EP3243920B1 - Spheroidal cast alloy - Google Patents
Spheroidal cast alloy Download PDFInfo
- Publication number
- EP3243920B1 EP3243920B1 EP17162715.1A EP17162715A EP3243920B1 EP 3243920 B1 EP3243920 B1 EP 3243920B1 EP 17162715 A EP17162715 A EP 17162715A EP 3243920 B1 EP3243920 B1 EP 3243920B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- alloy
- nodular cast
- perlitic
- alloy according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 77
- 239000000956 alloy Substances 0.000 title claims description 77
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 27
- 229910001018 Cast iron Inorganic materials 0.000 claims description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 238000005266 casting Methods 0.000 claims description 16
- 239000010439 graphite Substances 0.000 claims description 16
- 229910002804 graphite Inorganic materials 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 229910000859 α-Fe Inorganic materials 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 13
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000000047 product Substances 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000000969 carrier Substances 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims description 2
- 239000010451 perlite Substances 0.000 claims 7
- 235000019362 perlite Nutrition 0.000 claims 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 29
- 229910001141 Ductile iron Inorganic materials 0.000 description 14
- 229910052742 iron Inorganic materials 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 229910000734 martensite Inorganic materials 0.000 description 10
- 229910001562 pearlite Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 238000005496 tempering Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910003286 Ni-Mn Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/10—Making spheroidal graphite cast-iron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/06—Cast-iron alloys containing chromium
- C22C37/08—Cast-iron alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/10—Cast-iron alloys containing aluminium or silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D15/00—Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
- C21D5/04—Heat treatments of cast-iron of white cast-iron
- C21D5/06—Malleabilising
- C21D5/14—Graphitising
Definitions
- the invention relates to a spheroidal cast iron alloy with pearlitic-ferritic structure for cast iron products with a high static strength even in the as-cast state without subsequent heat treatment of a 0.2% proof stress ⁇ 600 MPa and a tensile strength ⁇ 750 MPa with good ductility from an elongation at break of 2% to 10%, including the non-iron components C, Si, P, Mg, S, Mn and Ni as well as the usual impurities.
- Possible applications for motor vehicle construction include chassis components such as wheel carriers, vehicle structural parts and crankshafts.
- the Ni-Mn range serves to adjust the variable ratio of strength to elongation.
- the non-iron components are preferably 3.1 to 4% by weight of C and 1.8 to 3% by weight of Si.
- a material of this composition with this structure is characterized by a tensile strength of 650 to 850 MPa and a 0.2% proof stress of ⁇ 500 MPa with an elongation at break of 14.5 to 7%.
- Another cast iron alloy is known, which is described as high and wear-resistant and corrosion-resistant. It is composed of 3 to 4.2% by weight of C, 1 to 3.5% by weight of Si, 1 to 6% by weight of Ni, ⁇ 5% by weight of Cr, ⁇ 3% by weight of Cu, ⁇ 3% by weight of Mo, ⁇ 1 wt% Mn, ⁇ 1 wt% V, ⁇ 0.4 %
- P ⁇ 0.1% by weight S, ⁇ 0.08% by weight Mg, ⁇ 0.3% by weight Sn and manufacturing-related impurities.
- a high-strength, higher-alloy spheroidal cast iron alloy is known, the non-iron components of which comprise 2.6 to 4% by weight of C, 1.5 to 4% by weight of Si, 6 to 11% by weight of Ni, ⁇ 7% by weight of Co, ⁇ 0.4% by weight of Mo, ⁇ 1 wt% Mn and ⁇ 0.2 wt% Cr.
- the high tensile strength of ⁇ 1000 MPa is due to a fine-grained bainitic structure, the target structure having to be set by means of a required heat treatment in the form of tempering, which in turn requires additional effort.
- 35 04 A describes an iron-based, higher-alloy cast material, the non-iron components of which comprise 0.8 to 3.5% by weight of C, 1 to 7% by weight of Si, 5 to 15% by weight of Ni, ⁇ 1% by weight of Mn, ⁇ 2% by weight of Cr, ⁇ 0.1% by weight of at least one element from the group Mg, Ca and Ce and ⁇ 2% by weight of at least one element from the group Mo, Nb, Ti and V.
- the material has a hardness of at least 250 HV with a microstructure of at least 30% martensite, the Graphite formation is predominantly spherolithic.
- a lapping wheel is named as the target product, preferably for use in semiconductor production.
- a higher strength bainitic nodular cast iron alloy is known, the nodular iron alloy being non-iron components 2.9 to 3.9 wt.% C, 1.7 to 2.6 wt.% Si, 3.2 to 7 wt.% Ni, 0.15 to 0.4 wt.% Mo, ⁇ 0.2 wt. % Cr and ⁇ 1 wt% Mn contains.
- the alloy is characterized by a high tensile strength ⁇ 820 MPa, a 0.2% proof stress of ⁇ 520 MPa with an elongation at break of at least 2%.
- heat treatment is necessary; in addition, locally used cooling molds may be necessary for larger wall thicknesses.
- DE 180 85 15 A1 a high-strength spheroidal cast iron alloy, the non-iron components of which comprise 2.9 to 3.9% by weight of C, 1.7 to 2.6% by weight of Si, 3.2 to 7% by weight of Ni, 0.15 to 0.4% by weight of Mo, ⁇ 0.1% by weight of Mg, 0 to 1% by weight of Mn and 0 to 0.25% by weight of Cr with a total content of Mo and Cr of at most 0.5% by weight.
- This material has a tensile strength of ⁇ 1000 MPa and a 0.2% proof stress of ⁇ 750 MPa with an elongation at break of at least 4%.
- the central feature of the material is heat treatment in the form of tempering for several hours at temperatures of 200 to 315 ° C, since the specified values cannot be achieved without tempering the matrix structure.
- Out EP 1 834 005 B1 is a higher strength, predominantly pearlitic spheroidal graphite cast iron alloy for applications in motor vehicle construction.
