EP3191690A1 - Turbinenschaufel mit innenmodul und verfahren zur herstellung einer turbinenschaufel - Google Patents
Turbinenschaufel mit innenmodul und verfahren zur herstellung einer turbinenschaufelInfo
- Publication number
- EP3191690A1 EP3191690A1 EP15778642.7A EP15778642A EP3191690A1 EP 3191690 A1 EP3191690 A1 EP 3191690A1 EP 15778642 A EP15778642 A EP 15778642A EP 3191690 A1 EP3191690 A1 EP 3191690A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- inner module
- turbine blade
- module
- jacket
- shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/04—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/06—Vacuum casting, i.e. making use of vacuum to fill the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/007—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
- F01D5/188—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
- F01D5/189—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/005—Article surface comprising protrusions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/001—Turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/21—Manufacture essentially without removing material by casting
- F05D2230/211—Manufacture essentially without removing material by casting by precision casting, e.g. microfusing or investment casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/22—Manufacture essentially without removing material by sintering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/30—Manufacture with deposition of material
- F05D2230/31—Layer deposition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/202—Heat transfer, e.g. cooling by film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/30—Retaining components in desired mutual position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/30—Retaining components in desired mutual position
- F05D2260/36—Retaining components in desired mutual position by a form fit connection, e.g. by interlocking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to a turbine blade with an inner module and a method for its production by means of selective laser melting.
- Gas turbines are used as engines for various facilities, such as power plants, engines u. ä. gas turbine components, particularly turbine vanes and blades ⁇ , but also ring segments or components of the Be ⁇ reaching the combustion chamber are subjected to during their operation high ther ⁇ mix and mechanical loads. These are often cooled with compressor air and in the case of the combustion chamber with unburned fuel. Sometimes water vapor is used for cooling.
- Turbine blades usually form a cavity formed by their outer shell, also referred to as a jacket, which cavity is often subdivided by side walls.
- the components are flowed through, for example, in an interior space formed by the side walls of the cooling medium, the heat being removed from the component inside and the component is thus actively cooled ⁇ .
- cooling air is directed out of the nenraum In ⁇ by so-called impingement channels in a space between the interior and the jacket and rebounds there on the inside of the thermally highly loaded jacket.
- the technology in this application is intended primarily for cooling air as a cooling medium. Therefore, the term cooling air is used in the following, but excluding other cooling media. Following this, the cooling air is often blown out through holes in the jacket. The cooling air thereby carries heat from the interior or the component wall and also forms a film on the blade surface, which forms an insulating layer between the blade surface and the hot gas.
- the object of the invention is therefore to provide a turbine blade with an insert ensuring optimum cooling, which is complex, stable and easy to produce.
- a method ⁇ bmwzu with which may be a turbine blade with a corresponding insert made.
- the first object is achieved by a turbine blade with the features of claim 1.
- the second object is achieved by a method having the features of claim 10.
- a first aspect of the invention relates to a turbine blade with a jacket and an inner module adapted to the shape of the jacket, wherein the inner module has an inner space through which an inflow opening can flow in a longitudinal direction of the inner module and an inner wall with a number of openings which can be flowed through in the radial direction with a outside of the wall of the inner module connecting channels in which between the outer side of the wall of the inner ⁇ module and an inner side of the shell, a peripheral Zwi ⁇ is available space, and between the inside and an outer side of the shell in a certain angle of inclination to the outside of the shell a number of perforations is present, characterized in that the outside of the inner module is connected by means of at least one fixed bearing and min ⁇ least one loose bearing with the inside of the shell.
- the component according to the invention is so Artwork that it ⁇ so well in the longitudinal as well as in the radial direction of cooling air can be flowed through.
- the cooling air passes through fine Ka ⁇ ducts in the peripheral intermediate space and meets accurately dimensioned as impingement cooling air to the inside of the jacket of the turbine blade.
- the air then flows through perforations in the jacket to the outside of the jacket, where a
- the turbine blade according to the invention is advantageous because, in addition to the optimized internal cooling of the blade, by utilizing the cooling potential of the cooling air, it also allows the implementation of lightweight structures, since cooling and structural functions can be decoupled.
- the modular design of the construction ⁇ part and the use of different materials for outer shell and the module have an advantageous effect on thermal ⁇ clamping voltages in the component.
- the advantage of the design of at least one connection of the inner module with the shell of the turbine blade at some points as a movable bearing is mainly in the prevention of static overdetermination of the integration of the inner module in the turbine blade. Furthermore, this design allows for free thermal expansion or centrifugal force expansion in a mainly radial direction. It allows the compensation of manufacturing gungs- and joint tolerances, facilitates the positioning of the inner module in the blade and favors the vibration damping ⁇ .
- Inner module with the jacket as a fixed bearing serves mainly the load absorption of the inner module in the component.
- the connection Zvi ⁇ rule the inner module and the turbine blade is caused mainly by the support sections of the inner module. It is therefore preferred that support profiles are formed on the outside of the wall of the inner module. These support profiles typically have a supporting flank and a free flank.
- the Connection of jacket and inner module by means of a fixed bearing is advantageous because the remaining freedom ⁇ grade can be determined, especially in the radial direction.
- the fixed bearing also serves for load absorption (centrifugal force), damping and positioning of the inner module in the blade.
- the material of the inner module is a metal . It may ideally be an alloy or a superalloy. It may be the same material as the shell of the turbine blade, but also different from this.
- a metal advantageously allows a metallurgical bond between the indoor module and the casing of the turbine blade, which is typically also made from Me ⁇ tall, ideally, an alloy or a super alloy.
- the jacket and the inner module are metallurgically connected. This can be done by melting during the casting process of the turbine blade, for example. However, it is also preferred if the inner module and the jacket of the turbine blade are connected by means of the fixed bearing by positive engagement or frictional connection.
- the angles of inclination of the perforations in the casing of the turbine blade are designed relative to the outside of the shell so that film formation on the outside of the shell can be effected by the air flowing out via the perforations.
- the film formation is advantageous because it causes cooling on the outside of the shell and thus on the upper surface ⁇ the turbine blade.
- the interior of the inner module is preferably in at least two by at least one through-flow opening divided into interconnected chambers. The division into chambers serves, among other things, the stability of the internal volume.
- the interior module in the distal wall i. in the wall in the region of the turbine blade tip, preferably additional channels in its wall. These are not flowed through in the radial direction of the inner module or the turbine blade, but in the longitudinal direction. These channels are also designed for impingement cooling.
- the inner module of the turbine blade is produced by selective laser melting.
- the inner module is Artwork due to the possibilities of the process of selective melting, in particular by the layer-wise building up, in a relatively simple manner with a complex and stable structure that it can be flowed through both in the radial and in the direction of flow of cooling air can.
- the advantage of such interior modules is that they can be made complex, but they are optimally designed.
- the representation of components with ⁇ tels Selective laser melting is particularly advantageous.
- a second aspect of the invention is directed to a method for producing a turbine blade, which comprises the following steps S1 to S5 for producing an inner module: S1) providing a construction platform in a powder bed,
- the powder particles are also fused with an underlying layer.
- the steps S2 to S5 are repeated in a number, as is necessary for the completion of the inner module ⁇ .
- the method for the production by means of selective laser melting is advantageous because it is a formless production, and thus no tools or forms are not ⁇ agile. Furthermore, the method is advantageous because there is a large freedom of geometry, the component forms he ⁇ allows, which are not or only with great effort can be produced with form-bonded method.
- the indoor unit particularly with respect to complex structures, because of the Mög ⁇ possibilities of this process is so Artwork that it can be flowed through both in the radial and in the direction of flow of cooling air and this accurately dimensioned to the entspre ⁇ required positions by fine channels can be performed as impact cooling air on the inside of the jacket.
- ⁇ light of the manufacturing process enabling the design of complex structures in the outside that allow the mounting of the inner module to the shell via fixed and floating bearings.
- the powdery material comprises a metal. It is further preferred if the powdery material is a metal, and also preferably given ⁇ if the powdery material is a metal alloy.
- the method according to the invention further comprises the following steps S6 to S10 for producing a shell of the turbine blade, which join at step S4 of the production of the inner module when it is completed:
- the support profile which is not covered by ceramic core material, is intended to form the fixed bearing during the casting of the jacket, by way of which the inner module is connected to the shell of the turbine blade.
- the tip of the support profiles is thus left metal ⁇ lish blank to create the conditions for a positive or, especially, metallurgical bond Zvi ⁇ rule indoor unit and coat. It is preferred if the outside of the inner module to the inside of the jacket verbun by mechanical form fit ⁇ is the. This is achieved by the design of the supporting profiles with ⁇ means of selective laser melting and the casting mold of the shell with the corresponding interlocking structures, so corresponding bulges possible.
