 3.7% by weight of C,
    from 1.5 to 4% by weight of Si,
    from 1 to 6.2% by weight of Ni,
    from 0.02 to 0.05% by weight of P,
    from 0.025 to 0.06% by weight of Mg,
    from 0.01 to 0.03% by weight of Cr,
    from 0.003 to 0.3% by weight of Al,
    from 0.0005 to 0.012% by weight of S,
    from 0.03 to 1.5% by weight of Cu and
    from 0.1 to 2% by weight of Mn,
    balance Fe and unavoidable impurities, where the nodular cast alloy in the cast state without subsequent heat treatment achieves a high static strength of a 0.2% offset yield strength of ≥ 600 MPa and a tensile strength of ≥ 750 MPa combined with good ductility of an elongation at break A5 of from 2 to 10%, wherein the matrix microstructure surrounding the spheroidal graphite precipitates in this case has a perlitic-ferritic structure comprising > 50% of perlite, wherein the perlite is present as fine streaks and the ferrite is present in globular form.
  2. Nodular cast alloy according to Claim 1, characterized in that the alloy contains from 2 to 3.5% by weight of Si, particularly preferably from 2.2 to 3.3% by weight of Si, where the sum of the contents of Ni and Si in the alloy is ≤ 9% by weight and at the same time the ratio (Ni+0.5Mn)/(1.5Si) is ≤ 1.5 and a purely perlitic-ferritic microstructure comprising > 50% of perlite, balance ferrite, is obtained on cooling from the casting temperature to room temperature.
  3. Nodular cast alloy according to Claim 1 or 2, characterized in that the alloy contains from 2.5 to 5.2% by weight of Ni, particularly preferably from 4.0 to 5.2% by weight of Ni, where the sum of the contents of Ni and Si in the alloy is ≤ 9% by weight and at the same time the ratio (Ni+0.5Mn)/(1.5Si) is ≤ 1.5 and a purely perlitic-ferritic microstructure comprising > 50% of perlite, balance ferrite, is obtained on cooling from the casting temperature to room temperature.
  4. Nodular cast alloy according to any of Claims 1 to 3, characterized in that the alloy contains from 0.2 to 0.5% by weight of Mn, particularly preferably from 0.15 to 0.4% by weight of Mn, where the sum of the contents of Ni and Si in the alloy is ≤ 9% by weight and at the same time the ratio (Ni+0.5Mn)/(1.5Si) is ≤ 1.5 and a purely perlitic-ferritic microstructure comprising > 50% of perlite, balance ferrite, is obtained on cooling from the casting temperature to room temperature.
  5. Nodular cast alloy according to Claim 1, characterized in that the alloy contains from 0.03 to 0.5% by weight of Cu, particularly preferably from 0.03 to 0.1% by weight of Cu, where the sum of the contents of Ni and Si in the alloy is ≤ 9% by weight and at the same time the ratio (Ni+0.5Mn)/(1.5Si) is ≤ 1.5 and a purely perlitic-ferritic microstructure comprising > 50% of perlite, balance ferrite, is obtained on cooling from the casting temperature to room temperature.
  6. Nodular cast alloy according to Claim 1, characterized in that the alloy contains from 0.003 to 0.25% by weight of Al, particularly preferably from 0.003 to 0.02% by weight of Al, where the sum of the contents of Ni and Si in the alloy is ≤ 9% by weight and at the same time the ratio (Ni+0.5Mn)/(1.5Si) is ≤ 1.5 and a purely perlitic-ferritic microstructure comprising > 50% of perlite, balance ferrite, is obtained on cooling from the casting temperature to room temperature.
  7. Nodular cast alloy according to any of Claims 1 to 6, characterized in that more than 90% of the graphite present has a spherical shape immediately after casting and cooling.
  8. Nodular cast alloy according to any of Claims 1 to 7, characterized in that the perlitic-ferritic matrix microstructure of the cast part immediately after casting and cooling is from 55 to 90% perlitic.
  9. Nodular cast alloy according to any of Claims 1 to 8, characterized in that the microstructure of the cast part immediately after casting and cooling has from 200 to 1200 spheroids per mm2.
  10. Nodular cast alloy according to any of Claims 1 to 9, characterized in that the graphite particles have a size distribution of at least 5% of the size 8, from 40% to 70% of the size 7 and not more than 35% of the size 6 in accordance with DIN EN ISO 945.
  11. Nodular cast alloy according to any of Claims 1 to 10, characterized in that the cast part has a Brinell hardness of from 260 to 320 HBW.
  12. Use of a nodular cast alloy according to Claim 1 for producing chassis components in motor vehicles having a high static strength of a 0.2% offset yield strength of ≥ 600 MPa and a tensile strength of ≥ 750 MPa combined with good ductility of an elongation at break A5 of from 2 to 10%, preferably of wheel carriers, pivoting bearings, axle guides, crankshafts and/or rear axle housings in motor vehicles.
EP17162715.1A 2017-03-24 2017-03-24 Spheroidal cast alloy Active EP3243920B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17162715.1A EP3243920B1 (en) 2017-03-24 2017-03-24 Spheroidal cast alloy
BR102018004643A BR102018004643A2 (en) 2017-03-24 2018-03-08 nodular cast alloy
US15/921,842 US20180274066A1 (en) 2017-03-24 2018-03-15 Nodular cast alloy
MX2018003248A MX2018003248A (en) 2017-03-24 2018-03-15 Nodular cast alloy.
KR1020180033303A KR20180108495A (en) 2017-03-24 2018-03-22 Nodular cast alloy
CN201810244212.2A CN108624803A (en) 2017-03-24 2018-03-23 Spheroidal graphite cast alloy
JP2018056599A JP7369513B2 (en) 2017-03-24 2018-03-23 Spheroidal graphite cast iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17162715.1A EP3243920B1 (en) 2017-03-24 2017-03-24 Spheroidal cast alloy

