EP3187787A1 - Method for thermal regulation of a water-heating system - Google Patents
Method for thermal regulation of a water-heating system Download PDFInfo
- Publication number
- EP3187787A1 EP3187787A1 EP16206905.8A EP16206905A EP3187787A1 EP 3187787 A1 EP3187787 A1 EP 3187787A1 EP 16206905 A EP16206905 A EP 16206905A EP 3187787 A1 EP3187787 A1 EP 3187787A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- performance
- coefficient
- heat pump
- water
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/10—Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
- F24D3/1091—Mixing cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
- F24D19/1066—Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
- F24D19/1066—Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
- F24D19/1072—Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
- F24D19/1066—Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
- F24D19/1081—Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water counting of energy consumption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/04—Gas or oil fired boiler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/12—Heat pump
- F24D2200/123—Compression type heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/32—Heat sources or energy sources involving multiple heat sources in combination or as alternative heat sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2220/00—Components of central heating installations excluding heat sources
- F24D2220/02—Fluid distribution means
- F24D2220/0221—Mixing cylinders
Definitions
- the subject of the invention is a method of thermal regulation of a water heating system intended to supply a room with hot water.
- a so-called hybrid heating system comprises at least two types of thermal sources, namely a fossil energy supplement generator on the one hand and a heat pump on the other hand.
- One and / or the other of the two thermal sources ensures (s) the heating of the water, which then circulates preferably in a heating network of the room and / or in a heat exchanger connected to a storage tank. local hot water.
- a method of thermal regulation of such a heating system provides for triggering the heat pump within a given range of outside temperatures.
- the heating of the water is carried out only by the auxiliary generator with fossil energy when the outside temperature becomes lower than a limit temperature, for example of the order of 2 ° C.
- Such a known method is particularly poorly suited to more complex so-called collective heating systems, for which a plurality of heat pumps are connected to a plurality of auxiliary generators.
- the object of the invention is to overcome the aforementioned drawbacks.
- the real coefficient of performance is calculated as a function of an outside temperature, a temperature characteristic of the heat pump and the charge rate of the heat pump.
- the method comprises a step of comparing the actual coefficient of performance with a threshold value, called the threshold performance coefficient.
- the method comprises a step of measuring the outlet temperature of the water out of the hydraulic bottle, and a step of activating the backup generator if, at a given time of operation of the heat pump, the outlet temperature is lower than the set temperature.
- the method comprises a step of deactivating the heat pump if the real coefficient of performance is lower than the threshold performance coefficient.
- the method comprises a step of determining the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump.
- the method comprises a step of activation of the heat pump when the real coefficient of performance becomes equal to the threshold performance coefficient.
- the method comprises a step of blocking the activation of the backup generator for a given duration, called the blocking time.
- the method comprises a step of determining the real coefficient of performance of the heat pump at given times during the blocking time, a step of comparing the actual coefficient of performance with a threshold value, said threshold performance coefficient, and a step of activating the backup generator if the real performance coefficient is lower than the threshold performance coefficient.
- the charge rate of the heat pump is modified so that to increase the coefficient of performance to a maximum value.
- the charge rate of the charge is modified. the heat pump so as to increase the charge rate to a maximum value.
- the invention also relates to a hydraulic bottle for a water heating system for supplying hot water to a room, comprising a tapping shaped to supply water to a heat pump, a tapping shaped to receive water from said heat pump, a stitching shaped to supply water to a fossil-energy supplemental generator, a stitching shaped to receive water from the fossil-fuel booster generator, a stitching shaped to supply water to a tank of local hot water, a shaped nozzle receiving water from the hot water tank of the premises, a tapping shaped to supply water to an air heating network of the premises and a tapping shaped to receive water from an air heating network of the room, the bottle comprising a temperature sensor in a lower part of a tank of the bottle and a temperature sensor in an upper part of the tank of the bottle, so as to implement the regulation method described above.
- a diameter of the bottle measures between two and five times more than one diameter of greater value among diameters of the taps, said maximum diameter, and / or a distance between two taps measured between two times and six times more than the diameter of greater value among diameters of the connections.
- the invention also relates to a water heating system for supplying a local hot water, comprising at least one fossil energy supplement generator, at least one heat pump and a hydraulic decoupling cylinder as described previously connected to each booster generator and to each heat pump and a computing unit to implement the control method as described above.
- a hot water supply heating system of a local hot water is referenced 1 on the figure 1 , the room preferably being outside the system 1.
- the hot water is intended to supply a radiator heating network and a heat exchanger for a hot water storage tank, as will be explained.
- the heating system 1 is of the hybrid type, that is to say that the system 1 comprises at least two types of thermal sources, namely at least one fossil energy supplement generator 2 on the one hand and, on the other hand, at least one heat pump 3.
- the generator 2 is for example a gas or oil boiler.
- the heat pump 3 is preferably of variable compressor speed type, which allows a power modulation of the heat pump according to its charge rate. We speak of heat pump type "inverter”.
- the heating system 1 also comprises a hydraulic decoupling bottle 4 connected to the generator 2 and to the heat pump 3.
- the hydraulic decoupling bottle 4 is also connected to a network 5 for heating the room air by radiators and to a heat exchanger of a domestic hot water storage tank 6 of the room.
- the heat exchanger is either a coil or a plate heat exchanger.
- the system comprises a single heat pump 3 and a single generator 2.
- the invention is not limited to this embodiment and the system may comprise several heat pumps or generators connected in parallel. on tappings of the hydraulic cylinder.
- the hydraulic bottle 4 comprises a water tank provided with a set of four pairs of taps 7 to 11.
- the first tapping 7 of the first pair is shaped to receive water from the heat pump 3.
- the tapping 7 is otherwise called heat pump start tapping.
- the second tapping 8 of the first pair is shaped to supply water to the heat pump 3.
- the tapping 8 is otherwise called heat pump return tapping.
- the first tapping 9 of the second pair is shaped to receive water from the booster generator 2.
- the tapping 9 is otherwise called auxiliary generator tapping.
- the second tapping 10 of the second pair is shaped to supply water to the booster generator 2.
- the tapping 10 is otherwise called backup generator return tapping.
- the first tapping 11 of the third pair is shaped to receive water from the network 5 of radiators. Stitching 11 is otherwise called heating return stitching.
- the second tapping 12 of the third pair is shaped to supply water to the network 5 of radiators.
- Stitching 12 is otherwise called heating start stitching.