- the outside of the inner ⁇ module is metallurgically connected to the inside of the shell. This is also made possible by the formation of the carrier profile by means of selective laser melting and the casting mold of the jacket. When the shell is cast, the high temperatures of the hot metal cause a metallurgical bond in the area of the supporting profile.
- An interior module in the present invention is an insert for turbine blades.
- the term indoor module underlines the modular design.
- the inside of the inner module refers to its inwardly directed surface, which bounds the interior of the inner ⁇ module.
- the outer side of the inner module refers to its outwardly facing surface, which faces in the radial direction of the inside of the shell and forms an inner Begren ⁇ wetting of the peripheral gap.
- the inside of the jacket refers to its inward facing surface, which delimits the peripheral gap in ra ⁇ dialer outward direction.
- the outside of the shell refers to its radially outwardly directed surface, which may also be referred to as the outside or surface of the shell or turbine blade.
- a fixed bearing is a so-called fixed bearing, which prevents all translational movements of the stored body, in the present application of the inner module. No torques are transmitted, the inner module is fixed in three spatial directions.
- a floating bearing prevents only one or two Translationsbewe ⁇ conditions and lets the others. Accordingly, there is no fixed connection with or between the inner module and the jacket, at least in one or in two directions.
- the longitudinal direction of the indoor module and the equally oriented turbine blade and the shell of the turbine blade refers to the extent of the turbine show ⁇ fel from the root portion of the turbine blade, where it is attached to the Turbi ⁇ nenrotor until the tip of the turbine blade leaf.
- the radial direction is directed perpendicular to the longitudinal direction to the outside.
- FIGS. 1 shows a longitudinal section of an exemplary embodiment of a turbine blade showing the internal geometry of an inner module and a shell of the turbine blade.
- FIG. 2 shows a longitudinal section of a section of the turbine blade according to FIG. 1.
- FIG. 3 shows a longitudinal section of a portion of the turbine blade of FIG. 1.
- FIG. 4 shows a longitudinal section of a portion of the turbine blade of FIG. 1.
- 5 shows a longitudinal section of an apparatus for producing the inner module of the turbine blade according to FIG.
- FIG. 7 shows a wax mold for producing the jacket of the turbine blade according to FIG. 1.
- Figure 8 is a flow chart of an exemplary
- the turbine blade 1 as shown in Fig. 1 embodiment shown by way of example comprises a shell 2 and an inner module 3.
- the indoor unit 3 is substantially matched to the shape of means of Man ⁇ 2.
- the interior module 3 has an interior space 4, which can be flowed through in the longitudinal direction 17 of the interior module 3, with an inflow opening 5 and a wall 6 with a number of openings that can be flowed through in the radial direction 18, an inside 61 with an outside 62 of the wall 6 of the interior module 3
- the illustrated inner module 3 in the distal region of the wall 6 has a number of channels 8 which can be flowed through in the longitudinal direction 17 and are arranged here in addition to the channels 7 which can be flowed through in the radial direction in the lateral area of the wall 6.
- peripheral interspace 9 Between the inner module 3 and the jacket 2 there is a peripheral interspace 9, which is delimited by the outer side 62 of the inner module 3 and the inner side 21 of the jacket 2.
- cooling air in the peripheral gap 9 can be flowed, where they bounce on the inside 21 of the shell 2 and thereby can cause the effect of impingement cooling.
- a number of perforations 10 are arranged, through which the cooling air from the space 9 on the outside 22 of the shell 2 is flowable, where it can form a cooling film.
- the inner module 3 is connected by means of fixed bearings 11 and movable bearings 12 with the jacket 2.
- at least one bearing is present, but preferably a plurality of fixed bearing 11 and a plurality of floating bearing 12 are provided for connecting the inner module 3 and 2 sheath.
- the inner module 3 at least one support profile 15 and for the connection via movable bearing 12 at least one support section 16, wherein the number of support profiles 15 and 16 according to the length of the turbine blade 1 and accordingly of the inner ⁇ module 3 is directed ,
- the jacket 2 has at the points of the pre ⁇ seen fixed bearing 11 to the support profiles 15 corresponding bulges 19 and at the locations of the provided
- the support profiles 15 and 16 and the bulges 19 and 20 preferably extend annularly around an entire area around the outer side 62 of the inner module 3 or the inner side 21 of the shell 2, but can also be arranged only at individual locations.
- the fixed bearing 11 and floating bearing 12 are accordingly preferably closed annular, but can also be arranged only at individual points.
- the loose bearings 12 interrupt the peripheral gap 9, provided that they run in a region around the outer side 62 of the inner module 3 and there ⁇ firmly abut an area of the inner side 21 of the shell 2.
- the inner space 4 of the inner module 3 consists of a plurality of chambers 14 which are separated by the material of the inner module 3 and which are connected to one another via openings 13 which can be flowed through in the longitudinal direction.
- the inner module 3 preferably 2 chambers 14, also preferably 3, also preferably 4, and also preferably 5 or more.
- the turbine blade 1 a Tannenbaumstruk ⁇ tur 31, which serves the stable connection via a correspondingly shaped structure with the turbine rotor (not shown).
- the peri ⁇ pheren intermediate space 9 essential for the cooling of the turbine blade 1 is formed between the outer side 61 of the wall 6 of the inner module 3 and the inner side 21 of the shell 2, as shown in Fig. 2.
- the channels 7 are formed so that cooling air in radia ⁇ ler direction 18 can flow from the interior 4 through the channels 7 in the peripheral gap 9, where it meets the inside 21 of the shell 2.
- the perforations 10 in the shell 2 are formed with respect to number and angle of inclination so that through the perforations from the peripheral gap 9 on the outside 22 of the shell 2 flowing cooling air can form a cooling film there.
- the angle of inclination of the perforations relative to the outside 22 is between 10 and 80 degrees, preferably between 20 and 70 degrees, more preferably between 30 and 60 degrees, even more preferably between 40 and 50 degrees, and even more preferably 45 degrees.
- the connection of the inner module 3 with the jacket 2 by means of fixed bearings 11 is shown in detail in FIG.
- the support section 15 of the indoor unit 3 and the corresponding education book tung 19 in the shell 2 are dimensionally successive ranks ⁇ true, so that they match one another form-fitting manner. Due to the resulting complete positive connection, the nenmodul 3 at the location of the fixed bearing 11 in any direction movable.
- step S 1 The connection of the inner module 3 with the jacket 2 by means of floating bearings 12 is shown in detail in Fig. 4.
- the supporting profile 16 of the inner module 3 and the corresponding recess 20 in the shell 2 are matched to each other dimensional, las ⁇ sen However, degrees of freedom, ie, a certain mobility or a certain margin of the supporting profile 16 within the bulge 20 to.
- the manufacture of the inner module 3 of the turbine blade 1 is carried out in a molten bath 100 according to the steps of the flow chart in FIG. 8.
- step S 1 a build platform 101 is provided according to FIG.
- a powdery material 102 preferably of a metal or a metal alloy, for example of the same material as the door ⁇ binenschaufel, but optionally also from another Mate ⁇ rial, in step S2 in a certain quantity by means of the filling device 103 on the build platform 101 applied.
- the deposited material 102 is spread on the build platform 101, for example, by a slider or a wiper, so that it forms a layer in a thickness that can be well melted by laser beams 105 according to the desired structure.
- Preferred layer thicknesses are 20-100 ⁇ m.
- step S4 the powder particles 103 are locally melted by the action of a laser beam 105 which is generated by a laser 104 and guided by the rotating mirror 106 in software-controlled manner over the build platform 101 in such a way that the desired solid structures are formed, for example the support profiles 15 and 16.
- the pulverulent material 102 is completely converted at the locations of the laser radiation. Melted and forms a solid material ⁇ layer after solidification.
- step S4 is checked whether the indoor unit is completed ⁇ . If it is not finished, in step S5, the build platform is lowered to the appropriate height with a layer thickness 101, and the process from step S2 to again gestar tet ⁇ . The cycle of the steps S2 - S5 as long again ⁇ obtained until the indoor unit is completed in the desired pattern. 3 If it is determined in step S4 that the inner module is completed ⁇ to the indoor unit 3 around a ceramic casting core 110 is produced at this step, then in step S6. For the casting core while conventional ceramic material is used. In this case, as shown in Fig. 6, the support profiles 15, which are provided for the formation of fixed bearings 11, not encased in ceramic. The support profiles 16, which are provided for the formation of movable bearings 12, however, are encased in ceramic.
- step S7 the ceramic core casting 110 containing the inner module 3 is embedded in a wax model 120 of the turbine blade 1, in which it is surrounded by wax 121, as shown in FIG. Then, in step S8, a casting mold, so-called casting shell, for the shell 2 is produced. In step S9, the ceramic core 110 with inner module 3 in the casting shell is stabilized by means of ceramic and / or metallic pins.