Publications (2)

Publication Number Publication Date
EP3243920A1 EP3243920A1 (en) 2017-11-15
EP3243920B1 true EP3243920B1 (en) 2020-04-29

Family

ID=58412966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17162715.1A Active EP3243920B1 (en) 2017-03-24 2017-03-24 Spheroidal cast alloy

Country Status (7)

Country Link
US (1) US20180274066A1 (en)
EP (1) EP3243920B1 (en)
JP (1) JP7369513B2 (en)
KR (1) KR20180108495A (en)
CN (1) CN108624803A (en)
BR (1) BR102018004643A2 (en)
MX (1) MX2018003248A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402496A (en) * 2018-11-28 2019-03-01 精诚工科汽车系统有限公司 Alloying element addition method for determination of amount and ductile cast iron casting and its casting and mold in ductile cast iron casting with uniform wall thickness
US11618937B2 (en) 2019-10-18 2023-04-04 GM Global Technology Operations LLC High-modulus, high-strength nodular iron and crankshaft
CN113897538A (en) * 2021-10-12 2022-01-07 安徽裕隆模具铸业有限公司 High-strength and high-elongation as-cast QT500-18 nodular cast iron and preparation method thereof
WO2023111403A1 (en) * 2021-12-13 2023-06-22 Sediver Grade of ductile iron with reinforced ferritic matrix
CN114411049B (en) * 2021-12-29 2022-12-02 天润工业技术股份有限公司 Low-cost and high-strength ferritic nodular cast iron and preparation method and application thereof
US12044270B2 (en) * 2022-03-25 2024-07-23 GM Global Technology Operations LLC Lightweight nodular iron crankshaft for heavy duty engine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549430A (en) 1967-11-14 1970-12-22 Int Nickel Co Bainitic ductile iron having high strength and toughness
US3702269A (en) 1971-01-22 1972-11-07 Int Nickel Co Ultra high strength ductile iron
JPS5917186B2 (en) * 1977-03-30 1984-04-19 日立金属株式会社 Spheroidal graphite cast iron and its manufacturing method
US4484953A (en) 1983-01-24 1984-11-27 Ford Motor Company Method of making ductile cast iron with improved strength
JP3597211B2 (en) * 1993-10-21 2004-12-02 株式会社日本製鋼所 Spheroidal graphite cast iron with excellent high-temperature strength
JP3691913B2 (en) 1996-09-05 2005-09-07 株式会社東芝 Polishing tool material and polishing surface plate using the same
EP1225239A4 (en) 1999-06-08 2002-09-11 Asahi Tec Corp Non-austempered spheroidal graphite cast iron
JP2001059127A (en) * 1999-06-08 2001-03-06 Asahi Tec Corp Nodular graphite cast iron
DE10129382A1 (en) 2001-06-20 2003-01-02 Fischer Georg Fahrzeugtech nodular cast iron
DE102004040056A1 (en) 2004-08-18 2006-02-23 Federal-Mogul Burscheid Gmbh High- and wear-resistant, corrosion-resistant cast iron material
DE102004056331A1 (en) 2004-11-22 2006-05-24 Georg Fischer Fahrzeugtechnik Ag Ductile cast iron alloy and method for producing castings from nodular cast iron alloy
FI118738B (en) * 2005-01-05 2008-02-29 Metso Paper Inc Globe Granite Cast Iron and Method of Manufacturing Globe Granite Cast Iron for Machine Construction Parts that Require Strength and Toughness
KR100681270B1 (en) * 2005-09-05 2007-02-09 한금태 High Strength High Elongation Spheroidal Graphite Cast Iron
JP2007327083A (en) * 2006-06-06 2007-12-20 I Metal Technology Co Ltd Spheroidal graphite cast iron and method for producing the same
JP4963444B2 (en) * 2007-06-21 2012-06-27 旭テック株式会社 Spheroidal graphite cast iron member
DE102008050152B4 (en) * 2008-10-01 2013-05-23 Claas Guss Gmbh High-strength, ductile cast iron alloy with nodular graphite and process for its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2018162516A (en) 2018-10-18
KR20180108495A (en) 2018-10-04
MX2018003248A (en) 2018-11-09
BR102018004643A2 (en) 2018-10-30
EP3243920A1 (en) 2017-11-15
US20180274066A1 (en) 2018-09-27
JP7369513B2 (en) 2023-10-26
CN108624803A (en) 2018-10-09

Similar Documents

Publication Publication Date Title
EP3243920B1 (en) Spheroidal cast alloy
EP2383353B1 (en) High tensile steel containing Mn, steel surface product made from such steel and method for producing same
EP0091897B1 (en) Strain hardening austenitic manganese steel and process for the manufacture thereof
EP2059623A1 (en) Rustproof austenitic cast steel, method for production and use thereof
DE112010003614T5 (en) High strength screw
DE102010026808B4 (en) Corrosion-resistant austenitic phosphorous-alloyed steel casting with TRIP or TWIP properties and its use
DE69702428T2 (en) High-strength and high-tough heat-resistant cast steel
DE69003202T2 (en) High-strength, heat-resistant, low-alloy steels.
DE69821493T2 (en) Use of heat-resistant cast steel for components of turbine housings
DE3041565C2 (en)
EP1430161B1 (en) High-strength duplex/triplex steel for lightweight construction and use thereof
DE102005027258B4 (en) High carbon steel with superplasticity
DE102015111866A1 (en) Formable lightweight structural steel with improved mechanical properties and process for the production of semi-finished products from this steel
WO2009090228A1 (en) Parts made of high-strength, ductile cast steel having a high manganese content, method for the production thereof, and use thereof
DE102010012718A1 (en) Density reduced ultra-high carbon containing lightweight steel, useful to manufacture component for motor vehicle, preferably to manufacture part of e.g. engine, comprises carbon, aluminum, silicon, chromium, manganese and balance of iron
DE10136788A1 (en) aluminum Bronze
DE10101159C2 (en) Cast material with a ferritic structure and spheroidal graphite, in particular ferritic cast iron
EP2052096A1 (en) Steel material, in particular for producing piston rings
WO2021063746A1 (en) Method for producing a steel product and corresponding steel product
WO2017167778A1 (en) Steel having reduced density and method for producing a flat or long steel product from such a steel
EP3122910A2 (en) Components made of a steel alloy and method for producing high-strength components
EP3458623B1 (en) Method for producing a steel material, and steel material
JP3416868B2 (en) High-strength, low-ductility non-heat treated steel with excellent machinability
DE3346089A1 (en) METHOD FOR MANUFACTURING HIGH-STRENGTH, DUCTILE BODY FROM CARBON-BASED IRON-BASED ALLOYS
DE10231125A1 (en) High strength duplex / triplex lightweight engineering steel and its use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180515

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180820

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GF CASTING SOLUTIONS LEIPZIG GMBH

Owner name: GF CASTING SOLUTIONS KUNSHAN CO. LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 15/00 20060101ALN20191017BHEP

Ipc: C22C 37/08 20060101ALI20191017BHEP

Ipc: C22C 37/10 20060101ALI20191017BHEP

Ipc: C21C 1/10 20060101ALI20191017BHEP

Ipc: C21D 5/14 20060101ALN20191017BHEP

Ipc: C21D 5/00 20060101ALN20191017BHEP

Ipc: C22C 37/04 20060101AFI20191017BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 15/00 20060101ALN20191018BHEP

Ipc: C22C 37/04 20060101AFI20191018BHEP

Ipc: C22C 37/08 20060101ALI20191018BHEP

Ipc: C21D 5/00 20060101ALN20191018BHEP

Ipc: C21D 5/14 20060101ALN20191018BHEP

Ipc: C21C 1/10 20060101ALI20191018BHEP

Ipc: C22C 37/10 20060101ALI20191018BHEP

INTG Intention to grant announced

Effective date: 20191106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1263390

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004938

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004938

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210324

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210324

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210324

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210324

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1263390

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429