- the first tapping 13 of the fourth pair is shaped to receive water from the heat exchanger of the preparer 6.
- the tapping 13 is otherwise called preparator output tapping.
- the second tapping 14 of the fourth pair is shaped to supply water to the heat exchanger of the preparer 6.
- the tapping 14 is otherwise called preparator inlet tapping.
- each of the circuits relating respectively to the booster generator 2, the heat pump 3, the heating network 5 and the preparer 6, are fluidly independent of each other.
- each pair of taps 7 to 14 is fluidly independent of the other pairs.
- the hydraulic decoupling bottle 4 has an internal volume constituting a buffer zone, which makes it possible to decouple the flow rates of water in each circuit.
- outlets 7, 8 for starting and return heat pump, and the connections 11 and 13 return heating and preparer are arranged in a first zone 15 of the hydraulic decoupling bottle 4.
- outlets 9, 10 for the start and return of the auxiliary generator, and the taps 12 and 14 for the heating and preparer flow are arranged in a second zone 16 of the hydraulic decoupling bottle 4.
- the first zone 15 is at the bottom of the hydraulic decoupling bottle 4 while the second zone 16 is at the top of the hydraulic decoupling bottle 4.
- the first zone 15 corresponds to lower water temperatures than the second zone 16.
- temperature sensors are positioned in each tapping 7 to 14, or in some of the tappings 7 to 14, or at least one temperature sensor is positioned in the low zone 15 and another in the high zone 16.
- the diameter of the bottle 4 is between two and five times greater than the diameter of greater value among the diameters of the connections 7 to 14.
- a distance between two consecutive taps is between two and six times more than the largest diameter diameter among the diameters of the taps 7 to 14.
- the set temperature Tc corresponds to a temperature to be reached by the water in the upper zone 16 of the hydraulic decoupling bottle 4.
- This temperature is called the bottle outlet temperature.
- control method 30 comprises a step 31 of activation of the heat pump 3 systematically following the triggering of the thermal regulation process 30. This step is referenced ACT on the figure 3 .
- This step ensures that the heat pump 3 constitutes the priority thermal source of the heating system 1.
- the method 30 also comprises a step 32 of determining a coefficient of performance (COP) of the heat pump 3, said real coefficient of performance, and referenced DET, that the compressor operates or is off.
- COP coefficient of performance
- the actual coefficient of performance is calculated whether the heat pump is running or, conversely, stopped.
- the step 32 of determining the real coefficient of performance is performed at given times during a period of use of the heating system 1.
- the step 32 of determining the real coefficient of performance comprises a succession of steps during which the coefficient of performance is determined at regular or irregular intervals.
- the thermal control method 30 thus provides a calculation of the real-time performance coefficient of use of the heating system 1.
- the actual coefficient of performance is calculated at a time interval of the order of 2 minutes.
- the real coefficient of performance is defined as a ratio between a heat output generated by the heat pump 3 and an electric power consumed by the heat pump 3.
- control method 30 also comprises a step 33 of modulating a charge rate of the pump to heat 3 as a function of the measured value of the real coefficient of performance and a comparison of the temperature of water leaving the hydraulic cylinder at the set temperature, referenced MOD.
- the charge rate is defined as a ratio between a partial load heat capacity of the heat pump and a heat load capacity at full load of the heat pump.
- the charging rate is between 0% and 100%, the value 0% corresponding to the shutdown of the heat pump 3 and the value 100% at the full load of the heat pump 3.
- the real coefficient of performance is calculated according to an external temperature T ext , a temperature characteristic of the heat pump 3 and the rate of charge of the pump. heat 3.
- the outside temperature T ext is measured by a temperature sensor disposed outside the heating system and the room.
- the characteristic temperature of the heat pump is, for example, a flow temperature T dep corresponding to the temperature of the water circulating in the starting point 7 of the heat pump, ie a temperature of the water in the quill 8 of the return pump. heat, so-called return temperature T ret heat pump.
- the starting temperatures T dep and return T ret are measured by temperature sensors.
- the actual coefficient of performance depends on the external temperature T ext , the flow or return temperature and the heat pump charge rate, according to a polynomial, or a matrix.
- the method also includes a step 34 of comparing the actual performance coefficient to a threshold value, called the threshold performance coefficient. This step is referenced COMP.
- the threshold performance coefficient corresponds to an optimum operating limit of the heat pump 3.
- the comparison step 34 is performed after each actual COP calculation.
- the threshold performance coefficient may depend on the performance of the booster generator 2, a limit value such as an energy bill related to the operation of the heat pump 3 is equal to an energy bill related to the operation of the booster generator 2, respective emissions of carbon dioxide from the heat pump 3 and the generator 2, or the respective primary energy consumption of the heat pump 3 and the generator 2.
- the method 30 comprises a step 35 of deactivating the heat pump 3 if the actual coefficient of performance is lower than the threshold performance coefficient, referenced DESACT.
- the backup generator 2 is then activated.
- the method 30 comprises a measurement step 36 (MES) of the outlet temperature of the water outside the hydraulic bottle 4, and a step of activating the backup generator if, at a given operating time of the heat pump, the outlet temperature is lower than the set temperature.
- MES measurement step 36
- the operating time of the heat pump to activate the booster generator 2 is for example of the order of 5 minutes.
- the two heat sources that is to say the heat pump 3 and the booster generator 2 simultaneously provide the heating of the water for the connections 12 and 14 of the heating and preparatory start.
- the method comprises a step 37 of determining (DET) the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump 3 followed preferably by a step of activation of the heat pump 3 when the real performance coefficient becomes equal to the threshold coefficient of performance.
- the method advantageously comprises a blocking stage 38 (BLO) for activating the booster generator 2 for a given duration, called the blocking duration.
- BLO blocking stage 38
- the blocking step 38 is active in the summer or in the off-heating period of the room by the radiator network.
- the blocking time is for example of the order of 30 minutes.
- the heating of the water is only provided by the heat pump 3, even if the temperature at the outlet of the bottle remains below the set temperature.
- the step of modulating the charge rate comprises an unillustrated step of modifying the charge rate of the heat pump 3 so that the coefficient of performance increases until 'at a maximum value.
- This step reduces the energy expenditure due to the heat pump 3.
- the step of modulation of the charge rate comprises an unillustrated step of changing the charge rate of the heat pump 3 to reach a maximum charge rate, for example of the order of 100% .