- This contains the non-iron components 3.0 to 3.7 wt.% C, 2.6 to 3.4 wt.% Si, 0.02 to 0.05 %
- P 0.025 to 0.045% by weight Mg, 0.01 to 0.03% by weight Cr, 0.003 to 0.017% by weight Al, 0.0005 to 0.012% by weight S and 0.0004 to 0.002% by weight B, 0.1 to 1.5% by weight % Cu, 0.1 to 1.0% by weight Mn and unavoidable impurities.
- the chassis components produced in this composition already have a tensile strength of 600 to 900 MPa in the as-cast state without additional heat treatment, a 0.2% proof stress of 400 to 600 with an elongation at break of 14 to 5%.
- the spheroidal cast alloy according to the invention comprising 2.8 to 3.7% by weight of C, 1.5 to 4% by weight of Si, 1 to 6.2% by weight of Ni, 0.02 to 0.05% by weight of P, 0.025 to 0.06% by weight of Mg, 0.01 to 0.03% by weight of Cr, 0.003 to 0.3% by weight of AI, 0.0005 to 0.012% by weight of S, 0.03 to 1.5% by weight of Cu and 0.1 to 2% by weight of Mn, remainder Fe and inevitable impurities, the spheroidal cast iron alloy being in the cast state Without subsequent heat treatment, a high static strength of a 0.2% proof stress ⁇ 600 MPa and a tensile strength ⁇ 750 MPa with a good ductility of an elongation at break A5 of 2 to 10% is achieved, whereby the matrix structure surrounding the spherulitic graphite precipitates is pearlitic-ferritic with> 50% pearlite, the pearlite being finely streaked and the matrix structure surrounding the
- the nodular cast iron alloy is preferably designed as a sand nodular cast iron alloy.
- the core idea of the invention is to provide a spheroidal cast iron alloy which, owing to suitably coordinated compositions of the spheroidal cast iron alloy according to the invention and the resulting combinations of mechanical properties, can be used in motor vehicle construction, for example for axle and chassis parts which have to deform plastically in the event of a collision of the motor vehicle must not break, but also for structural parts and crankshafts that are exposed to high dynamic loads.
- the spheroidal cast alloy according to the invention in view of its mechanical properties and possible uses, already suffices for moderate alloy additions compared to austenitic spheroidal cast iron alloys.
- Ni and Si are known to increase the 0.2% proof stress. This is attributed on the one hand to solid-solution strengthening (Si and Ni), on the other hand to pearlite refinement by lowering the austenite-ferrite transition temperature to lower temperatures (Ni). It is advantageous that the alloy has the highest possible 0.2% proof stress with not too low elongation at break values (high lightweight construction potential). This is achieved primarily in that the spheroidal cast iron alloy has 1 to 6.2% by weight of Ni, preferably 2.5 to 5.2% by weight of Ni and particularly preferably 4 to 5.2% by weight of Ni.
- the spheroidal cast iron alloy according to the invention has a clear advantage over the alloy DE 10 2004 040 056 A1 With similar Ni content limits, a safe martensite structure is achieved even with small wall thicknesses of approx. 8 mm without the need for subsequent tempering.
- the spheroidal cast iron alloy according to the invention this is possible by maintaining certain compositional ratios of Ni, Si and Mn contents.
- the sum of the contents of Ni and Si is ⁇ 9% by weight, at the same time the ratio (Ni + 0.5 ⁇ Mn) / (1.5 ⁇ Si) do not exceed 1.5.
- Levels of Si ⁇ 1.5% by weight increase the risk of carbide formation, in the worst case white solidification can result.
- Si> 4% by weight lead to a significant decrease in the elongation at break and also increase the risk of martensite formation due to the reduced carbon solubility in the austenite.
- Si content should also be limited for the reason that silicon shifts the austenite-ferrite transition temperature to higher temperatures and thus counteracts the pearlite refinement sought by adding nickel.
- Alloying from 0.03 to 1.5% by weight of Cu is carried out - in particular with low Ni contents with respect to the limits specified for the spheroidal cast iron alloy according to the invention with high Si contents at the same time - in order to ensure that Achievement of the mechanical properties predominantly pearlitic structure with> 50% pearlite, rest ferrite, ferrite globular.
- Mn is a scrap companion in increasing proportions. Mn up to a moderate content is advantageous for increasing the yield strength. Mn also lowers the martensite start temperature and can thus help to reduce the risk of martensite formation in thin parts with faster cooling parts.
- the upper limit for the spheroidal cast alloy according to the invention of 2% by weight of Mn is due to a strong embrittlement due to carbide formation, but an increase in segregating grain boundary carbides, in particular with simultaneously higher Si contents, is already evident at lower Mn contents.
- Alloying from 0.003 to 0.3% by weight of Al can be carried out in order to achieve a further increase in strength by solid-solution strengthening.
- the Al content is to be limited to ⁇ 0.3% by weight, since Al also acts as a ferrite stabilizer and thus contrary to the predominantly pearlitic microstructure formation with> 50% pearlite, which is necessary for the mechanical properties.
- P is to be limited due to the well-known embrittling effect of low-melting P-rich phases, which can form at grain boundaries (former, P-enriched residual melt areas).
- the graphite portion is spherical immediately after the casting process in the as-cast state, ie after casting and cooling in the mold, to more than 90% of the graphite present.
- the matrix structure of the cast part immediately after the casting process in the as-cast state i.e. after casting and cooling in the mold, 50 to 90% pearlitic.
- the structure of the cast part immediately after the casting process in the as-cast state i.e. after casting and cooling in the mold, 200 to 1200 spherulites per mm2.
- the graphite particles preferably have a size distribution of at least 5% of size 8, 40% to 70% of size 7 and at most 35% of size 6 according to DIN EN ISO 945.
- the cast part has a Brinell hardness of 260 to 320 HBW.
- the yield strength Rp0.2 is shown as a function of the elongation at break A5.
- the described exemplary embodiment of the spheroidal cast iron alloy according to the invention and representatives of the spheroidal cast iron alloys standardized in DIN EN 1563 and DIN EN 1564 are entered.
- the gray lines in Figure 2 combine the minimum values according to the DIN EN 1563 standard for spheroidal graphite cast iron of grades produced in the as-cast state.