- step S10 the shape of the shell 2 is poured.
- the area of the ceramic casting core 110 forms the peripheral gap 9 between the inner module 3 and the jacket 2.
- the material of the shell for example, metals before Trains t ⁇ alloys and superalloys.
- the outer side 62 of the inner module 3 with the inner side 21 of the shell 2 in the region of the fixed bearing 11 is preferably connected by mechanical positive connection.
- the Au ⁇ Hzseite 62 of the indoor module 3 with the inner side 21 of the Man ⁇ means of 2 in the region of the fixed bearing 11 is also preferably a metallurgical bond connected.
- the metallurgical connection is made possible by the high temperatures of the liquid metal of the shell 2, which cause melting of exposed areas of the inner module.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Es wird eine Turbinenschaufel mit einem Mantel und einem Innenmodul bereitgestellt, wobei das Innenmodul sowohl in Längsrichtung als auch in radialer Richtung von einem Kühlmedium durchströmbar ist und das Innenmodul mit dem Mantel mittels Festlager und Loslager angebracht ist. Es wird weiterhin ein Verfahren zur Herstellung einer Turbinenschaufel mit einem Innenmodul und einem Mantel mittels Selektivem Laserschmelzen bereitgestellt.
Description
Beschreibung
TURBINENSCHAUFEL MIT INNENMODUL UND VERFAHREN ZUR HERSTELLUNG EINER TURBINENSCHAUFEL
Die Erfindung betrifft eine Turbinenschaufel mit einem Innen- modul und ein Verfahren zu dessen Herstellung mittels Selek- tivem Laserschmelzen.
Gasturbinen werden als Kraftmaschinen für verschiedene Einrichtungen verwendet, z.B. in Kraftwerken, bei Triebwerken u. ä. Gasturbinenbauteile, insbesondere Turbinenleit- und Lauf¬ schaufeln, aber auch Ringsegmente oder Bauteile aus dem Be¬ reich der Brennkammer sind während ihres Betriebs hohe ther¬ mische und mechanische Belastungen ausgesetzt. Dazu werden sie häufig mit Verdichterluft und im Falle der Brennkammer auch mit unverbranntem Brennstoff gekühlt. Mitunter wird auch Wasserdampf zur Kühlung verwendet.
Turbinenschaufeln bilden in der Regel einen durch ihre Außenhülle, auch als Mantel bezeichnet, gebildeten Hohlraum, wobei dieser Hohlraum häufig durch Seitenwände unterteilt ist. Zur Kühlung werden die Bauteile z.B. in einem von den Seitenwänden gebildeten Innenraum von dem Kühlmedium durchströmt, wobei dem Bauteil im Inneren Wärme entzogen und das Bauteil so¬ mit aktiv gekühlt wird. Hierzu wird z.B. Kühlluft aus dem In¬ nenraum durch sogenannte Prallkanäle in einen Zwischenraum zwischen dem Innenraum und dem Mantel geleitet und prallt dort auf die Innenseite des thermisch hoch belasteten Mantels. Die Technologie in dieser Anmeldung ist vor allem für Kühlluft als Kühlmedium vorgesehen. Darum wird im Weiteren der Begriff Kühlluft verwendet, ohne jedoch andere Kühlmedien auszuschließen .
Im Anschluss daran wird die Kühlluft häufig durch Bohrungen im Mantel ausgeblasen. Die Kühlluft führt dabei Wärme aus dem Inneren bzw. der Bauteilwand ab und bildet darüber hinaus einen Film auf der Schaufeloberfläche, der als Dämmschicht zwischen der Schaufeloberfläche und dem heißen Gas bildet.
Bei derzeitigen Ausführungen von Gasturbinen werden im Interesse einer effektiven Kühlung hinsichtlich Kosten, Bauteillebensdauer, Wirkungsgrad und Leistung auch Nachteile in Kauf genommen. So wird beispielsweise in Turbinenlaufschaufeln eine auf mechanische Integrität und Kühlluftführung ausge¬ legte Innengeometrie durch die Form eines Kerns im Vakuum- feinguss erzeugt. Hier gelang es beispielsweise durch die Mikrosystemtechnologie die Kerne und damit das spätere Bau¬ teil noch komplexer, stabiler und im Mikrobereich noch präzi- ser auszuführen. Bei Turbinenleitschaufein wird die Innengeometrie oft neben dem Abbild des Gusskernes auch durch Kühl- lufteinsätze, in der Regel sogenannte Prallkühlsätze darge¬ stellt. Als Cutting Edge Technologie dafür gilt die soge¬ nannte Spar-Shell-Technologie von Florida Turbine Technolo- gies.
Die Lösungen des Stands der Technik haben jedoch einige Nachteile. Konventionelle Kernherstellungsprozesse für Turbinen¬ schaufeln sind hinsichtlich Kerngeometriekomplexität, Kern¬ stabilität, Geometrieteilauflösung und anderen hinsichtlich anderer Kriterien limitiert. Auch Mikrokernen sind bei der auf Optimierung zielenden Gestaltung Grenzen gesetzt, besonders in Bezug auf die Maße und die Stabilität der komplexen keramischen Kerne während des Fertigungsprozesses. Der Her- stellungsprozess ist auch aufgrund der hohen Ausschlussrate vergleichsweise teuer. Bei Laufschaufeln mit Kernen aus konventionellen Mikroprozessen verläuft die Kühlluftströmung hauptsächlich in radialer Richtung, was eine optimale Ausnut-
zung des Kühlluftpotenziales in Grenzen zulässt, gerade unter dem Gesichtspunkt, dass so bei erhöhtem lokalen Wärmeübergang oft eine generelle Erhöhung des Kühlluftmassenstroms der Schaufeln nötig ist, um die Wärme auch aus dem Bauteil abfüh- ren zu können. Insbesondere bei Lauf-, aber auch bei Leit¬ schaufeln von Turbinen tritt häufig das Problem auf, dass durch thermische Belastung einerseits und durch effektive Kühlung andererseits auftretende Spannungen im Bauteil die Lebensdauer reduzieren bzw. die Auslegung begrenzt wird, da es im Bauteil Bereiche gibt, an denen sehr heiße Bereiche, z.B. Außenwände, an sehr kalte Bereiche, z.B. sehr stark ge¬ kühlte Innenwände, grenzen, weil die mit konventionellen oder Mikrokern hergestellten Turbinenlaufschaufeln ein integrales, auch aus zusammengehörigen, gleichartigen Materialien beste- hendes Bauteil bilden. Ansätze einige Bereich thermisch zu isolieren, z.B. durch lokale keramische Innenbeschichtungen, und damit das Problem zumindest teilweise zu lösen, konnten bisher fertigungstechnisch nicht umgesetzt werden.
Bei Turbinenleitschaufein tritt außerdem das Problem auf, dass der Kühlluftversorgungsdruck dort in der Regel in allen Bereichen eines Bauteils gleich hoch anliegt, was nicht not¬ wendig ist. Auf diese Weise wird zu einem großen Teil Kühlpo¬ tential verschenkt und teure Verdichterluft zur Kühlung ver¬ wendet. Die Spar Shell Technologie bietet hier durch die Tat- sache, dass die Kühlluft das Bauteil nicht nur radial, son¬ dern auch in und entgegen der Strömungsrichtung durchströmt, Vorteile hinsichtlich der Kühlluftausnutzung und somit des Wirkungsgrades. Allerdings ist die Herstellung der Kühlein¬ sätze (Spar) recht aufwendig und damit teuer und auch in ihrer Komplexität fertigungstechnisch limitiert. Darüber hinaus ist das anschließende Einfügen in das Bauteil (Shell) ebenfalls aufwendig, und die Bauteilauslegung durch beste¬ hende Fügetechnologien in die Bauteilgestaltung durch nötige
Einschiebbarkeit in das Bauteil vor dem Fügen bzw. bei der Montage eingeschränkt.
Es besteht damit die Aufgabe, eine Turbinenschaufel mit einem eine optimale Kühlung gewährleistenden Einsatz bereitzu- stellen, der komplex, stabil und dabei leicht herstellbar ist. Es besteht weiterhin die Aufgabe ein Verfahren bereitzu¬ stellen, mit der eine Turbinenschaufel mit einem entsprechenden Einsatz hergestellt werden kann. Die erste Aufgabe wird durch eine Turbinenschaufel mit den Merkmalen des Anspruches 1 gelöst. Die zweite Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruches 10 gelöst. Weitere vorteilhafte Varianten und Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen, den Ausführungsbeispielen und den Figuren . Ein erster Aspekt der Erfindung betrifft eine Turbinenschaufel mit einem Mantel und einem der Form des Mantels an- gepassten Innenmodul, wobei das Innenmodul einen in einer Längsrichtung des Innenmoduls durchströmbaren Innenraum mit einer Einströmöffnung und eine Wand mit einer Anzahl von in radialer Richtung durchströmbaren, eine Innenseite mit eine Außenseite der Wand des Innenmoduls verbindenden Kanälen um- fasst, bei dem zwischen der Außenseite der Wand des Innen¬ moduls und einer Innenseite des Mantels ein peripherer Zwi¬ schenraum vorhanden ist, und zwischen der Innenseite und einer Außenseite des Mantels in einen bestimmten Neigungswinkel zur Außenseite des Mantels eine Anzahl von Perforationen vorhanden ist, dadurch gekennzeichnet, dass die Außenseite des Innenmoduls mittels mindestens eines Festlagers und min¬ destens eines Loslagers mit der Innenseite des Mantels ver- bunden ist.
