EP3232043A1 - Module multifonctionnel pour un moteur à combustion interne d'un véhicule automobile - Google Patents
Module multifonctionnel pour un moteur à combustion interne d'un véhicule automobile Download PDFInfo
- Publication number
- EP3232043A1 EP3232043A1 EP16165369.6A EP16165369A EP3232043A1 EP 3232043 A1 EP3232043 A1 EP 3232043A1 EP 16165369 A EP16165369 A EP 16165369A EP 3232043 A1 EP3232043 A1 EP 3232043A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exhaust gases
- conduit
- heat exchanger
- face
- structural element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 6
- 239000007789 gas Substances 0.000 claims abstract description 119
- 239000002826 coolant Substances 0.000 claims abstract description 41
- 238000001816 cooling Methods 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 9
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 230000001276 controlling effect Effects 0.000 claims description 5
- 239000010705 motor oil Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/25—Layout, e.g. schematics with coolers having bypasses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/25—Layout, e.g. schematics with coolers having bypasses
- F02M26/26—Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/04—Arrangements of liquid pipes or hoses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/28—Layout, e.g. schematics with liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
- F02M26/30—Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
- F02M26/32—Liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/51—EGR valves combined with other devices, e.g. with intake valves or compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/52—Systems for actuating EGR valves
- F02M26/55—Systems for actuating EGR valves using vacuum actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/163—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
- F28D7/1638—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
- F28F27/02—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/06—Derivation channels, e.g. bypass
Definitions
- the present invention relates to a multi-functional module for an internal combustion engine of a motor-vehicle, incorporating a part of an exhaust gas recirculation system of the engine and a part of a cooling circuit of the engine, in particular said module comprising an EGR valve unit for regulating the recirculated exhaust gas flow and a heat exchanger for cooling the recirculated exhaust gases, by means of the engine coolant.
- Multi-functional modules of the type indicated above are yet known (see for example documents EP 2 037 116 B1 and EP 1 793 115 B1 ), wherein the multi-functional module comprises a central structural element, with a metal body having a face for attachment to an end face of the engine cylinder head.
- a metal body having a face for attachment to an end face of the engine cylinder head.
- Such a body having an elongated shape according to a direction which is perpendicular to the longitudinal direction of the cylinder head in the mounted condition of said module on the engine.
- a conduit for circulation of the exhaust gases and a conduit for circulation of the engine coolant are formed within said metal body of the central structural element.
- Such conduits extend starting form an inlet opening of the exhaust gases and an inlet opening of the coolant, said inlet openings are positioned on said attachment face and are intended to communicate respectively with the engine exhaust manifold and with a coolant jacket of the cylinder head.
- the exhaust gases conduit ends into an exhaust gases outlet opening intended to communicate with the engine intake manifold, whereas said coolant conduit flows into at least one coolant outlet opening to which a thermostatic valve is associated for controlling a connection with a radiator of the engine cooling system.
- said EGR valve unit for regulating the recirculated exhaust gas flow is mounted on a first end face of said central structural element elongated body, and is operatively interposed along said exhaust gases conduit.
- said heat exchanger for cooling exhaust gases with the coolant is mounted on a second end face of said elongated body of the central structural element, which is opposite to said first end face on which said EGR valve unit is mounted.
- the heat exchanger has internal conduits in heat exchange relationship to each other, which are respectively operatively interposed along said exhaust gases conduit and said coolant conduit.
- a by-pass conduit for exhaust gas is formed within said elongated body of the central structural element, through which exhaust gases can flow towards said exhaust gases outlet opening without passing through said heat exchanger, in said by-pass conduit being interposed a by-pass valve operated by means of a vacuum actuator carried by said multi-functional module.
- Multi-functional modules of the type indicated above which has been produced since now have several drawbacks.
- the EGR valve unit is subjected to carbon deposits (so called "EGR soot") due to the exhaust gas flow which passes through thereof, with consequent efficiency reduction of such component with the passing of time.
