EP3189939B1 - Improvements to a gas-powered fastening tool - Google Patents
Improvements to a gas-powered fastening tool Download PDFInfo
- Publication number
- EP3189939B1 EP3189939B1 EP17157756.2A EP17157756A EP3189939B1 EP 3189939 B1 EP3189939 B1 EP 3189939B1 EP 17157756 A EP17157756 A EP 17157756A EP 3189939 B1 EP3189939 B1 EP 3189939B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- piston
- fuel
- chamber
- combustion
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006872 improvement Effects 0.000 title description 6
- 239000000446 fuel Substances 0.000 claims description 57
- 238000001704 evaporation Methods 0.000 claims description 11
- 230000008020 evaporation Effects 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 4
- 238000013519 translation Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 239000002737 fuel gas Substances 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 description 87
- 238000007789 sealing Methods 0.000 description 46
- 230000003068 static effect Effects 0.000 description 37
- 239000007789 gas Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000003570 air Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000567 combustion gas Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25C—HAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
- B25C1/00—Hand-held nailing tools; Nail feeding devices
- B25C1/08—Hand-held nailing tools; Nail feeding devices operated by combustion pressure
Definitions
- the invention relates to improvements for a gas fixing tool and to a gas fixing tool comprising at least one of these improvements.
- Sealing or fixing tools are tools comprising an internal combustion engine operating by igniting an air-fuel mixture in a combustion chamber, the fuel being injected into the chamber by a device injection from a fuel cartridge. Such tools are intended to drive fasteners in support materials (such as wood, concrete or steel) to fix parts. Gas tools are very common today and can be used to attach fasteners such as staples, nails, stitches, pins, etc.
- fuel for an internal combustion engine mention may, for example, be made of petrol, alcohol, in liquid and / or gas form.
- such a tool is portable and comprises a housing in which is mounted the internal combustion engine propelling a piston driving a fixing element.
- a tool can also include a power supply battery as well as a grip, handling and shooting handle on which is mounted a trigger for actuating the tool.
- the present invention provides improvements to this technology.
- a combustion or pre-combustion chamber for a gas fixing tool comprising a casing defining a combustion cavity having a generally elongated shape with a longitudinal axis X, is characterized in that said cavity has a variable cross section along said axis X.
- the device can thus make it possible to reduce the size of the chamber, by reducing for example its length. This reduction in length can reduce the travel time required for the flame to pass longitudinally through the chamber, which consequently reduces the time of a firing cycle by the tool.
- the invention can also make it possible to optimize the spatial distribution of the mass of the chamber inside the tool, in order for example to shift the center of gravity of the tool in a predetermined area.
- a combustion or precombustion chamber for a gas fixing tool comprising a casing defining a combustion cavity, is characterized in that said cavity has at least partly a spherical or ovoid shape.
- the device makes it possible to reduce the edges and sharp edges inside the cavity, the inventors having found that these elements create dead zones of combustion and flow, which reduce the efficiency of combustion and filling (and purge) and therefore the performance of the tool.
- a working chamber for a gas fixing tool comprising a casing defining a housing in which is mounted and can slide a piston for driving a fixing element, said piston being configured to be moved in translation in said housing from a rest position to a working position, the chamber further comprising dynamic sealing means between said piston and said casing to provide a seal during said movement, is characterized in that it further comprises static sealing means between said piston and said casing to ensure a seal when said piston is in its rest position, said means static sealing being independent of said dynamic sealing means.
- the sealing means thus have distinct functions.
- the chamber is equipped with static sealing means, that is to say that they are designed to ensure a seal between the piston and the housing of the chamber outside all relative movement between them. This tightness is ensured when the piston is in its rest position, which makes it possible to ensure a tight closure of the combustion chamber, which communicates with the internal cavity of displacement of the piston, and to optimize the combustion of the air- fuel in the combustion chamber.
- the complex evaporation means of the prior art are replaced by a flat filter and evaporation spaces, which makes it possible to simplify the evaporator block and reduce the cost thereof.
- the present invention also relates to a gas fixing tool, comprising a chamber or several chambers as described above, and / or a device as defined above.
- Tool 10 shown in the figure 1 comprises a housing 12 in which there is an internal combustion engine 14, with a combustion chamber intended to contain a mixture of air and fuel, the ignition of which causes the propulsion of a piston intended to drive a fixing element extract from a supply magazine 16, the fixing element being intended to be anchored in a support material, at the outlet of a tip guide 18 extending at the front of the housing 12. All these components gas fixing tools are perfectly known to those skilled in the art and they have therefore not all been shown in the drawing.
- the tool housing has an axis 20, along which the drive piston and, in the tip guide 18, the fastening elements move.
- the tool includes a handle 22 for gripping and handling the tool. It extends from the housing and outside thereof, substantially perpendicular to the axis 20, slightly inclined on it depending on the application of the tool and the ergonomics during its use.
- the handle 22 is also used for firing, by an actuation trigger 24 mounted on it, in the zone 26 of its connection to the housing 12.
- the fuel supply to the combustion chamber of the engine 14 takes place, via an injection device 28 from a cartridge 30 of combustible gas.
- the injection device 28 and the cartridge 30 are housed in an arm 32 connected to the housing 12, which extends substantially perpendicular to the axis 20, in front of the handle 22, and in which the magazine is also provided. 16.
- Another arm 34 extends substantially parallel to the axis 20, between the handle 22 and the arm 32, so as to form a bridge between the two, on the (lower) side opposite the housing 12.
- FIG. 2 One aspect of the invention illustrated by figure 2 relates to the device 28 for injecting fuel into the engine from a fuel cartridge 30.
- the fuel is in the liquid state in the cartridge and must be evaporated, the combustible gas being intended to be mixed with air before being burned in the combustion chamber of the heat engine.
- a device for injecting a gas fixing tool must therefore allow the fuel to evaporate.
- the document EP-B1-2 087 220 describes a liquid fuel supply and evaporation system for converting a liquid fuel into a gaseous fuel.
- This system includes an evaporator element associated with a heated housing for heating the evaporator element.
- the evaporator element is made of sintered metal and has a generally conical or frustoconical shape.
- This technology is complex and relatively bulky due in particular to the particular shape of the evaporator element. This technology is also relatively expensive.
- this evaporator element is relatively fragile and has poor resistance to vibrations and shocks generated during the operation of a fixing tool.
- the fuel used to operate these tools may contain lubricants, additives, or even impurities, the evaporator element can become blocked, thus blocking the passage of the fuel through it. The result of this situation is the malfunction of the tool, which requires disassembly and cleaning of the evaporator element and possibly its replacement because the cleaning operation can damage this element.
- the filters consist essentially of a screen, a mesh, a grid, a canvas, a fabric, a foam, or fibers. These filters are made of metal or plastic, or from mineral or natural fibers. The purpose of these filters is to trap particles in the fuel while allowing the fuel to flow through the filter.
- the evaporator element is eliminated.
- the use of a filter placed in the simplified injection device, combined with an evaporation cavity makes it possible to optimally vaporize the fuel with a view to supplying the combustion chamber of the tool.
- the figure 2 shows an embodiment of the injection device 28.
- a valve 40 intended to calibrate a quantity of liquid fuel is interposed between the liquid fuel cartridge 30 and the simplified evaporator block 42.
- a filter 44 is placed in a housing or bore 46 provided in the block 42.
- a predetermined quantity of liquid fuel is discharged from the cartridge 30 via the valve 40 in the block 42, passing through the filter 44, and arrives in the evaporation cavity 47.
- the block 42 is made of a heat-conducting material, such as metal.
- the liquid fuel flowing through the filter 44 is at least partially converted into gaseous fuel thanks to the supply of heat from the ambient medium, which transmits calories to the evaporator block 42.
- the at least partially vaporized fuel continues to circulate in the block 42, and absorbs additional heat from the environment.
- the downstream part of the block 42 comprises an evaporation pipe 48, acting as a distribution manifold, towards the combustion chamber 50 of the fixing tool.
- the dimensioning parameters of the device 28, and in particular of the cavity 47 and of the pipe 48 are designed so that the fuel is entirely converted into gas at the outlet of a downstream discharge orifice 51 from the pipe 48.
- the block 42 and / or the pipe 48 may possibly comprise one or more fins 52 arranged at least on one of their surfaces .
- the gaseous fuel can be directly injected into the combustion chamber 50.
- the gaseous fuel leaving the discharge orifice 51 can feed one or more nozzles 54 for fuel outlet and room supply combustion 50.
- the combustible gas may alternatively supply a jet pump 56 of the venturi type, in which ambient air is entrained in the jet pump 56, and mixed with the gaseous fuel injected by the nozzle (s) 54, so as to form an air-fuel mixture for supplying the combustion chamber 50.
- This evaporator block 42 is therefore easier to manufacture and less expensive.
- the filter is flat and therefore relatively simple. It extends substantially in a plane parallel to the axis Z of the cartridge 30. It has for example a form of pellet, disc or block. It is much simpler and less fragile than the complex parts used in the prior art. Therefore, the simplified evaporator block is also easier to maintain when needed, although the need for maintenance of such a block is also significantly reduced.
- the figure 3 is a schematic perspective view of the device 28 of the figure 2 and shows in particular that the pipe 48 is formed in one piece with a part of the evaporator block 42.
- the pipe 48 has a general shape in S or L.
- the cavity 47 has in section a T shape whose upstream portion of larger transverse dimension forms the housing 46 for receiving the filter.
- the cavity 47 communicates with a rectilinear end portion of the pipe 48.
- the pipe comprises another rectilinear end portion which defines the discharge orifice 51. These two portions are parallel and connected to each other by a straight rectilinear portion of the conduit, which extends substantially parallel to the longitudinal axis Z of the cartridge 30. This rectilinear portion can be sealed off by a screw at its connection to the rectilinear end portion which defines the discharge port 51.
- the evaporator unit 42 includes a bore in which is mounted and can slide, along the longitudinal axis Z of the cartridge 30, an actuating member 58.
- This actuating member has an elongated rectilinear shape and comprises an internal bore 60 in the form of a T or L.
- This bore comprises a first axial portion which extends along the member 58 and opens at the lower end thereof, and a radial portion which extends between the upper end of the axial portion and the periphery of the member. The outlet of this radial portion is located opposite the filter 44.
- the member 58 is movable between two positions: a high or rest position shown in the figure 4a and a low or working position shown in the figure 4b . In both cases, the aforementioned radial outlet of the bore is located opposite the filter 44. Seals are provided between the member 58 and the bore in which it is mounted.
- the lower end of the member 58 is configured to cooperate by interlocking with a connection end piece of the cartridge 30.
- the movement of the member 58 causes the release of a calibrated quantity of fuel from the cartridge 30.
- This fuel in liquid form, circulates in the bore 60 of the member 58 and passes through the filter 44, which retains any impurities, before entering the cavity 47 in which the transformation of the liquid fuel into gaseous fuel is initiated.
- the fuel circulates in the line 48 to complete its evaporation and arrives in the gaseous state at the level of the nozzle 54. It is then sprayed in the jet pump 56 and mixed with air which enters the pump by venturi effect , the air-fuel mixture then being injected into the chamber 50 of the heat engine.
- the block 42 is located above the cartridge 30, the pipe 48 extends partly on one side of the cartridge, and the jet pump 56 has an orientation substantially perpendicular to the longitudinal axis Z of the cartridge or line 48.
- the cartridge 30, the block 42 and the line 48 are housed in the arm 32 and the jet pump extends in the arm 34, the combustion chamber 50 then being housed in the handle 22 of the figure 1 .