- the solid black line in Figure 2 combines the minimum values according to the DIN EN 1564 standard for spheroidal graphite cast iron of heat-treated ADI grades.
- Patented nodular cast iron alloys from Georg Fischer shown in black on the dashed line ( EP 1 834 005 B1 and EP 1 270 747 B1 ).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Heat Treatment Of Steel (AREA)
Description
Die Erfindung bezieht sich auf eine Sphärogusslegierung mit perlitisch-ferritischem Gefüge für Gusseisenprodukte mit einer bereits im Gusszustand ohne anschliessende Wärmebehandlung hohen statischen Festigkeit von einer 0.2%-Dehngrenze ≥ 600 MPa und einer Zugfestigkeit ≥ 750 MPa bei gleichzeitig guter Duktilität von einer Bruchdehnung 2 % bis 10 %, umfassend die Nicht-Eisenbestandteile C, Si, P, Mg, S, Mn und Ni sowie die üblichen Verunreinigungen. Einsatzmöglichkeiten für den Kraftfahrzeugbau sind beispielsweise Fahrwerkskomponenten wie Radträger, Fahrzeug-Strukturteile sowie Kurbelwellen.The invention relates to a spheroidal cast iron alloy with pearlitic-ferritic structure for cast iron products with a high static strength even in the as-cast state without subsequent heat treatment of a 0.2% proof stress ≥ 600 MPa and a tensile strength ≥ 750 MPa with good ductility from an elongation at break of 2% to 10%, including the non-iron components C, Si, P, Mg, S, Mn and Ni as well as the usual impurities. Possible applications for motor vehicle construction include chassis components such as wheel carriers, vehicle structural parts and crankshafts.
Im Kraftfahrzeugbau werden zunehmend höherfeste Gusseisenlegierungen verwendet, die sich zur Potentialausschöpfung einer Gewichtsreduzierung durch höhere Festigkeiten auszeichnen. Aus Kostengründen im Fokus stehen dabei möglichst der Verzicht auf jegliche Wärmbehandlungsprozesse sowie ein Erreichen der geforderten mechanischen Eigenschaften bei lediglich moderaten Legierzusätzen.In automotive engineering, higher strength cast iron alloys are increasingly being used, which are characterized by higher strengths in order to exploit the potential for weight reduction. For cost reasons, the focus here is on avoiding any heat treatment processes and achieving the required mechanical properties with only moderate alloy additives.
Aus der
Aus der
Aus der
Aus der
In der
Aus der
Ferner beschreibt
Aus
Ebenso offenbaren die
Ausgehend von diesem Stand der Technik ist es zentrale Aufgabe der Erfindung, eine hochfeste Sphärogusslegierung anzugeben, deren Anforderungen an die 0.2%-Dehngrenze, Zugfestigkeit und Bruchdehnung bereits im Gusszustand ohne weiteres Zutun erreicht werden, die vorteilhaft im Gegensatz zu den bekannten hochfesten Gusseisenlegierungen wie z.B. ADI-Werkstoffen (=Austempered Ductile Iron) also keiner gesonderten Wärmebehandlung bedarf.Starting from this prior art, it is a central object of the invention to provide a high-strength spheroidal cast iron alloy, the requirements for the 0.2% proof stress, tensile strength and elongation at break can be achieved without further action even in the as-cast state, which are advantageous in contrast to the known high-strength cast iron alloys such as e.g. ADI materials (= Austempered Ductile Iron) therefore do not require any special heat treatment.
Diese Aufgabe wird durch die erfindungsgemässe Sphärogusslegierung beinhaltend 2.8 bis 3.7 Gew.% C, 1.5 bis 4 Gew.% Si, 1 bis 6.2 Gew.% Ni, 0.02 bis 0.05 Gew.% P, 0.025 bis 0.06 Gew.% Mg, 0.01 bis 0.03 Gew.% Cr, 0.003 bis 0.3 Gew.% AI, 0.0005 bis 0.012 Gew.% S, 0.03 bis 1.5 Gew.% Cu und 0.1 bis 2 Gew.% Mn, Rest Fe und unvermeidbare Verunreinigungen erreicht, wobei die Sphärogusslegierung im Gusszustand ohne anschliessende Wärmebehandlung eine hohe statische Festigkeit von einer 0.2%-Dehngrenze ≥600 MPa und einer Zugfestigkeit ≥ 750 MPa bei gleichzeitig guter Duktilität von einer Bruchdehnung A5 von 2 bis 10 % erreicht, wobei das die sphärolithischen Graphitausscheidungen umgebende Matrixgefüge ist dabei perlitisch-ferritisch ausgebildet mit > 50 % Perlit, wobei der Perlit feinstreifig und der Ferrit globular vorliegen.This object is achieved by the spheroidal cast alloy according to the invention comprising 2.8 to 3.7% by weight of C, 1.5 to 4% by weight of Si, 1 to 6.2% by weight of Ni, 0.02 to 0.05% by weight of P, 0.025 to 0.06% by weight of Mg, 0.01 to 0.03% by weight of Cr, 0.003 to 0.3% by weight of AI, 0.0005 to 0.012% by weight of S, 0.03 to 1.5% by weight of Cu and 0.1 to 2% by weight of Mn, remainder Fe and inevitable impurities, the spheroidal cast iron alloy being in the cast state Without subsequent heat treatment, a high static strength of a 0.2% proof stress ≥600 MPa and a tensile strength ≥ 750 MPa with a good ductility of an elongation at break A5 of 2 to 10% is achieved, whereby the matrix structure surrounding the spherulitic graphite precipitates is pearlitic-ferritic with> 50% pearlite, the pearlite being finely streaked and the ferrite globular.
Auch dadurch unterscheidet sich die erfindungsgemässe Sphärogusslegierung neben den mechanischen Eigenschaften und dem Verzicht auf die Karbidbildner Mo, Nb, Ti und V deutlich von der aus
Vorzugsweise ist die Sphärogusslegierung als Sand-Sphärogusslegierung ausgebildet.The nodular cast iron alloy is preferably designed as a sand nodular cast iron alloy.