Das erfindungsgemäße Bauteil ist so gestaltbar, dass es so¬ wohl in Längs- als auch in radialer Richtung von Kühlluft
durchströmt werden kann. Die Kühlluft tritt durch feine Ka¬ näle in den peripheren Zwischenraum und trifft dort genau bemessen als Prallkühlluft auf die Innenseite des Mantels der Turbinenschaufel. Anschließend strömt die Luft durch Perfora- tionen im Mantel auf die Außenseite des Mantels, wo eine
Filmbildung und weitere konvektive Wärmeabfuhr erfolgt. Die erfindungsgemäße Turbinenschaufel ist vorteilhaft, weil sie neben der optimierten Innenkühlung der Schaufel unter Ausnutzung des Kühlpotentials der Kühlluft auch die Umsetzung von Leichtbaustrukturen ermöglicht, da Kühl- und Strukturfunktion entkoppelt werden können. Die modulare Ausführung des Bau¬ teils und die Verwendung verschiedener Werkstoffe für Mantel und Innenmodul wirken sich vorteilhaft auf thermischen Span¬ nungen im Bauteil aus. Der Vorteil der Gestaltung mindestens einer Verbindung des Innenmoduls mit dem Mantel der Turbinenschaufel an manchen Stellen als Loslager besteht vor allem in der Vermeidung der statischen Überbestimmtheit der Integration des Innenmoduls in die Turbinenschaufel. Weiterhin lässt diese Gestaltungs- form freie thermische oder Fliehkraftdehnung in hauptsächlich radialer Richtung zu. Sie ermöglicht den Ausgleich von Ferti- gungs- und Fügetoleranzen, erleichtert die Positionierung des Innenmoduls in der Schaufel und begünstigt die Schwingungs¬ dämpfung . Der Vorteil der Gestaltung mindestens einer Verbindung des
Innenmoduls mit dem Mantel als Festlager dient vor allem der Lastaufnahme des Innenmoduls im Bauteil. Die Verbindung zwi¬ schen dem Innenmodul und der Turbinenschaufel wird vor allem durch die Trageprofile des Innenmoduls bewirkt. Es ist darum bevorzugt, dass an der Außenseite der Wand des Innenmoduls Trageprofile ausgebildet sind. Diese Trageprofile weisen typischerweise eine Tragflanke und eine Freiflanke auf. Die
Verbindung von Mantel und Innenmodul mittels eines Festlagers ist vorteilhaft, weil dadurch die verbleibenden Freiheits¬ grade festgelegt werden können, insbesondere in der radialen Richtung. Das Festlager dient auch der Lastaufnahme (Flieh- kraft) , der Dämpfung und der Positionierung des Innenmoduls in der Schaufel.
Es ist bevorzugt, wenn das Material des Innenmoduls ein Me¬ tall ist. Dabei kann es idealerweise eine Legierung oder eine Superlegierung sein. Es kann das gleiche Material wie das des Mantels der Turbinenschaufel sein, aber auch von diesem unterschiedlich. Ein Metall ermöglicht vorteilhafterweise eine metallurgische Verbindung zwischen Innenmodul und dem Mantel der Turbinenschaufel, der typischerweise ebenfalls aus Me¬ tall, idealerweise einer Legierung oder einer Superlegierung, gefertigt ist.
In einer weiteren bevorzugten Ausführungsform sind der Mantel und das Innenmodul metallurgisch verbunden. Dies kann z.B. durch Zusammenschmelzen während des Gussprozesses der Turbi¬ nenschaufel geschehen. Es ist aber ebenfalls bevorzugt, wenn das Innenmodul und der Mantel der Turbinenschaufel mittels des Festlagers durch Formschluss oder Kraftschluss verbunden sind .
Vorzugsweise sind die Neigungswinkel der Perforationen im Mantel der Turbinenschaufel relativ zur Außenseite des Man - tels so ausgebildet, dass durch die über die Perforationen ausströmende Luft eine Filmbildung auf der Außenseite des Mantels bewirkbar ist. Die Filmbildung ist vorteilhaft, weil sie auf der Außenseite des Mantels und damit auf der Ober¬ fläche der Turbinenschaufel eine Kühlung bewirkt. Der Innenraum des Innenmoduls ist vorzugsweise in mindestens zwei durch jeweils mindestens eine durchströmbare Öffnung
miteinander verbundene Kammern unterteilt. Die Unterteilung in Kammern dient u.a. der Stabilität des Innenvolumens.
Weiterhin weist das Innenmodul in der distalen Wand, d.h. in der Wand im Bereich der Turbinenschaufelspitze, vorzugsweise zusätzliche Kanäle in seiner Wand auf. Diese werden nicht in radialer Richtung des Innenmoduls bzw. der Turbinenschaufel durchströmt, sondern in Längsrichtung. Diese Kanäle sind ebenfalls für eine Prallkühlung vorgesehen.
Es ist besonders bevorzugt, wenn das Innenmodul der Turbinen- schaufei durch Selektives Laserschmelzen erzeugt wird. Mit¬ tels Selektiven Laserschmelzen ist das Innenmodul aufgrund der Möglichkeiten des Prozesses des Selektiven Schmelzens, vor allem durch das schichtweise Aufbauen, auf relativ einfache Weise mit einer komplexen und stabilen Struktur so gestaltbar, dass es sowohl in radialer als auch in Strömungsrichtung von Kühlluft durchströmt werden kann. Der Vorteil solcher Innenmodule liegt darin, dass sie komplex gestaltet werden können, dabei aber optimal gestaltbar sind. Besonders in Verbindung mit keramischen Rüstkern zur Bauteilherstellung der Turbinenschaufel ist die Darstellung von Bauteilen mit¬ tels Selektiven Laserschmelzen besonders vorteilhaft.
Ein zweiter Aspekt der Erfindung betritt ein Verfahren zur Herstellung einer Turbinenschaufel, welches folgende Schritte Sl bis S5 zum Erzeugen eines Innenmoduls umfasst: - Sl) Bereitstellung einer Bauplattform in einem Pulverbett,
52) Aufbringen eines pulverförmigen Materials in einer bestimmten Menge,
53) Verteilen des Materials über die Bauplattform,
54) lokalen Verschmelzen von Pulverteilchen durch Wirkung eines Laserstrahls,
55) Absenken der Plattform.
Beim lokalen Verschmelzen von Pulverteilchen werden die Pul- verteilchen auch mit einer darunterliegenden Schicht verschmolzen. Die Schritte S2 bis S5 werden dabei in einer Anzahl wiederholt, wie zur Fertigstellung des Innenmoduls not¬ wendig ist. Das Verfahren zur Herstellung mittels Selektiven Laserschmelzen ist vorteilhaft, weil es sich um eine formlose Fertigung handelt, und damit keine Werkzeuge oder Formen not¬ wendig sind. Weiterhin ist das Verfahren vorteilhaft, weil eine große Geometriefreiheit herrscht, die Bauteilformen er¬ möglicht, die mit formgebundenen Verfahren nicht oder nur mit großem Aufwand herstellbar sind. So ist das Innenmodul, vor allem in Bezug auf komplizierte Strukturen, aufgrund der Mög¬ lichkeiten dieses Prozesses so gestaltbar, dass es sowohl in radialer als auch in Strömungsrichtung von Kühlluft durchströmt werden kann und diese genau bemessen an den entspre¬ chenden Stellen durch feine Kanäle als Prallkühlluft auf die Innenseite des Mantels geführt werden kann. Außerdem ermög¬ licht der Herstellungsprozess die Gestaltung komplexer Strukturen in der Außenseite, die die Befestigung des Innenmoduls mit dem Mantel über Fest- und Loslager ermöglichen. Es ist dabei besonders bevorzugt, wenn das pulverförmige Material ein Metall aufweist. Es ist weiterhin bevorzugt, wenn das pulverförmige Material ein Metall ist, und ebenfalls bevor¬ zugt, wenn das pulverförmige Material eine Metalllegierung ist. Dies ist deshalb vorteilhaft, weil dadurch eine metal¬ lurgische Verbindung zwischen dem Innenmodul und dem Mantel der Turbinenschaufel, der typischerweise ebenfalls aus Metall besteht, möglich ist.
