EP3195776B1 - Window-cleaning robot and method for controlling the same - Google Patents
Window-cleaning robot and method for controlling the same Download PDFInfo
- Publication number
- EP3195776B1 EP3195776B1 EP16183996.4A EP16183996A EP3195776B1 EP 3195776 B1 EP3195776 B1 EP 3195776B1 EP 16183996 A EP16183996 A EP 16183996A EP 3195776 B1 EP3195776 B1 EP 3195776B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- window
- cleaning robot
- vacuum suction
- upper cover
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L1/00—Cleaning windows
- A47L1/02—Power-driven machines or devices
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2836—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/30—Arrangement of illuminating devices
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2201/00—Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
Definitions
- the present disclosure relates to the field of electrical appliance technology, and more particularly relates to a window-cleaning robot and a method for controlling the same.
- a vacuum suction port is generally disposed at a middle position of a bottom of the window-cleaning robot in the related art.
- a suction motor drives a fan to rotate with high-speed and then vacuum is generated via the vacuum suction port, such that the robot may suck on the window.
- a vacuum suction force decreases, the robot is likely to fall off from the window.
- a user may be reminded of potential dangers by raising an alarm via a state indicator lamp 1' (as shown in Fig. 1 ) or a buzzer.
- a state indicator lamp 1' as shown in Fig. 1
- a buzzer a buzzer.
- a visual area of the state indicator lamp is usually small, and the alarm of the buzzer is also possible to lose effectiveness in noisy environment, thereby being unable to remind the user effectively.
- the present disclosure aims to solve at least one of the problems in the related art to some extent.
- a window-cleaning robot includes: a body; a vacuum suction port disposed on the body; a suction detector configured to detect a vacuum suction value generated at the vacuum suction port; a light-emitting assembly disposed on the body, in which a light-emitting area of the light-emitting assembly is configured corresponding to the vacuum suction value; and a controller, connected with the suction detector and the light-emitting assembly respectively and configured to light all or a part of the light-emitting area according to the vacuum suction value.
- the suction detector detects the vacuum suction value generated at the vacuum suction port when the window-cleaning robot is operating, and the controller lights all or a part of the light-emitting area of the light-emitting assembly according to the vacuum suction value detected by the suction detector, such that the user may monitor the vacuum suction value in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling of the window-cleaning robot, and improving using experience of the window-cleaning robot.
- light-emitting assembly comprises a plurality of indicator lamps and the plurality of indicator lamps are arranged in a ring shape, in a rectangular shape or in a triangular shape.
- the body comprises an upper cover and a transparent display frame disposed on the upper cover, and the light-emitting assembly is disposed below the transparent display frame.
- the body comprises an upper cover, the upper cover is made of transparent material, and the light-emitting assembly is disposed below the upper cover.
- the window-cleaning robot further includes a voice reminding device configured to issue a voice reminder if the vacuum suction value is less than a preset threshold.
- a lighted part of the light-emitting area is in direct proportion to the vacuum suction value.
- indication signs are set on the upper cover and configured to indicate a level of the vacuum suction value.
- a method for controlling a window-cleaning robot in which a light-emitting assembly is disposed on the window-cleaning robot, and the method includes: detecting a vacuum suction value generated at a vacuum suction port of the window-cleaning robot; and lighting all or a part of a light-emitting area of the light-emitting assembly according to the vacuum suction value.
- the vacuum suction value generated at the vacuum suction port is detected and the corresponding light-emitting area of the light-emitting assembly is lighted according to the detected value, such that the user may monitor the value of the vacuum suction force in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling off of the window-cleaning robot, and improving using experience of the window-cleaning robot.
- the light-emitting assembly comprises a plurality of indicator lamps and the plurality of indicator lamps are arranged in a ring shape, in a rectangular shape or in a triangular shape.
- the window-cleaning robot comprises an upper cover and a transparent display frame disposed on the upper cover, and the light-emitting assembly is disposed below the transparent display frame.
- the window-cleaning robot comprises an upper cover, the upper cover is made of transparent material, and the light-emitting assembly is disposed below the upper cover.
- the method further comprises: issuing a voice reminder if the vacuum suction value is less than a preset threshold.
- a lighted part of the light-emitting area of the light-emitting assembly is in direct proportion to the vacuum suction value.
- Figs. 2A and 2B are schematic diagrams illustrating a structure of a window-cleaning robot according to an embodiment of the present disclosure.
- the window-cleaning robot according to embodiments of the present disclosure includes a body 10, a vacuum suction port 20, a suction detector (not shown), a light-emitting assembly 40 and a controller (not shown).
- the vacuum suction port 20 is disposed on the body 10.
- the vacuum suction port 20 may be disposed at a middle position of a bottom of the body 10.
- the suction detector 30 detects a vacuum suction value generated at the vacuum suction port 20.
- the light-emitting assembly 40 is disposed on the body 10.
- a light-emitting area of the light-emitting assembly 40 is configured corresponding to the vacuum suction value.
- the light-emitting assembly 40 includes a plurality of indicator lamps 41.