Der Kerngedanke der Erfindung ist es, eine Sphärogusslegierung anzugeben, die aufgrund geeignet abgestimmter Zusammensetzungen der erfindungsgemässen Sphärogusslegierung und den daraus resultierenden Kombinationen mechanischer Eigenschaften im Kraftfahrzeugbau eingesetzt werden kann beispielsweise für Achs- und Fahrwerksteile, welche sich im Falle eines Zusammenstosses des Kraftwagens plastisch verformen müssen und nicht brechen dürfen, aber auch für Strukturteile und Kurbelwellen, welche hohen dynamischen Belastungen ausgesetzt sind.The core idea of the invention is to provide a spheroidal cast iron alloy which, owing to suitably coordinated compositions of the spheroidal cast iron alloy according to the invention and the resulting combinations of mechanical properties, can be used in motor vehicle construction, for example for axle and chassis parts which have to deform plastically in the event of a collision of the motor vehicle must not break, but also for structural parts and crankshafts that are exposed to high dynamic loads.
Erwähnenswert ist, dass der erfindungsgemässen Sphärogusslegierung angesichts ihrer mechanischen Eigenschaften und Einsatzmöglichkeiten verglichen mit austenitischen Sphärogusslegierungen bereits moderate Legierungszusätze genügen.It is worth mentioning that the spheroidal cast alloy according to the invention, in view of its mechanical properties and possible uses, already suffices for moderate alloy additions compared to austenitic spheroidal cast iron alloys.
Ni und Si sind bekannt dafür, die 0.2%-Dehngrenze zu erhöhen. Dies wird einerseits auf die Mischkristallverfestigung zurückgeführt (Si und Ni), andererseits auf eine Perlitfeinung durch Absenkung der Austenit-Ferrit-Umwandlungstemperatur hin zu niedrigeren Temperaturen (Ni). Es ist von Vorteil, dass die Legierung eine möglichst hohe 0.2%-Dehngrenze bei nicht zu geringen Bruchdehnungswerten aufweist (hohes Leichtbaupotential). Dies wird in erster Linie dadurch erreicht, dass die Sphärogusslegierung 1 bis 6.2 Gew.% Ni, vorzugsweise 2.5 bis 5.2 Gew.% Ni und besonders bevorzugt 4 bis 5.2 Gew.% Ni aufweist.
Insbesondere in Verbindung mit 1.5 bis 4 Gew.% Si, vorzugsweise 2 bis 3.5 Gew.% Si und besonders bevorzugt 2.2 bis 3.3 Gew.% Si werden gute Festigkeitseigenschaften bei nicht zu geringen Bruchdehnungswerten erreicht. So liegt beispielsweise im Vergleich zu der aus
Particularly in connection with 1.5 to 4% by weight of Si, preferably 2 to 3.5% by weight of Si and particularly preferably 2.2 to 3.3% by weight of Si, good strength properties are achieved with not too low elongation at break values. For example, compared to that
Die Einhaltung der angegebenen unteren und oberen Grenzen für die Nicht-Eisenbestandteile Si und Ni sind entscheidend für das perlitisch-ferritische Zielgefüge und somit für die Erreichung der mechanischen Eigenschaften der erfindungsgemässen Sphärogusslegierung.
Bei Ni-Gehalten < 1 Gew.% ist keine merkliche Dehngrenzensteigerung zu verzeichnen, Gehalte > 6.2 Gew.% sind aufgrund eines erhöhten Risikos der Martensitbildung zu vermeiden. Hinsichtlich dieses Risikos der Martensitbildung weist die erfindungsgemässe Sphärogusslegierung einen deutlichen Vorteil auf gegenüber der Legierung aus
Gehalte an Si < 1.5 Gew.% erhöhen das Risiko der Karbidbildung, im schlimmsten Fall kann eine Weisserstarrung die Folge sein. Gehalte an Si > 4 Gew.% führen zu einem deutlichen Absinken der Bruchdehnung und erhöhen aufgrund der verringerten Kohlenstofflöslichkeit im Austenit ebenfalls das Risiko der Martensitbildung. Zudem ist der Si-Gehalt auch aus dem Grund zu begrenzen, als dass Silizium die Austenit-Ferrit-Umwandlungstemperatur hin zu höheren Temperaturen verschiebt und somit der über Nickel-Zugaben angestrebten Perlitfeinung entgegen wirkt.Compliance with the specified lower and upper limits for the non-iron components Si and Ni are decisive for the pearlitic-ferritic target structure and thus for the achievement of the mechanical properties of the spheroidal cast iron alloy according to the invention.
With Ni contents <1% by weight, there is no noticeable increase in yield strength, contents> 6.2% by weight should be avoided due to an increased risk of martensite formation. With regard to this risk of martensite formation, the spheroidal cast alloy according to the invention has a clear advantage over the
Levels of Si <1.5% by weight increase the risk of carbide formation, in the worst case white solidification can result. Levels of Si> 4% by weight lead to a significant decrease in the elongation at break and also increase the risk of martensite formation due to the reduced carbon solubility in the austenite. In addition, the Si content should also be limited for the reason that silicon shifts the austenite-ferrite transition temperature to higher temperatures and thus counteracts the pearlite refinement sought by adding nickel.
Das Zulegieren von 0.03 bis 1.5 Gew.% Cu erfolgt - insbesondere bei bezogen auf die für die erfindungsgemässe Sphärogusslegierung angegebenen Grenzen niedrigen Ni-Gehalten bei gleichzeitig hohen Si-Gehalten - zur Sicherung des für die Erreichung der mechanischen Eigenschaften überwiegend perlitischen Gefüges mit > 50 % Perlit, Rest Ferrit, dabei Ferrit globular ausgebildet.Alloying from 0.03 to 1.5% by weight of Cu is carried out - in particular with low Ni contents with respect to the limits specified for the spheroidal cast iron alloy according to the invention with high Si contents at the same time - in order to ensure that Achievement of the mechanical properties predominantly pearlitic structure with> 50% pearlite, rest ferrite, ferrite globular.