- the filter 44 has for example a permeability of less than 50 darcy and preferably between 10 to 33 darcy, which makes it possible to filter particles with a diameter between approximately 7 ⁇ m and 14 ⁇ m, with an efficiency of 98 to 99.9%.
- a heat engine of a gas fixing tool comprises a combustion chamber and a working chamber in which a piston for driving a fixing element is able to move under the effect of the explosion of the air mixture. - fuel in the combustion chamber.
- the engine comprises a precombustion chamber 60 and a combustion chamber 50.
- the first combustion chamber or precombustion chamber 60 makes it possible to initiate the combustion of the air-fuel mixture.
- This chamber 60 comprises a casing 62 which defines a combustion cavity 64 in which are mounted ignition means such as a spark plug 65.
- the chambers 60, 50 are separated from each other by a valve 66.
- the precombustion of the mixture in the chamber 60 causes an increase in pressure in the cavity 64.
- the valve opens and lets the combustible mixture pass into the chamber 50.
- the chamber 50 comprises a casing 68 defining a combustion cavity 70.
- the mixture arrives in the chamber 50 with a relatively high pressure.
- the flame from the chamber 60 reaches the chamber 50, the combustion at high pressure in the chamber 50 making it possible to improve the performance of the tool.
- the combustion 50 in the chamber causes an increase in pressure in the cavity 70, which forces the piston 78 to move in the working chamber 80.
- a precombustion chamber 60 of elongated shape one longitudinal end of which is connected to the combustion chamber 50, and the opposite longitudinal end of which comprises the spark plug 64.
- the output power of the combustion chamber 50 can be increased up to fifty percent (50%) simply by lengthening the precombustion chamber 60.
- the precombustion chamber 60 has a predetermined length B and a predetermined width A, in which the length B is substantially greater than the width A. More particularly, the ratio of the length B to the width A, known as the ratio aspect of the precombustion chamber 60, is at least 2: 1, and can be much larger with an optimum around 10: 1 according to the same document.
- a precombustion chamber can have a round, oval, rectangular, or other shape, in cross section, as long as its length is greater than its width.
- the precombustion chamber 60 of the prior art has a relative elongation B which is detrimental to the tool in terms of size.
- Another drawback of this precombustion chamber 60 is that the longer the precombustion chamber, the greater the delay between the ignition of the spark and the ignition of the combustion chamber 50. This can increase the length of the tool's firing cycle, which is problematic for some fastening applications.
- the design of the precombustion chamber 60 is not optimal in terms of ergonomics.
- the inventors kept constant the total volume of the chambers 50, 60.
- the total quantities of air mixture - fuel are comparable, and therefore the same total amounts of raw energy are available.
- the volume of the precombustion chamber 60 is called V1, and V2 the main volume of the combustion chamber 50.
- V1 + V2 is constant for all the tests.
- the object of the invention is to improve the performance of the precombustion chamber 60, the inventors have kept V1 the same for all the embodiments.
- the inventors have found that, by keeping V1 constant, an interesting effect has been achieved by changing the configuration of the precombustion chamber 60 from an elongated shape of constant cross section to an elongated shape whose cross section varies along the longitudinal axis of the chamber. It may have a cross section which is stepped or which has a frustoconical shape.
- the precombustion chamber has, from the spark plug 65, in the direction of the combustion chamber 50, an increasing section.
- the precombustion chamber 60 has two parts, the first part comprising the spark plug 65 and having a first maximum internal diameter which is smaller than the minimum internal diameter of the second part.
- At least one diameter, and preferably the two diameters of the first and the second part are constant.
- the elongated chamber with constant cross section is replaced by two portions, one of which, upper, has a cross section S2 larger than that S1 of the other, lower.
- the chamber 60 has thus in longitudinal section a general shape in T. Consequently, while keeping the volume V1 constant, this mode of embodiment has a length less than the length B of the prior art. Consequently, the size of the tool can be reduced.
- the reduction in the length of the precombustion chamber 60 makes it possible to reduce the distance between the spark plug 65 and the combustion chamber 50, which has the advantage of reducing the ignition time of the chamber 50, as well as the overall duration d 'a firing cycle.
- the invention thus provides an efficient precombustion chamber for a tool which is less bulky and can operate faster than those of the prior art.
- the figure 7 shows an alternative embodiment of the precombustion chamber 60.
- This figure shows a precombustion chamber 60 which has a part having a component of horizontal extension towards the front, so that the shortest fluid flow line between the spark plug 65 and the connection to the combustion chamber 50 has (at least in part) a horizontal component inclined towards the rear of the tool, coming from the spark plug.
- the precombustion chamber is no longer located entirely on one side of the tool so that the combustion chamber and the working chamber 80 do not necessarily form a conventional L-shaped architecture, i.e. -to say a tool comparable to a "pistol".
- the precombustion chamber 60 comprises at least two parts, the first of these parts is that connected to the combustion chamber 50 and the second part is that furthest from the combustion chamber 50.
- the side wall 82 of the precombustion chamber 60 in the first part is closer to the rear end of the tool, than is the side wall of the pre-combustion chamber in the second part.
- the second part comprises the spark plug 65.
- the tool is configured so that the tool is clamped around the precombustion chamber.
- At least one diameter, and preferably the two diameters of the first and the second part are constant.
- the elongated chamber with constant cross section is replaced by two portions, one of which, upper, has a cross section S2 larger than that S1 of the other, lower.
- the chamber 60 thus has in longitudinal section a general shape in L. Consequently, while keeping the volume V1 constant, this embodiment has a length less than the length B of the prior art. Consequently, the size of the tool can be reduced.
- the precombustion chamber 60 is no longer rectilinear, but includes a curvature in order to move the handle of the tool (which contains the precombustion chamber) closer to the center of gravity of the 'tool.
- a horizontal part is present.
- the side wall 83 (left) of the precombustion chamber in the part with the spark plug is positioned closer to the side wall (right) 84 of the part connected to the combustion chamber.
- V1 While keeping constant V1 compared to the prior art, the invention makes it possible to keep a comparable, even identical, level of performance in terms of energy production, in a tool which is much better balanced.
- the combustion chamber 50 of a tool is generally adjacent to the working chamber 80 in which the piston 78 is moved under the effect of the combustion of the air-fuel mixture.
- the combustion chamber 50 has, on the side of the working chamber 80, a generally cylindrical shape.
- this combustion chamber 50 has the shape of a flat cylinder having a diameter D and a height H, and its cavity 70 has a volume V2.
- This chamber 50 does not lead to an optimal energy output. They found an improved shape for the combustion chamber that improves energy production.
- a preferred embodiment is presented to the figure 8 in which the combustion chamber defines a spherical or ovoid combustion cavity.
- This spherical / ovoid shape leads to better mixing, and to a distribution of fuel and a sweeping of the correct combustion gases.
- the inventors have in fact discovered that this shape does not have dead zones due to the presence of edges in the cavity. These edges affect both the flow and the combustion flame. The flow tends to stop when approaching the edges, resulting in dead zones. The flame is also affected by these edges because it tends to extinguish as it approaches the edges.
- the new shape removes most, if not all of the harmful dead spots that exist in the prior art. Even if the combustion volume is not a perfect sphere, any edge that can be removed from the volume of the combustion chamber makes it possible to optimize the entry and exit of the flows from the chamber for optimal supply with the air-fuel mixture and the optimal sweeping of the combustion gases.
- a partially spherical shape can also be replaced by a partially ovoid shape or any other shape that does not have or has a minimal number of edges, for example a shape where the radius of curvature of the upper part of the bottom wall (here on the left) of the combustion chamber 50 is greater than or equal to 25%, preferably 50% to the smallest diameter of the combustion chamber of the prior art (for example, H).
- the combustion chamber 50 comprises a casing 68 defining three openings, two of which 50a, 50b are aligned on the same axis U, which corresponds to the longitudinal axis of the precombustion chamber or a part thereof, and a third 50c is aligned on a Y axis substantially perpendicular to the U axis.
- the housing 68 comprises a first half-shell 68a comprising a first wall 68aa in the portion of a sphere.
- This first wall 68aa is a median wall which is located between two end walls 68ab each in cylinder portion.
- the end walls 68ab partially define the openings 50a, 50b of axis U.
- the casing 68 comprises a second half-shell 68b comprising two end walls 68bb each in cylinder portion and defining the rest of the axis openings U, and a cylindrical wall 68ba defining the opening of axis Y.
- the opening 50a ensures fluid communication with the cavity of the precombustion chamber.
- the opening 50c provides fluid communication with the internal cavity of the working chamber, and the opening 50b provides fluid communication with the atmosphere.
- the opening 50a is closable by the aforementioned valve 66 and the opening 50b is closable by a valve 84, the movable body of which is carried by a rod also carrying the valve 66.
- the performance of a combustion-actuated fixing tool is notably based on the capacity of the piston to efficiently convert the pressure energy generated by the combustion of the explosive mixture into kinetic energy transferred to the fixing element. This efficient conversion is affected by the leaks that occur between the piston and the working chamber housing.
- pistons and housings are very well known because they are used in all tools.
- the combustion chamber design and combustion technology may vary from tool to tool, but the reciprocating piston in the crankcase remains essentially the same for the various fastening tools.
- the piston used in such a tool conventionally comprises dynamic sealing means, that is to say means used to ensure a seal between the piston and the casing of the working chamber during the displacement stroke of the piston. This stroke results from a pressure difference between the two sides of the piston (combustion for the drive and vacuum for the return).
- dynamic sealing means that is to say means used to ensure a seal between the piston and the casing of the working chamber during the displacement stroke of the piston. This stroke results from a pressure difference between the two sides of the piston (combustion for the drive and vacuum for the return).
- the seals according to the prior art are configured to ensure dynamic sealing.
- the piston In its initial retracted position, the piston must first be kept tight to contain the pressure generated by the combustion of the air-fuel mixture. As mentioned above, whenever the mixture is supercharged, or when the combustion technology uses a precombustion chamber, the resulting pre-pressure generated by the precombustion chamber, before the ignition of the combustion chamber, must remain tight and maintain the combustion chamber without leakage. During this preliminary phase, the piston must therefore be sealed as much as possible. Ideally, the piston should also remain stable to keep the volume of the combustion chamber low in order to maximize the pressure until combustion is almost complete. Ideally also, in this preliminary phase, the piston should be held until a pressure peak occurs and combustion ends. This requirement to maintain the piston at a preliminary phase has been addressed in the prior art using magnets or mechanisms, in particular balls, springs and / or cams. All of these piston retention mechanisms are generally bulky, complex and expensive.
- the requirement is to ensure maximum sealing between the piston and the casing of the working chamber and therefore to have maximum static sealing when the piston is in the rest position.
- the piston should be held in this position, tightly, until the pressure peak is reached in order to maximize the transfer of energy in the form of combustion pressure to the kinetic energy of driving the piston.
- Releasing the piston is the second step in the operation, as the piston accelerates along its stroke until it reaches its opposite working position and drives the fastener into the support material.
- the sealing requirement between the piston and the casing is less problematic.
- the dynamic sealing means are highly stressed by the acceleration of the piston and their friction with the casing, but make it possible to meet the need satisfactorily.
- static seals are generally flexible seals (O-rings, etc.) made of flexible materials such as rubber, silicone, etc. These are effective when there is no relative movement between the parts or if the movements are limited and slow.
- dynamic seals are more capable of ensuring a seal between two moving parts, even if the seal as such is not as good as with a static seal.