Es ist weiterhin bevorzugt, wenn während des Selektiven La¬ serschmelzprozesses in der Außenseite des Innenmoduls Trag¬ profile erzeugt werden. Die Tragprofile weisen Tragflanken und Freiflanken auf. Über diese Tragprofile ist eine Befesti¬ gung des Innenmoduls mit dem Mantel möglich.
Vorzugsweise umfasst das erfindungsgemäße Verfahren weiterhin folgende Schritte S6 bis S10 zum Erzeugen eines Mantels der Turbinenschaufel, die sich an Schritt S4 der Herstellung des Innenmoduls anschließen, wenn es fertiggestellt ist:
56) Aufbringen eines keramischen Gusskerns um das Innenmodul, wobei die Trag- und Freiflanken bei mindestens einem für ein Festlager vorgesehenen Tragprofil nicht von einem keramischen Kernwerkstoff umhüllt werden,
57) Einbetten des das Innenmodul enthaltenden keramischen Gusskerns in ein Wachsmodell der Schaufel,
58) Herstellen einer Gussform für den Mantel aus einem Wachsmodell ,
59) Stabilisieren des Gusskerns in der Gussform durch Fixierung mittels keramischer und/oder metallischer Stifte,
- S10) Gießen der Metallform.
Das nicht von keramischem Kernwerkstoff umhüllte Tragprofil soll während des Gießens des Mantels das Festlager bilden, über das das Innenmodul mit dem Mantel der Turbinenschaufel verbunden wird. Die Spitze der Tragprofile wird also metal¬ lisch blank gelassen, um die Voraussetzung für eine formschlüssige oder, besonders, metallurgische Verbindung zwi¬ schen Innenmodul und Mantel zu schaffen.
Es ist bevorzugt, wenn die Außenseite des Innenmoduls mit der Innenseite des Mantels durch mechanischen Formschluss verbun¬ den wird. Dies wird durch die Ausbildung der Tragprofile mit¬ tels Selektiven Laserschmelzen und der Gussform des Mantels mit den entsprechenden formschlüssigen Strukturen, also entsprechenden Ausbuchtungen, ermöglicht.
Es ist weiterhin bevorzugt, wenn die Außenseite des Innen¬ moduls mit der Innenseite des Mantels metallurgisch verbunden wird. Dies wird ebenfalls durch die Ausbildung des Trag- profils mittels Selektiven Laserschmelzens und die Gussform des Mantels ermöglicht. Beim Gießen des Mantels kommt es durch die hohen Temperaturen des heißen Metalls zu einer metallurgischen Verbindung im Bereich des Tragprofils.
Als Innenmodul wird in der vorliegenden Erfindung ein Einsatz für Turbinenschaufeln bezeichnet. Die Bezeichnung Innenmodul unterstreicht die modulare Gestaltung.
Die Innenseite des Innenmoduls bezieht sich auf seine nach innen gerichtete Oberfläche, die den Innenraum des Innen¬ moduls gegrenzt. Die Außenseite des Innenmoduls bezieht sich auf seine nach außen gerichtete Oberfläche, die in radialer Richtung der Innenseite des Mantels gegenüberliegt und eine innere Begren¬ zung des peripheren Zwischenraums bildet.
Die Innenseite des Mantels bezieht sich auf seine nach innen gerichtete Oberfläche, die den peripheren Zwischenraum in ra¬ dialer Richtung nach außen begrenzt.
Die Außenseite des Mantels bezieht sich auf seine in radialer Richtung nach außen gerichtete Oberfläche, die man auch als Außenseite bzw. Oberfläche des Mantels oder der Turbinen- schaufei bezeichnen kann.
Ein Festlager ist ein sogenanntes Fixlager, welches alle Translationsbewegungen des gelagerten Körpers, in vorliegender Anmeldung des Innenmoduls, unterbindet. Es werden keine Drehmomente übertragen, das Innenmodul wird in drei räumli- chen Richtungen fest gelagert.
Ein Loslager unterbindet nur eine bzw. zwei Translationsbewe¬ gungen und lässt die anderen zu. Entsprechend liegt zumindest in einer bzw. in zwei Richtungen keine feste Verbindung mit bzw. zwischen Innenmodul und Mantel vor. Die Längsrichtung des Innenmoduls und die der gleichermaßen orientierten Turbinenschaufel sowie des Mantels der Turbinen¬ schaufel bezieht sich auf die Erstreckung der Turbinenschau¬ fel vom Fußabschnitt der Turbinenschaufel, wo sie am Turbi¬ nenrotor befestigt ist, bis zur Spitze des Turbinenschaufel- blattes.
Die radiale Richtung ist senkrecht zur Längsrichtung nach außen gerichtet.
Die Erfindung wird anhand der Figuren näher erläutert. Es zeigen Figur 1 einen Längsschnitt einer beispielhaften Ausführungsform einer Turbinenschaufel mit Darstellung der Innengeometrie eines Innenmoduls und eines Mantels der Turbinenschaufel.
Figur 2 einen Längsschnitt eines Abschnittes der Turbinen- schaufei gemäß Fig. 1.
Figur 3 einen Längsschnitt eines Abschnittes der Turbinen¬ schaufel gemäß Fig. 1.
Figur 4 einen Längsschnitt eines Abschnittes der Turbinen¬ schaufel gemäß Fig. 1.
Figur 5 einen Längsschnitt einer Vorrichtung zur Herstellung des Innenmoduls der Turbinenschaufel gemäß
Fig. 1.
Figur 6 einen Längsschnitt des Innenmoduls der
Turbinenschaufel gemäß Figur 1.
Figur 7 Darstellung einer Wachsform zur Herstellung des Mantels der Turbinenschaufel gemäß Figur 1.
Figur 8 eine Fließdiagramm einer beispielhaften
Ausführungsform eines Verfahrens zur Herstellung der Turbinenschaufel gemäß Fig. 1.
Die Turbinenschaufel 1 umfasst in der in Fig. 1 beispielhaft dargestellten Ausführungsform einen Mantel 2 und ein Innenmodul 3. Das Innenmodul 3 ist im Wesentlichen der Form des Man¬ tels 2 angepasst. Das Innenmodul 3 weist einen in Längsrich- tung 17 des Innenmoduls 3 durchströmbaren Innenraum 4 mit einer Einströmöffnung 5 und eine Wand 6 mit einer Anzahl von in radialer Richtung 18 durchströmbaren, eine Innenseite 61 mit einer Außenseite 62 der Wand 6 des Innenmoduls 3
verbindenen Kanälen 7 auf. Weiterhin weist das dargestellte Innenmodul 3 im distalen Bereich der Wand 6 eine Anzahl von in Längsrichtung 17 durchströmbaren Kanälen 8 auf, die hier zusätzlich zu den im seitlichen Bereich der Wand 6 in radialer Richtung durchströmbaren Kanälen 7 angeordnet sind.
Zwischen Innenmodul 3 und Mantel 2 ist ein peripherer Zwi- schenraum 9 vorhanden, der durch die Außenseite 62 des Innenmoduls 3 und die Innenseite 21 des Mantels 2 begrenzt wird. Durch die Kanäle 7 und 8 ist aus dem Innenraum 4 Kühlluft in den peripheren Zwischenraum 9 strömbar, wo sie auf die Innenseite 21 des Mantels 2 aufprallen und dadurch den Effekt der Prallkühlung bewirken kann. Im Mantel 2 ist eine Anzahl von Perforationen 10 angeordnet, durch welche die Kühlluft aus
dem Zwischenraum 9 auf die Außenseite 22 des Mantels 2 strömbar ist, wo sie einen Kühlfilm bilden kann.
Das Innenmodul 3 ist mittels Festlagern 11 und Loslagern 12 mit dem Mantel 2 verbunden. Dabei ist jeweils mindestens ein Lager vorhanden, vorzugsweise sind aber mehrere Festlager 11 und mehrere Loslager 12 zur Verbindung von Innenmodul 3 und Mantel 2 vorgesehen. Für die Verbindung über Festlager 11 weist das Innenmodul 3 mindestens ein Tragprofil 15 und für die Verbindung über Loslager 12 mindestens ein Tragprofil 16 auf, wobei sich die Anzahl der Tragprofile 15 und 16 nach der Länge der Turbinenschaufel 1 und dementsprechend des Innen¬ moduls 3 richtet. Der Mantel 2 weist an den Stellen der vor¬ gesehenen Festlager 11 den Tragprofilen 15 entsprechende Ausbuchtungen 19 auf und an den Stellen der vorgesehenen
Loslager 12 den Tragprofilen 16 entsprechende Ausbuchtungen 20.