Mn ist in zunehmenden Anteilen ein Schrottbegleiter. Für eine Steigerung der Dehngrenze ist Mn bis zu einem moderaten Gehalt vorteilhaft. Mn senkt zudem die Martensit-Starttemperatur und kann somit dazu beitragen, in schneller abkühlenden dünnwandigen Bauteil-Partien die Gefahr von Martensitbildung zu reduzieren. Die Obergrenze für die erfindungsgemässe Sphärogusslegierung von 2 Gew.% Mn ist durch eine starke Versprödung durch Karbidbildung bedingt, eine Zunahme von seigernden Korngrenzkarbiden insbesondere bei gleichzeitig höheren Si-Gehalten ist jedoch bereits bei tieferen Mn-Gehalten zu verzeichnen.Mn is a scrap companion in increasing proportions. Mn up to a moderate content is advantageous for increasing the yield strength. Mn also lowers the martensite start temperature and can thus help to reduce the risk of martensite formation in thin parts with faster cooling parts. The upper limit for the spheroidal cast alloy according to the invention of 2% by weight of Mn is due to a strong embrittlement due to carbide formation, but an increase in segregating grain boundary carbides, in particular with simultaneously higher Si contents, is already evident at lower Mn contents.
Das Zulegieren von 0.003 bis 0.3 Gew.% Al kann erfolgen, um eine weitere Festigkeitssteigerung durch Mischkristallverfestigung zu erreichen. Der Gehalt an Al ist jedoch auf < 0.3 Gew.% zu begrenzen, da Al gleichzeitig als Ferritstabilisator wirkt und somit entgegen der für die mechanischen Eigenschaften notwendigen, überwiegend perlitischen Gefügeausbildung mit > 50 % Perlit.Alloying from 0.003 to 0.3% by weight of Al can be carried out in order to achieve a further increase in strength by solid-solution strengthening. However, the Al content is to be limited to <0.3% by weight, since Al also acts as a ferrite stabilizer and thus contrary to the predominantly pearlitic microstructure formation with> 50% pearlite, which is necessary for the mechanical properties.
Die Einhaltung der angegebenen oberen Grenzen für die Nicht-Eisenbestandteile Mn, Cu, Mg, Cr, Al, P, S sind entscheidend für die Erreichung der mechanischen Eigenschaften sowie die Bearbeitbarkeit von Gussteilen aus der erfindungsgemässen Sphärogusslegierung. Überhöhte Gehalte an Cu, Mg, Al und S können die Graphitausbildung negativ beeinflussen, entsprechende Abweichungen der Graphitgestalt von der angestrebten sphärolithischen Form führen zu deutlichen Verschlechterungen von Bruchdehnung und erreichbarer Festigkeit. Versprödend wirkt ebenfalls Cr, seinerseits durch Förderung der Karbidbildung.Compliance with the specified upper limits for the non-iron components Mn, Cu, Mg, Cr, Al, P, S are decisive for achieving the mechanical properties and the machinability of cast parts made of the spheroidal cast alloy according to the invention. Excessive levels of Cu, Mg, Al and S can have a negative impact on the formation of graphite, and corresponding deviations in the graphite shape from the spherulitic shape aimed for lead to significant deterioration in elongation at break and achievable strength. Cr is also embrittling, in turn by promoting carbide formation.
Zu begrenzen ist P aufgrund der hinlänglich bekannten versprödenden Wirkung niedrigschmelzender P-reicher Phasen, die sich an Korngrenzen ausbilden können (ehemalige, P-angereicherte Restschmelzebereiche).P is to be limited due to the well-known embrittling effect of low-melting P-rich phases, which can form at grain boundaries (former, P-enriched residual melt areas).
Vorzugsweise ist der Graphitanteil unmittelbar nach dem Giessprozess im Gusszustand, d.h. nach Giessen und Abkühlen in der Form, zu mehr als 90 % des vorhandenen Graphits kugelförmig ausgebildet.Preferably, the graphite portion is spherical immediately after the casting process in the as-cast state, ie after casting and cooling in the mold, to more than 90% of the graphite present.
Vorteilhaft ist es, wenn das Matrixgefüge des Gussteiles unmittelbar nach dem Giessprozess im Gusszustand, d.h. nach Giessen und Abkühlen in der Form, zu 50 bis 90 % perlitisch ausgebildet ist.It is advantageous if the matrix structure of the cast part immediately after the casting process in the as-cast state, i.e. after casting and cooling in the mold, 50 to 90% pearlitic.
In einer vorteilhaften Ausführung weist das Gefüge des Gussteiles unmittelbar nach dem Giessprozess im Gusszustand, d.h. nach Giessen und Abkühlen in der Form, 200 bis 1200 Sphärolithen pro mm2 auf.In an advantageous embodiment, the structure of the cast part immediately after the casting process in the as-cast state, i.e. after casting and cooling in the mold, 200 to 1200 spherulites per mm2.
Vorzugsweise weisen die Graphitteilchen eine Grössenverteilung von mindestens 5 % der Grösse 8, 40 % bis 70 % der Grösse 7 und höchstens 35 % der Grösse 6 gemäss DIN EN ISO 945 auf.The graphite particles preferably have a size distribution of at least 5% of size 8, 40% to 70% of size 7 and at most 35% of size 6 according to DIN EN ISO 945.
Vorteilhaft ist es, wenn das Gussteil eine Brinellhärte von 260 bis 320 HBW aufweist.It is advantageous if the cast part has a Brinell hardness of 260 to 320 HBW.
Ein Ausführungsbeispiel der Erfindung wird wie folgt beschrieben, wobei sich die Erfindung nicht nur auf oder durch das folgende Ausführungsbeispiel beschränkt.An embodiment of the invention is described as follows, the invention not being limited to or by the following embodiment.