- the plurality of indicator lamps 41 may be arranged in a ring shape, in a rectangular shape or in a triangular shape.
- the plurality of indicator lamps 41 may be arranged in a ring shape, as shown in Fig. 3A .
- the body 10 includes an upper cover 11 and a transparent display frame 12 (as shown in Fig. 3B ) disposed on the upper cover 12.
- the light-emitting assembly 40 is disposed below the transparent display frame 12.
- indication signs may be set on the upper cover 11 and configured to indicate a level of the vacuum suction value.
- the controller is connected with the suction detector and the light-emitting assembly 40 respectively.
- the controller is configured to light all or a part of the light-emitting area of the light-emitting assembly 40 according to the vacuum suction value.
- a lighted part of the light-emitting area is in direct proportion to the vacuum suction value. In other words, the greater the vacuum suction value is, the greater part of the light-emitting area is lighted.
- a filled circle refers to a lighted indicator lamp 41.
- the controller controls all of the indicator lamps 41 to light (i.e., the light-emitting area at this time is corresponding to all of the indicator lamps 41) when determining that the vacuum suction value is at a maximum value.
- the controller controls half of the indicator lamps 41 to light (i.e., the light-emitting area at this time is corresponding to half of the indicator lamps 41) when determining that the vacuum suction value is at a middle value.
- the controller controls half of the indicator lamps 41 to light (i.e., the light-emitting area at this time is corresponding to half of the indicator lamps 41) when determining that the vacuum suction value is at a middle value.
- the controller controls one indicator lamp 41 to light (i.e., the light-emitting area at this time is corresponding to one indicator lamp 41) when determining that the vacuum suction value is at a minimum value. Therefore, the controller controls the light-emitting assembly 40 to emit different light combinations dynamically when the vacuum suction value of the window-cleaning robot changes dynamically. With this display manner, it is convenient for the user to monitor the vacuum suction value in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling off of the window-cleaning robot, and improving using experience of the window-cleaning robot.
- the body 10 includes an upper cover 11.
- the upper cover 11 is made of transparent material.
- the light-emitting assembly 40 is disposed below the upper cover 11.
- the transparent display frame 12 may be not set and the light-emitting assembly 40 is disposed directly below the upper cover 11.
- the window-cleaning robot further includes a voice reminding device (not shown).
- the controller is further configured to control the voice reminding device to raise a voice reminder if the vacuum suction value is less than a preset threshold.
- the controller 50 determines that the window-cleaning robot is likely to fall off (i.e. the vacuum suction value is less than the preset threshold)
- the controller controls the voice reminding device 60 to raise the voice reminder, so as to reminder the user of potential danger.
- the suction detector detects the vacuum suction value generated at the vacuum suction port when the window-cleaning robot is operating, and the controller lights all or a part of the light-emitting area of the light-emitting assembly according to the vacuum suction value detected by the suction detector for reminding the user, such that the user may monitor the vacuum suction value in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling of the window-cleaning robot, and improving using experience of the window-cleaning robot.
- embodiments of the present disclosure also provide a method for controlling a window-cleaning robot.
- Fig. 5 is a flowchart showing a method for controlling a window-cleaning robot according to an embodiment of the present disclosure.
- a light-emitting assembly is disposed on the window-cleaning robot.
- the method for controlling a window-cleaning robot according to an embodiment of the present disclosure includes following steps.
- step S1 a vacuum suction value generated at a vacuum suction port of the window-cleaning robot is detected.
- the vacuum suction port may be disposed at a middle position of a bottom of the body.
- a suction motor drives a fan to rotate with high-speed and then vacuum is generated via the vacuum suction port, such that the window-cleaning robot may suck on the window.
- the vacuum suction value generated at the vacuum suction port of the window-cleaning robot is detected in real time when the window-cleaning robot is operating.
- step S2 all or a part of a light-emitting area of the light-emitting assembly is lighted according to the vacuum suction value.
- the light-emitting assembly includes a plurality of indicator lamps.
- the plurality of indicator lamps may be arranged in a ring shape, in a rectangular shape or in a triangular shape.
- the window-cleaning robot includes an upper cover and a transparent display frame (as shown in Fig. 3B ) disposed on the upper cover.
- the light-emitting assembly is disposed below the transparent display frame.
- indication signs may be set on the upper cover and configured to indicate a level of the value of the vacuum suction force.
- a corresponding light-emitting area of the light-emitting assembly is lighted according to the detected vacuum suction value, for reminding the user.
- a lighted part of the light-emitting area is in direct proportion to the vacuum suction value. In other words, the greater the vacuum suction value is, the greater part of the light-emitting area is lighted.
- a filled circle refers to a lighted indicator lamp.
- the controller controls all of the indicator lamps to light (i.e., the light-emitting area at this time is corresponding to all of the indicator lamps) when determining that the vacuum suction value is at a maximum value.
- the controller controls half of the indicator lamps to light (i.e., the light-emitting area at this time is corresponding to half of the indicator lamps) when determining that the vacuum suction value is at a middle value.
- the controller controls all of the indicator lamps to light (i.e., the light-emitting area at this time is corresponding to all of the indicator lamps) when determining that the vacuum suction value is at a maximum value.
- the controller controls half of the indicator lamps to light (i.e., the light-emitting area at this time is corresponding to half of the indicator lamps) when determining that the vacuum suction value is at a middle value.
- the controller controls all of the indicator lamps to light (i.e., the light-emitting
- the controller controls one indicator lamp to light (i.e., the light-emitting area at this time is corresponding to one indicator lamp) when determining that the vacuum suction value is at a minimum value. Therefore, the controller controls the light-emitting assembly to emit different light combinations dynamically when the vacuum suction value of the window-cleaning robot changes dynamically. With this display manner, it is convenient for the user to monitor the vacuum suction value in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling off of the window-cleaning robot, and improving using experience of the window-cleaning robot.
- the window-cleaning robot includes an upper cover.
- the upper cover is made of transparent material.
- the light-emitting assembly is disposed below the upper cover.
- the transparent display frame may be not set, and the light-emitting assembly 40 is disposed directly below the upper cover.
- the method for controlling a window-cleaning robot further includes: issuing a voice reminder if the vacuum suction value is less than a preset threshold.
- the window-cleaning robot is controlled to issue the voice reminder, so as to reminder the user of potential danger.
- the vacuum suction value generated at the vacuum suction port is detected and the corresponding light-emitting area of the light-emitting assembly is lighted according to the detected value, such that the user may monitor the value of the vacuum suction force in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling off of the window-cleaning robot, and improving using experience of the window-cleaning robot.
- first and second are used herein for purposes of description and are not intended to indicate or imply relative importance or significance.
- the feature defined with “first” and “second” may comprise one or more this feature.
- a plurality of' means two or more, unless specified otherwise.
- the terms “mounted,” “connected,” and “coupled” and variations thereof are used broadly and encompass such as mechanical or electrical mountings, connections and couplings, also can be inner mountings, connections and couplings of two components, and further can be direct and indirect mountings, connections, and couplings, which can be understood by those skilled in the art according to the detail embodiment of the present disclosure.
- a structure in which a first feature is “on” a second feature may include an embodiment in which the first feature directly contacts the second feature, and may also include an embodiment in which an additional feature is formed between the first feature and the second feature.
- a first feature "on,” “above,” or “on top of' a second feature may include an embodiment in which the first feature is right “on,” “above,” or “on top of' the second feature, and may also include an embodiment in which the first feature is not right “on,” “above,” or “on top of' the second feature, or just means that the first feature is at a height higher than that of the second feature.
- first feature "beneath,” “below,” or “on bottom of' a second feature may include an embodiment in which the first feature is right “beneath,” “below,” or “on bottom of' the second feature, and may also include an embodiment in which the first feature is not right “beneath,” “below,” or “on bottom of' the second feature, or just means that the first feature is at a height lower than that of the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Vacuum Cleaner (AREA)
Description
- The present disclosure relates to the field of electrical appliance technology, and more particularly relates to a window-cleaning robot and a method for controlling the same.
- The popularity of window-cleaning robots has brought much convenience for people. A vacuum suction port is generally disposed at a middle position of a bottom of the window-cleaning robot in the related art. A suction motor drives a fan to rotate with high-speed and then vacuum is generated via the vacuum suction port, such that the robot may suck on the window. When a vacuum suction force decreases, the robot is likely to fall off from the window. At this case, a user may be reminded of potential dangers by raising an alarm via a state indicator lamp 1' (as shown in
Fig. 1 ) or a buzzer. However, this reminding manner is not obvious for the user. A visual area of the state indicator lamp is usually small, and the alarm of the buzzer is also possible to lose effectiveness in noisy environment, thereby being unable to remind the user effectively. - An example of a window cleaning apparatus is disclosed by
EP-A-2446793 wherein first and second cleaning units are respectively attached on both surfaces of a window using a magnetic force to move together said units with each other. - The present disclosure aims to solve at least one of the problems in the related art to some extent.
- For this, according to a first aspect of the present disclosure, a window-cleaning robot is provided. The window-cleaning robot includes: a body; a vacuum suction port disposed on the body; a suction detector configured to detect a vacuum suction value generated at the vacuum suction port; a light-emitting assembly disposed on the body, in which a light-emitting area of the light-emitting assembly is configured corresponding to the vacuum suction value; and a controller, connected with the suction detector and the light-emitting assembly respectively and configured to light all or a part of the light-emitting area according to the vacuum suction value.
- With the window-cleaning robot according to embodiments of the present disclosure, the suction detector detects the vacuum suction value generated at the vacuum suction port when the window-cleaning robot is operating, and the controller lights all or a part of the light-emitting area of the light-emitting assembly according to the vacuum suction value detected by the suction detector, such that the user may monitor the vacuum suction value in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling of the window-cleaning robot, and improving using experience of the window-cleaning robot.
- In at least one embodiment, light-emitting assembly comprises a plurality of indicator lamps and the plurality of indicator lamps are arranged in a ring shape, in a rectangular shape or in a triangular shape.
- In at least one embodiment, the body comprises an upper cover and a transparent display frame disposed on the upper cover, and the light-emitting assembly is disposed below the transparent display frame.
- In at least one another embodiment, the body comprises an upper cover, the upper cover is made of transparent material, and the light-emitting assembly is disposed below the upper cover.
- In at least one embodiment, the window-cleaning robot further includes a voice reminding device configured to issue a voice reminder if the vacuum suction value is less than a preset threshold.
- In at least one embodiment, a lighted part of the light-emitting area is in direct proportion to the vacuum suction value.
- In at least one embodiment, indication signs are set on the upper cover and configured to indicate a level of the vacuum suction value.
- According to a second aspect of the present disclosure, a method for controlling a window-cleaning robot is provided, in which a light-emitting assembly is disposed on the window-cleaning robot, and the method includes: detecting a vacuum suction value generated at a vacuum suction port of the window-cleaning robot; and lighting all or a part of a light-emitting area of the light-emitting assembly according to the vacuum suction value.
- With the method for controlling a window-cleaning robot of embodiments of the present disclosure, when the window-cleaning robot is operating, the vacuum suction value generated at the vacuum suction port is detected and the corresponding light-emitting area of the light-emitting assembly is lighted according to the detected value, such that the user may monitor the value of the vacuum suction force in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling off of the window-cleaning robot, and improving using experience of the window-cleaning robot.
- In at least one embodiment, the light-emitting assembly comprises a plurality of indicator lamps and the plurality of indicator lamps are arranged in a ring shape, in a rectangular shape or in a triangular shape.
- In at least one embodiment, the window-cleaning robot comprises an upper cover and a transparent display frame disposed on the upper cover, and the light-emitting assembly is disposed below the transparent display frame.
- In at least one another embodiment, the window-cleaning robot comprises an upper cover, the upper cover is made of transparent material, and the light-emitting assembly is disposed below the upper cover.
- In at least one embodiment, the method further comprises: issuing a voice reminder if the vacuum suction value is less than a preset threshold.
- In at least one embodiment, a lighted part of the light-emitting area of the light-emitting assembly is in direct proportion to the vacuum suction value.
-
-
Fig. 1 is a schematic diagram illustrating a window-cleaning robot in the related art; -
Figs. 2A and2B are schematic diagrams illustrating a structure of a window-cleaning robot according to an embodiment of the present disclosure; -
Fig. 3A is a schematic diagram illustrating a structure of a light-emitting assembly according to an embodiment of the present disclosure; -
Fig. 3B is a schematic diagram illustrating a transparent display frame according to an embodiment of the present disclosure; -
Fig. 3C is a schematic diagram illustrating indication signs on an upper cover of a window-cleaning robot according to an embodiment of the present disclosure; -
Fig. 4A is a schematic diagram illustrating a display effect of a light-emitting assembly according to a specific embodiment of the present disclosure; -
Fig. 4B is a schematic diagram illustrating a display effect of a light-emitting assembly according to another specific embodiment of the present disclosure; -
Fig. 4C is a schematic diagram illustrating a display effect of a light-emitting assembly according to still another specific embodiment of the present disclosure; -
Fig. 5 is a flowchart showing a method for controlling a window-cleaning robot according to an embodiment of the present disclosure. - Embodiments of the present disclosure will be described in detail in the following descriptions, examples of which are shown in the accompanying drawings, in which the same or similar elements and elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to the accompanying drawings are explanatory and illustrative, which are used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure.
- In the following, a window-cleaning robot and a method for controlling a window-cleaning robot provided by embodiments of the present disclosure will be described in detail with reference to accompanying drawings.
-
Figs. 2A and2B are schematic diagrams illustrating a structure of a window-cleaning robot according to an embodiment of the present disclosure. As shown inFigs. 2A and2B , the window-cleaning robot according to embodiments of the present disclosure includes abody 10, avacuum suction port 20, a suction detector (not shown), a light-emitting assembly 40 and a controller (not shown). - The
vacuum suction port 20 is disposed on thebody 10. - Specifically, as shown in
Fig. 2B , thevacuum suction port 20 may be disposed at a middle position of a bottom of thebody 10. - The suction detector 30 detects a vacuum suction value generated at the
vacuum suction port 20. - The light-
emitting assembly 40 is disposed on thebody 10. A light-emitting area of the light-emitting assembly 40 is configured corresponding to the vacuum suction value. - In an embodiment of the present disclosure, as shown in
Fig. 3A , the light-emitting assembly 40 includes a plurality ofindicator lamps 41. The plurality ofindicator lamps 41 may be arranged in a ring shape, in a rectangular shape or in a triangular shape. For example, the plurality ofindicator lamps 41 may be arranged in a ring shape, as shown inFig. 3A . - As shown in
Figs. 3B and3C , in an embodiment of the present disclosure, thebody 10 includes anupper cover 11 and a transparent display frame 12 (as shown inFig. 3B ) disposed on theupper cover 12. The light-emittingassembly 40 is disposed below thetransparent display frame 12. - As shown in
Fig. 3C , indication signs (for example, low suction force, middle suction force and high suction force) may be set on theupper cover 11 and configured to indicate a level of the vacuum suction value. - The controller is connected with the suction detector and the light-emitting
assembly 40 respectively. The controller is configured to light all or a part of the light-emitting area of the light-emittingassembly 40 according to the vacuum suction value. - In an embodiment of the present disclosure, a lighted part of the light-emitting area is in direct proportion to the vacuum suction value. In other words, the greater the vacuum suction value is, the greater part of the light-emitting area is lighted.
- For example, as shown in
Figs. 4A-4C , a filled circle refers to a lightedindicator lamp 41. As shown inFigs. 4A , the controller controls all of theindicator lamps 41 to light (i.e., the light-emitting area at this time is corresponding to all of the indicator lamps 41) when determining that the vacuum suction value is at a maximum value. As shown inFig. 4B , the controller controls half of theindicator lamps 41 to light (i.e., the light-emitting area at this time is corresponding to half of the indicator lamps 41) when determining that the vacuum suction value is at a middle value. As shown inFig. 4C , the controller controls oneindicator lamp 41 to light (i.e., the light-emitting area at this time is corresponding to one indicator lamp 41) when determining that the vacuum suction value is at a minimum value. Therefore, the controller controls the light-emittingassembly 40 to emit different light combinations dynamically when the vacuum suction value of the window-cleaning robot changes dynamically. With this display manner, it is convenient for the user to monitor the vacuum suction value in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling off of the window-cleaning robot, and improving using experience of the window-cleaning robot. - In another embodiment of the present disclosure, the
body 10 includes anupper cover 11. Theupper cover 11 is made of transparent material. The light-emittingassembly 40 is disposed below theupper cover 11. - Specifically, if the
upper cover 11 is entirely made of transparent material, thetransparent display frame 12 may be not set and the light-emittingassembly 40 is disposed directly below theupper cover 11. - In another embodiment of the present disclosure, the window-cleaning robot further includes a voice reminding device (not shown). The controller is further configured to control the voice reminding device to raise a voice reminder if the vacuum suction value is less than a preset threshold.
- Specifically, when the controller 50 determines that the window-cleaning robot is likely to fall off (i.e. the vacuum suction value is less than the preset threshold), the controller controls the voice reminding device 60 to raise the voice reminder, so as to reminder the user of potential danger.
- With the window-cleaning robot according to embodiments of the present disclosure, the suction detector detects the vacuum suction value generated at the vacuum suction port when the window-cleaning robot is operating, and the controller lights all or a part of the light-emitting area of the light-emitting assembly according to the vacuum suction value detected by the suction detector for reminding the user, such that the user may monitor the vacuum suction value in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling of the window-cleaning robot, and improving using experience of the window-cleaning robot.
- In order to realize the above embodiments, embodiments of the present disclosure also provide a method for controlling a window-cleaning robot.
-
Fig. 5 is a flowchart showing a method for controlling a window-cleaning robot according to an embodiment of the present disclosure. A light-emitting assembly is disposed on the window-cleaning robot. As shown inFig. 5 , the method for controlling a window-cleaning robot according to an embodiment of the present disclosure includes following steps. - In step S1, a vacuum suction value generated at a vacuum suction port of the window-cleaning robot is detected.
- For example, the vacuum suction port may be disposed at a middle position of a bottom of the body. A suction motor drives a fan to rotate with high-speed and then vacuum is generated via the vacuum suction port, such that the window-cleaning robot may suck on the window.
- Specifically, the vacuum suction value generated at the vacuum suction port of the window-cleaning robot is detected in real time when the window-cleaning robot is operating.
- In step S2, all or a part of a light-emitting area of the light-emitting assembly is lighted according to the vacuum suction value.
- In an embodiment of the present disclosure, as shown in
Fig. 3A , the light-emitting assembly includes a plurality of indicator lamps. The plurality of indicator lamps may be arranged in a ring shape, in a rectangular shape or in a triangular shape. - As shown in
Figs. 3B and3C , in an embodiment of the present disclosure, the window-cleaning robot includes an upper cover and a transparent display frame (as shown inFig. 3B ) disposed on the upper cover. The light-emitting assembly is disposed below the transparent display frame. - As shown in
Fig. 3C , indication signs (for example, low suction force, middle suction force and high suction force) may be set on the upper cover and configured to indicate a level of the value of the vacuum suction force. - Specifically, when the window-cleaning robot is operating, a corresponding light-emitting area of the light-emitting assembly is lighted according to the detected vacuum suction value, for reminding the user. In an embodiment, a lighted part of the light-emitting area is in direct proportion to the vacuum suction value. In other words, the greater the vacuum suction value is, the greater part of the light-emitting area is lighted.
- For example, as shown in
Figs. 4A-4C , a filled circle refers to a lighted indicator lamp. As shown inFigs. 4A , the controller controls all of the indicator lamps to light (i.e., the light-emitting area at this time is corresponding to all of the indicator lamps) when determining that the vacuum suction value is at a maximum value. As shown inFig. 4B , the controller controls half of the indicator lamps to light (i.e., the light-emitting area at this time is corresponding to half of the indicator lamps) when determining that the vacuum suction value is at a middle value. As shown inFig. 4C , the controller controls one indicator lamp to light (i.e., the light-emitting area at this time is corresponding to one indicator lamp) when determining that the vacuum suction value is at a minimum value. Therefore, the controller controls the light-emitting assembly to emit different light combinations dynamically when the vacuum suction value of the window-cleaning robot changes dynamically. With this display manner, it is convenient for the user to monitor the vacuum suction value in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling off of the window-cleaning robot, and improving using experience of the window-cleaning robot. - In another embodiment of the present disclosure, the window-cleaning robot includes an upper cover. The upper cover is made of transparent material. The light-emitting assembly is disposed below the upper cover.
- Specifically, if the upper cover is entirely made of transparent material, the transparent display frame may be not set, and the light-emitting
assembly 40 is disposed directly below the upper cover. - In another embodiment of the present disclosure, the method for controlling a window-cleaning robot further includes: issuing a voice reminder if the vacuum suction value is less than a preset threshold.
- Specifically, when the window-cleaning robot is likely to fall off (i.e. the vacuum suction value is less than the preset threshold), the window-cleaning robot is controlled to issue the voice reminder, so as to reminder the user of potential danger.
- With the method for controlling a window-cleaning robot of embodiments of the present disclosure, when the window-cleaning robot is operating, the vacuum suction value generated at the vacuum suction port is detected and the corresponding light-emitting area of the light-emitting assembly is lighted according to the detected value, such that the user may monitor the value of the vacuum suction force in real time when the window-cleaning robot is operating, thereby reducing a risk of sudden falling off of the window-cleaning robot, and improving using experience of the window-cleaning robot.
- In the specification, unless specified or limited otherwise, relative terms such as "central", "longitudinal", "lateral", "front", "rear", "right", "left", "inner", "outer", "lower", "upper", "horizontal", "vertical", "above", "below", "up", "top", "bottom" as well as derivative thereof (e.g., "horizontally", "downwardly", "upwardly", etc.) should be construed to refer to the orientation as then described or as shown in the drawings under discussion for simplifying the description of the present disclosure, but do not alone indicate or imply that the device or element referred to must have a particular orientation. They cannot be seen as limits to the present disclosure.
- In addition, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or significance. Thus, the feature defined with "first" and "second" may comprise one or more this feature. In the description of the present disclosure, "a plurality of' means two or more, unless specified otherwise.
- In the description of the present disclosure, it should be understood that, unless specified or limited otherwise, the terms "mounted," "connected," and "coupled" and variations thereof are used broadly and encompass such as mechanical or electrical mountings, connections and couplings, also can be inner mountings, connections and couplings of two components, and further can be direct and indirect mountings, connections, and couplings, which can be understood by those skilled in the art according to the detail embodiment of the present disclosure.
- In the description of the present disclosure, a structure in which a first feature is "on" a second feature may include an embodiment in which the first feature directly contacts the second feature, and may also include an embodiment in which an additional feature is formed between the first feature and the second feature. Furthermore, a first feature "on," "above," or "on top of' a second feature may include an embodiment in which the first feature is right "on," "above," or "on top of' the second feature, and may also include an embodiment in which the first feature is not right "on," "above," or "on top of' the second feature, or just means that the first feature is at a height higher than that of the second feature. While a first feature "beneath," "below," or "on bottom of' a second feature may include an embodiment in which the first feature is right "beneath," "below," or "on bottom of' the second feature, and may also include an embodiment in which the first feature is not right "beneath," "below," or "on bottom of' the second feature, or just means that the first feature is at a height lower than that of the second feature.
- Reference throughout this specification to "an embodiment", "some embodiments", "one embodiment", "an example", "a specific examples", or "some examples" means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the disclosure. Thus, the appearances of the phrases such as "in some embodiments", "in one embodiment", "in an embodiment", "an example", "a specific examples", or "some examples" in various places throughout this specification are not necessarily referring to the same embodiment or example of the disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Claims (13)
- A window-cleaning robot, comprising:a body (10);a vacuum suction port (20) disposed on the body (10);a suction detector configured to detect a vacuum suction value generated at the vacuum suction port (20);a light-emitting assembly (40) disposed on the body (10), wherein a light-emitting area of the light-emitting assembly (40) is configured corresponding to the vacuum suction value; anda controller, connected with the suction detector and the light-emitting assembly (40) respectively and configured to light all or a part of the light-emitting area of the light-emitting assembly (40) according to the vacuum suction value.
- The window-cleaning robot according to claim 1, wherein the light-emitting assembly (40) comprises a plurality of indicator lamps (41) and the plurality of indicator lamps (41) are arranged in a ring shape, in a rectangular shape or in a triangular shape.
- The window-cleaning robot according to claim 1 or 2, wherein the body (10) comprises an upper cover (11) and a transparent display frame (12) disposed on the upper cover (11), and the light-emitting assembly (40) is disposed below the transparent display frame (12).
- The window-cleaning robot according to claim 1 or 2, wherein the body (10) comprises an upper cover (11), the upper cover (11) is made of transparent material, and the light-emitting assembly (40) is disposed below the upper cover (11).
- The window-cleaning robot according to any one of claims 1-4, further comprising:
a voice reminding device, configured to issue a voice reminder if the vacuum suction value is less than a preset threshold. - The window-cleaning robot according to any one of claims 1-5, wherein, a lighted part of the light-emitting area is in direct proportion to the vacuum suction value.
- The window-cleaning robot according to claim 3 or 4, wherein indication signs are set on the upper cover and configured to indicate a level of the vacuum suction value.
- A method for controlling a window-cleaning robot, wherein, a light-emitting assembly (40) is disposed on the window-cleaning robot and the method comprises:detecting a vacuum suction value generated at a vacuum suction port of the window-cleaning robot (S1); andlighting all or a part of a light-emitting area of the light-emitting assembly (40) according to the vacuum suction value (S2).
- The method according to claim 8, wherein the light-emitting assembly (40) comprises a plurality of indicator lamps (41) and the plurality of indicator lamps (41) are arranged in a ring shape, in a rectangular shape or in a triangular shape.
- The method according to claim 8 or 9, wherein the window-cleaning robot comprises an upper cover (11) and a transparent display frame (12) disposed on the upper cover (11), and the light-emitting assembly (40) is disposed below the transparent display frame (12).
- The method according to claim 8 or 9, wherein the window-cleaning robot comprises an upper cover (11), the upper cover (11) is made of transparent material, and the light-emitting assembly (40) is disposed below the upper cover (11).
- The method according to any one of claims 8-11, further comprising:
issuing a voice reminder if the vacuum suction value is less than a preset threshold. - The method according to any one of claims 8-12, wherein a lighted part of the light-emitting area of the light-emitting assembly is in direct proportion to the vacuum suction value.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620049765.9U CN205514339U (en) | 2016-01-19 | 2016-01-19 | Window cleaning robot |
CN201610033578.6A CN105662264B (en) | 2016-01-19 | 2016-01-19 | Window wiping robot and its control method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3195776A1 EP3195776A1 (en) | 2017-07-26 |
EP3195776B1 true EP3195776B1 (en) | 2020-12-16 |
Family
ID=56684521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16183996.4A Active EP3195776B1 (en) | 2016-01-19 | 2016-08-12 | Window-cleaning robot and method for controlling the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170202412A1 (en) |
EP (1) | EP3195776B1 (en) |
CA (1) | CA2971033A1 (en) |
WO (1) | WO2017124716A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10272828B2 (en) * | 2016-08-16 | 2019-04-30 | Irobot Corporation | Light indicator system for an autonomous mobile robot |
CN107456174A (en) * | 2017-08-31 | 2017-12-12 | 宁波富佳实业有限公司 | A kind of cover plate mechanism for auto of sweeping robot |
USD872402S1 (en) * | 2018-04-23 | 2020-01-07 | Eozy International GmbH | Window cleaning robot |
CN114794995A (en) * | 2022-06-28 | 2022-07-29 | 山西嘉世达机器人技术有限公司 | Method and device for adjusting negative pressure in cleaning machine, cleaning machine and storage medium |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4955103A (en) * | 1988-12-09 | 1990-09-11 | The Scott Fetzer Company | Vacuum cleaner with suction indicator |
US5969600A (en) * | 1997-02-19 | 1999-10-19 | Ranco Inc. Of Delware | Dangerous condition warning device incorporating a time-limited hush mode of operation to defeat an audible low battery warning signal |
US20040120140A1 (en) * | 2002-03-27 | 2004-06-24 | Fye Michael E. | Illuminated graphics using fluorescing materials |
US6851200B2 (en) * | 2003-03-14 | 2005-02-08 | Hopkins Manufacturing Corporation | Reflecting lighted level |
KR100823006B1 (en) * | 2007-02-09 | 2008-04-18 | 김용욱 | Exterior wall cleaning robot and its method |
CN101737765A (en) * | 2008-11-26 | 2010-06-16 | 鸿富锦精密工业(深圳)有限公司 | Working state indicating lamp of electronic device |
US9215956B2 (en) * | 2010-04-09 | 2015-12-22 | Intellectual Discovery Co., Ltd. | Glass window cleaning device and a control method therefor |
JP2012211667A (en) * | 2011-03-31 | 2012-11-01 | Miraikikai Inc | Suction cup and wall surface moving machine |
WO2012148022A1 (en) * | 2011-04-29 | 2012-11-01 | 주식회사 일심글로발 | Device for cleaning glass windows, and method for controlling the movement thereof |
CN102949143B (en) * | 2011-08-29 | 2016-02-10 | 科沃斯机器人有限公司 | Glass cleaning device and control method thereof |
KR101314626B1 (en) * | 2011-12-09 | 2013-10-07 | 엘지전자 주식회사 | A robot cleaner for cleanig window |
CN103359197B (en) * | 2012-04-05 | 2015-08-19 | 科沃斯机器人有限公司 | Glass cleaning device and ambulation control method thereof |
CN103720426B (en) * | 2012-10-12 | 2016-08-03 | 科沃斯机器人有限公司 | A kind of glass-cleaning robot current failure emergency processing method |
CN203059559U (en) * | 2012-12-24 | 2013-07-17 | 昆明学院 | Household glass window cleaning machine |
WO2015081321A1 (en) * | 2013-11-29 | 2015-06-04 | Mechio Inc. | Wearable computing device |
JP6396475B2 (en) * | 2013-12-23 | 2018-09-26 | エルジー エレクトロニクス インコーポレイティド | Robot vacuum cleaner |
US9215962B2 (en) * | 2014-03-13 | 2015-12-22 | Ecovacs Robotics, Inc. | Autonomous planar surface cleaning robot |
CN204071930U (en) * | 2014-03-17 | 2015-01-07 | 科沃斯机器人科技(苏州)有限公司 | Absorption robot |
CN104930043B (en) * | 2014-03-17 | 2017-08-29 | 科沃斯家用机器人(苏州)有限公司 | Intelligent and safe sucker, certainly mobile adsorption system and its control method |
CN104921654B (en) * | 2014-03-17 | 2017-11-17 | 科沃斯机器人股份有限公司 | Adsorb robot |
CN204562022U (en) * | 2015-01-29 | 2015-08-19 | 西南大学 | A kind of slip absorption cleaning device of glass surface |
US20160226278A1 (en) * | 2015-02-02 | 2016-08-04 | Black & Decker Inc. | Power tool battery pack and system |
CN104605784B (en) * | 2015-02-13 | 2017-01-25 | 广西科技大学鹿山学院 | Safe and smart glass cleaner that can climb over obstacles |
CN204520510U (en) * | 2015-02-13 | 2015-08-05 | 广西科技大学鹿山学院 | Can the safe and intelligent device for cleaning glass of crossing over blockage |
CN204500522U (en) * | 2015-03-19 | 2015-07-29 | 湖南格兰博智能科技有限责任公司 | Glass cleaning device |
CN105212822B (en) * | 2015-10-08 | 2017-10-31 | 广东宝乐机器人股份有限公司 | A kind of window wiping robot |
GB201521712D0 (en) * | 2015-12-09 | 2016-01-20 | F Robotics Acquisitions Ltd | Window cleaning robot |
CN105662264B (en) * | 2016-01-19 | 2019-03-29 | 江苏美的清洁电器股份有限公司 | Window wiping robot and its control method |
-
2016
- 2016-07-22 CA CA2971033A patent/CA2971033A1/en not_active Abandoned
- 2016-07-22 WO PCT/CN2016/090952 patent/WO2017124716A1/en active Application Filing
- 2016-08-12 US US15/235,908 patent/US20170202412A1/en not_active Abandoned
- 2016-08-12 EP EP16183996.4A patent/EP3195776B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CA2971033A1 (en) | 2017-07-19 |
EP3195776A1 (en) | 2017-07-26 |
US20170202412A1 (en) | 2017-07-20 |
WO2017124716A1 (en) | 2017-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3195776B1 (en) | Window-cleaning robot and method for controlling the same | |
JP6887715B2 (en) | Electric bed hand switch and electric bed | |
CN102905073B (en) | Control device of television camera | |
CN206621061U (en) | Desk for preventing myopia | |
CN204065926U (en) | A kind of display being conducive to vision protection | |
CN103438382A (en) | Method and lighting system for automatically adjusting light intensity of light source | |
CN207561661U (en) | A kind of electronic Fashion Exhibition Hall stage property | |
US20200069490A1 (en) | Control system for a lifting chair | |
CN116061685A (en) | user interface device | |
JP5251488B2 (en) | refrigerator | |
CN105662264B (en) | Window wiping robot and its control method | |
KR101383562B1 (en) | Stick for vision impared people | |
CN203131370U (en) | Safety electric floor-standing TV stand | |
CN203115658U (en) | Anti-myopia desk lamp | |
CN104654098A (en) | Table lamp | |
CN103310584A (en) | Infrared alarm | |
CN205514339U (en) | Window cleaning robot | |
CN210514962U (en) | Intelligent lifting table | |
CN206398476U (en) | A kind of reliable wall lamp | |
CN214179624U (en) | Intelligent desk | |
WO2019084997A1 (en) | Cup holder, and furniture article | |
CN206471050U (en) | A kind of early warning sand table against pressure | |
KR101543460B1 (en) | Smart control system for display device | |
CN209274475U (en) | An artificial intelligence-based driving assistance device | |
CN207421930U (en) | A kind of silicon rubber suction cup portable lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180122 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200923 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: JIANGSU MIDEA CLEANING APPLIANCES CO., LTD. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016049767 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1344802 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210316 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1344802 Country of ref document: AT Kind code of ref document: T Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210316 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016049767 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
26N | No opposition filed |
Effective date: 20210917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016049767 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210416 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210812 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210812 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201216 |