- dynamic piston seals can be metal segments such as steel, which operate efficiently at high speed and high temperature.
- Other dynamic seals also exist, such as lip seals, or composite seals, for example, although they are generally not as effective as steel rings due to the high temperatures in combustion engines.
- the working chamber comprises a casing, for example cylindrical, a piston and a first seal to seal the piston in the retracted or rest position of the piston (static seal), and a second seal - which is different from the first seal - to seal the piston during its movement (dynamic seal).
- each seal can be optimally adapted to the required sealing function and no compromise has to be found between dynamic and static sealing.
- the second seal is fixed on the piston (for example, housed in a groove of the piston).
- the first seal and the second seal are both attached to the piston and the housing has a seal surface for the first seal which is radially inside the seal surface for the second seal.
- the casing therefore has a radial projection towards the inside of the inner cylindrical surface opposite the first seal before / during the rest position.
- the first seal is fixed to the housing (for example, housed inside a groove in the housing).
- All the embodiments show a working chamber 80 comprising a casing 90 inside which a piston 78 is slidably mounted, the internal cavity 92 of the working chamber communicating with the internal cavity of a combustion chamber such as that described in the above.
- the piston 78 is shown in its retracted or rest position, as is known in the art and has already been explained above, and moves (down relative to the orientation of the figures) in the housing 90 to drive a fastener. During its stroke, the piston may possibly pass in line with an exhaust orifice 94.
- the figure 10a refers to the first embodiment of the invention.
- the piston 78 includes a static seal 96 used to seal the piston in the preliminary phase of actuation of the tool.
- the static seal 96 is carried by the piston and housed in a groove of the piston.
- the piston also includes a dynamic seal 98 housed in a groove in the piston.
- Each joint provides its performance, in particular as described above.
- the piston is designed so that the sealing surfaces for the seals are different.
- the diameter of the sealing surface of the static seal 96 is smaller than the diameter of the sealing surface of the dynamic seal 98.
- the dynamic seal remains in contact with its sealing surface during the entire race.
- the dynamic seal is able to withstand repeated passages at the level of the exhaust orifice 94, there is no problem of behavior for this seal.
- the static seal 96 seals at the start of the stroke, until it emerges from its surface more small sealing diameter expected in the housing 90. Consequently, while the piston continues its stroke, the static seal is no longer in contact with its surface, or with any other surface of the housing.
- the static seal 96 is never in contact with the exhaust orifice 94 and therefore has little friction.
- the static seal therefore provides a seal only during the first phase of the operation. This situation allows the static seal to be used as efficiently as possible without requiring any compromise because it is not exposed to dynamic stresses.
- the static seal can be made of flexible material, such as rubber, because it will never be in contact with the exhaust port 94 and will therefore not be damaged by friction.
- the static seal can be adjusted tight so that the seal is optimized. The other advantage of this tight fit is that the static seal helps keep the piston in its rest position.
- the static seal also acts as a piston retaining mechanism as needed for optimal combustion performance.
- the figure 10c is another embodiment of the invention. It represents a simplification of the structure.
- the static seal 96 is held in place in a groove in the tool housing, not in the piston.
- the sealing surfaces of the seals need not be different. As the static seal does not follow the piston along its stroke, the static seal is not likely to meet the exhaust port, even if the surfaces of the seals are the same.
- the diameter of the surface of the static seals and dynamic can be identical, and the piston 78 can be designed with a single diameter. Consequently, this simplified embodiment also provides all the advantages of the invention in terms of static sealing, dynamic sealing and retention of the piston in its rest position.
- the figures 10d and 10e are other embodiments of the invention. They are in fact another conception of the embodiments of Figures 10a and 10b .
- the piston uses two different sealing surfaces for static sealing and dynamic sealing. The difference being that in Figures 10a and 10b , the piston is the male part of the sealing surface of the static seal, while in the figures 10d and 10e , the piston is the female part of the sealing surface of the static seal.
- the advantages of the invention are static sealing, dynamic sealing and retention of the piston in its rest position.
- the piston 78 has an elongated shape and comprises a head and a coaxial rod.
- the static seal 96 is located in an area of the piston head, near a longitudinal end thereof, which is opposite the rod.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Portable Nailing Machines And Staplers (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Description
L'invention concerne des perfectionnements pour un outil de fixation à gaz ainsi qu'un outil de fixation à gaz comportant au moins un de ces perfectionnements.The invention relates to improvements for a gas fixing tool and to a gas fixing tool comprising at least one of these improvements.
L'état de l'art comprend notamment les documents
Les outils de scellement ou de fixation, dits à gaz, sont des outils comprenant un moteur à combustion interne fonctionnant par la mise à feu dans une chambre de combustion d'un mélange air-combustible, le combustible étant injecté dans la chambre par un dispositif d'injection depuis une cartouche de combustible. De tels outils sont destinés à entraîner des éléments de fixation dans des matériaux supports (tels qu'en bois, en béton ou en acier) pour y fixer des pièces. Les outils à gaz sont aujourd'hui très répandus et permettent de poser des éléments de fixation du type agrafe, clou, point, épingle, etc. Comme combustible pour moteur à combustion interne, on peut citer par exemple l'essence, l'alcool, sous forme liquide et/ou gaz.Sealing or fixing tools, called gas, are tools comprising an internal combustion engine operating by igniting an air-fuel mixture in a combustion chamber, the fuel being injected into the chamber by a device injection from a fuel cartridge. Such tools are intended to drive fasteners in support materials (such as wood, concrete or steel) to fix parts. Gas tools are very common today and can be used to attach fasteners such as staples, nails, stitches, pins, etc. As fuel for an internal combustion engine, mention may, for example, be made of petrol, alcohol, in liquid and / or gas form.
En général, un tel outil est portatif et comprend un boîtier dans lequel est monté le moteur à combustion interne de propulsion d'un piston d'entraînement d'un élément de fixation. Un tel outil peut comporter également une batterie d'alimentation électrique ainsi qu'une poignée de préhension, de manipulation et de tir sur laquelle est montée une détente d'actionnement de l'outil.In general, such a tool is portable and comprises a housing in which is mounted the internal combustion engine propelling a piston driving a fixing element. Such a tool can also include a power supply battery as well as a grip, handling and shooting handle on which is mounted a trigger for actuating the tool.
La présente invention propose des perfectionnements à cette technologie.The present invention provides improvements to this technology.
Selon un premier aspect, une chambre de combustion ou de précombustion pour un outil de fixation à gaz, comportant un carter définissant une cavité de combustion présentant une forme générale allongée d'axe longitudinal X, est caractérisée en ce que ladite cavité a une section transversale variable le long dudit axe X.According to a first aspect, a combustion or pre-combustion chamber for a gas fixing tool, comprising a casing defining a combustion cavity having a generally elongated shape with a longitudinal axis X, is characterized in that said cavity has a variable cross section along said axis X.
Le dispositif peut ainsi permettre de réduire l'encombrement de la chambre, en réduisant par exemple sa longueur. Cette réduction de longueur peut réduire le temps de parcours nécessaire à la flamme pour traverser longitudinalement la chambre, ce qui réduit d'autant le temps d'un cycle de tir par l'outil. L'invention peut en outre permettre d'optimiser la répartition spatiale de la masse de la chambre à l'intérieur de l'outil, afin par exemple de déplacer le centre de gravité de l'outil dans une zone prédéterminée.The device can thus make it possible to reduce the size of the chamber, by reducing for example its length. This reduction in length can reduce the travel time required for the flame to pass longitudinally through the chamber, which consequently reduces the time of a firing cycle by the tool. The invention can also make it possible to optimize the spatial distribution of the mass of the chamber inside the tool, in order for example to shift the center of gravity of the tool in a predetermined area.
La chambre peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
- ladite cavité a une forme générale étagée et comprend au moins une première portion de section transversale S1 et une seconde portion de section transversale S2, avec S1 différente de S2,
- le ratio S2/S1 est par exemple compris entre 1,1 et 3,0 voire plus ; dans un cas particulier, il peut être compris entre 1,1 et 1,5, et de préférence entre 1,2 et 1,5,
- des moyens d'allumage, tels qu'une bougie, sont situés à une extrémité longitudinale de ladite cavité,
- lesdits moyens d'allumage sont situés dans une portion de plus petite section transversale de ladite cavité,
- ladite cavité comprend une extrémité longitudinale opposée auxdits moyens d'allumage, qui est en communication fluidique avec une seconde cavité de combustion,
- ladite cavité a en section longitudinale une forme générale en L ou T.
- said cavity has a generally stepped shape and comprises at least a first portion of cross section S1 and a second portion of cross section S2, with S1 different from S2,
- the S2 / S1 ratio is for example between 1.1 and 3.0 or even more; in a particular case, it can be between 1.1 and 1.5, and preferably between 1.2 and 1.5,
- ignition means, such as a candle, are located at a longitudinal end of said cavity,
- said ignition means are located in a portion of smaller cross section of said cavity,
- said cavity comprises a longitudinal end opposite to said ignition means, which is in fluid communication with a second combustion cavity,
- said cavity has in longitudinal section a general shape in L or T.
Selon un second aspect, une chambre de combustion ou de précombustion pour un outil de fixation à gaz, comportant un carter définissant une cavité de combustion, est caractérisée en ce que ladite cavité a au moins en partie une forme sphérique ou ovoïde.According to a second aspect, a combustion or precombustion chamber for a gas fixing tool, comprising a casing defining a combustion cavity, is characterized in that said cavity has at least partly a spherical or ovoid shape.
Le dispositif permet de réduire les bords et arêtes francs à l'intérieur de la cavité, les inventeurs ayant constaté que ces éléments créent des zones mortes de combustion et d'écoulement, qui réduisent l'efficacité de la combustion et du remplissage (et de la purge) et donc les performances de l'outil.The device makes it possible to reduce the edges and sharp edges inside the cavity, the inventors having found that these elements create dead zones of combustion and flow, which reduce the efficiency of combustion and filling (and purge) and therefore the performance of the tool.
La chambre peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
- ledit carter définit trois ouvertures dont deux sont alignées sur un même axe U et une troisième est alignée sur un axe Y sensiblement perpendiculaire à l'axe U,
- ledit carter comprend une première demi-coque comportant une première paroi en portion de sphère,
- ladite première paroi est une paroi médiane qui est située entre deux parois d'extrémité chacune en portion de cylindre,
- lesdites parois d'extrémité définissent en partie lesdites ouvertures d'axe U,
- ledit carter comprend une seconde demi-coque comportant deux parois d'extrémité chacune en portion de cylindre et définissant en partie lesdites ouvertures d'axe U, et une paroi cylindrique définissant ladite ouverture d'axe Y.
- said casing defines three openings, two of which are aligned on the same U axis and a third is aligned on a Y axis substantially perpendicular to the U axis,
- said casing comprises a first half-shell comprising a first wall in the portion of a sphere,
- said first wall is a middle wall which is situated between two end walls each in cylinder portion,
- said end walls partially define said U-axis openings,
- said housing comprises a second half-shell comprising two end walls each in cylinder portion and partially defining said U-axis openings, and a cylindrical wall defining said Y-axis opening.