Die Tragprofile 15 und 16 sowie die Ausbuchtungen 19 und 20 verlaufen bevorzugt ringförmig um einen gesamten Bereich um die Außenseite 62 des Innenmoduls 3 bzw. die Innenseite 21 des Mantels 2, können aber auch nur an einzelnen Stellen angeordnet sein. Die Festlager 11 und Loslager 12 verlaufen dementsprechend bevorzugt ringförmig geschlossen, können aber auch nur an einzelnen Stellen angeordnet sein.
Durch die Festlager 11 wird der periphere Zwischenraum 9 un- terbrochen, sofern sie um die gesamte Außenseite 62 des In¬ nenmoduls 3 verlaufen und dabei durch Formschluss oder metal¬ lurgische Verbindung mit der Innenseite 21 des Mantels 2 un¬ durchlässig für Kühlluft sind. Die Loslager 12 unterbrechen den peripheren Zwischenraum 9, sofern sie in einem Bereich rund um die Außenseite 62 des Innenmoduls 3 verlaufen und da¬ bei fest an einen Bereich der Innenseite 21 des Mantels 2 stoßen .
Der Innenraum 4 des Innenmoduls 3 besteht aus mehreren, durch das Material des Innenmoduls 3 getrennte Kammern 14, die über in Längsrichtung durchströmbare Öffnungen 13 miteinander verbunden sind. Dabei weist das Innenmodul 3 bevorzugt 2 Kammern 14 auf, ebenfalls bevorzugt 3, ebenfalls bevorzugt 4, und ebenfalls bevorzugt 5 und mehr.
Am Fußende weist die Turbinenschaufel 1 eine Tannenbaumstruk¬ tur 31 auf, die der stabilen Verbindung über eine entsprechend gestaltete Struktur mit dem Turbinenrotor (nicht ge- zeigt) dient.
Der für die Kühlung der Turbinenschaufel 1 wesentliche peri¬ pheren Zwischenraums 9 ist zwischen der Außenseite 61 der Wand 6 des Innenmoduls 3 und der Innenseite 21 des Mantels 2 ausgebildet, wie in Fig. 2 dargestellt. Dabei sind die Kanäle 7 so ausgebildet, dass aus dem Innenraum 4 Kühlluft in radia¬ ler Richtung 18 durch die Kanäle 7 in den peripheren Zwischenraum 9 strömen kann, wo sie auf die Innenseite 21 des Mantels 2 trifft. Die Perforationen 10 im Mantel 2 sind in Bezug auf Anzahl und Neigungswinkel so ausgebildet, dass durch die Perforationen aus dem peripheren Zwischenraum 9 auf die Außenseite 22 des Mantels 2 strömende Kühlluft dort einen Kühlfilm bilden kann. Der Neigungswinkel der Perforationen relativ zur Außenseite 22 beträgt zwischen 10 und 80 Grad, bevorzugt zwischen 20 und 70 Grad, bevorzugter zwischen 30 und 60 Grad, noch bevorzugter zwischen 40 und 50 Grad und noch bevorzugter 45 Grad.
Die Verbindung des Innenmoduls 3 mit dem Mantel 2 mittels Festlagern 11 ist in Fig. 3 detailliert dargestellt. Das Tragprofil 15 des Innenmoduls 3 und die entsprechende Aus- buchtung 19 im Mantel 2 sind dimensional aufeinander abge¬ stimmt, so dass sie formschlüssig zueinander passen. Durch den dadurch bewirkten vollständigen Formschluss ist das In-
nenmodul 3 an der Stelle des Festlagers 11 in keine Richtung beweglich .
Die Verbindung des Innenmoduls 3 mit dem Mantel 2 mittels Loslagern 12 ist in Fig. 4 detailliert dargestellt. Das Trag- profil 16 des Innenmoduls 3 und die entsprechende Ausbuchtung 20 im Mantel 2 sind dimensional aufeinander abgestimmt, las¬ sen jedoch Freiheitsgrade, d.h. einen gewisse Beweglichkeit bzw. einen gewissen Spielraum des Tragprofils 16 innerhalb der Ausbuchtung 20 zu. Die Herstellung des Innenmoduls 3 der Turbinenschaufel 1 wird gemäß den Schritten des Fließdiagramms in Fig. 8 in einem Schmelzbad 100 durchgeführt. In Schritt Sl wird gemäß Figur 5 eine Bauplattform 101 bereitgestellt. Ein pulverförmiger Werkstoff 102, bevorzugt aus einem Metall oder einer Metall- legierung, beispielsweise aus demselben Material wie die Tur¬ binenschaufel, wahlweise aber auch aus einem anderen Mate¬ rial, wird in Schritt S2 in einer bestimmten Menge mittels der Einfüllvorrichtung 103 auf der Bauplattform 101 aufgebracht. In Schritt S3 wird das aufgebrachte Material 102 auf der Bauplattform 101 verteilt, z.B. durch einen Schieber oder einen Wischer, so dass es eine Schicht in einer Dicke bildet, die sich entsprechend der gewünschten Struktur durch Laserstrahlen 105 gut schmelzen lässt. Bevorzugte Schichtdicken sind dabei 20 - 100 ym. In Schritt S4 erfolgt ein lokales Verschmelzen der Pulverteilchen 103 durch die Einwirkung eines Laserstrahls 105, der durch einen Laser 104 erzeugt und mittels rotierender Spiegel 106 software-gesteuert so über die Bauplattform 101 geführt wird, dass die gewünschten festen Strukturen entstehen, z.B. die Tragprofile 15 und 16. Der pulverförmige Werkstoff 102 wird an den Stellen der Laserstrahlung vollständig umge-
schmolzen und bildet nach der Erstarrung eine feste Material¬ schicht .
Nach Schritt S4 wird kontrolliert, ob das Innenmodul fertig¬ gestellt ist. Ist es nicht fertig, wird in Schritt S5 die Bauplattform 101 um die einer Schichtdicke entsprechende Höhe abgesenkt, und der Vorgang von Schritt S2 an erneut gestar¬ tet. Der Zyklus der Schritte S2 - S5 wird so lange wieder¬ holt, bis das Innenmodul 3 in der gewünschten Struktur fertiggestellt ist. Wird in Schritt S4 festgestellt, dass das Innenmodul fertig¬ gestellt ist, wird an diesen Schritt anschließend in Schritt S6 um das Innenmodul 3 herum ein keramischer Gusskern 110 erzeugt. Für den Gusskern wird dabei herkömmlicher keramischer Werkstoff verwendet. Dabei werden, wie in Fig. 6 zu sehen, die Tragprofile 15, die für die Bildung von Festlagern 11 vorgesehen sind, nicht von Keramik umhüllt. Die Tragprofile 16, die für die Bildung von Loslagern 12 vorgesehen sind, werden dagegen von Keramik umhüllt.
In Schritt S7 wird der das Innenmodul 3 enthaltende kerami- sehe Gusskern 110 in ein Wachsmodell 120 der Turbinenschaufel 1 eingebettet, in dem er von Wachs 121 umgeben wird, wie in Fig. 7 dargestellt. Dann wird in Schritt S8 eine Gussform, die sogenannte Casting Shell, für den Mantel 2 hergestellt. In Schritt S9 wird der keramische Kern 110 mit Innenmodul 3 in der Casting Shell mittels keramischer und/oder metallischer Stifte stabilisiert.
In Schritt S10 wird die Form des Mantels 2 gegossen. Dabei bildet sich Bereich des keramischen Gusskerns 110 der periphere Zwischenraum 9 zwischen Innenmodul 3 und Mantel 2. Als Material des Mantels 2 werden beispielsweise Metalle, bevor¬ zugt Legierungen und Superlegierungen verwendet. Durch die
formschlüssige Gestaltung der Tragprofile 15 und der entspre¬ chenden Ausbuchtungen 19 wird die Außenseite 62 des Innenmoduls 3 mit der Innenseite 21 des Mantels 2 im Bereich der Festlager 11 bevorzugt durch mechanischen Formschluss verbunden .
Durch die formschlüssige Gestaltung der Tragprofile 15 und der entsprechenden Ausbuchtungen 19 sowie durch das bevorzugte Metall des pulverförmiger Werkstoffs 102 wird die Au¬ ßenseite 62 des Innenmoduls 3 mit der Innenseite 21 des Man¬ tels 2 im Bereich der Festlager 11 ebenfalls bevorzugt durch eine metallurgische Verbindung verbunden. Die metallurgische Verbindung wird dabei durch die hohen Temperaturen des flüssigen Metalls des Mantels 2 ermöglicht, die ein Schmelzen von freiliegenden Bereichen des Innenmoduls bewirken.
Für einen Fachmann naheliegende Abwandlungen und Änderungen der Erfindung fallen unter den Schutzumfang der Patentansprüche .
Claims
1. Turbinenschaufel (1) mit einem Mantel (2) und einem der Form des Mantels (2) angepassten Innenmodul (3),
wobei das Innenmodul (3) einen in einer Längsrichtung (17) durchströmbaren Innenraum (4) mit einer Einströmöffnung (5) und eine Wand (6) mit einer Anzahl von in radialer Richtung (18) durchströmbaren, eine Innenseite (61) mit einer Außenseite (62) der Wand (6) des Innenmoduls (3) verbindenen Ka- nälen (7) umfasst,
bei dem zwischen der Außenseite (62) der Wand (6) des Innenmoduls (3) und einer Innenseite (21) des Mantels (2) ein peripherer Zwischenraum (9) vorhanden ist, und zwischen der Innenseite (21) und einer Außenseite (22) des Mantels (2) in einem bestimmten Neigungswinkel zur Außenseite (22) des
Mantels (2) eine Anzahl von Perforationen (10) vorhanden ist,
dadurch gekennzeichnet, dass
die Außenseite (62) des Innenmoduls (3) mittels mindestens eines Festlagers (11) und mindestens eines Loslagers (12) mit der Innenseite (21) des Mantels (2) verbunden ist.
2. Turbinenschaufel (1) nach Anspruch 1,
bei dem an der Außenseite (62) der Wand (6) des Innenmoduls
(3) Tragprofile (15, 16) ausgebildet sind.
3. Turbinenschaufel (1) nach einem der Ansprüche 1 oder 2, bei dem das Material des Innenmoduls (3) ein Metall ist.
4. Turbinenschaufel (1) nach einem der vorherigen Ansprü¬ che,
bei der Innenmodul (3) und Mantel (2) metallurgisch verbunden sind.
5. Turbinenschaufel (1) nach einem Ansprüche 1 - 3,
bei der Innenmodul (3) und Mantel (2) mittels des Festla¬ gers (11) durch Formschluss verbunden sind.
6. Turbinenschaufel (1) nach einem der vorherigen Ansprü¬ che,
bei der die Neigungswinkel der Perforationen (10) im Mantel (2) relativ zur Außenseite (22) des Mantels (2) so ausge¬ bildet sind, dass durch die über die Perforationen (10) ausströmende Luft eine Filmbildung auf der Außenseite (22) des Mantels (2) bewirkbar ist.
7. Turbinenschaufel (1) nach einem der vorherigen Ansprü¬ che,
bei der der Innenraum (4) des Innenmoduls (3) in mindestens zwei, durch jeweils mindestens eine durchströmbare Öffnung (13) miteinander verbundene Kammern (14) unterteilt ist.
8. Turbinenschaufel (1) nach Anspruch 1 oder 2,
bei der in der distalen Wand des Innenmoduls (3) zusätzlich in Längsrichtung (17) des Innenmoduls (3) durchströmbare
Kanäle (8) angeordnet sind.
9. Turbinenschaufel (1) nach einem der vorherigen Ansprü¬ che,
bei dem das Innenmodul (3) durch Selektives Laserschmelzen erzeugt ist.
10. Verfahren zur Herstellung einer Turbinenschaufel gemäß einem der Ansprüche 1 - 9,
umfassend die Schritte zum Erzeugen eines Innenmoduls
51) Bereitstellung einer Bauplattform in einem Pulverbett,
52) Aufbringen eines pulverförmigen Materials in einer bestimmten Menge,
53) Verteilen des Materials über die Bauplattform,
54) Lokales Verschmelzen von Pulverteilchen durch Wirkung eines Laserstrahls,
55) Absenken der Plattform, wobei die Schritte S2 - S5 in einer Anzahl wiederholt werden, wie zur Fertigstellung des Innenmoduls notwendig sind .
11. Verfahren nach Anspruch 10,
wobei das pulverförmige Material ein Metall aufweist.
12. Verfahren nach Anspruch 10 oder 11,
wobei in der Außenseite des Innenmoduls Tragprofile erzeugt werden .
13. Verfahren nach einem Ansprüche 10 - 12,
zusätzlich umfassend die sich an Schritt S4 anschließenden Schritte zum Erzeugen eines Mantels
56) Aufbringen eines keramischen Gusskerns um das Innenmodul, wobei die Trag- und Freiflanken bei min¬ destens einem für ein Festlager vorgesehenen Tragprofil nicht von einem keramischem Kernwerkstoff umhüllt werden,
57) Einbetten des das Innenmodul enthaltenden keramischen Gusskerns in ein Wachsmodell der Schaufel,
58) Herstellen einer Gussform für den Mantel aus dem Wachsmodell ,
59) Stabilisieren des Gusskerns in der Gussform durch Fixierung mittels keramischer und/oder metallischer Stifte,
- S10) Gießen der Mantelform.
14. Verfahren nach Anspruch 13,
wobei die Außenseite des Innenmoduls mit der Innenseite des Mantels im Bereich des Festlagers durch mechanischen Form- schluss verbunden wird.
15. Verfahren nach Anspruch 13,
wobei die Außenseite des Innenmoduls mit der Innenseite des Mantels im Bereich des Festlagers metallurgisch verbunden wird .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014220787.8A DE102014220787A1 (de) | 2014-10-14 | 2014-10-14 | Gasturbinenbauteil mit Innenmodul und Verfahren zu seiner Herstellung unter Verwendung von Selektivem Laserschmelzen |
PCT/EP2015/073258 WO2016058900A1 (de) | 2014-10-14 | 2015-10-08 | Turbinenschaufel mit innenmodul und verfahren zur herstellung einer turbinenschaufel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3191690A1 true EP3191690A1 (de) | 2017-07-19 |
Family
ID=54292788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15778642.7A Withdrawn EP3191690A1 (de) | 2014-10-14 | 2015-10-08 | Turbinenschaufel mit innenmodul und verfahren zur herstellung einer turbinenschaufel |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170306766A1 (de) |
EP (1) | EP3191690A1 (de) |
CN (1) | CN107075954A (de) |
DE (1) | DE102014220787A1 (de) |
WO (1) | WO2016058900A1 (de) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10773863B2 (en) | 2011-06-22 | 2020-09-15 | Sartorius Stedim North America Inc. | Vessel closures and methods for using and manufacturing same |
EP3231995A1 (de) * | 2016-04-12 | 2017-10-18 | Siemens Aktiengesellschaft | Turbinenschaufel mit einem schaufelblattkern und einer schaufelblatthülle |
EP3248727A1 (de) * | 2016-05-23 | 2017-11-29 | Siemens Aktiengesellschaft | Turbinenschaufel und verfahren zur herstellung der turbinenschaufel |
US20170350597A1 (en) * | 2016-06-07 | 2017-12-07 | General Electric Company | Heat transfer device, turbomachine casing and related storage medium |
EP3263838A1 (de) * | 2016-07-01 | 2018-01-03 | Siemens Aktiengesellschaft | Turbinenschaufel mit innerem kühlkanal |
US10830206B2 (en) | 2017-02-03 | 2020-11-10 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
US11098691B2 (en) | 2017-02-03 | 2021-08-24 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
US10702958B2 (en) | 2017-02-22 | 2020-07-07 | General Electric Company | Method of manufacturing turbine airfoil and tip component thereof using ceramic core with witness feature |
US11154956B2 (en) | 2017-02-22 | 2021-10-26 | General Electric Company | Method of repairing turbine component using ultra-thin plate |
US10625342B2 (en) * | 2017-02-22 | 2020-04-21 | General Electric Company | Method of repairing turbine component |
WO2018215143A1 (en) * | 2017-05-22 | 2018-11-29 | Siemens Aktiengesellschaft | Aerofoil |
US12252391B2 (en) | 2017-11-14 | 2025-03-18 | Sartorius Stedim North America Inc. | System for simultaneous distribution of fluid to multiple vessels and method of using the same |
CN111699134B (zh) | 2017-11-14 | 2022-03-29 | 赛多利斯史泰迪北美股份有限公司 | 带有具有多个流体通道的接头的流体输送组件 |
US11691866B2 (en) | 2017-11-14 | 2023-07-04 | Sartorius Stedim North America Inc. | System for simultaneous distribution of fluid to multiple vessels and method of using the same |
US11577953B2 (en) | 2017-11-14 | 2023-02-14 | Sartorius Stedim North America, Inc. | System for simultaneous distribution of fluid to multiple vessels and method of using the same |
US11319201B2 (en) | 2019-07-23 | 2022-05-03 | Sartorius Stedim North America Inc. | System for simultaneous filling of multiple containers |
US11248582B2 (en) | 2017-11-21 | 2022-02-15 | General Electric Company | Multiple material combinations for printed reinforcement structures of rotor blades |
US10773464B2 (en) | 2017-11-21 | 2020-09-15 | General Electric Company | Method for manufacturing composite airfoils |
US11668275B2 (en) | 2017-11-21 | 2023-06-06 | General Electric Company | Methods for manufacturing an outer skin of a rotor blade |
US10821652B2 (en) | 2017-11-21 | 2020-11-03 | General Electric Company | Vacuum forming mold assembly and method for creating a vacuum forming mold assembly |
US10913216B2 (en) | 2017-11-21 | 2021-02-09 | General Electric Company | Methods for manufacturing wind turbine rotor blade panels having printed grid structures |
US11390013B2 (en) | 2017-11-21 | 2022-07-19 | General Electric Company | Vacuum forming mold assembly and associated methods |
US10920745B2 (en) | 2017-11-21 | 2021-02-16 | General Electric Company | Wind turbine rotor blade components and methods of manufacturing the same |
US10865769B2 (en) | 2017-11-21 | 2020-12-15 | General Electric Company | Methods for manufacturing wind turbine rotor blade panels having printed grid structures |
US11040503B2 (en) | 2017-11-21 | 2021-06-22 | General Electric Company | Apparatus for manufacturing composite airfoils |
DE102018202685A1 (de) * | 2018-02-22 | 2019-08-22 | Siemens Aktiengesellschaft | Bauteil sowie Verfahren zum Herstellen eines Bauteils mittels additiven Fertigungsverfahren |
US10821696B2 (en) | 2018-03-26 | 2020-11-03 | General Electric Company | Methods for manufacturing flatback airfoils for wind turbine rotor blades |
US11035339B2 (en) | 2018-03-26 | 2021-06-15 | General Electric Company | Shear web assembly interconnected with additive manufactured components |
CA3097959A1 (en) * | 2018-04-30 | 2019-11-07 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
BR112020021990A2 (pt) * | 2018-05-03 | 2021-01-26 | General Electric Company | método para fabricar um painel de pá do rotor de uma turbina eólica e painel de pás do rotor para uma pá do rotor de uma turbina eólica |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
EP3873691B1 (de) | 2018-10-29 | 2023-07-26 | Cartridge Limited | Thermisch verstärkte abluftöffnungsauskleidung |
JP7234006B2 (ja) * | 2019-03-29 | 2023-03-07 | 三菱重工業株式会社 | 高温部品及び高温部品の製造方法 |
FR3099793B1 (fr) * | 2019-08-06 | 2022-07-29 | Safran Aircraft Engines | tronçon de distributeur de turbine comportant un chemisage interne |
CN111318642B (zh) * | 2020-04-26 | 2021-07-09 | 西安西工大超晶科技发展有限责任公司 | 带有镶嵌结构的铝合金熔模精密铸件的蜡模制作方法 |
CN111515377B (zh) * | 2020-05-29 | 2022-05-03 | 中国航发南方工业有限公司 | 复杂薄壁铝镁合金铸件及其铸造方法 |
CN113351828A (zh) * | 2021-05-24 | 2021-09-07 | 贵州安吉航空精密铸造有限责任公司 | 一种内嵌陶瓷型芯熔模铸造成型工艺 |
US12239127B2 (en) | 2021-07-28 | 2025-03-04 | Sartorius Stedim North America Inc. | Thermal capacitors, systems, and methods for rapid freezing or heating of biological materials |
DE102022201013A1 (de) | 2022-02-01 | 2023-08-03 | Siemens Energy Global GmbH & Co. KG | Verfahren zur Herstellung einer komplexen Bauteilkomponente aus einer nicht oder schwer schweißbaren Legierung mit verlorenem Modell |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3867068A (en) * | 1973-03-30 | 1975-02-18 | Gen Electric | Turbomachinery blade cooling insert retainers |
GB1543707A (en) * | 1975-02-03 | 1979-04-04 | Rolls Royce | Vane for fluid flow machine |
DE3629910A1 (de) * | 1986-09-03 | 1988-03-17 | Mtu Muenchen Gmbh | Metallisches hohlbauteil mit einem metallischen einsatz, insbesondere turbinenschaufel mit kuehleinsatz |
US5203873A (en) * | 1991-08-29 | 1993-04-20 | General Electric Company | Turbine blade impingement baffle |
US6238182B1 (en) * | 1999-02-19 | 2001-05-29 | Meyer Tool, Inc. | Joint for a turbine component |
US9289826B2 (en) * | 2012-09-17 | 2016-03-22 | Honeywell International Inc. | Turbine stator airfoil assemblies and methods for their manufacture |
US10173264B2 (en) * | 2013-03-15 | 2019-01-08 | United Technologies Corporation | Additive manufacturing baffles, covers, and dies |
-
2014
- 2014-10-14 DE DE102014220787.8A patent/DE102014220787A1/de not_active Withdrawn
-
2015
- 2015-10-08 CN CN201580055981.2A patent/CN107075954A/zh active Pending
- 2015-10-08 US US15/517,756 patent/US20170306766A1/en not_active Abandoned
- 2015-10-08 WO PCT/EP2015/073258 patent/WO2016058900A1/de active Application Filing
- 2015-10-08 EP EP15778642.7A patent/EP3191690A1/de not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
DE102014220787A1 (de) | 2016-04-14 |
WO2016058900A1 (de) | 2016-04-21 |
CN107075954A (zh) | 2017-08-18 |
US20170306766A1 (en) | 2017-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016058900A1 (de) | Turbinenschaufel mit innenmodul und verfahren zur herstellung einer turbinenschaufel | |
EP2663414B1 (de) | Verfahren zum generativen herstellen eines bauelementes mit einer integrierten dämpfung für eine strömungsmaschine und generativ hergestelltes bauelement mit einer integrierten dämpfung für eine strömungsmaschine | |
EP3191244B1 (de) | Verfahren zur herstellung einer laufschaufel und so erhaltene schaufel | |
EP3423218B1 (de) | Verfahren zur modularen additiven herstellung eines bauteils und bauteil | |
DE102015210744A1 (de) | Verfahren zum Fertigen einer Turbinenschaufel | |
EP1098725A1 (de) | Verfahren und vorrichtung zur herstellung eines metallischen hohlkörpers | |
EP1186748A1 (de) | Laufschaufel für eine Strömungsmaschine sowie Strömungsmaschine | |
EP3075471A1 (de) | Verfahren zum generativen herstellen eines gasturbinengehäuseteils | |
DE102014200381A1 (de) | Verfahren für das generative Herstellen eines Turbinenrades mit einem Deckband | |
DE102016122313A1 (de) | Gegenstand und Verfahren zur Herstellung eines Gegenstands | |
EP3621758B1 (de) | Verfahren für ein additiv herzustellendes bauteil mit vorbestimmter oberflächenstruktur | |
EP2826959B1 (de) | Isolationselement für ein Gehäuse eines Flugtriebwerks | |
EP2101938B1 (de) | Verfahren zum herstellen eines modells für die feingusstechnische darstellung einer wenigstens einen hohlraum aufweisenden komponente | |
WO2022017670A1 (de) | Bestrahlungsstrategie für eine kühlbare, additiv hergestellte struktur | |
DE102016210955A1 (de) | Labyrinthdichtung und Verfahren zum Herstellen einer Labyrinthdichtung | |
DE102015226766A1 (de) | Verfahren zur Herstellung eines Schaufelblatts für eine Turbinenschaufel einer Turbinenanlage | |
EP2860352A1 (de) | Rotor, zugehöriges Herstellungsverfahren und Laufschaufel | |
EP1674174B1 (de) | Verfahren zur Herstellung einer Gussform | |
EP3514333B1 (de) | Rotorschaufeldeckband für eine strömungsmaschine, rotorschaufel, verfahren zum herstellen eines rotorschaufeldeckbands und einer rotorschaufel | |
DE102021000614A1 (de) | Kokille zur rissfreien Herstellung eines Metallgegenstandes mit mindestens einem Hinterschnitt, insbesondere aus intermetallischen Legierungen wie TiAl, FeAl und anderen spröden oder rissanfälligen Werkstoffen, sowie ein entsprechendes Verfahren. | |
WO2011117395A1 (de) | Komponente mit einer einem heissgas einer gasturbine aussetzbaren aussenwand und verfahren zum herstellen einer derartigen komponente | |
WO2019137757A1 (de) | Turbinenschaufelblatt, turbinenschaufel und verfahren zu deren herstellung | |
DE102018205608A1 (de) | Verfahren zur Herstellung oder Reparatur eines Gehäusesegments oder eines Gehäuses einer Strömungsmaschine sowie Gehäusesegment und Gehäuse | |
DE102019214667A1 (de) | Komponente mit einem zu kühlenden Bereich und Mittel zur additiven Herstellung derselben | |
EP3351735B1 (de) | Turbomaschinengehäuseelement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20170412 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200603 |