- all the aforementioned known solutions provide a vacuum tank integrated to the central structural element of the module, such a vacuum tank results necessary for controlling the vacuum actuator which controls the aforementioned by-pass valve.
- Such a vacuum tank is mounted at a module end, adjacent to the heat exchanger, causing a reduction of the available space of the heat exchanger. Therefore it is mandatory to use a relatively small heat exchanger, with consequent less efficiency of the exhaust gases cooling.
- Another drawback that occurs in the known solutions consists in slowing down the exhaust gas flow that passes through the heat exchanger, due to gas density reduction that is determined while gas are cooled in the heat exchanger.
- the object that is on the basis of the present invention is to overcome above mentioned drawbacks which occur in the known solutions.
- a further object of the invention is to provide a multi-functional module with limited dimensions, reduced weight, inexpensive to be manufactured.
- a further object of the present invention is to provide a multi-functional module which remains efficient in all its functions during the entire life of the engine to which the module is associated.
- the invention relates to a multi-functional module for an internal combustion engine having all the features that have been indicated above and characterized in that said EGR valve unit is operatively positioned along the exhaust gases conduit upstream of said heat exchanger, in such a way that when said EGR valve unit is in an opened condition, the exhaust gases pass through said EGR valve unit, before being cooled in the heat exchanger.
- the exhaust gases pass through the EGR valve at a temperature which is considerably higher than what occurs in the known solutions, so causing reduction or entire cancellation of risk of carbon deposits within the EGR valve and ensuring that such valve maintains constant efficiency for the entire operative life of the engine.
- the module according to the invention is also characterized in that said vacuum actuator which controls the by-pass valve is arranged for being operated by a vacuum source external to the module, whereby said module is without of any vacuum source or tank.
- the multifunctional module according to the invention has the advantage that the entire second end face of the body of the central structural element can be entirely occupied by the heat exchanger. This allows to obtain a more efficient cooling of the exhaust gases, using a larger heat exchanger without increasing the overall size of the module. Or it is thus possible to use a heat exchanger with similar dimensions to the known solutions, but considerably decreasing the overall size of the module.
- said heat exchanger is configured in such a way as the exhaust gases which pass through thereof follow a U-shaped path.
- the U-shaped passage for the exhaust gases through the heat exchanger is defined by a first row of tubes or flat channels for the exhaust gas flow in a first direction, by a second row of tubes or flat channels for the exhaust gas flow in a second direction opposite to the first direction, and by an intermediate chamber which connects the tubes or flat channels of the first row to the tubes or flat channels of the second row.
- tubes or flat channels of said second row define an overall passage section lower than the overall passage section defined by tubes or flat channels of the first row, so as to counteract a reduction of the exhaust gases speed resulting from the reduction of density due to the cooling.
- the reference number 1 indicates a preferred embodiment of the multi-functional module for an internal combustion engine of a motor-vehicle according to the present invention.
- Figures 1 , 2 diagrammatically shown the cylinder head T of a multi-cylinder engine E, having an intake manifold CA for the air supply, coming from a suction duct 5 to the engine cylinders, and an exhaust manifold CS for discharging in an exhaust conduit 17 the outgoing gas from the engine cylinders.
- Figure 2 also diagrammatically illustrates the cooling jacket J of the cylinders head T.
- the module 1 incorporates a part of the exhaust gas recirculation system of the engine and a part of the cooling circuit of the engine.
- said module comprises an EGR valve unit 3 for regulating the recirculated exhaust gas flow and a heat exchanger 4 for cooling the recirculated exhaust gases by means of the engine coolant.
- the EGR valve unit 3 and the heat exchanger 4 are mounted at two opposite ends of a central structural element 2.
- the central structural element 2 comprises a metal body (such as aluminium) having a face (indicated with P6 in figures 3-5 ) for attachment to an end face of the cylinder head T of the engine E (see figures 1 , 2 ).
- a connection can be realized for example by means of screws, providing also a seal between faces in contact of the structural element body 2 and of the cylinder head T.
- Such constructive details have not been illustrated so getting more simple the drawings.
- the body of the structural element 2 has an elongated shape according to a direction which is perpendicular to the longitudinal direction of the cylinder head.
- a conduit 6 for circulation of the exhaust gases (in particular see figures 1 , 4 , 7 ) and a conduit 7 for circulation of the engine coolant (in particular see figures 2 , 5 , 6 ) are formed within said central structural element metal body 2.
- the exhaust gases conduit 6 extends starting from an inlet opening 9 of the exhaust gas positioned on said face P6 of the body 2 provided for attachment with the cylinder head (see figures 4 and 6 , 7 ).
- the coolant conduit 7 extends starting from an inlet opening 8 positioned also in this case on said attachment face P6.
- the opening 9 for inlet in the module 1 of the exhaust gases communicates with the intake manifold CS by means of a conduit 24 formed in the cylinder head T.
- the opening 8 for inlet of the coolant in the module 1 communicates with the coolant jacket J of the cylinder head T.
- the exhaust gases conduit 6 follows a path, which will be described in detail below, through the body 2, up to ends into an outlet opening 10 connected to the suction duct 5, so as to enable recirculation of exhaust gases in the engine intake manifold.
- the coolant conduit 7 communicates with an outlet opening 11 to which a thermostatic valve 19 is associated for controlling a connection with the radiator of the engine cooling system.
- the EGR valve unit 3 and the heat exchanger 2 are mounted at opposite ends of the central structural element 2.
- the EGR valve unit 3 is operatively interposed in the exhaust gases conduit 6, for regulating the recirculated exhaust gas flow.
- the heat exchanger 4 has internal conduits, which also will be better illustrated in the following, which are in heat exchange relationship to each other, and which are respectively operatively interposed along said exhaust gases conduit 6 and said coolant conduit 7.
- a by-pass conduit 65 for exhaust gases is formed within said elongated body of the central structural element 2 (see figure 1 ), through which exhaust gases can flow towards said exhaust gases outlet opening 10 without passing through said heat exchanger 4.
- a by-pass valve 13 (only diagrammatically shown in figure 1 ) is interposed inside said by-pass conduit 65 which is operated by means of a vacuum actuator 14 carried by said multi-functional module 1.
- the actuator 14 is shown in figures 3-5 and only in a diagrammatic way in figure 1 .
- Using a vacuum actuator is necessary in order to efficiently develop the force that must be applied to the movable member of the by-pass valve.
- the actuator body is rigidly fixed on the upper face P4 (with reference to drawings) of the body 2 and controls a stem which controls the movable member of the by-pass valve by means of a lever.
- a first important feature of the present invention is that the EGR valve unit 3 is operatively positioned along the exhaust gases conduit 6 upstream the heat exchanger 4, in such a way that when said EGR valve unit is in an opened condition, the exhaust gases pass through said EGR valve unit 3, before being cooled in the heat exchanger 4.
- the exhaust gases pass through the EGR valve with a temperature which is considerably higher than what occurs in the known solution, so decreasing or entirely cancelling the risk of carbon deposits within the EGR valve 3 and ensuring that this valve maintains a constant efficiency for the entire life of the engine.
- a further feature of the module according to the invention is that the vacuum actuator 14 which controls the by pass valve 13 is arranged for being operative by a vacuum pump 15 ( figure 1 ) external to the module.
- the communication of the actuator 14 with the vacuum pump 15 is controlled by an electrovalve 16 of the type on-off.
- the electrovalve 16 is illustrated in figures 3-5 and only diagrammatically in figure 1 .
- the actuator 14 is controlled by the vacuum pump 15 in order to open the by-pass conduit 65 during a warm-up phase of the engine, so when cooling of the exhaust gases is not required.
- it is not provided any vacuum tank in order to operate the actuator 14. Thanks to this feature, weight and overall size of the module are considerably reduced.
- the multifunctional module according to the invention has the advantage that the end face of the body 2 in which is mounted the heat exchanger can be entirely occupied by the heat exchanger. This fact permits to obtain a more efficient cooling of the exhaust gases, using a heat exchanger bigger, but without increasing the overall size of the module. Or it is also possible to use a heat exchanger with overall size similar to what is provided in the known solutions, so considerably decreasing the overall size of the module.
- the exhaust gases conduit 6 comprises a blind conduit portion 60 which extends through the central structural element body 2 from said inlet opening 9 positioned on the attachment face of the central structural element 2. From the conduit portion 60 branches a further conduit portion 61 which extends in a parallel direction to the longitudinal direction of the body 2, up to ends into an opening 23 on the end face P3 on which is mounted the EGR valve unit 3.
- conduit portion 62 Adjacent to the opening 23 is provided a conduit portion 62 in which the conduit portion 61 communicates with a further conduit portion 63 which runs in parallel to the conduit portion 61 and extends from the end face P3 of the body 2 up to the opposite end face P2 on which is mounted the heat exchanger 4, which flows into an opening 12 which communicates with an exhaust gases inlet in the heat exchanger 4.
- the communication of the conduit portion 61 with the conduit portion 62 ( figure 4 ) is controlled by the EGR valve unit which comprises a body which is rigidly connected by screws (not shown) to the body of the element 2 and including an electric actuator for the position control of a shutter O which cooperates with a valve seat (not shown in the drawings) formed on the wall of the conduit portion 61.
- the shutter O is axially movable between a rest position on the valve seat, in which the communication between the conduit portions 61, 62 is interrupted, and a position which is spaced from the valve seat, in which the aforesaid communication is open.
- the end face of the central structural element body 2 is entirely occupied by the heat exchanger 4.
- Such heat exchanger 4 is configured in such a way as the exhaust gas which pass through thereof follow a U-shaped path. Thanks to this feature, with equal efficiency of exhaust gas cooling, the overall size of the heat exchanger in the longitudinal direction of the module can be considerably reduced.
- the U-shaped path for the exhaust gases through the heat exchanger 4 is defined by a first row of tubes 41 (in the case illustrated in the drawings) or alternatively by flat channels, for exhaust gas flow in a first direction, by a second row of tubes 41 or alternatively by flat channels for the exhaust gas flow in a second direction which is opposite to the first direction, and by an intermediate chamber 44 which connects the tubes or the flat channels of the first row to the tubes or the plates channel of the second row.
- the tubes or flat channels of the second row (positioned downstream of the first row) define a total section of passage smaller than the total section of passage defined by the tubes or flat channels of the first row in such a way as counteracting a reduction of exhaust gases speed caused by the reduction of density due to the cooling.
- the illustrated example that is obtained providing tubes 41 all of the same section, but providing a number of tubes of the upstream first row bigger than the number of tubes of the downstream second row.
- the tubes 41 of the heat exchanger are all surrounded by a chamber 43 filled of the coolant.
- the coolant conduit 7 comprises a conduit portion 71 which extends through the body of the central structural element 2 from said inlet opening 8 positioned on said attachment face P6 up to the opposite face P1 of the central structural element 2, wherein said conduit portion 71 ends into an outlet opening 11.
- a fitting element 18 is mounted at the opening 11 and said fitting element 18 incorporates the thermostatic valve 19 diagrammatically shown in figure 2 (not illustrated in figure 5 ), which controls the feeding of the coolant to the radiator of the cooling system.
- a further conduit portion 72 branches from the conduit portion 71 in direction of the end face P3 of the central structural element 2 to which the EGR valve unit 3 is associated and which flows in a chamber 73 which is adjacent to said end face P3, for the cooling of the EGR valve unit 3.
- a further conduit portion 74 extends longitudinally along said central structural element 2 starting from a chamber 73 up to an inlet 22 of the coolant in the heat exchanger 4. Through the inlet 22, the coolant enters in the chamber 43 ( figure 8 ) of the heat exchanger 4, where cools the exhaust gases which circulate in the tubes 41. The coolant leaves the heat exchanger through an outlet fitting 42 ( figure 6 ), connected with the cooler of the engine oil, which is part of the engine cooling system. From the conduit portion 74 ( figure 5 ) branches a further conduit (not illustrated) which ends in the face P1 of the body 2, where is fixed a fitting element 22 connected with the cabin heater of the motor-vehicle.
- arrows F1 and F2 indicates respectively the exhaust gas flow and the coolant flow.
- a part of the exhaust gas flow is recirculated to the engine intake by means of the module 1.
- a part of the exhaust gas flow passes through the intake manifold in the conduit 24 ( figure 1 ) of the cylinders head T in order to enter in the inlet opening 9 in the module 1.
- the EGR valve is opened, the exhaust gases entered in the opening 9 flow through the successive conduit portion 60-63 ( figures 4 and 6 ) up to enter in the inlet of the heat exchanger 4.
- the gas flow in a direction and than in the opposite direction through the two rows of tubes (or flat channels) 41 of the heat exchanger 4 up to flow out from the module 1 through the opening 10 and so flow into the suction duct 5 ( figure 1 ).
- the electric actuator of the EGR valve unit 3 controls the stem O for regulating the recirculated exhaust gas flow.
- the actuator of the EGR valve is controlled by the engine control unit, on the basis of one or more engine operation parameters, according to a known technique.
- the actuator 14 controls the opening of the by-pass valve 13, so that the gases flow out from the module 1 without passing through the heat exchanger 4.
- the actuator 14 becomes operative by means of the opening of the electrovalve 16 and activating the vacuum pump 15 (which is not part of the module 1, being integrated in the engine E). Therefore, a like prior art, the module 1 doesn't include a vacuum tank for supplying the actuator 14, with consequent possibility of adopt a heat exchanger bigger and more efficient, which occupies the entire end face P2 of the metal body 2, without increasing the overall size of the module 1.
- the configuration with U-shape of the path of the exhaust gases in the heat exchanger 4 enables a reduction of the dimensions of the heat exchanger 4 in the longitudinal direction of the body 2.
- the predisposition of the two different rows of tubes 41 or flat channels communicating with an intermediate chamber 44 enables also to provide an overall passage section for the exhaust gases which is reduced along the path of the exhaust gases, so as to counteract the reduction of speed due to the reduction of density caused by the cooling.
- the coolant coming from the cooling jacket J of the cylinders head flows into the inlet opening 8 of the module 1.
- Part of the flow pass through the conduit portion 71 and cause out the module 1 through the fitting element 18 when the thermostatic valve 19 ( figure 1 ) is open, so as to flow towards the radiator of the motor-vehicle.
- Part of the flow of the coolant subsequently flows through the conduit portion 71, 72, the chamber 73 (which cools the EGR valve) and a conduit portion 74 up to flows in to the chamber 43 of the heat exchanger, where the exhaust gas are cooled.
- the coolant leaving the heat exchanger 44 goes out from the module 1 through the fitting element 42 ( figure 6 ) from which it has been directed to the cooler of the engine oil of the motor-vehicle cooling system. Part of the coolant goes out instead from the module 1 through the fitting element 22, from which it is directed to the cabin heater.
- the multi-functional module according to the invention combines a simple configuration and economical process for manufacturing with limited overall size features, low weight and constant efficiency in the time.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Geometry (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16165369.6A EP3232043B1 (fr) | 2016-04-14 | 2016-04-14 | Module multifonctionnel pour un moteur à combustion interne d'un véhicule automobile |
BR102017006089-6A BR102017006089B1 (pt) | 2016-04-14 | 2017-03-24 | Módulo multifuncional para um motor de combustão interna de um veículo motor |
CN201710242138.6A CN107448330B (zh) | 2016-04-14 | 2017-04-13 | 用于机动车辆的内燃机的多功能模块 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16165369.6A EP3232043B1 (fr) | 2016-04-14 | 2016-04-14 | Module multifonctionnel pour un moteur à combustion interne d'un véhicule automobile |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3232043A1 true EP3232043A1 (fr) | 2017-10-18 |
EP3232043B1 EP3232043B1 (fr) | 2018-06-06 |
Family
ID=55967005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16165369.6A Active EP3232043B1 (fr) | 2016-04-14 | 2016-04-14 | Module multifonctionnel pour un moteur à combustion interne d'un véhicule automobile |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3232043B1 (fr) |
CN (1) | CN107448330B (fr) |
BR (1) | BR102017006089B1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112096543A (zh) * | 2020-08-13 | 2020-12-18 | 东风汽车集团有限公司 | Egr系统及汽车 |
WO2021182075A1 (fr) * | 2020-03-13 | 2021-09-16 | ヤンマーパワーテクノロジー株式会社 | Moteur |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040107949A1 (en) * | 2002-01-16 | 2004-06-10 | Sotsuo Miyoshi | Exhaust gas recirculating device |
FR2875540A1 (fr) * | 2004-09-20 | 2006-03-24 | Mark Iv Systemes Moteurs Sa | Module multifonctionnel, vehicule a moteur comportant un tel module et procede de fabrication d'un tel module |
DE102006005246A1 (de) * | 2005-02-03 | 2006-08-17 | Behr Gmbh & Co. Kg | Abgaswärmeübertrager, insbesondere für Kraftfahrzeuge |
EP1793115A1 (fr) * | 2005-12-01 | 2007-06-06 | Mark Iv Systemes Moteurs (Sas) | Module multifonctionnel pour moteur à combustion interne |
DE102007049336A1 (de) * | 2007-10-12 | 2009-04-16 | Behr Gmbh & Co. Kg | Multifunktionales Modul zur Anbringung an einer Verbrennungskraftmaschine und zur Führung von Fluiden, insbesondere in Form von Ladefluid und/oder Kühlmittel, Anordnung mit dem Modul und Verbrennungskraftmaschine |
EP2037116B1 (fr) | 2007-09-12 | 2012-02-15 | Mark Iv Systemes Moteurs (Sas) | Module multifonctionnel pour moteur à combustion interne |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100573017C (zh) * | 2004-10-07 | 2009-12-23 | 贝洱两合公司 | 气冷式废气热交换器、特别是汽车废气冷却器 |
US8056545B2 (en) * | 2009-01-06 | 2011-11-15 | Ford Global Technologies | Integrated cover and exhaust gas recirculation cooler for internal combustion engine |
JP6346426B2 (ja) * | 2013-08-12 | 2018-06-20 | 現代自動車株式会社Hyundai Motor Company | Egrガス及びエンジンオイル冷却装置とその制御方法 |
-
2016
- 2016-04-14 EP EP16165369.6A patent/EP3232043B1/fr active Active
-
2017
- 2017-03-24 BR BR102017006089-6A patent/BR102017006089B1/pt active IP Right Grant
- 2017-04-13 CN CN201710242138.6A patent/CN107448330B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040107949A1 (en) * | 2002-01-16 | 2004-06-10 | Sotsuo Miyoshi | Exhaust gas recirculating device |
FR2875540A1 (fr) * | 2004-09-20 | 2006-03-24 | Mark Iv Systemes Moteurs Sa | Module multifonctionnel, vehicule a moteur comportant un tel module et procede de fabrication d'un tel module |
DE102006005246A1 (de) * | 2005-02-03 | 2006-08-17 | Behr Gmbh & Co. Kg | Abgaswärmeübertrager, insbesondere für Kraftfahrzeuge |
EP1793115A1 (fr) * | 2005-12-01 | 2007-06-06 | Mark Iv Systemes Moteurs (Sas) | Module multifonctionnel pour moteur à combustion interne |
EP1793115B1 (fr) | 2005-12-01 | 2013-01-23 | Systemes Moteurs | Module multifonctionnel pour moteur à combustion interne |
EP2037116B1 (fr) | 2007-09-12 | 2012-02-15 | Mark Iv Systemes Moteurs (Sas) | Module multifonctionnel pour moteur à combustion interne |
DE102007049336A1 (de) * | 2007-10-12 | 2009-04-16 | Behr Gmbh & Co. Kg | Multifunktionales Modul zur Anbringung an einer Verbrennungskraftmaschine und zur Führung von Fluiden, insbesondere in Form von Ladefluid und/oder Kühlmittel, Anordnung mit dem Modul und Verbrennungskraftmaschine |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021182075A1 (fr) * | 2020-03-13 | 2021-09-16 | ヤンマーパワーテクノロジー株式会社 | Moteur |
JP2021143655A (ja) * | 2020-03-13 | 2021-09-24 | ヤンマーパワーテクノロジー株式会社 | エンジン |
US11739717B2 (en) | 2020-03-13 | 2023-08-29 | Yanmar Power Technology Co., Ltd. | Engine |
JP7541838B2 (ja) | 2020-03-13 | 2024-08-29 | ヤンマーパワーテクノロジー株式会社 | エンジン |
CN112096543A (zh) * | 2020-08-13 | 2020-12-18 | 东风汽车集团有限公司 | Egr系统及汽车 |
CN112096543B (zh) * | 2020-08-13 | 2021-12-07 | 东风汽车集团有限公司 | Egr系统及汽车 |
Also Published As
Publication number | Publication date |
---|---|
BR102017006089B1 (pt) | 2022-11-22 |
BR102017006089A2 (pt) | 2017-10-17 |
CN107448330B (zh) | 2020-05-05 |
CN107448330A (zh) | 2017-12-08 |
EP3232043B1 (fr) | 2018-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9212620B2 (en) | Coolant jackets for an internal combustion engine and method of control | |
US20080060592A1 (en) | Split Cooling System for an Internal Combustion Engine | |
US7077114B2 (en) | Exhaust gas recirculation system for a combustion engine | |
EP2025913B1 (fr) | Échangeur de chaleur à trois passages pour un système EGR | |
US6971377B2 (en) | Exhaust gas recirculation cooler with bypass flow | |
US20090260605A1 (en) | Staged arrangement of egr coolers to optimize performance | |
US20140209046A1 (en) | Coolant circuit with head and block coolant jackets connected in series | |
US20110094483A1 (en) | Exhaust gas recirculation apparatus | |
DE102013202834A1 (de) | Einlasssystem mit einem integrierten Ladeluftkühler | |
US20100170482A1 (en) | Integrated cover and exhaust gas recirculation cooler for internal combustion engine | |
US20090044525A1 (en) | Exhaust-gas cooling device for an internal combustion engine | |
US8695543B2 (en) | Internal combustion engine cooling unit | |
EP1426603B2 (fr) | Recyclage des gaz d'échappement | |
CN109812350A (zh) | 集成排气歧管的气缸盖及包括该气缸盖的发动机冷却系统 | |
CN105723078B (zh) | 用于内燃机的冷却系统 | |
EP3232043B1 (fr) | Module multifonctionnel pour un moteur à combustion interne d'un véhicule automobile | |
EP2215345B1 (fr) | Module integre d'egr/refroidissement pour un moteur a combustion interne | |
CN113614352B (zh) | 内燃机以及冷却内燃机的方法 | |
US8671669B2 (en) | Exhaust gas cooler for a motor vehicle | |
US20150292444A1 (en) | Egr heat exchanger with continuous deaeration | |
JP4363176B2 (ja) | エンジンの排気還流装置 | |
US20220290588A1 (en) | Internal combustion engine including an oil cooler integrated into the cylinder block, and cooling water control | |
EP3623596B1 (fr) | Corps de moteur à combustion interne | |
JP5494357B2 (ja) | 内燃機関の冷却装置 | |
KR101734782B1 (ko) | 통합 egr 쿨러 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170714 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20171222 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1006368 Country of ref document: AT Kind code of ref document: T Effective date: 20180615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016003279 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180606 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180906 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180906 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180907 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1006368 Country of ref document: AT Kind code of ref document: T Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181006 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016003279 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190414 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190414 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181008 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200414 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200414 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160414 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180606 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230321 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240320 Year of fee payment: 9 Ref country code: FR Payment date: 20240320 Year of fee payment: 9 |