Eine Y2-Probe wurde aus der erfindungsgemässen Sphärogusslegierung in Sand abgegossen. Die chemische Zusammensetzung beträgt 2.87 Gew.% C, 5.12 Gew.% Ni, 3.25 Gew.% Si, 0.03 Gew.% Cu, 0.22 Gew.% Mn, 0.046 Gew. % Mg, 0.037 Gew.% P, 0.022 Gew.% Cr, 0.013 Gew.% Al und 0.003 Gew.% S, Rest Fe und den ü blichen Verunreinigungen. Die Summe der Gehalte Ni+Si beträgt somit ≈ 8.4 Gew.% (≤ 9 Gew.% bevorzugt), das Verhältnis (Ni+0.5∗Mn)/(1.5∗Si) ≈ 1.1 (≤ 1.5 bevorzugt). Das Gussstück wurde im Gusszustand untersucht auf Sphärolithenzahl, Graphitgehalt, Graphitform und Graphitgrösse, Perlitgehalt, sowie auf Kennwerte aus dem Zugversuch, auf die Brinellhärte und Schlagarbeit. Die Sphärolithenzahl beträgt 218 Sphärolithen pro mm2, der Graphitgehalt 10.6 %. Die Graphitform nach DIN EN ISO 945 ist zu 94 % von der Form VI. Die Grössenverteilung nach DIN EN ISO 945 ist 8 % der Grösse 8, 57 % der Grösse 7 und 33 % der Grösse 6. Der Perlitgehalt der Matrix beträgt 79 % (Gefügeaufnahme siehe
- 0.2%-Dehngrenze: 658 bis 663 MPa,
- Zugfestigkeit: 884 bis 889 MPa,
- Bruchdehnung: 6.2 bis 7.9 %,
- Elastizitätsmodul (ermittelt über Regression im Bereich 100 - 300 MPa): 175 bis 186 GPa.
Damit liegen die Proben dieser Beispielvariante der erfindungsgemässen Sphärogusslegierung hinsichtlich der Zugprüfkennwerte bereits im Gusszustand in der Grössenordnung von ADI (=Austempered Ductile Iron), einem durch eine sehr aufwendige Wärmebehandlung erzeugten, in grösseren Wanddicken nur durch Zulegieren der Elemente Ni und/oder Mo realisierbaren und damit erwartungsgemäss teureren Sphärogusswerkstoff, der in
- 0.2% proof stress: 658 to 663 MPa,
- Tensile strength: 884 to 889 MPa,
- Elongation at break: 6.2 to 7.9%,
- Elastic modulus (determined by regression in the range 100-300 MPa): 175 to 186 GPa.
Thus, the samples of this example variant of the spheroidal cast iron alloy according to the invention with regard to the tensile test parameters are already in the cast state in the order of magnitude of ADI (= tempered ductile iron), which is produced by a very complex heat treatment and can be produced in greater wall thicknesses only by alloying the elements Ni and / or Mo and thus, as expected, more expensive ductile iron material, which is standardized in Europe under
Zur Veranschaulichung ist in
Claims (12)
- Nodular cast alloy which has a perlitic-ferritic microstructure for cast iron products and has a high strength combined with good ductility and toughness even in the cast state, comprising, as nonferrous constituents, C, Si, Ni, Mn, Cu, Mg, Cr, Al, P, S and normal impurities, characterized in that the nodular cast alloy contains
from 2.8 to 3.7% by weight of C,
from 1.5 to 4% by weight of Si,
from 1 to 6.2% by weight of Ni,
from 0.02 to 0.05% by weight of P,
from 0.025 to 0.06% by weight of Mg,
from 0.01 to 0.03% by weight of Cr,
from 0.003 to 0.3% by weight of Al,
from 0.0005 to 0.012% by weight of S,
from 0.03 to 1.5% by weight of Cu and
from 0.1 to 2% by weight of Mn,
balance Fe and unavoidable impurities, where the nodular cast alloy in the cast state without subsequent heat treatment achieves a high static strength of a 0.2% offset yield strength of ≥ 600 MPa and a tensile strength of ≥ 750 MPa combined with good ductility of an elongation at break A5 of from 2 to 10%, wherein the matrix microstructure surrounding the spheroidal graphite precipitates in this case has a perlitic-ferritic structure comprising > 50% of perlite, wherein the perlite is present as fine streaks and the ferrite is present in globular form. - Nodular cast alloy according to Claim 1, characterized in that the alloy contains from 2 to 3.5% by weight of Si, particularly preferably from 2.2 to 3.3% by weight of Si, where the sum of the contents of Ni and Si in the alloy is ≤ 9% by weight and at the same time the ratio (Ni+0.5∗Mn)/(1.5∗Si) is ≤ 1.5 and a purely perlitic-ferritic microstructure comprising > 50% of perlite, balance ferrite, is obtained on cooling from the casting temperature to room temperature.
- Nodular cast alloy according to Claim 1 or 2, characterized in that the alloy contains from 2.5 to 5.2% by weight of Ni, particularly preferably from 4.0 to 5.2% by weight of Ni, where the sum of the contents of Ni and Si in the alloy is ≤ 9% by weight and at the same time the ratio (Ni+0.5∗Mn)/(1.5∗Si) is ≤ 1.5 and a purely perlitic-ferritic microstructure comprising > 50% of perlite, balance ferrite, is obtained on cooling from the casting temperature to room temperature.
- Nodular cast alloy according to any of Claims 1 to 3, characterized in that the alloy contains from 0.2 to 0.5% by weight of Mn, particularly preferably from 0.15 to 0.4% by weight of Mn, where the sum of the contents of Ni and Si in the alloy is ≤ 9% by weight and at the same time the ratio (Ni+0.5∗Mn)/(1.5∗Si) is ≤ 1.5 and a purely perlitic-ferritic microstructure comprising > 50% of perlite, balance ferrite, is obtained on cooling from the casting temperature to room temperature.
- Nodular cast alloy according to Claim 1, characterized in that the alloy contains from 0.03 to 0.5% by weight of Cu, particularly preferably from 0.03 to 0.1% by weight of Cu, where the sum of the contents of Ni and Si in the alloy is ≤ 9% by weight and at the same time the ratio (Ni+0.5∗Mn)/(1.5∗Si) is ≤ 1.5 and a purely perlitic-ferritic microstructure comprising > 50% of perlite, balance ferrite, is obtained on cooling from the casting temperature to room temperature.