Selon un troisième aspect, une chambre de travail pour un outil de fixation à gaz, comportant un carter définissant un logement dans lequel est monté et peut coulisser un piston pour l'entraînement d'un élément de fixation, ledit piston étant configuré pour être déplacé en translation dans ledit logement depuis une position de repos jusqu'à une position de travail, la chambre comportant en outre des moyens d'étanchéité dynamique entre ledit piston et ledit carter pour assurer une étanchéité lors dudit déplacement, est caractérisée en ce qu'elle comprend en outre des moyens d'étanchéité statique entre ledit piston et ledit carter pour assurer une étanchéité lorsque ledit piston est dans sa position de repos, lesdits moyens d'étanchéité statique étant indépendants desdits moyens d'étanchéité dynamique.According to a third aspect, a working chamber for a gas fixing tool, comprising a casing defining a housing in which is mounted and can slide a piston for driving a fixing element, said piston being configured to be moved in translation in said housing from a rest position to a working position, the chamber further comprising dynamic sealing means between said piston and said casing to provide a seal during said movement, is characterized in that it further comprises static sealing means between said piston and said casing to ensure a seal when said piston is in its rest position, said means static sealing being independent of said dynamic sealing means.
Les moyens d'étanchéité ont ainsi des fonctions distinctes. En plus des moyens d'étanchéité dynamique connus, la chambre est équipée de moyens d'étanchéité statique, c'est-à-dire qu'ils sont conçus pour assurer une étanchéité entre le piston et le carter de la chambre en dehors de tout mouvement relatif entre eux. Cette étanchéité est assurée lorsque le piston est dans sa position de repos, ce qui permet d'assurer une fermeture étanche de la chambre de combustion, qui communique avec la cavité interne de déplacement du piston, et d'optimiser la combustion du mélange air-combustible dans la chambre de combustion.The sealing means thus have distinct functions. In addition to the known dynamic sealing means, the chamber is equipped with static sealing means, that is to say that they are designed to ensure a seal between the piston and the housing of the chamber outside all relative movement between them. This tightness is ensured when the piston is in its rest position, which makes it possible to ensure a tight closure of the combustion chamber, which communicates with the internal cavity of displacement of the piston, and to optimize the combustion of the air- fuel in the combustion chamber.
La chambre peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
- les moyens d'étanchéité dynamique sont configurés pour être opérationnels/fonctionnels (pour coopérer avec une surface d'étanchéité par exemple) lorsque le piston est dans ses positions de repos et de travail, et les moyens d'étanchéité statique sont configurés pour être opérationnels/fonctionnels lorsque le piston est dans sa position de repos et pour ne pas l'être lorsqu'il est dans sa position de travail,
- lesdits moyens d'étanchéité statique sont portés par ledit carter,
- lesdits moyens d'étanchéité statique sont portés par ledit piston,
- lesdits moyens d'étanchéité dynamique sont portés par ledit piston,
- ledit piston comprend une première surface cylindrique externe comportant une gorge annulaire de logement d'un joint d'étanchéité dynamique,
- ledit piston comprend une seconde surface cylindrique interne ou externe comportant une gorge annulaire de logement d'un joint d'étanchéité statique,
- ledit piston a une forme allongée et comprend une tête et une tige coaxiales, et dans laquelle ladite seconde surface est située à une extrémité longitudinale de ladite tête, qui est opposée à ladite tige.
- the dynamic sealing means are configured to be operational / functional (to cooperate with a sealing surface for example) when the piston is in its rest and working positions, and the static sealing means are configured to be operational / functional when the piston is in its rest position and so as not to be when it is in its working position,
- said static sealing means are carried by said casing,
- said static sealing means are carried by said piston,
- said dynamic sealing means are carried by said piston,
- said piston comprises a first external cylindrical surface comprising an annular groove for housing a dynamic seal,
- said piston comprises a second internal or external cylindrical surface comprising an annular groove for housing a static seal,
- said piston has an elongated shape and comprises a head and a coaxial rod, and in which said second surface is situated at a longitudinal end of said head, which is opposite to said rod.
L'invention concerne un dispositif d'injection d'un gaz combustible pour un outil de fixation à gaz, caractérisé en ce qu'il comprend un bloc évaporateur comportant :
- une cavité d'évaporation du combustible,
- une conduite d'évaporation du combustible sortant de ladite cavité, et
- un logement, situé en amont de ladite cavité, dans lequel est monté un filtre sensiblement plan (par exemple légèrement incurvé) configuré pour retenir des impuretés dudit combustible.
- a fuel evaporation cavity,
- a fuel evaporation pipe leaving said cavity, and
- a housing, located upstream of said cavity, in which is mounted a substantially planar filter (for example slightly curved) configured to retain impurities from said fuel.
Les moyens d'évaporation complexes de la technique antérieure sont remplacés par un filtre plan et des espaces d'évaporation, ce qui permet de simplifier le bloc évaporateur et d'en réduire le coût.The complex evaporation means of the prior art are replaced by a flat filter and evaporation spaces, which makes it possible to simplify the evaporator block and reduce the cost thereof.
Le dispositif selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément les unes des autres ou en combinaison les unes avec les autres :
- ledit bloc évaporateur comprend un logement de réception d'un organe d'actionnement d'un cartouche de combustible, ledit organe ayant une forme allongée d'axe Z et étant configuré pour être déplacé en translation le long dudit axe entre une position de repos et une position de libération de combustible depuis ladite cartouche, ledit organe comportant un alésage interne de passage de combustible qui comprend une forme générale en L ou en T dont une première partie axiale débouche à une extrémité longitudinale dudit organe et dont une seconde partie radiale débouche sur une surface périphérique externe dudit organe et est destinée à être située en regard dudit filtre au moins lorsque ledit organe est dans ladite position de libération,
- ladite conduite a une forme générale en L ou S,
- ladite conduite est formée d'une seule pièce avec au moins une partie dudit bloc évaporateur.
- said evaporator block comprises a housing for receiving a member for actuating a fuel cartridge, said member having an elongated shape of axis Z and being configured to be moved in translation along said axis between a rest position and a position for releasing fuel from said cartridge, said member comprising an internal bore for the passage of fuel which comprises a general L or T shape, a first axial part of which opens at a longitudinal end of said member and a second radial part of which opens onto an external peripheral surface of said member and is intended to be located opposite said filter at least when said member is in said release position,
- said pipe has a general L or S shape,
- said pipe is formed in one piece with at least a portion of said evaporator block.
La présente invention concerne encore un outil de fixation à gaz, comportant une chambre ou plusieurs chambres telles que décrites ci-dessus, et/ou un dispositif tel que défini ci-dessus.The present invention also relates to a gas fixing tool, comprising a chamber or several chambers as described above, and / or a device as defined above.
L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description qui suit, faite à titre d'exemple non limitatif et en référence aux dessins annexés, dans lesquels :
- la
figure 1 est une vue schématique d'un outil de fixation à gaz selon l'invention, - la
figure 2 est une vue schématique d'un dispositif d'injection d'un gaz combustible selon l'invention, - la
figure 3 est une vue schématique en perspective du dispositif de lafigure 2 , - les
figures 4a et 4b sont des vues schématiques correspondant à lafigure 2 et montrant respectivement deux positions d'un organe d'actionnement du dispositif, - la
figure 5 est une vue schématique en coupe axiale de chambres d'un outil de fixation à gaz selon l'art antérieur, - les
figures 6 à 8 sont des vues schématiques en coupe axiale de chambres d'un outil de fixation à gaz selon l'invention, - les
figures 9a à 9c sont des vues schématiques en perspective et/ou en coupe axiale d'une chambre de combustion selon l'invention, - les
figures 10a à 10e sont des vues schématiques en coupe axiale d'une chambre de travail selon l'invention.
- the
figure 1 is a schematic view of a gas fixing tool according to the invention, - the
figure 2 is a schematic view of a device for injecting a combustible gas according to the invention, - the
figure 3 is a schematic perspective view of the device of thefigure 2 , - the
Figures 4a and 4b are schematic views corresponding to thefigure 2 and respectively showing two positions of an actuating member of the device, - the
figure 5 is a schematic view in axial section of chambers of a gas fixing tool according to the prior art, - the
figures 6 to 8 are schematic views in axial section of chambers of a gas fixing tool according to the invention, - the
Figures 9a to 9c are schematic perspective views and / or in axial section of a combustion chamber according to the invention, - the
figures 10a to 10e are schematic views in axial section of a working chamber according to the invention.
L'outil 10 représenté sur la
Le boîtier de l'outil possède un axe 20, le long duquel se déplacent le piston d'entraînement et, dans le guide-pointe 18, les éléments de fixation.The tool housing has an
L'outil comporte une poignée 22 de préhension et de manipulation de l'outil. Elle s'étend, depuis le boîtier et à l'extérieur de celui-ci, sensiblement perpendiculairement à l'axe 20, légèrement incliné sur lui selon l'application de l'outil et l'ergonomie lors de son utilisation. La poignée 22 sert également au tir, par une détente d'actionnement 24 montée sur elle, dans la zone 26 de son raccordement au boîtier 12.The tool includes a
L'alimentation en combustible de la chambre de combustion du moteur 14 s'effectue, par l'intermédiaire d'un dispositif d'injection 28 à partir d'une cartouche 30 de gaz combustible.The fuel supply to the combustion chamber of the
Avantageusement, le dispositif d'injection 28 et la cartouche 30 sont logés dans un bras 32 relié au boîtier 12, qui s'étend sensiblement perpendiculairement à l'axe 20, en avant de la poignée 22, et dans lequel est prévu également le magasin 16.Advantageously, the
Un autre bras 34 s'étend sensiblement parallèlement à l'axe 20, entre la poignée 22 et le bras 32, de façon à former un pont entre les deux, du côté (inférieur) opposé au boîtier 12.Another
On va maintenant décrire les différents aspects de l'invention qui peuvent être intégrés, indépendamment les uns des autres ou en combinaison les uns avec les autres, dans l'outil 10 de la
Un aspect de l'invention illustré par la
Le combustible est à l'état liquide dans la cartouche et doit être évaporé, le gaz combustible étant destiné à être mélangé à de l'air avant d'être brulé dans la chambre de combustion du moteur thermique.The fuel is in the liquid state in the cartridge and must be evaporated, the combustible gas being intended to be mixed with air before being burned in the combustion chamber of the heat engine.
Un dispositif d'injection d'un outil de fixation à gaz doit ainsi permettre l'évaporation du combustible.A device for injecting a gas fixing tool must therefore allow the fuel to evaporate.
Le document
Cette technologie est complexe et relativement encombrante du fait notamment de la forme particulière de l'élément évaporateur. Cette technologie est également relativement coûteuse.This technology is complex and relatively bulky due in particular to the particular shape of the evaporator element. This technology is also relatively expensive.
De plus, cet élément évaporateur est relativement fragile et a une faible tenue aux vibrations et aux chocs générés pendant le fonctionnement d'un outil de fixation. En outre, comme le combustible utilisé pour faire fonctionner ces outils peut contenir des lubrifiants, des additifs, voire même des impuretés, l'élément évaporateur peut se boucher bloquant ainsi le passage du combustible à travers lui. Le résultat de cette situation est le défaut de fonctionnement de l'outil, ce qui nécessite le démontage et le nettoyage de l'élément évaporateur et éventuellement son remplacement car l'opération de nettoyage peut endommager cet élément.In addition, this evaporator element is relatively fragile and has poor resistance to vibrations and shocks generated during the operation of a fixing tool. In addition, as the fuel used to operate these tools may contain lubricants, additives, or even impurities, the evaporator element can become blocked, thus blocking the passage of the fuel through it. The result of this situation is the malfunction of the tool, which requires disassembly and cleaning of the evaporator element and possibly its replacement because the cleaning operation can damage this element.
Tous les problèmes mentionnés ci-dessus peuvent être résolus par l'invention. Tout en essayant de gérer le colmatage de l'élément évaporateur, les inventeurs ont proposé un élément filtrant ayant notamment pour but de piéger les différents matériaux contenus dans le combustible sortant de la cartouche.All the above mentioned problems can be solved by the invention. While trying to manage the clogging of the evaporator element, the inventors have proposed a filter element having in particular the aim of trapping the different materials contained in the fuel leaving the cartridge.
Différents filtres ont été testés. Les filtres sont constitués essentiellement d'un écran, d'un treillis, d'une grille, d'une toile, d'un tissu, d'une mousse, ou de fibres. Ces filtres sont réalisés en métal ou en plastique, ou à partir de fibres minérales ou naturelles. Le but de ces filtres est de piéger les particules contenues dans le combustible tout en permettant au combustible de circuler à travers le filtre.Different filters have been tested. The filters consist essentially of a screen, a mesh, a grid, a canvas, a fabric, a foam, or fibers. These filters are made of metal or plastic, or from mineral or natural fibers. The purpose of these filters is to trap particles in the fuel while allowing the fuel to flow through the filter.
Dans le but de simplifier le dispositif d'injection de la technique antérieure, l'élément évaporateur est supprimé. De manière surprenante, l'utilisation d'un filtre disposé dans le dispositif d'injection simplifié, combiné à une cavité d'évaporation, permet de vaporiser de manière optimale le combustible en vue de l'alimentation de la chambre de combustion de l'outil.In order to simplify the injection device of the prior art, the evaporator element is eliminated. In a surprising way, the use of a filter placed in the simplified injection device, combined with an evaporation cavity, makes it possible to optimally vaporize the fuel with a view to supplying the combustion chamber of the tool.
La
Une vanne 40 destinée à calibrer une quantité de combustible liquide est interposée entre la cartouche 30 de combustible liquide et le bloc évaporateur simplifié 42. Un filtre 44 est disposé dans un logement ou alésage 46 prévu dans le bloc 42. Une quantité prédéterminée de combustible liquide est déchargée à partir de la cartouche 30 par l'intermédiaire de la vanne 40 dans le bloc 42, passant à travers le filtre 44, et arrive dans la cavité d'évaporation 47. Le bloc 42 est réalisé en un matériau conducteur de chaleur, tel qu'en métal. Le combustible liquide circulant à travers le filtre 44 est au moins partiellement converti en combustible gazeux grâce à l'apport de chaleur du milieu ambiant, qui transmet des calories au bloc évaporateur 42.A
En aval du filtre 44 et de la cavité 47, le combustible au moins partiellement vaporisé continue de circuler dans le bloc 42, et absorbe de la chaleur additionnelle à partir de l'environnement. La partie aval du bloc 42 comprend une conduite d'évaporation 48, agissant comme un collecteur de distribution, vers la chambre de combustion 50 de l'outil de fixation.Downstream of the
Les paramètres de dimensionnement du dispositif 28, et en particulier de la cavité 47 et de la conduite 48, tels que la longueur, le diamètre, l'épaisseur, etc., sont conçus de telle sorte que le combustible est entièrement converti en gaz à la sortie d'un orifice de décharge aval 51 de la conduite 48. Pour aider à transférer la chaleur du milieu environnant, le bloc 42 et/ou la conduite 48 peuvent éventuellement comprendre une ou plusieurs ailettes 52 disposées au moins sur une de leurs surfaces.The dimensioning parameters of the
En sortant de l'orifice de décharge 51, le combustible gazeux peut être directement injecté dans la chambre de combustion 50. En option, le combustible gazeux sortant de l'orifice de décharge 51 peut alimenter une ou plusieurs buses 54 de sortie de combustible et d'alimentation de la chambre de combustion 50. Le gaz combustible peut en variante alimenter une pompe à jet 56 du type venturi, dans lequel de l'air ambiant est entraîné dans la pompe à jet 56, et mélangé au combustible gazeux injecté par la ou les buses 54, de manière à former un mélange air-combustible pour l'alimentation de la chambre de combustion 50.Leaving the
Ce bloc évaporateur 42 est donc plus facile à fabriquer et moins coûteux. Le filtre est plan et donc relativement simple. Il s'étend sensiblement dans un plan parallèle à l'axe Z de la cartouche 30. Il a par exemple une forme de pastille, disque ou bloc. Il est beaucoup plus simple et moins fragile que les pièces complexes utilisés dans l'art antérieur. Par conséquent, le bloc évaporateur simplifié est également plus facile à entretenir en cas de besoin, bien que la nécessité de maintenance d'un tel bloc est également réduite de manière significative.This
La
Comme on le voit à la
Le bloc évaporateur 42 comprend un alésage dans lequel est monté et peut coulisser, le long de l'axe longitudinal Z de la cartouche 30, un organe d'actionnement 58. Cet organe d'actionnement a une forme allongée rectiligne et comprend un alésage interne 60 en forme de T ou L. Cet alésage comprend une première portion axiale qui s'étend le long de l'organe 58 et débouche à l'extrémité inférieure de celui-ci, et une portion radiale qui s'étend entre l'extrémité supérieure de la portion axiale et la périphérie de l'organe. Le débouché de cette portion radiale est situé en regard du filtre 44.The
L'organe 58 est mobile entre deux positions : une position haute ou de repos représentée à la
L'extrémité inférieure de l'organe 58 est configurée pour coopérer par emboîtement avec un embout de connexion de la cartouche 30.The lower end of the
Le déplacement de l'organe 58, de sa position de repos à sa position de travail, provoque la libération d'une quantité calibrée de combustible de la cartouche 30. Ce combustible, sous forme liquide, circule dans l'alésage 60 de l'organe 58 et traverse le filtre 44, qui retient les éventuelles impuretés, avant de pénétrer dans la cavité 47 dans laquelle est initiée la transformation du combustible liquide en combustible gazeux. Le combustible circule dans la conduite 48 pour compléter son évaporation et arrive à l'état gazeux au niveau de la buse 54. Il est alors pulvérisé dans la pompe à jet 56 et mélangé à de l'air qui pénètre dans la pompe par effet venturi, le mélange air-combustible étant ensuite injecté dans la chambre 50 du moteur thermique.The movement of the
Avantageusement, et comme représenté à la
Le filtre 44 a par exemple une perméabilité inférieure à 50 darcy et de préférence comprise entre 10 à 33 darcy, ce qui permet de filtrer des particules de diamètre compris entre 7µm et 14µm environ, avec une efficacité de 98 à 99,9%.The
Un moteur thermique d'un outil de fixation à gaz comprend une chambre de combustion et une chambre de travail dans lequel un piston d'entraînement d'un élément de fixation est apte à se déplacer sous l'effet de l'explosion du mélange air-combustible dans la chambre de combustion.A heat engine of a gas fixing tool comprises a combustion chamber and a working chamber in which a piston for driving a fixing element is able to move under the effect of the explosion of the air mixture. - fuel in the combustion chamber.
Avantageusement, comme cela est représenté à la
Les chambres 60, 50 sont séparées l'une des l'autre par un clapet 66. La précombustion du mélange dans la chambre 60 provoque une augmentation de pression dans la cavité 64. Lorsque cette pression dépasse un certain seuil, le clapet s'ouvre et laisse passer le mélange combustible dans la chambre 50.The
La chambre 50 comprend un carter 68 définissant une cavité de combustion 70. Le mélange arrive dans la chambre 50 avec une pression relativement élevée. La flamme issue de la chambre 60 atteint la chambre 50, la combustion à pression élevée dans la chambre 50 permettant d'améliorer les performances de l'outil. La combustion 50 dans la chambre provoque une augmentation de pression dans la cavité 70, qui force le piston 78 à se déplacer dans la chambre de travail 80.The
Comme on peut le constater à la
La puissance de sortie de la chambre de combustion 50 peut être augmentée jusqu'à cinquante pour cent (50%) simplement par l'allongement de la chambre de précombustion 60.The output power of the
Dans le document
Il a également été indiqué dans le document
Par conséquent, la chambre de précombustion 60 de l'art antérieur présente un allongement relatif B qui est préjudiciable pour l'outil en termes d'encombrement.Consequently, the
Un autre inconvénient de cette chambre de précombustion 60 est que plus la chambre de précombustion est longue, plus le retard entre l'allumage de l'étincelle et l'allumage de la chambre de combustion 50 est important. Ceci peut augmenter la durée du cycle de tir de l'outil, ce qui est problématique pour certaines applications de fixation.Another drawback of this
Enfin, la conception de la chambre de précombustion 60 n'est pas optimale en termes d'ergonomie.Finally, the design of the
Les perfectionnements ci-dessous permettent d'optimiser l'encombrement de l'outil, d'optimiser son fonctionnement, et/ou de raccourcir la durée d'un cycle de tir et en particulier la durée entre l'allumage de la chambre de précombustion 60 et la combustion dans la chambre 50 tout en conservant de bonnes performances de la chambre de combustion.The improvements below make it possible to optimize the size of the tool, to optimize its operation, and / or to shorten the duration of a firing cycle and in particular the duration between the ignition of the
Pour être en mesure de comparer l'effet de la nouvelle conception de chambre de précombustion vis-à-vis de l'art antérieur, les inventeurs ont maintenu constant le volume total des chambres 50, 60. Ainsi, les quantités totales de mélange air-combustible sont comparables, et par conséquent les mêmes quantités totales d'énergie brute sont disponibles.To be able to compare the effect of the new precombustion chamber design with respect to the prior art, the inventors kept constant the total volume of the
On appelle V1 le volume de la chambre de précombustion 60, et V2 le volume principal de la chambre de combustion 50. V1 + V2 est constant pour tous les essais. En outre, comme le but de l'invention est d'améliorer les performances de la chambre de précombustion 60, les inventeurs ont gardé V1 le même pour tous les modes de réalisation.The volume of the
Les inventeurs ont constaté que, en gardant V1 constant, un effet intéressant a été atteint en changeant la configuration de la chambre de précombustion 60 à partir d'une forme allongée de section transversale constante à une forme allongée dont la section transversale varie le long de l'axe longitudinal de la chambre. Elle peut avoir une section transversale qui est étagée ou qui a une forme tronconique.The inventors have found that, by keeping V1 constant, an interesting effect has been achieved by changing the configuration of the
Cela signifie de préférence que la chambre de précombustion présente, à partir de la bougie d'allumage 65, dans la direction de la chambre de combustion 50, une section croissante. De préférence, la chambre de précombustion 60 comporte deux parties, la première partie comportant la bougie d'allumage 65 et présentant un premier diamètre intérieur maximal qui est plus petit que le diamètre intérieur minimum de la deuxième partie.This preferably means that the precombustion chamber has, from the
De préférence, au moins un diamètre, et de préférence les deux diamètres de la première et de la seconde partie sont constants. Par exemple, comme représenté sur la
La réduction de la longueur de la chambre de précombustion 60 permet de réduire la distance entre la bougie 65 et la chambre de combustion 50, ce qui a pour avantage de réduire le temps d'allumage de la chambre 50, ainsi que la durée globale d'un cycle de tir.The reduction in the length of the
L'invention fournit ainsi une chambre de précombustion efficace pour un outil qui est moins encombrant et peut fonctionner plus rapidement que ceux de l'art antérieur.The invention thus provides an efficient precombustion chamber for a tool which is less bulky and can operate faster than those of the prior art.
La
Cette conception conduit à une meilleure ergonomie parce qu'il est plus bénéfique en termes d'équilibre de l'outil. Avec cette conception, la chambre de précombustion n'est plus située entièrement sur un côté de l'outil de telle sorte que la chambre de combustion et la chambre de travail 80 ne forment pas nécessairement une architecture classique en L, c'est-à-dire un outil assimilable à un « pistolet ».This design leads to better ergonomics because it is more beneficial in terms of tool balance. With this design, the precombustion chamber is no longer located entirely on one side of the tool so that the combustion chamber and the working
Ce nouveau design est plus pratique en termes d'ergonomie étant donné que les masses de la chambre de travail et du magasin comportant les éléments de fixation ne sont plus tous situés sur le même côté de l'outil et sur le même côté de la poignée de l'outil.This new design is more practical in terms of ergonomics since the masses of the working chamber and of the magazine comprising the fastening elements are no longer all located on the same side of the tool and on the same side of the handle. of the tool.
De préférence, la chambre de précombustion 60 comporte au moins deux parties, la première de ces parties est celle reliée à la chambre de combustion 50 et la seconde partie est celle la plus éloignée de la chambre de combustion 50. La paroi latérale 82 de la chambre de précombustion 60 dans la première partie est plus proche de l'extrémité arrière de l'outil, que ne l'est la paroi latérale de la chambre de précombustion dans la seconde partie. De préférence, la deuxième partie comprend la bougie d'allumage 65. L'outil est configuré de telle sorte que l'outil est serré autour de la chambre de précombustion.Preferably, the
De préférence, au moins un diamètre, et de préférence les deux diamètres de la première et de la seconde partie sont constants. Par exemple, comme représenté sur la
Comme on le voit sur la
Tout en gardant constante V1 par rapport à l'art antérieur, l'invention permet de garder un niveau de performances comparable, voire identique, en termes de production d'énergie, dans un outil qui est beaucoup mieux équilibré.While keeping constant V1 compared to the prior art, the invention makes it possible to keep a comparable, even identical, level of performance in terms of energy production, in a tool which is much better balanced.
Comme représenté sur la
Par conséquent, comme le carter de la chambre de travail 80 a toujours une forme cylindrique et le piston 78 a également une forme cylindrique, la chambre de combustion 50 a, du côté de la chambre de travail 80, une forme générale cylindrique.Consequently, since the casing of the working
Comme on le voit sur la
Les inventeurs ont constaté que cette chambre 50 ne conduit pas à une sortie d'énergie optimale. Ils ont trouvé une forme améliorée pour la chambre de combustion qui permet d'améliorer la production d'énergie.The inventors have found that this
Un mode de réalisation préféré est présenté à la
Cette forme sphérique/ovoïde conduit à un meilleure mélange, et à une distribution de combustible et à un balayage des gaz de combustion corrects. Les inventeurs ont en effet découvert que cette forme ne dispose pas de zones mortes en raison de la présence de bords dans la cavité. Ces bords affectent à la fois le flux et la flamme de combustion. Le débit a tendance à s'arrêter à l'approche des bords, résultant dans des zones mortes. La flamme est également affectée par ces bords car elle tend à s'éteindre en se rapprochant des bords. La nouvelle forme supprime la plupart, sinon tous les points morts néfastes qui existent dans l'art antérieur. Même si le volume de combustion n'est pas une sphère parfaite, tout bord qui peut être retiré à partir du volume de la chambre de combustion permet d'optimiser l'entrée et la sortie des flux de la chambre pour l'alimentation optimale avec le mélange air-combustible et le balayage optimal des gaz de combustion.This spherical / ovoid shape leads to better mixing, and to a distribution of fuel and a sweeping of the correct combustion gases. The inventors have in fact discovered that this shape does not have dead zones due to the presence of edges in the cavity. These edges affect both the flow and the combustion flame. The flow tends to stop when approaching the edges, resulting in dead zones. The flame is also affected by these edges because it tends to extinguish as it approaches the edges. The new shape removes most, if not all of the harmful dead spots that exist in the prior art. Even if the combustion volume is not a perfect sphere, any edge that can be removed from the volume of the combustion chamber makes it possible to optimize the entry and exit of the flows from the chamber for optimal supply with the air-fuel mixture and the optimal sweeping of the combustion gases.
De plus, le mélange peut brûler beaucoup plus efficacement dans n'importe quelle zone de la chambre de combustion, en minimisant les zones mortes. Comme la principale raison de cette amélioration est l'élimination des bords et angles morts, une forme partiellement sphérique peut également être remplacé par une forme partiellement ovoïde ou toute autre forme qui n'a pas ou a un nombre minime de bords, par exemple une forme où le rayon de courbure de la partie supérieure de la paroi de fond (ici à gauche) de la chambre de combustion 50 est supérieur ou égal à 25%, de préférence 50% au plus petit diamètre de la chambre de combustion de la technique antérieure (par exemple, H).In addition, the mixture can burn much more effectively in any area of the combustion chamber, minimizing dead areas. As the main reason for this improvement is the elimination of edges and blind spots, a partially spherical shape can also be replaced by a partially ovoid shape or any other shape that does not have or has a minimal number of edges, for example a shape where the radius of curvature of the upper part of the bottom wall (here on the left) of the
Les
La chambre de combustion 50 comprend un carter 68 définissant trois ouvertures dont deux 50a, 50b sont alignées sur un même axe U, qui correspond à l'axe longitudinal de la chambre de précombustion ou une partie de celle-ci, et une troisième 50c est alignée sur un axe Y sensiblement perpendiculaire à l'axe U.The
Le carter 68 comprend une première demi-coque 68a comportant une première paroi 68aa en portion de sphère. Cette première paroi 68aa est une paroi médiane qui est située entre deux parois d'extrémité 68ab chacune en portion de cylindre. Les parois d'extrémité 68ab définissent en partie les ouvertures 50a, 50b d'axe U. Le carter 68 comprend une seconde demi-coque 68b comportant deux parois d'extrémité 68bb chacune en portion de cylindre et définissant le reste des ouvertures d'axe U, et une paroi cylindrique 68ba définissant l'ouverture d'axe Y.The
L'ouverture 50a assure la communication fluidique avec la cavité de la chambre de précombustion. L'ouverture 50c assure la communication fluidique avec la cavité interne de la chambre de travail, et l'ouverture 50b assure la communication fluidique avec l'atmosphère. L'ouverture 50a est obturable par le clapet 66 précité et l'ouverture 50b est obturable par une vanne 84, dont le corps mobile est porté par une tige portant également le clapet 66.The
Les performances d'un outil de fixation actionné par combustion sont notamment basées sur la capacité du piston de convertir efficacement l'énergie de pression générée par la combustion du mélange explosif en énergie cinétique transférée à l'élément de fixation. Cette conversion efficace est affectée par les fuites qui se produisent entre le piston et le carter de la chambre de travail. Ces pistons et les carters sont très bien connus car ils sont utilisés dans tous les outils. La conception de la chambre de combustion et la technologie de combustion peut varier d'un outil à l'autre, mais le piston en mouvement réciproque dans le carter demeure essentiellement la même pour les différents outils de fixation.The performance of a combustion-actuated fixing tool is notably based on the capacity of the piston to efficiently convert the pressure energy generated by the combustion of the explosive mixture into kinetic energy transferred to the fixing element. This efficient conversion is affected by the leaks that occur between the piston and the working chamber housing. These pistons and housings are very well known because they are used in all tools. The combustion chamber design and combustion technology may vary from tool to tool, but the reciprocating piston in the crankcase remains essentially the same for the various fastening tools.
Ceci est bien connu par l'homme de l'art, comme expliqué dans le document
Le piston utilisé dans un tel outil comprend classiquement des moyens d'étanchéité dynamique, c'est-à-dire des moyens utilisés pour assurer une étanchéité entre le piston et le carter de la chambre de travail pendant la course de déplacement du piston. Cette course résulte d'une différence de pression entre les deux côtés du piston (combustion pour l'entraînement et le vide pour le retour). Les joints selon l'art antérieur sont configurés pour assurer une étanchéité dynamique.The piston used in such a tool conventionally comprises dynamic sealing means, that is to say means used to ensure a seal between the piston and the casing of the working chamber during the displacement stroke of the piston. This stroke results from a pressure difference between the two sides of the piston (combustion for the drive and vacuum for the return). The seals according to the prior art are configured to ensure dynamic sealing.
La présence d'une chambre de précombustion permet d'augmenter l'efficacité de la combustion et la pression à l'intérieur de l'outil.The presence of a pre-combustion chamber increases the combustion efficiency and the pressure inside the tool.
Dans sa position initiale rétractée, le piston doit d'abord être maintenu étanche pour contenir la pression générée par la combustion du mélange air-combustible. Comme mentionné ci-dessus, chaque fois que le mélange est suralimenté, ou lorsque la technologie de combustion utilise une chambre de précombustion, la pré-pression résultante générée par la chambre de précombustion, avant l'allumage de la chambre de combustion, doit rester étanche et maintenir la chambre de combustion sans fuite. Pendant cette phase préliminaire, le piston doit par conséquent être étanche autant que possible. Idéalement, le piston doit également rester stable pour maintenir le volume de la chambre de combustion faible afin de maximiser la pression jusqu'à ce que la combustion soit presque terminée. Idéalement aussi, à cette phase préliminaire, le piston doit être maintenu jusqu'à ce qu'à ce qu'un pic de pression se produise et la combustion se termine. Cette exigence de maintenir le piston à une phase préliminaire a été abordé dans l'art antérieur en utilisant des aimants ou des mécanismes, notamment des billes, des ressorts et/ou des cames. Tous ces mécanismes de rétention de piston sont en général encombrants, complexes et coûteux.In its initial retracted position, the piston must first be kept tight to contain the pressure generated by the combustion of the air-fuel mixture. As mentioned above, whenever the mixture is supercharged, or when the combustion technology uses a precombustion chamber, the resulting pre-pressure generated by the precombustion chamber, before the ignition of the combustion chamber, must remain tight and maintain the combustion chamber without leakage. During this preliminary phase, the piston must therefore be sealed as much as possible. Ideally, the piston should also remain stable to keep the volume of the combustion chamber low in order to maximize the pressure until combustion is almost complete. Ideally also, in this preliminary phase, the piston should be held until a pressure peak occurs and combustion ends. This requirement to maintain the piston at a preliminary phase has been addressed in the prior art using magnets or mechanisms, in particular balls, springs and / or cams. All of these piston retention mechanisms are generally bulky, complex and expensive.
Par conséquent, à cette phase préliminaire, l'exigence est d'assurer une étanchéité maximale entre le piston et le carter de la chambre de travail et donc d'avoir une étanchéité statique maximale lorsque le piston est en position de repos.Consequently, at this preliminary phase, the requirement is to ensure maximum sealing between the piston and the casing of the working chamber and therefore to have maximum static sealing when the piston is in the rest position.
Idéalement, le piston doit être maintenu dans cette position, de manière étanche, jusqu'à ce que soit atteint le pic de pression afin de maximiser le transfert de l'énergie sous forme de pression de combustion à l'énergie cinétique d'entraînement du piston.Ideally, the piston should be held in this position, tightly, until the pressure peak is reached in order to maximize the transfer of energy in the form of combustion pressure to the kinetic energy of driving the piston.
La libération du piston est la deuxième étape de l'opération, alors que le piston accélère le long de sa course jusqu'à ce qu'il atteigne sa position de travail opposée et entraîne l'élément de fixation dans le matériau support. Au cours de cette deuxième étape, l'exigence d'étanchéité entre le piston et le carter est moins problématique. Les moyens d'étanchéité dynamique sont fortement sollicités par l'accélération du piston et leur friction avec le carter, mais permettent de répondre au besoin de manière satisfaisante.Releasing the piston is the second step in the operation, as the piston accelerates along its stroke until it reaches its opposite working position and drives the fastener into the support material. During this second step, the sealing requirement between the piston and the casing is less problematic. The dynamic sealing means are highly stressed by the acceleration of the piston and their friction with the casing, but make it possible to meet the need satisfactorily.
Il existe donc un compromis sur les moyens d'étanchéité entre la première phase exigeant des performances d'étanchéité statique, et la seconde phase exigeant des performances d'étanchéité dynamique.There is therefore a compromise on the sealing means between the first phase requiring static sealing performance, and the second phase requiring dynamic sealing performance.
L'homme de l'art considère en général que des joints statiques sont généralement des joints souples (joints toriques, etc.) fait de matériaux souples comme le caoutchouc, la silicone, etc. Ceux-ci sont efficaces lorsqu'il n'y a pas de mouvement relatif entre les parties ou si les mouvements sont limités et lents. Le même homme de l'art sait que les joints dynamiques sont plus capables d'assurer une étanchéité entre deux parties en mouvement, même si l'étanchéité en tant que telle n'est pas aussi bonne qu'avec un joint statique.Those skilled in the art generally consider that static seals are generally flexible seals (O-rings, etc.) made of flexible materials such as rubber, silicone, etc. These are effective when there is no relative movement between the parts or if the movements are limited and slow. The same person skilled in the art knows that dynamic seals are more capable of ensuring a seal between two moving parts, even if the seal as such is not as good as with a static seal.
Pour les moteurs à combustion interne, les joints dynamiques pour pistons peuvent être des segments métalliques tels qu'en acier, qui fonctionnent efficacement à haute vitesse et à haute température. D'autres joints dynamiques existent également, tels que des joints à lèvres, ou des joints composites, par exemple, même s'ils ne sont généralement pas aussi efficaces que des anneaux en acier du fait des hautes températures dans les moteurs à combustion.For internal combustion engines, dynamic piston seals can be metal segments such as steel, which operate efficiently at high speed and high temperature. Other dynamic seals also exist, such as lip seals, or composite seals, for example, although they are generally not as effective as steel rings due to the high temperatures in combustion engines.
Cela confirme le compromis mentionné ci-dessus entre étanchéité statique requise à la première phase de l'opération de l'outil, et étanchéité dynamique requise à la deuxième phase. Ce compromis est encore justifié par la structure particulière des outils de fixation qui présentent un ou plusieurs orifices d'échappement situés à l'intérieur du carter de la chambre de travail, entre les deux positions extrêmes de la course du piston. Ces orifices d'échappement sont tenus d'évacuer les gaz brûlés. Malheureusement, lorsque le piston passe au droit de ces orifices d'échappement, les moyens d'étanchéité dynamique sont fortement compressés et ont tendance à se dilater dans l'orifice d'échappement ouvert. Cette situation est relativement bien supportée par les joints en acier, mais pas par les joints d'étanchéité souples. Les joints souples ont donc tendance à s'user rapidement s'ils sont exposés à des passages répétés au niveau des orifices d'échappement car ils ont tendance à s'extruder dans les orifices d'échappement.This confirms the compromise mentioned above between static sealing required in the first phase of tool operation, and dynamic sealing required in the second phase. This compromise is further justified by the particular structure of the fixing tools which have one or more exhaust orifices located inside the casing of the working chamber, between the two extreme positions of the piston stroke. These exhaust ports are required to evacuate the burnt gases. Unfortunately, when the piston passes to the right of these exhaust ports, the dynamic sealing means are highly compressed and tend to expand in the open exhaust port. This situation is relatively well tolerated by steel seals, but not by flexible seals. The flexible seals therefore tend to wear out quickly if they are exposed to repeated passages at the exhaust ports because they tend to extrude into the exhaust ports.
Les inventeurs ont cherché à assurer une meilleure étanchéité entre le piston et son carter, lorsque le piston est dans sa position de repos, cette étanchéité n'étant pas altérée du fait du passage du piston au niveau des orifices d'échappement. Idéalement, ces moyens d'étanchéité améliorés devraient maintenir le piston dans sa position de repos jusqu'à ce que la pression des gaz de combustion dans la chambre atteigne un certain seuil.The inventors have sought to ensure a better seal between the piston and its housing, when the piston is in its rest position, this seal not being altered due to the passage of the piston at the exhaust orifices. Ideally, these improved sealing means should keep the piston in its rest position until the pressure of the combustion gases in the chamber reaches a certain threshold.
Selon invention, la chambre de travail comprend un carter par exemple cylindrique, un piston et un premier joint d'étanchéité pour rendre étanche le piston dans la position rétractée ou de repos du piston (joint statique), et un second joint d'étanchéité - qui est différent du premier joint d'étanchéité - pour rendre étanche le piston pendant son mouvement (joint dynamique).According to the invention, the working chamber comprises a casing, for example cylindrical, a piston and a first seal to seal the piston in the retracted or rest position of the piston (static seal), and a second seal - which is different from the first seal - to seal the piston during its movement (dynamic seal).
En utilisant deux joints d'étanchéité différents, chaque joint d'étanchéité peut être adapté de façon optimale à la fonction d'étanchéité nécessaire et aucun compromis doit être trouvé entre une étanchéité dynamique et statique.By using two different seals, each seal can be optimally adapted to the required sealing function and no compromise has to be found between dynamic and static sealing.
De préférence, le second joint d'étanchéité est fixé sur le piston (par exemple, logé dans une rainure du piston). De préférence, le premier joint et le deuxième joint d'étanchéité sont tous deux fixés sur le piston et le carter a une surface d'étanchéité pour le premier joint d'étanchéité qui est radialement à l'intérieur de la surface d'étanchéité pour le second joint d'étanchéité. Par exemple, le carter comporte donc une saillie radiale vers l'intérieur de la surface cylindrique intérieure opposée au premier joint d'étanchéité avant/pendant la position de repos. Plus préférablement, le premier joint d'étanchéité est fixé sur le carter (par exemple, logé à l'intérieur d'une rainure du carter). De préférence, dans ce cas, aucune saillie radialement vers l'intérieur, qui tient le joint ou servant de surface d'étanchéité radiale (par exemple en forme de surface latérale cylindrique), est présente.Preferably, the second seal is fixed on the piston (for example, housed in a groove of the piston). Preferably, the first seal and the second seal are both attached to the piston and the housing has a seal surface for the first seal which is radially inside the seal surface for the second seal. For example, the casing therefore has a radial projection towards the inside of the inner cylindrical surface opposite the first seal before / during the rest position. More preferably, the first seal is fixed to the housing (for example, housed inside a groove in the housing). Preferably, in this case, no radially inward projection, which holds the joint or serves as a radial sealing surface (for example in the form of a cylindrical lateral surface), is present.
Tout en essayant de résoudre les problèmes et les compromis énumérés ci-dessus, les inventeurs ont réalisé plusieurs modes de réalisation qui sont illustrés dans les
Tous les modes de réalisation montrent une chambre de travail 80 comportant un carter 90 à l'intérieur duquel est monté coulissant un piston 78, la cavité interne 92 de la chambre de travail communiquant avec la cavité interne d'une chambre de combustion telle que celle décrite dans ce qui précède.All the embodiments show a working
Le piston 78 est représenté dans sa position rétractée ou de repos, comme cela est connu dans la technique et a déjà été expliqué ci-dessus, et se déplace (vers le bas par rapport à l'orientation des figures) dans le carter 90 pour entraîner un élément de fixation. Pendant sa course, le piston peut éventuellement passer au droit d'un orifice d'échappement 94.The
La
Chaque joint fournit ses performances notamment comme décrit ci-dessus. Le piston est conçu de sorte que les surfaces d'étanchéité pour les joints d'étanchéité soient différentes. Dans cet exemple, le diamètre de la surface d'étanchéité du joint d'étanchéité statique 96 est plus petit que le diamètre de la surface d'étanchéité du joint dynamique 98. Lorsque le piston se déplace vers le bas, le joint dynamique reste en contact avec sa surface d'étanchéité pendant toute la course. Comme le joint dynamique est en mesure de résister à des passages répétés au niveau de l'orifice d'échappement 94, il n'y a pas de problème de tenue pour ce joint. Dans le même temps, tandis que se déplace le piston (vers le bas) le long de sa course, le joint statique 96 assure l'étanchéité au début de la course, jusqu'à ce qu'il se dégage de sa surface de plus petit diamètre d'étanchéité prévu dans le carter 90. Par conséquent, alors que le piston continue sa course, le joint statique n'est plus en contact avec sa surface, ni avec aucune autre surface du carter.Each joint provides its performance, in particular as described above. The piston is designed so that the sealing surfaces for the seals are different. In this example, the diameter of the sealing surface of the
En particulier, grâce à cette conception, le joint statique 96 est jamais en contact avec l'orifice d'échappement 94 et donc peu sollicité par frottement. Le joint statique assure par conséquent une étanchéité que pendant la première phase de l'opération. Cette situation permet d'utiliser le plus efficacement possible le joint d'étanchéité statique sans exiger de compromis du fait que celui-ci n'est pas exposé à des sollicitations dynamiques.In particular, by virtue of this design, the
Le joint statique peut être réalisé en matériau souple, tel qu'en caoutchouc, car il ne sera jamais en contact avec l'orifice d'échappement 94 et ne subira donc pas de dommage par frottement. En outre, le joint d'étanchéité statique peut être ajusté serré de sorte que l'étanchéité soit optimisée. L'autre avantage de cet ajustement serré est que le joint statique participe au maintien du piston dans sa position de repos. Ainsi, le joint d'étanchéité statique agit également comme un mécanisme de retenue du piston selon les besoins de performances de combustion optimale.The static seal can be made of flexible material, such as rubber, because it will never be in contact with the
En se référant maintenant à la
La
Les
Dans les différents modes de réalisation, le piston 78 a une forme allongée et comprend une tête et une tige coaxiales. Le joint d'étanchéité statique 96 est situé dans une zone de la tête de piston, proche d'une extrémité longitudinale de celle-ci, qui est opposée à la tige.In the various embodiments, the
Claims (5)
- Device (28) for injecting a fuel gas for a gas-powered fastening tool (10), characterized in that it conprises an evaporator block (42) comprising:- a cavity (47) for evaporation of the fuel,- a duct (48) for evaporation of the fuel leaving said cavity, and- a recess (46) in which there is mounted an essentially planar filter (44) that is configured to retain impurities of said fuel,characterized in that said recess is located upstream of said cavity.
- Device (28) according to the preceding claim, in which said evaporator block comprises a recess for receiving a member (58) for actuation of a cartridge of fuel, said member having an elongate shape of axis Z and configured to be moved in translation along said axis between a rest position and a position of release of fuel from said cartridge, said member comprising an internal fuel passage bore (60) that is in the general shape of an L or a T, a first axial part of which opens at a longitudinal end of said member, and a second radial part of which opens onto an outer peripheral surface of said member and is intended to be located facing said filter (44) at least when said member is in said release position.
- Device (28) according to Claim 1 or 2, in which said duct (48) is in the general shape of an L or an S.
- Device (28) according to one of the preceding claims, in which said duct (48) is formed in one piece with at least one part of said evaporator block (42).
- Gas-powered fastening tool, comprising a device (28) according to one of the preceding claims.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15158537 | 2015-03-10 | ||
EP15200997.3A EP3067158B1 (en) | 2015-03-10 | 2015-12-18 | Improvements to a gas-powered fastening tool |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15200997.3A Division EP3067158B1 (en) | 2015-03-10 | 2015-12-18 | Improvements to a gas-powered fastening tool |
EP15200997.3A Division-Into EP3067158B1 (en) | 2015-03-10 | 2015-12-18 | Improvements to a gas-powered fastening tool |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3189939A1 EP3189939A1 (en) | 2017-07-12 |
EP3189939B1 true EP3189939B1 (en) | 2020-03-11 |
Family
ID=55129414
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17157756.2A Active EP3189939B1 (en) | 2015-03-10 | 2015-12-18 | Improvements to a gas-powered fastening tool |
EP15200997.3A Active EP3067158B1 (en) | 2015-03-10 | 2015-12-18 | Improvements to a gas-powered fastening tool |
EP17157755.4A Active EP3189938B1 (en) | 2015-03-10 | 2015-12-18 | Improvements to a gas-powered fastening tool |
EP17157754.7A Active EP3189937B1 (en) | 2015-03-10 | 2015-12-18 | Improvements to a gas-powered fastening tool |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15200997.3A Active EP3067158B1 (en) | 2015-03-10 | 2015-12-18 | Improvements to a gas-powered fastening tool |
EP17157755.4A Active EP3189938B1 (en) | 2015-03-10 | 2015-12-18 | Improvements to a gas-powered fastening tool |
EP17157754.7A Active EP3189937B1 (en) | 2015-03-10 | 2015-12-18 | Improvements to a gas-powered fastening tool |
Country Status (6)
Country | Link |
---|---|
US (1) | US11065750B2 (en) |
EP (4) | EP3189939B1 (en) |
AU (4) | AU2016229422B2 (en) |
CA (4) | CA3031272C (en) |
NZ (4) | NZ744542A (en) |
WO (1) | WO2016144580A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10759031B2 (en) * | 2014-08-28 | 2020-09-01 | Power Tech Staple and Nail, Inc. | Support for elastomeric disc valve in combustion driven fastener hand tool |
US11179837B2 (en) | 2017-12-01 | 2021-11-23 | Illinois Tool Works Inc. | Fastener-driving tool with multiple combustion chambers and usable with fuel canisters of varying lengths |
US11241777B2 (en) | 2017-12-05 | 2022-02-08 | Illinois Tool Works Inc. | Powered fastener driving tools and clean lubricants therefor |
FR3086569B1 (en) | 2018-10-01 | 2020-12-18 | Illinois Tool Works | GAS FIXING TOOL AND ITS OPERATING PROCEDURE |
CN111015598B (en) * | 2019-12-31 | 2021-06-08 | 张豪 | Working medium circulation structure of nail gun and nail gun |
EP3954504B1 (en) | 2020-08-11 | 2024-01-17 | Illinois Tool Works, Inc. | Fastener driving tool |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4483473A (en) | 1983-05-02 | 1984-11-20 | Signode Corporation | Portable gas-powered fastener driving tool |
DE19950351C2 (en) * | 1999-10-19 | 2002-06-13 | Hilti Ag | Device for producing a laminar flame front, in particular for combustion-powered setting tools for setting fastening elements |
US20020144498A1 (en) | 2001-03-20 | 2002-10-10 | Adams Joseph S. | Combustion chamber system with spool-type pre-combustion chamber |
US20020134345A1 (en) * | 2001-03-20 | 2002-09-26 | Adams Joseph S. | Combustion chamber system |
CA2383904C (en) * | 2001-05-04 | 2006-09-05 | Illinois Tool Works Inc. | Variable volume valve for a combustion powered tool |
US6647969B1 (en) * | 2001-10-30 | 2003-11-18 | Joseph S. Adams | Vapor-separating fuel system utilizing evaporation chamber |
DE10158626B4 (en) * | 2001-11-29 | 2006-07-13 | Hilti Ag | Portable, combustion-powered implement and method for its operation control |
US6779493B2 (en) * | 2002-06-13 | 2004-08-24 | Illinois Tool Works Inc. | Combustion mechanism for generating a flame jet |
US6860243B2 (en) * | 2002-06-18 | 2005-03-01 | Illinois Tool Works Inc. | Combustion chamber system with obstacles for use within combustion-powered fastener-driving tools, and combustion-powered fastener-driving tools having combustion chamber system incorporated therein |
US6983871B2 (en) * | 2002-08-09 | 2006-01-10 | Hitachi Koki Co., Ltd. | Combustion-powered nail gun |
FR2852546B1 (en) * | 2003-03-19 | 2006-08-11 | Prospection & Inventions | METHODS FOR ADJUSTING THE POWER OF A GAS-OPERATING APPARATUS |
FR2852547B1 (en) * | 2003-03-19 | 2006-05-12 | Prospection & Inventions | GAS OPERATING APPLIANCES WITH PRE-COMPRESSION CHAMBER AND PROPULSION CHAMBER |
EP1484138B1 (en) * | 2003-06-02 | 2009-11-11 | Makita Corporation | Combustion power tool |
US7938104B2 (en) | 2006-11-13 | 2011-05-10 | Illinois Tool Works Inc. | Fuel evaporator system for vaporizing liquid fuels to be used within combustion-powered devices |
JP5100190B2 (en) * | 2007-04-12 | 2012-12-19 | 株式会社マキタ | Driving tool |
US8313545B2 (en) * | 2007-10-16 | 2012-11-20 | Illinois Tool Works Inc. | Air filter assembly for combustion tool |
JP5067110B2 (en) * | 2007-10-17 | 2012-11-07 | マックス株式会社 | Gas fired driving tool |
US8347832B2 (en) * | 2008-10-31 | 2013-01-08 | Illinois Tool Works Inc. | Fuel supply and combustion chamber systems for fastener-driving tools |
US20140014703A1 (en) * | 2012-07-10 | 2014-01-16 | Illinois Tool Works Inc. | Fastener driving tool with fastener driving and rotating mechanism |
FR3046742B1 (en) * | 2016-01-20 | 2018-01-05 | Illinois Tool Works Inc | GAS FASTENING TOOL AND METHOD OF OPERATING SAME |
-
2015
- 2015-12-18 EP EP17157756.2A patent/EP3189939B1/en active Active
- 2015-12-18 EP EP15200997.3A patent/EP3067158B1/en active Active
- 2015-12-18 EP EP17157755.4A patent/EP3189938B1/en active Active
- 2015-12-18 EP EP17157754.7A patent/EP3189937B1/en active Active
-
2016
- 2016-02-29 AU AU2016229422A patent/AU2016229422B2/en active Active
- 2016-02-29 CA CA3031272A patent/CA3031272C/en active Active
- 2016-02-29 CA CA3031269A patent/CA3031269C/en active Active
- 2016-02-29 US US15/553,112 patent/US11065750B2/en active Active
- 2016-02-29 NZ NZ744542A patent/NZ744542A/en unknown
- 2016-02-29 NZ NZ734353A patent/NZ734353A/en unknown
- 2016-02-29 CA CA3031271A patent/CA3031271C/en active Active
- 2016-02-29 NZ NZ744536A patent/NZ744536A/en unknown
- 2016-02-29 WO PCT/US2016/020000 patent/WO2016144580A1/en active Application Filing
- 2016-02-29 CA CA2976366A patent/CA2976366C/en active Active
- 2016-02-29 NZ NZ744543A patent/NZ744543A/en unknown
-
2018
- 2018-07-23 AU AU2018207329A patent/AU2018207329B2/en active Active
- 2018-07-23 AU AU2018207324A patent/AU2018207324C1/en active Active
- 2018-07-23 AU AU2018207327A patent/AU2018207327B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
AU2018207327A1 (en) | 2018-08-09 |
WO2016144580A1 (en) | 2016-09-15 |
CA3031269C (en) | 2020-06-30 |
EP3189938B1 (en) | 2020-03-11 |
EP3189938A1 (en) | 2017-07-12 |
AU2018207329A1 (en) | 2018-08-09 |
AU2016229422B2 (en) | 2018-09-13 |
CA3031271A1 (en) | 2016-09-15 |
NZ734353A (en) | 2019-01-25 |
AU2018207324A1 (en) | 2018-08-09 |
EP3067158A1 (en) | 2016-09-14 |
NZ744542A (en) | 2020-06-26 |
AU2018207324B2 (en) | 2020-01-16 |
CA3031272C (en) | 2021-01-12 |
EP3189939A1 (en) | 2017-07-12 |
NZ744543A (en) | 2020-06-26 |
CA2976366A1 (en) | 2016-09-15 |
AU2016229422A1 (en) | 2017-08-24 |
US11065750B2 (en) | 2021-07-20 |
CA3031271C (en) | 2021-01-12 |
NZ744536A (en) | 2020-06-26 |
CA2976366C (en) | 2019-08-27 |
AU2018207327B2 (en) | 2020-03-26 |
AU2018207324C1 (en) | 2020-05-07 |
US20180036871A1 (en) | 2018-02-08 |
CA3031269A1 (en) | 2016-09-15 |
EP3189937A1 (en) | 2017-07-12 |
CA3031272A1 (en) | 2016-09-15 |
EP3189937B1 (en) | 2018-09-12 |
EP3067158B1 (en) | 2018-09-12 |
AU2018207329B2 (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3189939B1 (en) | Improvements to a gas-powered fastening tool | |
FR3032236B1 (en) | HEAT TRANSFER-RELIEF ENGINE AND REGENERATION | |
EP2133545B1 (en) | Pulsed detonation engine | |
EP3560049B1 (en) | Spark plug with electrode-shuttle | |
EP3850201B1 (en) | Magnetic valve return device | |
CA2679015C (en) | Hot air generator | |
FR2901577A3 (en) | INTERNAL COMBUSTION ENGINE PISTON HAVING SPECIFIC COOLING MEANS AND INTERNAL COMBUSTION ENGINE COMPRISING SUCH A PISTON | |
WO2013107972A1 (en) | High-pressure stratification spark-ignition device for an internal combustion engine | |
WO2014053724A1 (en) | Turbine engine combustion assembly with a variable air supply | |
EP3195983B1 (en) | Gas-fixing tool and method for operating same | |
EP1102923A1 (en) | Device and method for igniting an internal combustion engine and corresponding separating wall | |
EP3181296B1 (en) | Gas-fixing tool with a combustion chamber | |
FR3046741A1 (en) | GAS FASTENING TOOL | |
WO1995012067A1 (en) | Liquid fuel injection device for diesel engines, and diesel engine comprising same | |
EP4229284A1 (en) | Valve having a guide pin | |
EP0507648B1 (en) | Two-cycle engine with selective control for the charge introduced into the combustion chamber | |
EP2112351A1 (en) | Pulsed detonation engine | |
FR3115333A1 (en) | Piston for cryogenic fluid pump | |
FR3115066A1 (en) | Internal combustion engine and method of operating an internal combustion engine | |
WO2021009466A1 (en) | Hydraulic cam injection system | |
FR3145016A1 (en) | FRICTION INSERT FOR Oriented VALVE | |
WO2018134517A1 (en) | Device and method for injecting a charge into the combustion chamber of an internal combustion engine with spark ignition | |
BE359302A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170228 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3067158 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191011 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3067158 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1242550 Country of ref document: AT Kind code of ref document: T Effective date: 20200315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015048852 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200611 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200612 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200611 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200711 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1242550 Country of ref document: AT Kind code of ref document: T Effective date: 20200311 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015048852 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 |
|
26N | No opposition filed |
Effective date: 20201214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201218 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230606 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241227 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241226 Year of fee payment: 10 |