- This step reduces the return on investment time of the heating system.
- the control method is implemented by a computing unit.
- the Figures 4 and 5 illustrate a change over time respectively in the heat pump load ratio Tx (in percentage), according to a curve 41, the starting temperature T dep , according to a curve 51, and in the temperature of the water in nozzle 8 back heat pump, that is to say, the return temperature T ret heat pump, according to a curve 52.
- the charge rate Tx decreases over time, following the calculation of the real coefficient of performance in real time, which notably contributes to a reduction in the difference between T dep and T ret and an increase in the coefficient of performance.
- the figure 6 illustrates a change in winter and over time, respectively, in the load factor Tx of the heat pump 3, according to a curve 61, of a charge rate Txx (in percentage) of the generator 2 along a curve 62, the starting temperature T dep , along a curve 63, and the return temperature T ret , along a curve 64.
- the figure 7 illustrates an evolution in summer and over time, respectively, of the charge rate Tx of the heat pump 3, according to a curve 71, of a charge rate Txx of the booster generator 2 according to a curve 72, the temperature of the starting T dep , according to a curve 73, and the return temperature T ret , according to a curve 74.
- this timing of the triggering of the generator 2 requires that the heat pump 3 alone ensures the heating of the water to the network 5 and the heat exchanger 6.
- the modulation rate Tx of the heat pump 3 becomes zero around 12:22 pm on the figure 6 and around 0:42 min on the figure 7 , indicating that the actual coefficient of performance falls below the threshold coefficient of performance.
- control method 30 calculates the actual coefficient of performance in real time during the operation of the heating system 1, an optimal operation of the system 1 is obtained, since the real coefficient of performance is kept greater than or equal to the real coefficient of performance. threshold, even if you have to top up with the backup generator 2 without stopping the heat pump 3.
- the heating system 1 ensures, especially because of the hydraulic decoupling bottle 4, autonomous operation of the circuits relating to the booster generator 2, to the heat pump 3, to the heating network 5 and to the preparer 6, which makes it possible to choose optimal operating conditions for each of the circuits.
- the invention is particularly applicable to the case where the heating system 1 comprises a plurality of auxiliary generators and a plurality of heat pumps; in this case, the premises supplied by the system 1 is a collective installation (as opposed to domestic).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
L'invention a pour objet un procédé de régulation thermique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude, ledit système de chauffage (1) comprenant un générateur d'appoint à énergie fossile (2), une pompe à chaleur (3) et une bouteille de découplage hydraulique (4) connectée audit générateur d'appoint (2) et à ladite pompe à chaleur (3), le procédé de régulation comprenant : - une étape de détermination d'un coefficient de performance de la pompe à chaleur à des temps donnés pendant une durée de fonctionnement du système de chauffage, dit coefficient de performance réel, et - une étape de modulation d'un taux de charge de la pompe à chaleur en fonction de la valeur mesurée du coefficient de performance réel.The subject of the invention is a method of thermal regulation of a water heating system intended to supply a local hot water, said heating system (1) comprising a fossil energy supplement generator (2), a heat pump (3) and a hydraulic decoupling bottle (4) connected to said booster generator (2) and to said heat pump (3), the control method comprising: a step of determining a coefficient of performance of the heat pump at given times during a running time of the heating system, said coefficient of real performance, and a step of modulating a charge rate of the heat pump as a function of the measured value of the real coefficient of performance.
Description
L'invention a pour objet un procédé de régulation thermique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude.The subject of the invention is a method of thermal regulation of a water heating system intended to supply a room with hot water.
De façon connue, un système de chauffage dit de type hybride comprend au moins deux types de sources thermiques, à savoir un générateur d'appoint à énergie fossile d'une part et une pompe à chaleur d'autre part.In a known manner, a so-called hybrid heating system comprises at least two types of thermal sources, namely a fossil energy supplement generator on the one hand and a heat pump on the other hand.
L'une et/ou l'autre des deux sources thermiques assure(nt) le chauffage de l'eau qui, ensuite, circule de préférence dans un réseau de chauffage du local et/ou dans un échangeur de chaleur raccordé à un réservoir d'eau chaude sanitaire du local.One and / or the other of the two thermal sources ensures (s) the heating of the water, which then circulates preferably in a heating network of the room and / or in a heat exchanger connected to a storage tank. local hot water.
Un procédé de régulation thermique d'un tel système de chauffage prévoit de déclencher la pompe à chaleur dans une gamme donnée de températures extérieures.A method of thermal regulation of such a heating system provides for triggering the heat pump within a given range of outside temperatures.
En particulier, le chauffage de l'eau est effectué uniquement par le générateur d'appoint à énergie fossile quand la température extérieure devient inférieure à une température limite, par exemple de l'ordre de 2°C.In particular, the heating of the water is carried out only by the auxiliary generator with fossil energy when the outside temperature becomes lower than a limit temperature, for example of the order of 2 ° C.
Toutefois, un tel procédé connu ne permet pas d'optimiser pleinement le fonctionnement du système de chauffage pour en réduire sa facture énergétique, ni de réduire au maximum l'impact énergétique du système de chauffage sur son environnement.However, such a known method does not make it possible to fully optimize the operation of the heating system to reduce its energy bill, nor to minimize the energy impact of the heating system on its environment.
Un tel procédé connu est particulièrement mal adapté aux systèmes plus complexes de chauffage dits collectifs, pour lesquels une pluralité de pompes à chaleur sont connectées à une pluralité de générateurs d'appoint.Such a known method is particularly poorly suited to more complex so-called collective heating systems, for which a plurality of heat pumps are connected to a plurality of auxiliary generators.
Le but de l'invention est de remédier aux inconvénients précités.The object of the invention is to overcome the aforementioned drawbacks.
A cet effet, l'invention a pour objet un procédé de régulation thermique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude, ledit système de chauffage comprenant un générateur d'appoint à énergie fossile, une pompe à chaleur à compresseur à vitesse variable et une bouteille de découplage hydraulique connectée audit générateur d'appoint et à ladite pompe à chaleur, le procédé de régulation comprenant :
- une étape d'activation de la pompe à chaleur systématiquement consécutive à une étape d'activation du système de chauffage pour régler la température d'eau sortant de la bouteille hydraulique à une température donnée, dite température de consigne,
- une étape de détermination d'un coefficient de performance de la pompe à chaleur à des temps donnés pendant une durée de fonctionnement de la pompe à chaleur, dit coefficient de performance réel, que le compresseur fonctionne ou soit en arrêt, et
- une étape de modulation d'un taux de charge de la pompe à chaleur en fonction de la valeur mesurée du coefficient de performance et d'une comparaison de la température d'eau sortant de la bouteille hydraulique à la température de consigne.
- a step of activation of the heat pump systematically following a heating system activation step to adjust the temperature of water leaving the hydraulic cylinder at a given temperature, called the set temperature,
- a step of determining a coefficient of performance of the heat pump at given times during a running time of the heat pump, said real coefficient of performance, whether the compressor is running or is off, and
- a step of modulating a charge rate of the heat pump as a function of the measured value of the coefficient of performance and a comparison of the temperature of water leaving the hydraulic cylinder at the set temperature.
Grâce au procédé selon la présente invention, il est possible d'optimiser la facture énergétique ainsi que l'impact sur l'environnement du système de chauffage, du fait du fonctionnement maitrisé du système de chauffage.With the method according to the present invention, it is possible to optimize the energy bill as well as the environmental impact of the heating system, because of the controlled operation of the heating system.
Selon une autre caractéristique de l'invention, au cours de l'étape de détermination du coefficient de performance réel, le coefficient de performance réel est calculé en fonction d'une température extérieure, d'une température caractéristique de la pompe à chaleur et du taux de charge de la pompe à chaleur.According to another characteristic of the invention, during the step of determining the real coefficient of performance, the real coefficient of performance is calculated as a function of an outside temperature, a temperature characteristic of the heat pump and the charge rate of the heat pump.
Selon une autre caractéristique de l'invention, le procédé comprend une étape de comparaison du coefficient de performance réel à une valeur seuil, dite coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of comparing the actual coefficient of performance with a threshold value, called the threshold performance coefficient.
Selon une autre caractéristique de l'invention, le procédé comprend une étape de mesure de la température de sortie de l'eau hors de la bouteille hydraulique, et une étape d'activation du générateur d'appoint si, à un temps donné de fonctionnement de la pompe à chaleur, la température de sortie est inférieure à la température de consigne.According to another characteristic of the invention, the method comprises a step of measuring the outlet temperature of the water out of the hydraulic bottle, and a step of activating the backup generator if, at a given time of operation of the heat pump, the outlet temperature is lower than the set temperature.
Selon une autre caractéristique de l'invention, le procédé comprend une étape de désactivation de la pompe à chaleur si le coefficient de performance réel est inférieur au coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of deactivating the heat pump if the real coefficient of performance is lower than the threshold performance coefficient.
Selon une autre caractéristique de l'invention, le procédé comprend une étape de détermination du coefficient de performance réel à intervalle donné, régulier ou irrégulier, pendant la désactivation de la pompe à chaleur.According to another characteristic of the invention, the method comprises a step of determining the real coefficient of performance at a given interval, regular or irregular, during the deactivation of the heat pump.
Selon une autre caractéristique de l'invention, le procédé comprend une étape d'activation de la pompe à chaleur quand le coefficient de performance réel redevient égal au coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of activation of the heat pump when the real coefficient of performance becomes equal to the threshold performance coefficient.
Selon une autre caractéristique de l'invention, le procédé comprend une étape de blocage d'activation du générateur d'appoint pendant une durée donnée, dite durée de blocage.According to another characteristic of the invention, the method comprises a step of blocking the activation of the backup generator for a given duration, called the blocking time.
Selon une autre caractéristique de l'invention, le procédé comprend une étape de détermination du coefficient de performance réel de la pompe à chaleur à des temps donnés pendant la durée de blocage, une étape de comparaison du coefficient de performance réel à une valeur seuil, dite coefficient de performance seuil, et une étape d'activation du générateur d'appoint si le coefficient de performance réel est inférieur au coefficient de performance seuil.According to another characteristic of the invention, the method comprises a step of determining the real coefficient of performance of the heat pump at given times during the blocking time, a step of comparing the actual coefficient of performance with a threshold value, said threshold performance coefficient, and a step of activating the backup generator if the real performance coefficient is lower than the threshold performance coefficient.
Selon une autre caractéristique de l'invention, au cours de l'étape de modulation du taux de charge, si le coefficient de performance est supérieur ou égal au coefficient de performance seuil, on modifie le taux de charge de la pompe à chaleur de sorte à augmenter le coefficient de performance jusqu'à une valeur maximale.According to another characteristic of the invention, during the step of modulating the charge rate, if the coefficient of performance is greater than or equal to the threshold performance coefficient, the charge rate of the heat pump is modified so that to increase the coefficient of performance to a maximum value.
Selon une autre caractéristique de l'invention, au cours de l'étape de modulation du taux de charge, si le coefficient de performance est supérieur ou égal au coefficient de performance seuil, on modifie le taux de charge de la pompe à chaleur de sorte à augmenter le taux de charge jusqu'à une valeur maximale.According to another characteristic of the invention, during the charge rate modulation step, if the coefficient of performance is greater than or equal to the threshold performance coefficient, the charge rate of the charge is modified. the heat pump so as to increase the charge rate to a maximum value.
L'invention a également pour objet une bouteille hydraulique pour un système de chauffage d'eau destinée à alimenter en eau chaude un local, comprenant un piquage conformé pour alimenter en eau une pompe à chaleur, un piquage conformé pour recevoir de l'eau de ladite pompe à chaleur, un piquage conformé pour alimenter en eau un générateur d'appoint à énergie fossile, un piquage conformé pour recevoir de l'eau du générateur d'appoint à énergie fossile, un piquage conformé pour alimenter en eau un réservoir d'eau chaude du local, un piquage conformé recevoir de l'eau du réservoir d'eau chaude du local, un piquage conformé pour alimenter en eau un réseau de chauffage d'air du local et un piquage conformé pour recevoir de l'eau d'un réseau de chauffage d'air du local, la bouteille comprenant un capteur de température dans une partie basse d'un réservoir de la bouteille et un capteur de température dans une partie haute du réservoir de la bouteille, de sorte à mettre en oeuvre le procédé de régulation décrit précédemment.The invention also relates to a hydraulic bottle for a water heating system for supplying hot water to a room, comprising a tapping shaped to supply water to a heat pump, a tapping shaped to receive water from said heat pump, a stitching shaped to supply water to a fossil-energy supplemental generator, a stitching shaped to receive water from the fossil-fuel booster generator, a stitching shaped to supply water to a tank of local hot water, a shaped nozzle receiving water from the hot water tank of the premises, a tapping shaped to supply water to an air heating network of the premises and a tapping shaped to receive water from an air heating network of the room, the bottle comprising a temperature sensor in a lower part of a tank of the bottle and a temperature sensor in an upper part of the tank of the bottle, so as to implement the regulation method described above.
Selon une autre caractéristique de l'invention, un diamètre de la bouteille mesure entre deux et cinq fois plus qu'un diamètre de plus grande valeur parmi des diamètres des piquages, dit diamètre maximal, et/ou une distance entre deux piquages mesure entre deux fois et six fois plus que le diamètre de plus grande valeur parmi des diamètres des piquages.According to another characteristic of the invention, a diameter of the bottle measures between two and five times more than one diameter of greater value among diameters of the taps, said maximum diameter, and / or a distance between two taps measured between two times and six times more than the diameter of greater value among diameters of the connections.
L'invention a également pour objet un système de chauffage d'eau destinée à alimenter un local en eau chaude, comprenant au moins un générateur d'appoint à énergie fossile, au moins une pompe à chaleur et une bouteille de découplage hydraulique telle que décrite précédemment connectée à chaque générateur d'appoint et à chaque pompe à chaleur et une unité de calcul pour mettre en oeuvre le procédé de régulation tel que décrit précédemment.The invention also relates to a water heating system for supplying a local hot water, comprising at least one fossil energy supplement generator, at least one heat pump and a hydraulic decoupling cylinder as described previously connected to each booster generator and to each heat pump and a computing unit to implement the control method as described above.
D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description qui va suivre. Celle-ci est purement illustrative et doit être lue en regard des dessins annexés sur lesquels :
- la
figure 1 est une vue schématique d'un système de chauffage d'eau destinée à alimenter un local en eau chaude ; - la
figure 2 est une vue de détail d'une bouteille hydraulique du système de lafigure 1 ; - la
figure 3 est chronogramme d'un procédé selon la présente invention de régulation thermique du système de lafigure 1 ; et - les
figures 4, 5 ,6 et 7 illustrent des résultats expérimentaux en temps réel de mise en oeuvre du procédé de régulation de lafigure 3 au système de lafigure 1 .
- the
figure 1 is a schematic view of a water heating system for supplying a local hot water; - the
figure 2 is a detail view of a hydraulic bottle system of thefigure 1 ; - the
figure 3 is a timing diagram of a method according to the present invention of thermal regulation of the system of thefigure 1 ; and - the
Figures 4, 5 ,6 and 7 illustrate real-time experimental results of implementation of the control method of thefigure 3 to the system offigure 1 .
Un système de chauffage d'eau d'alimentation d'un local en eau chaude est référencé 1 sur la
L'eau chaude est destinée à approvisionner un réseau de chauffage par radiateurs et un échangeur de chaleur pour un préparateur de stockage d'eau chaude sanitaire, comme il va être expliqué.The hot water is intended to supply a radiator heating network and a heat exchanger for a hot water storage tank, as will be explained.
Le système de chauffage 1 est de type hybride, c'est-à-dire que le système 1 comprend au moins deux types de sources thermiques, à savoir au moins un générateur d'appoint à énergie fossile 2 d'une part et, d'autre part, au moins une pompe à chaleur 3.The
Le générateur 2 est par exemple une chaudière à gaz ou à fioul.The
La pompe à chaleur 3 est de préférence de type à vitesse de compresseur variable, ce qui permet une modulation de puissance de la pompe à chaleur en fonction de son taux de charge. On parle de pompe à chaleur de type « inverter ».The
Le système de chauffage 1 comprend également une bouteille de découplage hydraulique 4 connectée au générateur 2 et à la pompe à chaleur 3.The
La bouteille de découplage hydraulique 4 est également connectée à un réseau 5 de chauffage de l'air du local par radiateurs et à un échangeur de chaleur d'un préparateur de stockage d'eau chaude sanitaire 6 du local.The
L'échangeur de chaleur est soit un serpentin, soit un échangeur à plaques.The heat exchanger is either a coil or a plate heat exchanger.
Sur le mode de réalisation illustré, le système comprend une seule pompe à chaleur 3 et un seul générateur 2. Toutefois, l'invention ne se limite pas à ce mode de réalisation et le système peut comprendre plusieurs pompes à chaleur ou générateurs raccordés en parallèle sur des piquages de la bouteille hydraulique.In the illustrated embodiment, the system comprises a
Comme visible sur les
Le premier piquage 7 de la première paire est conformé pour recevoir de l'eau de la pompe à chaleur 3. Le piquage 7 est autrement appelé piquage de départ pompe à chaleur.The
Le deuxième piquage 8 de la première paire est conformé pour alimenter en eau la pompe à chaleur 3. Le piquage 8 est autrement appelé piquage de retour pompe à chaleur.The
Le premier piquage 9 de la deuxième paire est conformé pour recevoir de l'eau du générateur d'appoint 2. Le piquage 9 est autrement appelé piquage de départ générateur d'appoint.The
Le deuxième piquage 10 de la deuxième paire est conformé pour alimenter en eau le générateur d'appoint 2. Le piquage 10 est autrement appelé piquage de retour générateur d'appoint.The
Le premier piquage 11 de la troisième paire est conformé pour recevoir de l'eau du réseau 5 de radiateurs. Le piquage 11 est autrement appelé piquage de retour chauffage.The
Le deuxième piquage 12 de la troisième paire est conformé pour alimenter en eau le réseau 5 de radiateurs. Le piquage 12 est autrement appelé piquage de départ chauffage.The second tapping 12 of the third pair is shaped to supply water to the
Le premier piquage 13 de la quatrième paire est conformé pour recevoir de l'eau de l'échangeur de chaleur du préparateur 6. Le piquage 13 est autrement appelé piquage de sortie préparateur.The first tapping 13 of the fourth pair is shaped to receive water from the heat exchanger of the
Le deuxième piquage 14 de la quatrième paire est conformé pour alimenter en eau l'échangeur de chaleur du préparateur 6. Le piquage 14 est autrement appelé piquage d'entrée préparateur.The second tapping 14 of the fourth pair is shaped to supply water to the heat exchanger of the
Du fait de la bouteille de découplage hydraulique 4, chacun des circuits relatifs respectivement au générateur d'appoint 2, à la pompe à chaleur 3, au réseau de chauffage 5 et au préparateur 6, sont fluidiquement indépendants les uns des autres.Due to the
En particulier, chaque paire des piquages 7 à 14 est indépendante fluidiquement des autres paires.In particular, each pair of
La bouteille de découplage hydraulique 4 présente un volume interne constituant une zone tampon, ce qui permet de découpler les débits d'eau dans chaque circuit.The
Comme visible sur la
Les piquages 9, 10 de départ et retour générateur d'appoint, et les piquages 12 et 14 de départ chauffage et préparateur sont disposés dans une deuxième zone 16 de la bouteille de découplage hydraulique 4.The
Comme visible sur la
La première zone 15 correspond à des températures d'eau plus faibles que la deuxième zone 16.The
Avantageusement, des capteurs de température sont positionnés dans chaque piquage 7 à 14, ou dans certains piquages parmi les piquages 7 à 14, ou au minimum, un capteur de température est positionné dans la zone basse 15 et un autre dans la zone haute 16.Advantageously, temperature sensors are positioned in each tapping 7 to 14, or in some of the
De préférence, le diamètre de la bouteille 4 mesure entre deux et cinq fois plus que le diamètre de plus grande valeur parmi les diamètres des piquages 7 à 14.Preferably, the diameter of the
De préférence, une distance entre deux piquages consécutifs mesure entre deux fois et six fois plus que le diamètre de plus grande valeur parmi les diamètres des piquages 7 à 14.Preferably, a distance between two consecutive taps is between two and six times more than the largest diameter diameter among the diameters of the
Ces dimensionnements assurent que la bouteille hydraulique 4 s'affranchisse de toute interférence de pompes relatives au circuit du générateur d'appoint 2, de la pompe à chaleur 3, du réseau de chauffage d'air 5 et du préparateur 6.These dimensions ensure that the
Quand le système de chauffage est sollicité du fait d'un besoin thermique à une température souhaitée, dite température de consigne, Tc, un procédé de régulation thermique 30 du système de chauffage 1 se déclenche.When the heating system is requested because of a thermal need at a desired temperature, said set temperature, Tc, a
La température de consigne Tc correspond à une température que doit atteindre l'eau dans la zone haute 16 de la bouteille de découplage hydraulique 4.The set temperature Tc corresponds to a temperature to be reached by the water in the
Cette température est appelée température de sortie de bouteille.This temperature is called the bottle outlet temperature.
Comme visible sur la
Cette étape assure que la pompe à chaleur 3 constitue la source thermique prioritaire du système de chauffage 1.This step ensures that the
Le procédé 30 comprend également une étape 32 de détermination d'un coefficient de performance (COP) de la pompe à chaleur 3, dit coefficient de performance réel, et référencée DET, que le compresseur fonctionne ou soit en arrêt.The
Ainsi, le coefficient de performance réel est calculé que la pompe à chaleur soit en marche ou au contraire à l'arrêt.Thus, the actual coefficient of performance is calculated whether the heat pump is running or, conversely, stopped.
L'étape 32 de détermination du coefficient de performance réel est effectuée à des temps donnés pendant une durée d'utilisation du système de chauffage 1.The
En d'autres termes, l'étape 32 de détermination du coefficient de performance réel comprend une succession d'étapes au cours desquelles le coefficient de performance est déterminé à intervalles réguliers ou irréguliers.In other words, the
Le procédé de régulation thermique 30 assure donc un calcul du coefficient de performance en temps réel d'utilisation du système de chauffage 1.The
Par exemple, le coefficient de performance réel est calculé à un intervalle de temps de l'ordre de 2 minutes.For example, the actual coefficient of performance is calculated at a time interval of the order of 2 minutes.
Le coefficient de performance réel est défini comme un rapport entre une puissance calorifique générée par la pompe à chaleur 3 et une puissance électrique consommée par la pompe à chaleur 3.The real coefficient of performance is defined as a ratio between a heat output generated by the
Comme visible sur la
Le taux de charge est défini comme un rapport entre une puissance calorifique à charge partielle de la pompe à chaleur et une puissance calorifique à pleine charge de la pompe à chaleur.The charge rate is defined as a ratio between a partial load heat capacity of the heat pump and a heat load capacity at full load of the heat pump.
Le taux de charge est compris entre 0% et 100%, la valeur 0% correspondant à l'arrêt de la pompe à chaleur 3 et la valeur 100% à la pleine charge de la pompe à chaleur 3.The charging rate is between 0% and 100%, the
Dans le cas où la comparaison entre les températures donne pour résultat que la température d'eau sortant de la bouteille hydraulique est égale à la température de consigne, le taux de charge est maintenant constant, le besoin thermique étant satisfait.In the case where the comparison between the temperatures results in the water temperature leaving the hydraulic cylinder being equal to the set temperature, the charge rate is now constant, the thermal need being satisfied.
Au cours de l'étape de détermination du coefficient de performance réel, le coefficient de performance réel est calculé en fonction d'une température extérieure Text, d'une température caractéristique de la pompe à chaleur 3 et du taux de charge de la pompe à chaleur 3.During the step of determining the real coefficient of performance, the real coefficient of performance is calculated according to an external temperature T ext , a temperature characteristic of the
La température extérieure Text est mesurée par un capteur de température, disposé à l'extérieur du système de chauffage et du local.The outside temperature T ext is measured by a temperature sensor disposed outside the heating system and the room.
La température caractéristique de la pompe à chaleur est par exemple une température de départ Tdep correspondant à la température d'eau circulant dans le piquage 7 de départ pompe à chaleur, soit une température de l'eau dans le piquage 8 de retour pompe à chaleur, dite température de retour Tret pompe à chaleur.The characteristic temperature of the heat pump is, for example, a flow temperature T dep corresponding to the temperature of the water circulating in the
Les températures de départ Tdep et retour Tret sont mesurées par des capteurs de température.The starting temperatures T dep and return T ret are measured by temperature sensors.
De préférence, le coefficient de performance réel dépend de la température extérieure Text, de la température de départ ou de retour et du taux de charge de la pompe à chaleur, selon un polynôme, ou selon une matrice.Preferably, the actual coefficient of performance depends on the external temperature T ext , the flow or return temperature and the heat pump charge rate, according to a polynomial, or a matrix.
Le procédé 30 comprend également une étape 34 de comparaison du coefficient de performance réel à une valeur seuil, appelée coefficient de performance seuil. Cette étape est référencée COMP.The method also includes a
Le coefficient de performance seuil correspond à un régime limite de fonctionnement optimal de la pompe à chaleur 3.The threshold performance coefficient corresponds to an optimum operating limit of the
L'étape de comparaison 34 est effectuée après chaque calcul de COP réel.The
Le coefficient de performance seuil peut dépendre du rendement du générateur d'appoint 2, d'une valeur limite telle qu'une facture énergétique liée au fonctionnement de la pompe à chaleur 3 soit égale à une facture énergétique liée au fonctionnement du générateur d'appoint 2, des émissions respectives de dioxyde de carbone de la pompe à chaleur 3 et du générateur 2, ou encore des consommations d'énergies primaires respectives de la pompe à chaleur 3 et du générateur 2.The threshold performance coefficient may depend on the performance of the
Comme visible sur la
De préférence, dans ce cas, le générateur d'appoint 2 est alors activé.Preferably, in this case, the
Comme visible sur la
Le temps de fonctionnement de la pompe à chaleur pour activer le générateur d'appoint 2 est par exemple de l'ordre de 5 minutes.The operating time of the heat pump to activate the
Dans ce cas, les deux sources thermiques, c'est-à-dire la pompe à chaleur 3 et le générateur d'appoint 2 assurent simultanément le chauffage de l'eau pour les piquages 12 et 14 de départ chauffage et départ préparateur.In this case, the two heat sources, that is to say the
Comme visible sur la
Comme visible sur la
De préférence, l'étape de blocage 38 est active en été ou en période hors chauffage du local par le réseau de radiateurs.Preferably, the blocking
La durée de blocage est par exemple de l'ordre de 30 minutes.The blocking time is for example of the order of 30 minutes.
Dans ce cas, le chauffage de l'eau est uniquement assuré par la pompe à chaleur 3, même si la température en sortie de la bouteille reste inférieure à la température de consigne.In this case, the heating of the water is only provided by the
On peut prévoir également dans ce cas une étape de détermination du coefficient de performance réel de la pompe à chaleur 3 à des temps donnés pendant la durée de blocage suivi d'une étape de comparaison du coefficient de performance réel au coefficient de performance seuil, et une étape d'activation du générateur d'appoint si le coefficient de performance réel est inférieur au coefficient de performance seuil.In this case, it is also possible to envisage a step of determining the actual coefficient of performance of the
Avantageusement, si le coefficient de performance est supérieur au coefficient de performance seuil, l'étape de modulation du taux de charge comprend une étape non illustrée de modification du taux de charge de la pompe à chaleur 3 de sorte que le coefficient de performance augmente jusqu'à une valeur maximale.Advantageously, if the coefficient of performance is greater than the threshold coefficient of performance, the step of modulating the charge rate comprises an unillustrated step of modifying the charge rate of the
Cette étape permet de réduire la dépense énergétique due à la pompe à chaleur 3.This step reduces the energy expenditure due to the
Alternativement, si le coefficient de performance est supérieur au coefficient de performance seuil, l'étape de modulation du taux de charge comprend une étape non illustrée de modification du taux de charge de la pompe à chaleur 3 jusqu'à atteindre un taux de charge maximale, par exemple de l'ordre de 100%.Alternatively, if the coefficient of performance is greater than threshold performance coefficient, the step of modulation of the charge rate comprises an unillustrated step of changing the charge rate of the
Cette étape permet de réduire le temps de retour sur investissement du système de chauffage.This step reduces the return on investment time of the heating system.
Le procédé de régulation est mis en oeuvre par une unité de calcul.The control method is implemented by a computing unit.
L'unité de calcul peut être un circuit comme par exemple :
- un processeur apte à interpréter des instructions sous la forme de programme informatique, ou
- une carte électronique dont les étapes du procédé de l'invention sont décrites dans le silicium, ou encore
- une puce électronique programmable comme une puce FPGA (pour « Field-Programmable Gate Array » en anglais).
- a processor capable of interpreting instructions in the form of a computer program, or
- an electronic card whose steps of the method of the invention are described in silicon, or
- a programmable electronic chip such as an FPGA chip (for "Field-Programmable Gate Array").
Les
Comme visible sur les
La
La
En hiver, l'étape 38 de blocage est désactivée.In winter, blocking
En été au contraire, l'étape 38 de blocage est mise en place.In summer, on the other hand, blocking
Comme déjà expliqué, cette temporisation du déclenchement du générateur 2 impose que la pompe à chaleur 3 assure seule le chauffage de l'eau vers le réseau 5 et l'échangeur de chaleur 6.As already explained, this timing of the triggering of the
Comme visible sur la
Comme visible sur la
On note que le taux de modulation Tx de la pompe à chaleur 3 devient nul vers 12h22 sur la
Le procédé de régulation 30 assurant le calcul du coefficient de performance réel en temps réel lors du fonctionnement du système de chauffage 1, on obtient un fonctionnement optimal du système 1, puisque le coefficient de performance réel est maintenu supérieur ou égal au coefficient de performance réel seuil, quitte à faire un appoint avec le générateur d'appoint 2 sans arrêter pour autant la pompe à chaleur 3.Since the
Le système de chauffage 1 assure, du fait en particulier de la bouteille de découplage hydraulique 4, un fonctionnement autonome des circuits relatifs au générateur d'appoint 2, à la pompe à chaleur 3, au réseau de chauffage 5 et au préparateur 6, ce qui permet de choisir des conditions optimales de fonctionnement pour chacun des circuits.The
L'invention s'applique tout particulièrement au cas où le système de chauffage 1 comprend une pluralité de générateurs d'appoint et une pluralité de pompes à chaleur ; dans ce cas, le local approvisionné par le système 1 est une installation collective (par opposition à domestique).The invention is particularly applicable to the case where the
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16206905T PL3187787T3 (en) | 2015-12-28 | 2016-12-26 | Method for thermal regulation of a water-heating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1563402A FR3046217B1 (en) | 2015-12-28 | 2015-12-28 | METHOD OF THERMALLY REGULATING A WATER HEATING SYSTEM |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3187787A1 true EP3187787A1 (en) | 2017-07-05 |
EP3187787B1 EP3187787B1 (en) | 2020-02-12 |
Family
ID=55451422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16206905.8A Active EP3187787B1 (en) | 2015-12-28 | 2016-12-26 | Method for thermal regulation of a water-heating system |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3187787B1 (en) |
ES (1) | ES2789362T3 (en) |
FR (1) | FR3046217B1 (en) |
PL (1) | PL3187787T3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201800009760A1 (en) * | 2018-10-24 | 2020-04-24 | Adsum Srl | System and method for heating a fluid using a heat pump and a boiler |
WO2020083409A1 (en) * | 2018-10-25 | 2020-04-30 | Almeva Ag | Combined system for heating household water and medium for house heating and/or for cooling of heating medium for house cooling |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997008498A1 (en) * | 1995-08-29 | 1997-03-06 | Monard (Research & Development) Limited | A manifold for connecting circuits of a central heating system |
EP2159495A1 (en) * | 2008-08-25 | 2010-03-03 | Honeywell Technologies Sarl | A controller for a temperature control system |
EP2463591A1 (en) * | 2010-12-08 | 2012-06-13 | Daikin Europe N.V. | Heating and method for controlling a heating |
-
2015
- 2015-12-28 FR FR1563402A patent/FR3046217B1/en active Active
-
2016
- 2016-12-26 ES ES16206905T patent/ES2789362T3/en active Active
- 2016-12-26 EP EP16206905.8A patent/EP3187787B1/en active Active
- 2016-12-26 PL PL16206905T patent/PL3187787T3/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997008498A1 (en) * | 1995-08-29 | 1997-03-06 | Monard (Research & Development) Limited | A manifold for connecting circuits of a central heating system |
EP2159495A1 (en) * | 2008-08-25 | 2010-03-03 | Honeywell Technologies Sarl | A controller for a temperature control system |
EP2463591A1 (en) * | 2010-12-08 | 2012-06-13 | Daikin Europe N.V. | Heating and method for controlling a heating |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201800009760A1 (en) * | 2018-10-24 | 2020-04-24 | Adsum Srl | System and method for heating a fluid using a heat pump and a boiler |
WO2020083409A1 (en) * | 2018-10-25 | 2020-04-30 | Almeva Ag | Combined system for heating household water and medium for house heating and/or for cooling of heating medium for house cooling |
AT17574U1 (en) * | 2018-10-25 | 2022-07-15 | Almeva Ag | Combined system for heating domestic water and medium for building heating and/or for cooling heating medium for building cooling |
EE01595U1 (en) * | 2018-10-25 | 2023-02-15 | Almeva Ag | Combined system for heating household water and medium for house heating and/or for cooling of heating medium for house cooling |
Also Published As
Publication number | Publication date |
---|---|
PL3187787T3 (en) | 2020-09-21 |
FR3046217A1 (en) | 2017-06-30 |
EP3187787B1 (en) | 2020-02-12 |
FR3046217B1 (en) | 2017-12-22 |
ES2789362T3 (en) | 2020-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3404334B2 (en) | Method and facility for energy storage using a water heater | |
FR2977656A1 (en) | THERMAL EXCHANGE SYSTEM AND METHOD FOR CONTROLLING THERMAL POWER DEVELOPED BY SUCH THERMAL EXCHANGE SYSTEM | |
FR3058479A1 (en) | METHOD AND SYSTEM FOR CONTROLLING MULTI-PUMPS EQUIPMENT | |
EP3187787B1 (en) | Method for thermal regulation of a water-heating system | |
FR2999686A1 (en) | AIR CONDITIONING SYSTEM USING DEEP SEA WATER | |
WO2015197622A1 (en) | Power management method in an electrical installation and an electrical installation | |
CN111664573A (en) | Anti-freezing control method and device for gas water heater | |
EP2603742B1 (en) | Device and method for temperature regulation in a building | |
EP2775221A1 (en) | Regulation of the flow and temperature of a sanitary hot water circulator | |
EP2990904B1 (en) | Method for managing the power consumption of an electrical network | |
EP3340004B1 (en) | Method for determining the load-shedding capability of a building using thermal inertia, associated load-shedding method and system using said methods | |
FR3010249A1 (en) | METHOD FOR CONTROLLING THE ELECTRICAL REGULATION OF AN ELECTRICAL SYSTEM BASED ON ERASING INSTRUCTIONS. | |
FR2966564A1 (en) | HOT WATER PRODUCTION FACILITY FOR COLLECTIVE HOUSING COMPRISING A COMMON AIR EXTRACTION FAN | |
FR3007595A1 (en) | METHOD FOR MANAGING AN ELECTRICAL CONSUMER BASED ON A MODEL OF TEMPERATURE | |
EP3650762B1 (en) | Method for controlling a thermal power to be injected in a heating system and heating system implementing said method | |
EP3273170B1 (en) | Installation for producing hot water with a thermodynamic circuit powered by photovoltaic cells | |
EP2770263A2 (en) | Method and installation for heating water | |
EP2651673B1 (en) | System and method for controlling an air conditioning system for a motor vehicle | |
EP4113015B1 (en) | Facility for producing domestic hot water | |
FR3047844A1 (en) | METHOD FOR REGULATING THE TEMPERATURE OF A FUEL CELL AND ASSOCIATED SYSTEM | |
FR3025296A1 (en) | MANAGEMENT OF THE RELANCE OF A THERMODYNAMIC HEATING SYSTEM | |
FR3115098A1 (en) | Thermodynamic heater with optimized regulation | |
FR3039260A1 (en) | METHOD FOR MANAGING A CONDENSATION AND CHADIER BOILER FOR IMPLEMENTING THE METHOD | |
EP4224073A1 (en) | Method for controlling the operation of a heat pump | |
JPS5956663A (en) | Accumulating system of energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171121 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190829 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1232615 Country of ref document: AT Kind code of ref document: T Effective date: 20200215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016029464 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200512 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200512 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200612 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2789362 Country of ref document: ES Kind code of ref document: T3 Effective date: 20201026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200705 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016029464 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1232615 Country of ref document: AT Kind code of ref document: T Effective date: 20200212 |
|
26N | No opposition filed |
Effective date: 20201113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230519 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240108 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240101 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231215 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241127 Year of fee payment: 9 Ref country code: LU Payment date: 20241127 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241211 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20241127 Year of fee payment: 9 Ref country code: BE Payment date: 20241220 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241219 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241030 Year of fee payment: 9 Ref country code: AT Payment date: 20241120 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20241219 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241211 Year of fee payment: 9 |