- Nodular cast alloy according to Claim 1, characterized in that the alloy contains from 0.003 to 0.25% by weight of Al, particularly preferably from 0.003 to 0.02% by weight of Al, where the sum of the contents of Ni and Si in the alloy is ≤ 9% by weight and at the same time the ratio (Ni+0.5∗Mn)/(1.5∗Si) is ≤ 1.5 and a purely perlitic-ferritic microstructure comprising > 50% of perlite, balance ferrite, is obtained on cooling from the casting temperature to room temperature.
- Nodular cast alloy according to any of Claims 1 to 6, characterized in that more than 90% of the graphite present has a spherical shape immediately after casting and cooling.
- Nodular cast alloy according to any of Claims 1 to 7, characterized in that the perlitic-ferritic matrix microstructure of the cast part immediately after casting and cooling is from 55 to 90% perlitic.
- Nodular cast alloy according to any of Claims 1 to 8, characterized in that the microstructure of the cast part immediately after casting and cooling has from 200 to 1200 spheroids per mm2.
- Nodular cast alloy according to any of Claims 1 to 9, characterized in that the graphite particles have a size distribution of at least 5% of the size 8, from 40% to 70% of the size 7 and not more than 35% of the size 6 in accordance with DIN EN ISO 945.
- Nodular cast alloy according to any of Claims 1 to 10, characterized in that the cast part has a Brinell hardness of from 260 to 320 HBW.
- Use of a nodular cast alloy according to Claim 1 for producing chassis components in motor vehicles having a high static strength of a 0.2% offset yield strength of ≥ 600 MPa and a tensile strength of ≥ 750 MPa combined with good ductility of an elongation at break A5 of from 2 to 10%, preferably of wheel carriers, pivoting bearings, axle guides, crankshafts and/or rear axle housings in motor vehicles.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17162715.1A EP3243920B1 (en) | 2017-03-24 | 2017-03-24 | Spheroidal cast alloy |
BR102018004643A BR102018004643A2 (en) | 2017-03-24 | 2018-03-08 | nodular cast alloy |
US15/921,842 US20180274066A1 (en) | 2017-03-24 | 2018-03-15 | Nodular cast alloy |
MX2018003248A MX2018003248A (en) | 2017-03-24 | 2018-03-15 | Nodular cast alloy. |
KR1020180033303A KR20180108495A (en) | 2017-03-24 | 2018-03-22 | Nodular cast alloy |
CN201810244212.2A CN108624803A (en) | 2017-03-24 | 2018-03-23 | Spheroidal graphite cast alloy |
JP2018056599A JP7369513B2 (en) | 2017-03-24 | 2018-03-23 | Spheroidal graphite cast iron alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17162715.1A EP3243920B1 (en) | 2017-03-24 | 2017-03-24 | Spheroidal cast alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3243920A1 EP3243920A1 (en) | 2017-11-15 |
EP3243920B1 true EP3243920B1 (en) | 2020-04-29 |
Family
ID=58412966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17162715.1A Active EP3243920B1 (en) | 2017-03-24 | 2017-03-24 | Spheroidal cast alloy |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180274066A1 (en) |
EP (1) | EP3243920B1 (en) |
JP (1) | JP7369513B2 (en) |
KR (1) | KR20180108495A (en) |
CN (1) | CN108624803A (en) |
BR (1) | BR102018004643A2 (en) |
MX (1) | MX2018003248A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109402496A (en) * | 2018-11-28 | 2019-03-01 | 精诚工科汽车系统有限公司 | Alloying element addition method for determination of amount and ductile cast iron casting and its casting and mold in ductile cast iron casting with uniform wall thickness |
US11618937B2 (en) | 2019-10-18 | 2023-04-04 | GM Global Technology Operations LLC | High-modulus, high-strength nodular iron and crankshaft |
CN113897538A (en) * | 2021-10-12 | 2022-01-07 | 安徽裕隆模具铸业有限公司 | High-strength and high-elongation as-cast QT500-18 nodular cast iron and preparation method thereof |
WO2023111403A1 (en) * | 2021-12-13 | 2023-06-22 | Sediver | Grade of ductile iron with reinforced ferritic matrix |
CN114411049B (en) * | 2021-12-29 | 2022-12-02 | 天润工业技术股份有限公司 | Low-cost and high-strength ferritic nodular cast iron and preparation method and application thereof |
US12044270B2 (en) * | 2022-03-25 | 2024-07-23 | GM Global Technology Operations LLC | Lightweight nodular iron crankshaft for heavy duty engine |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3549430A (en) | 1967-11-14 | 1970-12-22 | Int Nickel Co | Bainitic ductile iron having high strength and toughness |
US3702269A (en) | 1971-01-22 | 1972-11-07 | Int Nickel Co | Ultra high strength ductile iron |
JPS5917186B2 (en) * | 1977-03-30 | 1984-04-19 | 日立金属株式会社 | Spheroidal graphite cast iron and its manufacturing method |
US4484953A (en) | 1983-01-24 | 1984-11-27 | Ford Motor Company | Method of making ductile cast iron with improved strength |
JP3597211B2 (en) * | 1993-10-21 | 2004-12-02 | 株式会社日本製鋼所 | Spheroidal graphite cast iron with excellent high-temperature strength |
JP3691913B2 (en) | 1996-09-05 | 2005-09-07 | 株式会社東芝 | Polishing tool material and polishing surface plate using the same |
EP1225239A4 (en) | 1999-06-08 | 2002-09-11 | Asahi Tec Corp | Non-austempered spheroidal graphite cast iron |
JP2001059127A (en) * | 1999-06-08 | 2001-03-06 | Asahi Tec Corp | Nodular graphite cast iron |
DE10129382A1 (en) | 2001-06-20 | 2003-01-02 | Fischer Georg Fahrzeugtech | nodular cast iron |
DE102004040056A1 (en) | 2004-08-18 | 2006-02-23 | Federal-Mogul Burscheid Gmbh | High- and wear-resistant, corrosion-resistant cast iron material |
DE102004056331A1 (en) | 2004-11-22 | 2006-05-24 | Georg Fischer Fahrzeugtechnik Ag | Ductile cast iron alloy and method for producing castings from nodular cast iron alloy |
FI118738B (en) * | 2005-01-05 | 2008-02-29 | Metso Paper Inc | Globe Granite Cast Iron and Method of Manufacturing Globe Granite Cast Iron for Machine Construction Parts that Require Strength and Toughness |
KR100681270B1 (en) * | 2005-09-05 | 2007-02-09 | 한금태 | High Strength High Elongation Spheroidal Graphite Cast Iron |
JP2007327083A (en) * | 2006-06-06 | 2007-12-20 | I Metal Technology Co Ltd | Spheroidal graphite cast iron and method for producing the same |
JP4963444B2 (en) * | 2007-06-21 | 2012-06-27 | 旭テック株式会社 | Spheroidal graphite cast iron member |
DE102008050152B4 (en) * | 2008-10-01 | 2013-05-23 | Claas Guss Gmbh | High-strength, ductile cast iron alloy with nodular graphite and process for its production |
-
2017
- 2017-03-24 EP EP17162715.1A patent/EP3243920B1/en active Active
-
2018
- 2018-03-08 BR BR102018004643A patent/BR102018004643A2/en not_active Application Discontinuation
- 2018-03-15 MX MX2018003248A patent/MX2018003248A/en unknown
- 2018-03-15 US US15/921,842 patent/US20180274066A1/en not_active Abandoned
- 2018-03-22 KR KR1020180033303A patent/KR20180108495A/en not_active Ceased
- 2018-03-23 JP JP2018056599A patent/JP7369513B2/en active Active
- 2018-03-23 CN CN201810244212.2A patent/CN108624803A/en active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP2018162516A (en) | 2018-10-18 |
KR20180108495A (en) | 2018-10-04 |
MX2018003248A (en) | 2018-11-09 |
BR102018004643A2 (en) | 2018-10-30 |
EP3243920A1 (en) | 2017-11-15 |
US20180274066A1 (en) | 2018-09-27 |
JP7369513B2 (en) | 2023-10-26 |
CN108624803A (en) | 2018-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3243920B1 (en) | Spheroidal cast alloy | |
EP2383353B1 (en) | High tensile steel containing Mn, steel surface product made from such steel and method for producing same | |
EP0091897B1 (en) | Strain hardening austenitic manganese steel and process for the manufacture thereof | |
EP2059623A1 (en) | Rustproof austenitic cast steel, method for production and use thereof | |
DE112010003614T5 (en) | High strength screw | |
DE102010026808B4 (en) | Corrosion-resistant austenitic phosphorous-alloyed steel casting with TRIP or TWIP properties and its use | |
DE69702428T2 (en) | High-strength and high-tough heat-resistant cast steel | |
DE69003202T2 (en) | High-strength, heat-resistant, low-alloy steels. | |
DE69821493T2 (en) | Use of heat-resistant cast steel for components of turbine housings | |
DE3041565C2 (en) | ||
EP1430161B1 (en) | High-strength duplex/triplex steel for lightweight construction and use thereof | |
DE102005027258B4 (en) | High carbon steel with superplasticity | |
DE102015111866A1 (en) | Formable lightweight structural steel with improved mechanical properties and process for the production of semi-finished products from this steel | |
WO2009090228A1 (en) | Parts made of high-strength, ductile cast steel having a high manganese content, method for the production thereof, and use thereof | |
DE102010012718A1 (en) | Density reduced ultra-high carbon containing lightweight steel, useful to manufacture component for motor vehicle, preferably to manufacture part of e.g. engine, comprises carbon, aluminum, silicon, chromium, manganese and balance of iron | |
DE10136788A1 (en) | aluminum Bronze | |
DE10101159C2 (en) | Cast material with a ferritic structure and spheroidal graphite, in particular ferritic cast iron | |
EP2052096A1 (en) | Steel material, in particular for producing piston rings | |
WO2021063746A1 (en) | Method for producing a steel product and corresponding steel product | |
WO2017167778A1 (en) | Steel having reduced density and method for producing a flat or long steel product from such a steel | |
EP3122910A2 (en) | Components made of a steel alloy and method for producing high-strength components | |
EP3458623B1 (en) | Method for producing a steel material, and steel material | |
JP3416868B2 (en) | High-strength, low-ductility non-heat treated steel with excellent machinability | |
DE3346089A1 (en) | METHOD FOR MANUFACTURING HIGH-STRENGTH, DUCTILE BODY FROM CARBON-BASED IRON-BASED ALLOYS | |
DE10231125A1 (en) | High strength duplex / triplex lightweight engineering steel and its use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180515 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180820 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GF CASTING SOLUTIONS LEIPZIG GMBH Owner name: GF CASTING SOLUTIONS KUNSHAN CO. LTD. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22D 15/00 20060101ALN20191017BHEP Ipc: C22C 37/08 20060101ALI20191017BHEP Ipc: C22C 37/10 20060101ALI20191017BHEP Ipc: C21C 1/10 20060101ALI20191017BHEP Ipc: C21D 5/14 20060101ALN20191017BHEP Ipc: C21D 5/00 20060101ALN20191017BHEP Ipc: C22C 37/04 20060101AFI20191017BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22D 15/00 20060101ALN20191018BHEP Ipc: C22C 37/04 20060101AFI20191018BHEP Ipc: C22C 37/08 20060101ALI20191018BHEP Ipc: C21D 5/00 20060101ALN20191018BHEP Ipc: C21D 5/14 20060101ALN20191018BHEP Ipc: C21C 1/10 20060101ALI20191018BHEP Ipc: C22C 37/10 20060101ALI20191018BHEP |
|
INTG | Intention to grant announced |
Effective date: 20191106 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1263390 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017004938 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200730 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200831 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200829 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017004938 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210324 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210324 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210324 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210324 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1263390 Country of ref document: AT Kind code of ref document: T Effective date: 20220324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |