EP3184807B1 - System for energy storage and recovery - Google Patents
System for energy storage and recovery Download PDFInfo
- Publication number
- EP3184807B1 EP3184807B1 EP15003640.8A EP15003640A EP3184807B1 EP 3184807 B1 EP3184807 B1 EP 3184807B1 EP 15003640 A EP15003640 A EP 15003640A EP 3184807 B1 EP3184807 B1 EP 3184807B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine
- pressure
- pressurized
- water tank
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000004146 energy storage Methods 0.000 title claims description 33
- 238000011084 recovery Methods 0.000 title claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 191
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 4
- 230000033228 biological regulation Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims 1
- 238000003860 storage Methods 0.000 description 26
- 238000000034 method Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 9
- 238000010276 construction Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/005—Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/42—Storage of energy
Definitions
- the invention relates to a system for energy storage and recovery according to the features of patent claim 1.
- Another storage method shows the DE601 18 987 T2 , This method is suitable for small storage such as on vehicles. For storage power plants which require a large storage volume, the method is not applicable.
- US 2012/0279209 A1 describes an apparatus operating under atmospheric conditions to deliver a gas into a pressure-resistant container under high pressure and then gradually let it act on liquids in closed hydraulic apparatus until it is depressurized to atmospheric pressure. Disadvantage is in this process that to a necessary constant repetition again considerable energy expenditure for the compression of the gas and the operation of the hydraulic equipment is required.
- WO 2011/101647 A2 A system is known for storing and recovering energy with compressed air and pressurized water tanks, and a Pelton turbine and a power generation generator connected thereto.
- Out FR 3 012 537 A1 and EP 0 230 636 A1 is the use of a Pelton turbine with a frequency converter known.
- the object of the invention is to provide a system for energy storage and energy recovery, which stores with high efficiency in an efficient manner excess energy in a public or non-public power grid and can be returned to selbiges same energy demand.
- the energy storage and recovery system in particular a power plant, comprises at least one compressed air tank, at least one pressurized water tank connected to the compressed air tank, at least one turbine operatively connected to the at least one pressurized water container, and a generator for generating electrical energy, a high-pressure pump for conveying water from a water reservoir into the pressurized water container.
- the turbine in operative connection with the at least one pressurized water tank is an overpressure turbine which is connected in series with a constant pressure turbine such that a drive shaft of the overpressure turbine is connected to a drive shaft of the constant pressure turbine and a drive shaft of the generator.
- the constant pressure turbine is arranged according to the invention between the positive pressure turbine and the generator, wherein the generator has an interface for connection to a public power grid.
- active connection is understood below to mean that the pressurized water container is connected directly to the turbine. This means that the water flowing out of the pressurized water container is conducted directly to the turbine and drives it.
- the standing in operative connection with the pressurized water tank turbine is therefore not just driven by another turbine.
- the overpressure turbine is in operative connection with the pressurized water container and is driven by the outflowing water.
- the constant-pressure turbine is driven by the water flowing out of the overpressure turbine.
- the overpressure turbine eg Francis turbine and the constant pressure turbine, eg Pelton turbine are connected via their drive shafts with the generator, a constant balance between the pressure turbine and the constant pressure turbine arises in such a way that the decreasing by the current pressure reduction performance of the pressure turbine is balanced by the constant pressure turbine ,
- the energy stored in the pressure vessels can be optimally converted by the generator into electrical energy.
- the pressure reduction at the entrance of the overpressure turbine is due to the falling pressure in the pressure water tank when water is removed from the pressurized water tank for power generation.
- the drive shaft of the positive pressure turbine and the drive shaft of the constant pressure turbine can form a common shaft.
- the drive shaft of the overpressure turbine and the drive shaft of the constant pressure turbine can be connected to each other via a torsionally rigid coupling.
- the drive shaft of the overpressure turbine can be connected to the drive shaft of the constant pressure turbine via a transmission. It is also possible that an automatic clutch for decoupling the overpressure turbine is provided between the overpressure turbine and the constant pressure turbine.
- an outlet of the at least one pressurized water container is connected to an inlet of the overpressure turbine and an outlet of the overpressure turbine is connected to an inlet of the equi-pressure turbine.
- the discharge pressure from the pressure turbine can be controlled so that despite variable system pressure in the pressure water tank and thus variable input pressure of the pressure turbine, the discharge pressure from the pressure turbine and thus the inlet pressure in the constant pressure turbine can be kept constant.
- the capacity of the constant pressure turbine can be adjusted to the required generator power via adjustable inlet nozzles (tail unit).
- the volume of water is adapted to the required power and thus the performance of the overpressure turbine by adjusting the tail unit indirectly adjusted to the overall performance of the turbine combination. It is expediently arranged between an outlet of the overpressure turbine and an inlet of the constant pressure turbine, a device for pressure regulation of the admission pressure of the constant pressure turbine.
- the overpressure turbine is expediently designed for inlet pressures between 10 and 1000 bar, in particular between 225 bar and 500 bar.
- a connecting line may be present which connects the outlets of the pressurized water containers to one another, wherein the pressurized water containers are arranged relative to one another such that the connecting line enters Has slope and is connected at its lowest point (eg collector, water lock) with the inlet of the turbine (eg dip tube).
- Exactly one pressure line can be present between an outlet of a compressed air tank and an inlet of a pressurized water tank, which is designed to conduct compressed air from the pressurized water tank to the compressed air tank and energy recovery compressed air from the compressed air tank to the pressurized water tank at energy storage.
- the line is dimensioned so that when bursting a compressed air tank only a small volume can flow out and thus only a small supply of compressed air is necessary.
- a shut-off device may be arranged which is set to close the connection line in the event of a sudden drop in pressure. This ensures that not all the stored compressed air can escape when bursting a compressed air tank or a pressurized water tank.
- a connection line may be present, which connects the outlet of several compressed air tanks together, wherein the plurality of compressed air tanks are arranged to each other such that the connecting line has a slope and is connected at its lowest point to an inlet of a pressurized water tank. This ensures that condensate formed in the compressed air tanks flows through the connecting line into the pressurized water tank. It is thus possible that several compressed air tanks are assigned to a single pressurized water tank. If the system also includes several pressurized water containers, this ensures that when a compressed air and / or pressurized water container bursts, not all the pressure volume stored in the system can escape.
- the system according to the invention comprises a plurality of groups of pressure vessels, each group consisting of a plurality of compressed air tanks and a pressurized water tank.
- the system can continue to access the other groups by separating the affected groups by means of a gate valve.
- the compressed air tank and the pressure water tank are connected to each other so that a constant pressure equalization between the two containers takes place, so that during the energy storage as well as during the energy production of the pressure in the two containers is always balanced, ie between the pressurized water tank and the compressed air tank is a pressure equilibrium.
- energy storage ie water is introduced into the pressure water tank
- the pressure in the total volume of the pressurized water container always increases
- the pressure in the total volume of the pressurized water tank is always identical to the pressure in the compressed air tank.
- a compressed air tank and a pressure water tank is connected via exactly one pressure line, which is designed to direct compressed air from the pressurized water tank to the compressed air tank and energy recovery compressed air from the compressed air tank to the pressurized water tank at energy storage.
- This pressure line is used in the energy recovery that compressed air from the compressed air tank can flow without pressure loss in the pressure water tank. When storing energy, this pressure line is used to allow compressed air from the pressurized water tank to flow into the compressed air tank without loss of pressure. This ensures a simple construction.
- a compressed air turbine Between the compressed air tank and the pressurized water tank can be arranged, in particular in the connection line between the compressed air tank and the pressurized water tank, a compressed air turbine. As a result, additional energy can be obtained when flowing through compressed air through the connecting line, whereby the efficiency of the system according to the invention can be improved and increased
- the proposed systems are used for energy storage as well as for energy recovery.
- the proposed systems for this purpose each have an operating state, namely a first state for energy storage and a second state for energy recovery.
- water is pumped via a high-pressure pump from a water reservoir into the pressurized water tank, wherein the high-pressure pump is operated by means of excess energy from a public or non-public power grid. Due to the increasing amount of water in the pressurized water tank, the remaining compressed air in the pressurized water tank is displaced into the connected compressed air tank with simultaneous pressure increase due to the constant volume of the tank. Due to the pressure balance between the pressurized water tank and the compressed air tank, there is always identical pressure in both tanks. This pressure increases continuously with increasing amount of water in the pressurized water tank up to a predetermined maximum value.
- water is supplied from the pressurized water tank to the Pelton turbine or the overpressure turbine and to the constant pressure turbine connected to it.
- a generator which is connected to the drive shaft of the Pelton turbine or to the common drive shaft of the positive pressure turbine and constant pressure turbine generates energy which is supplied to a connected public or non-public power grid. Due to the decreasing amount of water at a constant volume of the container, the pressure in the pressurized water tank decreases. Due to the equalization of pressure between the pressurized water tank and the compressed air tank, both tanks have identical pressure at all times. This pressure decreases with decreasing amount of water in the pressure water tank and in the compressed air tank continuously up to a predetermined minimum value.
- the proposed system works with operating pressures up to 500 bar. With appropriate design of the pressure vessel (pressurized water tank, compressed air tank) even pressures up to 1000 bar are possible. As a result, a high energy density is achieved, which can be stored in the smallest space. In this way, for example, powers between 2 and 450 MW are possible. By enlargement, ie enlargement of the compressed air tank and pressurized water tank any amount of energy can be stored much cheaper than previously known storage systems. For example, it is possible that the volume ratio between pressurized water tank and compressed air tank is 1: 1, 1: 2, 1: 3 or 1: 4 and more.
- the proposed system essentially works with circulating water, which is expanded by the Pelton turbine or by the serial arrangement of the overpressure turbine and constant pressure turbine and pumped back by means of high-pressure pumps in the pressure water tank.
- the system works with a small amount of supplementary air. Supplementary air may be required due to leaks in the pressure system and can be topped up in the respective containers if necessary. The required amount is determined during operation of the proposed system via the control unit and supplied via a compressed air reservoir.
- a comparison device may be provided for comparing the instantaneous pressure in the pressure water tank and / or the instantaneous pressure in the compressed air tank and the instantaneous amount of water in the pressure water tank with a target pressure value, a comparison device.
- the comparison device is designed such that, depending on the result of the comparison, compressed air is supplied to compressed air from a compressed air reservoir (air chamber). The leaked by leakage air is thus compensated by supplementary air.
- the compressed air reservoir is connected to a compressor for conveying outside air into the compressed air reservoir.
- the compressed air tank is filled exclusively with compressed air via an upstream compressed air reservoir, which can be filled by a compressor.
- the pressure is compressed once in the compressed air tank and pressurized water tank before commissioning of the storage power plant depending on the design to a pressure of 50, 100, 200 or up to 1000 bar.
- the compressor is used exclusively for the supply of compressed air in a compressed air storage, which is upstream of the compressed air tank and only serves to replace the air leakage.
- the storage power plant can thus be operated at pressures of 50, 100, 200 or up to 1000 bar.
- control unit which is designed to control the high-pressure pump by means of electricity from the public power grid, depending on the utilization of a connected to the system or connectable public or non-public power grid to water from a water reservoir in the pressurized water tank to pump if there is an energy surplus in the public power grid.
- Pressurized water is passed from the pressurized water tank to the turbine and the power generated in the generator connected to the turbine is supplied to the public power grid when there is an energy demand in the public power grid.
- the proposed system can be stored with short reaction times either excess energy or stored energy can be made available.
- the energy storage takes place without exception by recycling the circulation water with high-pressure pumps in the pressurized water tank. This process takes place only with excess energy from the public grid.
- the required compressed air is also generated only with excess energy from the public grid.
- the system according to the invention can be raised from 0 to 100% in about 65 seconds. Load changes occur in seconds.
- the high-pressure pumps can be designed so that they can be driven out of the stillsands to 100% power for about 25 seconds.
- the volume of the compressed air tank and the pressurized water tank can be designed so that the system of the invention over a period of up to 4 h can deliver the full design performance.
- control unit is designed, in the case of energy recovery, to regulate the power generated by the overpressure turbine and / or the constant pressure turbine by opening or closing tail units (water inlet nozzles) connected to the overpressure turbine and / or the constant pressure turbine.
- the proposed systems takes only a small space requirement and can be set up at any point in the vicinity of power lines, wind farms, Solaranalgen or large consumers. Furthermore, the proposed system does not require additional resources.
- the storage system according to the invention in particular the pressure vessels, is expediently installed underground.
- the system according to the invention can be constructed on flat or sloping terrain, in the smallest space. After the compressed air and pressurized water containers have been let into the earth, they are covered and reused as green space or arable land.
- the environment is minimally burdened and resources compared to conventional systems considerably spared.
- By housing the water reservoir to accommodate the relaxed from the turbine system water under the building to accommodate the turbines no additional space is needed for this. At the same time, the system is protected against contamination.
- Fig. 1 shows the inventive arrangement of a positive pressure turbine 3 and a constant pressure turbine 3a in a system according to the invention for energy storage and recovery.
- Fig.1 does not show the other components of the system according to the invention for energy storage and recovery for the sake of simplicity and for better illustration. It will be on the Fig. 2 and 3 directed.
- the overpressure turbine 3, eg,. a Francis turbine has an inlet E3 and an outlet A3.
- the inlet E3 is connected via a pressure line 5 with the / not shown pressurized water containers.
- the outlet A3 of the overpressure turbine 3 is connected to the inlet of a constant pressure turbine 3a, for example a Pelton turbine.
- the outlet (not shown) of the constant pressure turbine 3a is connected to a water reservoir for storing and collecting the water.
- the drive shaft AW of the overpressure turbine 3 is connected to the drive shaft AW of the constant pressure turbine 3a.
- a generator 4 for generating electrical energy is also connected.
- the drive shaft AW is guided substantially centrally through the constant pressure turbine 3a.
- the drive shaft AW is a one-piece drive shaft AW.
- Fig. 2 shows an inventive system for energy storage and recovery with a combination of pressure turbine and constant pressure turbine and exemplified four compressed air tanks 1 and four pressurized water tanks 2.
- Each pressure vessel 1, 2 is suitably designed as a single-walled container.
- Each container 1, 2 may have a volume of up to 300,000 m 3 and be designed for a pressure of up to 1000 bar.
- Each compressed air tank 1 has an inlet 1e for compressed air and an outlet 1a for compressed air.
- the inlet 1e of a compressed air tank 1 is in communication with a compressed air reservoir 18, which also assumes the function of a compressed air equalizing tank.
- This compressed air reservoir 18 is connected to a compressor 17, which can supply compressed outside air to the compressed air reservoir 18.
- the power supply of the compressor 17 is effected by a system connected to the power grid or S.
- the control and comparison unit 13 is connected via a data line 16 to a control valve 19.
- This control valve 19 is disposed between the compressed air reservoir 18 and the compressed air tank 1, in particular between the output of the compressed air reservoir 18 and the input 1e of a compressed air tank 1.
- Fig. 2 shows a single control valve 19, which is arranged in front of the entrances 1e of the four compressed air tank 1.
- each compressed air tank 1 each have a control valve 19 at the input 1e of a compressed air tank 1 is arranged. This ensures that during operation of the system, the pressure in the system can be kept constant, for example at 500 bar.
- control and comparison unit 13 By means of the control and comparison unit 13, as explained below, starting from the determined in the pressurized water tank 2 by means of the sensors SN amount of water and the available volume in the compressed air tank 1 and 2 in the pressurized water tank for a given pressure, eg 500bar required amount be determined from compressed air, which may need to be refilled from the compressed air reservoir 18 via the control valve 19 in the compressed air tank 1.
- a given pressure eg 500bar required amount be determined from compressed air, which may need to be refilled from the compressed air reservoir 18 via the control valve 19 in the compressed air tank 1.
- the sensor SD the pressure in a compressed air tank 1 is measured.
- the sensors SD, SN are thus connected via data lines 16 to the control valve 19 and the control and comparison unit 13.
- the outlet 1a of the compressed air tank 1 is connected via a pressure line 5 to the inlet 2e of a pressurized water tank 2.
- shut-off valves which are arranged between the compressed air tank 1 and the pressurized water tank 2.
- compressed air turbines which are arranged between the outlet 1 a of the compressed air tank 1 and the inlet of the pressurized water tank 2.
- the output 2a of a pressurized water container 2 is connected via a shut-off valve 6 and a pressure line 5 to the inlet E3 of the overpressure turbine 3.
- the outputs 2a of the pressurized water container 2 are each located at the lowest point of the pressurized water container 2. Furthermore, the outputs 2a of the pressurized water container 2 via a common pressure line 5 are interconnected. This pressure line 5 has a gradient in the direction of the turbine arrangement 3, 3a.
- the overpressure turbine 3 and the constant pressure turbine 3a each have a controllable tail unit 7, 7a, via which the outlet pressure of the overpressure turbine 3 into the constant pressure turbine 3a and the feed quantity into the overpressure turbine 3a and the constant pressure turbine 3 can be regulated.
- the output power of the turbine arrangement 3, 3 a can be regulated.
- the inlet guide 7, 7a are connected via a data line 16 to the control and comparison unit 13.
- the positive pressure turbine 3a and the constant pressure turbine 3 are connected via a common drive shaft AW connected to a generator 4 for power generation.
- This generator 4 is connected to a power grid S or connectable to a power grid S.
- overpressure turbine 3 and constant pressure turbine 3a are designed such that in the case of energy recovery through the arrangement of pressure turbine 3 and constant pressure turbine 3a led water from the pressurized water tank 1 is relaxed in a water reservoir 9.
- the water reservoir 9 has an antechamber 10 for removing the water in the case of energy storage.
- This pre-chamber 10 has an opening 10a, which is designed such that the lower boundary of this inlet opening 10a above the bottom of the pre-chamber 10 is arranged.
- the upper boundary of the opening 10a is disposed below the water level (not shown) in the water storage 9.
- the limitation prevents heavy parts from getting into the pre-chamber 10 in the water.
- By immersing the upper edge below the minimum water level prevents air-containing water enters the antechamber, which can lead to disturbances of the high pressure pump 11 and impurities in the pressurized water tank 2.
- the impurities can lead to disturbances in the turbines 3, 3a. Furthermore, it is prevented that the foam generated by the water relaxation of the constant pressure turbine 3 passes through microbubbles in the water, in the prechamber 10 and the high pressure pump 11.
- a high pressure pump 11 is connected to the prechamber 10.
- the power of the high-pressure pump 11 takes place from the connected or connectable power grid S.
- a check valve 8 is provided in the connecting line 12 between the high-pressure pump 11 and pressurized water tank 2 , This check valve 8 serves to ensure that the built-up during the energy storage pressure in the pressurized water tank 2 causes no feedback to the high-pressure pump 11.
- the system has a control and comparison unit 13.
- This control and comparison unit 13 is connected via a data line 16 with pressure sensors SD in the compressed air tank 1 and with level sensors SN in the pressurized water tank 2.
- the control and comparison unit 13 comprises a comparison device for comparing the instantaneous pressure in the pressurized water container 2 and the instantaneous pressure in the compressed air tank 1 and the instantaneous amount of water in the pressurized water container 2 with a desired pressure value.
- the control and comparison unit 13 is set up such that, depending on the result of the comparison, the compressed air tank 1 is supplied with compressed air from the compressed air reservoir 18 via a control valve 19.
- the control and comparison unit 13 is connected to a data line 16 to a network computer 15 of a connected or connectable public or non-public power grid S. About the network computer 15, a request to the control and comparison unit 13 is made, whether the system is to be used for energy or energy storage or can.
- control and comparison unit 13 is connected via a data line 16 with the controllable inlet guide vanes 7, 7a of the turbines 3, 3a. This makes it possible to adjust the power required by the network computer 15 of the public power grid to the turbines 3, 3a. Further, the control and comparison unit 13 is connected via a data line 16 to the shut-off valve 6. This ensures that only in the case of energy recovery, the shut-off valve 6 is opened and a connection between the pressurized water tank 2 and turbines 3, 3a is made.
- control and comparison unit 13 is connected via a data line 16 to a control device (not shown) of the high-pressure pump 11. It is thus possible to convert the excess energy supplied to the system from the power grid S into the pressurized water tank 2 as required in the transport of water.
- Fig. 3 shows an inventive system for energy storage and recovery. with compressed air and pressurized water tanks arranged in groups.
- Fig. 3 shows by way of example two groups each consisting of two compressed air tanks and a pressurized water tank.
- FIG. 3 Unlike the system shown Fig. 2 two compressed air tanks 1 connected to a pressurized water tank 2.
- the outputs 1a of the two compressed air tank 1 are connected via a pressure line 5 to the input 2e of a pressurized water tank 2.
- two compressed air tanks 1 and 2 pressurized water tank form a group (storage group).
- a plurality of compressed air tanks or a plurality of pressurized water tanks can be connected to one another in a group.
- Shut-off valves which are present between the inlet 2e of a pressurized water tank 2 and an outlet 1a of a compressed air tank 1 within a group are not shown.
- the pressure water tanks 2 of the groups are at the outputs 2a with the overpressure turbine 3 (see explanations to Fig. 1 ) connected.
- the outputs 2a of the pressurized water tank via a pressure line 5 are interconnected, wherein the pressure line 5 in the direction of the collector has a gradient.
- the required water is filled before commissioning of the system in the pressurized water tank 2.
- the first-time filling of the pressurized water container 2 after the or the compressed air tank 1 is filled with compressed air.
- the required pressure in the compressed air tank 1 or pressurized water tank 2 is generated by means of the compressor 17 and filled by the compressed air reservoir 18 into or the compressed air tank 1.
- the pressure in the compressed air tank 1 and thus in the pressurized water tank 2 is increased to 10, 50, 100, 200 or 1000 bar.
- the shut-off valve 6 between the pressurized water tank 2 and the turbines 3, 3 a is opened via the control and comparison unit 13 and thus the pressurized water in the pressurized water tank 2 of the overpressure turbine 3 and coupled with this constant pressure turbine 3a supplied.
- the amount of water flowing into the overpressure turbine 3 is controlled by the control and comparison unit 13.
- the power generated by the overpressure turbine 3 and the constant pressure turbine 3a is regulated.
- the coupled to the overpressure turbine 3 and constant pressure turbine 3a generator 4 generates the from Network computer 15 of the power grid S requested amount of energy and feeds them into the power grid S.
- control and comparison unit 13 regulates the energy recovery and the energy storage in the system.
- the control and comparison unit 13 receives via corresponding data lines 16 from the network computer 15 of the power grid S specifications regarding the respective operating phase, ie whether the system is in the operating phase of energy recovery or energy storage.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Description
Die Erfindung betrifft ein System zur Energiespeicherung und -rückgewinnung gemäß den Merkmalen des Patentanspruchs 1.The invention relates to a system for energy storage and recovery according to the features of patent claim 1.
Neue Entwicklungen im Bereich der alternativen Energien, insbesondere die der diskontinuierlichen Prozesse, wie Solarenergie oder Windenergie, haben zu der Situation geführt, dass einerseits Betriebszeiten gegeben sind, in denen die erzeugte Energie den vorliegenden Bedarf zum Teil erheblich übersteigt, andererseits solche, in denen es an der erforderlichen und abgefragten Energie völlig oder mindestens teilweise fehlt. Diese Schwankungen haben den Bedarf an geeigneten Speichermöglichkeiten für Überschussenergie akut werden lassen.New developments in the field of alternative energies, in particular those of discontinuous processes, such as solar or wind energy, have led to the situation that on the one hand operating times are given, in which the energy generated in some cases significantly exceeds the present demand, on the other hand, those in which it at the required and requested energy completely or at least partially missing. These fluctuations have made the need for suitable storage facilities for excess energy acute.
Damit richten sich die Entwicklungsbemühungen gezielt auf Vorgänge, in denen die elektrische Energie zunächst in einen anderen Energieträger umgewandelt und aus diesem wieder zurückgewonnen werden kann.Thus, the development efforts are directed specifically to processes in which the electrical energy can first be converted into another energy source and recovered from this again.
Eine dieser Vorgänge ist die Hydrolyse, bei der aus Wasser dessen Bestandteile Sauerstoff und Wasserstoff gewonnen werden. Wegen des schwierigen Umgangs mit chemisch aktivem Wasserstoff bieten sich diese Verfahren, die im Allgemeinen auch einen großen verfahrenstechnischen Aufwand erfordern, für die breite Verwendung zur elektrischen Energiespeicherung und Rückgewinnung nicht an.One of these processes is hydrolysis, in which water and its components oxygen and hydrogen are recovered. Because of the difficulty of dealing with chemically active hydrogen, these processes, which generally also require a great deal of process engineering, are not available for widespread use in electrical energy storage and recovery.
Die Speicherung elektrischer Energie in elektrischer Form ist bisher nur in Akkumulatoren möglich, in denen ein Übergang von elektrischen zu chemischen Prozessen herbeigeführt wird. Es ist aber noch nicht gelungen, Geräte zu schaffen, in denen das Speichervolumen hoch und das Bauvolumen gering ist. Für die Speicherung großer Energiemengen oder dezentrale zahlreiche Anordnungen von Speichereinheiten bilden derartige Geräte daher noch keine geeignete Lösung.The storage of electrical energy in electrical form has hitherto only been possible in accumulators in which a transition from electrical to chemical processes is brought about. However, it has not yet been possible to create devices in which the storage volume is high and the construction volume is low. For the storage of large amounts of energy or decentralized numerous arrangements of storage units such devices therefore do not form a suitable solution.
Weitere Verfahren sind darauf gerichtet, die anfallende elektrische Energie zunächst zur Verrichtung von Arbeit einzusetzen, mit welcher Speicher gefüllt werden, und die Rückgewinnung ebenfalls über den Zwischenvorgang der Arbeitsverrichtung auszuführen. Solche Verfahren werden z.B. in Pumpspeicherkraftwerke, Talsperren, hydropneumatisehe Speicherkraftwerke, die in stillgelegten Kavernen oder Bergwerken untergebracht sind, eingesetzt. Die Speicherung erfolgt zum Teil mit Druckluft oder Erdgas oder in Kombination mit Wasser, das zur Kühlung in die Gase eingespritzt wird.Other methods are directed to first use the resulting electrical energy to perform work, are filled with which memory, and perform the recovery also on the intermediate process of Arbeitsverrichtung. Such processes are eg in pumped storage power plants, dams, hydropneumatisehe Storage power plants, which are housed in disused caverns or mines used. The storage is done partly with compressed air or natural gas or in combination with water, which is injected into the gases for cooling.
Die derzeit verfügbaren Energiespeicher reichen zur Speicherung der durch erneuerbare Energieerzeuger verursachten Schwankungen bei weitem nicht aus. Gleichzeitig reichen die klassischen Energiespeicher wie Pumpspeicherkraftwerk oder Talsperren nicht aus und sind aus umwelttechnischen Gründen nur schwer realisierbar.The currently available energy stores are far from sufficient to store the fluctuations caused by renewable energy producers. At the same time the classic energy storage such as pumped storage power plant or dams are not enough and are difficult to realize for environmental reasons.
Ein Verfahren, in dem Luft komprimiert und zur Rückgewinnung der Energie wieder in verdichteter oder Druckluftmotoren eingesetzt wird, beschreibt die
Ein weiteres Verfahren zeigt die
Ein weiteres Speicherverfahren zeigt die
Aus
Aus
Aus
Aus
Aus
Diese Aufgabe wird mit den Systemen gemäß den Merkmalen des unabhängigen Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.This object is achieved with the systems according to the features of independent claim 1. Advantageous embodiments of the invention are the subject of dependent claims.
Das erfindungsgemäße System zur Energiespeicherung und -rückgewinnung, insbesondere ein Kraftwerk umfasst mindestens einen Druckluftbehälter, mindestens einen mit dem Druckluftbehälter in Verbindung stehenden Druckwasserbehälter, mindestens eine mit dem mindestens einen Druckwasserbehälter in Wirkverbindung stehende Turbine, und einen Generator zur Erzeugung elektrischer Energie, eine Hochdruckpumpe zur Förderung von Wasser aus einem Wasserspeicher in den Druckwasserbehälter. Gemäß der Erfindung ist die in Wirkverbindung mit dem mindestens einen Druckwasserbehälter stehende Turbine eine Überdruckturbine, welche mit einer Gleichdruckturbine derart in Reihe geschaltet ist, dass eine Antriebswelle der Überdruckturbine mit einer Antriebswelle der Gleichdruckturbine und einer Antriebswelle des Generators verbunden ist. Die Gleichdruckturbine ist gemäß der Erfindung zwischen der Überdruckturbine und dem Generator angeordnet, wobei der Generator eine Schnittstelle aufweist zur Verbindung mit einem öffentlichen Stromnetz.The energy storage and recovery system according to the invention, in particular a power plant, comprises at least one compressed air tank, at least one pressurized water tank connected to the compressed air tank, at least one turbine operatively connected to the at least one pressurized water container, and a generator for generating electrical energy, a high-pressure pump for conveying water from a water reservoir into the pressurized water container. According to the invention, the turbine in operative connection with the at least one pressurized water tank is an overpressure turbine which is connected in series with a constant pressure turbine such that a drive shaft of the overpressure turbine is connected to a drive shaft of the constant pressure turbine and a drive shaft of the generator. The constant pressure turbine is arranged according to the invention between the positive pressure turbine and the generator, wherein the generator has an interface for connection to a public power grid.
Unter dem Begriff Wirkverbindung wird im Weiteren verstanden, dass der Druckwasserbehälter direkt mit der Turbine verbunden ist.. Das bedeutet, dass das aus dem Druckwasserbehälter ausströmende Wasser direkt an die Turbine geführt wird und diese antreibt. Die in Wirkverbindung mit dem Druckwasserbehälter stehende Turbine wird somit eben nicht durch eine andere Turbine angetrieben. Mit anderen Worten, die Überdruckturbine steht in Wirkverbindung mit dem Druckwasserbehälter und wird von dem ausströmenden Wasser angetrieben. Die Gleichdruckturbine wird hingegen von dem aus der Überdruckturbine ausströmenden Wasser angetrieben.The term "active connection" is understood below to mean that the pressurized water container is connected directly to the turbine. This means that the water flowing out of the pressurized water container is conducted directly to the turbine and drives it. The standing in operative connection with the pressurized water tank turbine is therefore not just driven by another turbine. In other words, the overpressure turbine is in operative connection with the pressurized water container and is driven by the outflowing water. In contrast, the constant-pressure turbine is driven by the water flowing out of the overpressure turbine.
Mit dem erfindungsgemäßen System wird ein Wirkungsgrad von mehr als 75%, insbesondere mehr als 85% erzielt. Diese Wirkungsgrade können insbesondere bei Leistungen von mehr als 80MW erreicht werden.With the system according to the invention an efficiency of more than 75%, in particular more than 85% is achieved. These efficiencies can be achieved in particular with outputs of more than 80 MW.
Da die Überdruckturbine, z.B. Francisturbine und die Gleichdruckturbine, z.B. Peltonturbine über ihre Antriebswellen mit dem Generator verbunden sind, entsteht ein ständiger Ausgleich zwischen der Überdruckturbine und der Gleichdruckturbine in der Weise, dass die durch die laufende Druckreduzierung abnehmende Leistung der Überdruckturbine durch die Gleichdruckturbine ausgeglichen wird. Somit kann die in den Druckbehältern gespeicherte Energie optimal vom Generator in elektrische Energie umgesetzt werden. Die Druckreduzierung am Eingang der Überdruckturbine ist dem sinkenden Druck in dem Druckwasserbehälter geschuldet, wenn zur Energieerzeugung Wasser aus dem Druckwasserbehälter entnommen wird.Since the overpressure turbine, eg Francis turbine and the constant pressure turbine, eg Pelton turbine are connected via their drive shafts with the generator, a constant balance between the pressure turbine and the constant pressure turbine arises in such a way that the decreasing by the current pressure reduction performance of the pressure turbine is balanced by the constant pressure turbine , Thus, the energy stored in the pressure vessels can be optimally converted by the generator into electrical energy. The pressure reduction at the entrance of the overpressure turbine is due to the falling pressure in the pressure water tank when water is removed from the pressurized water tank for power generation.
Die Antriebswelle der Überdruckturbine und die Antriebswelle der Gleichdruckturbine können eine gemeinsame Welle bilden. Oder die Antriebswelle der Überdruckturbine und die Antriebswelle der Gleichdruckturbine können über eine drehsteife Kupplung miteinander verbunden sein. Oder die Antriebswelle der Überdruckturbine kann mit der Antriebswelle der Gleichdruckturbine über ein Getriebe verbunden sein. Es ist auch möglich, dass zwischen der Überdruckturbine und der Gleichdruckturbine eine automatische Kupplung zur Entkopplung der Überdruckturbine vorgesehen ist.The drive shaft of the positive pressure turbine and the drive shaft of the constant pressure turbine can form a common shaft. Or the drive shaft of the overpressure turbine and the drive shaft of the constant pressure turbine can be connected to each other via a torsionally rigid coupling. Or the drive shaft of the overpressure turbine can be connected to the drive shaft of the constant pressure turbine via a transmission. It is also possible that an automatic clutch for decoupling the overpressure turbine is provided between the overpressure turbine and the constant pressure turbine.
Zweckmäßig ist ein Auslass des mindestens einen Druckwasserbehälters mit einem Einlass der Überdruckturbine und ein Auslass der Überdruckturbine mit einem Einlass der Gleichdruckturbine verbunden. Damit ist sichergestellt, dass die in dem Druckwasser gespeicherte Energie in zwei Schritten gewonnen werden kann, nämlich in einem ersten Schritt, indem das Wasser durch die Überdruckturbine geleitet wird und in einem daran anschließenden Schritt, dass das Wasser nach Durchströmen der Überdruckturbine durch die Gleichdruckturbine geleitet wird.Suitably, an outlet of the at least one pressurized water container is connected to an inlet of the overpressure turbine and an outlet of the overpressure turbine is connected to an inlet of the equi-pressure turbine. This ensures that the stored energy in the pressurized water can be obtained in two steps, namely in a first step, by the water is passed through the pressure turbine and in a subsequent step, that the water passed after flowing through the pressure turbine through the constant pressure turbine becomes.
Mittels des Leitwerks der Überdruckturbine kann der Auslaufdruck aus der Überdruckturbine derart geregelt werden, dass trotz veränderlichem Systemdruck im Druckwasserbehälter und damit veränderlichem Eingangsdruck der Überdruckturbine der Auslaufdruck aus der Überdruckturbine und damit der Einlaufdruck in die Gleichdruckturbine konstant gehalten werden kann. Die Leistung der Gleichdruckturbine kann über regelbare Einlaufdüsen (Leitwerk) an die geforderte Generatorleistung angepasst werden. Durch Regelung der Gleichdruckturbine mittels Einlaufdüsen (Leitwerk) wird das Wasservolumen an die erforderliche Leistung angepasst und somit die Leistung der Überdruckturbine durch Nachregelung über deren Leitwerk indirekt an die Gesamtleistung der Turbinenkombination angepasst. Zweckmäßig ist zwischen einem Auslass der Überdruckturbine und einem Einlass der Gleichdruckturbine eine Einrichtung zur Druckregelung des Vordrucks der Gleichdruckturbine angeordnet.By means of the tail of the pressure turbine, the discharge pressure from the pressure turbine can be controlled so that despite variable system pressure in the pressure water tank and thus variable input pressure of the pressure turbine, the discharge pressure from the pressure turbine and thus the inlet pressure in the constant pressure turbine can be kept constant. The capacity of the constant pressure turbine can be adjusted to the required generator power via adjustable inlet nozzles (tail unit). By controlling the constant pressure turbine by means of inlet nozzles (tail), the volume of water is adapted to the required power and thus the performance of the overpressure turbine by adjusting the tail unit indirectly adjusted to the overall performance of the turbine combination. It is expediently arranged between an outlet of the overpressure turbine and an inlet of the constant pressure turbine, a device for pressure regulation of the admission pressure of the constant pressure turbine.
Die Überdruckturbine ist zweckmäßig für Eingangsdrucke zwischen 10 und 1000 bar, insbesondere zwischen 225 bar und 500 bar ausgelegt.The overpressure turbine is expediently designed for inlet pressures between 10 and 1000 bar, in particular between 225 bar and 500 bar.
Mit dem erfindungsgemäßen System können Investitionskosten reduziert und ein Wirkungsgrad von bis zu 95 % erreicht werden.With the system according to the invention investment costs can be reduced and an efficiency of up to 95% can be achieved.
Bei mehreren Druckwasserbehältern kann eine Verbindungsleitung vorhanden sein, welche die Auslasse der Druckwasserbehälter miteinander verbindet, wobei die Druckwasserbehälter derart zueinander angeordnet sind, dass die Verbindungsleitung ein Gefälle aufweist und an ihrem tiefsten Punkt (z.B. Sammler, Wasserschloss) mit dem Einlass der Turbine verbunden ist (z.B. Tauchrohr).In the case of several pressurized water containers, a connecting line may be present which connects the outlets of the pressurized water containers to one another, wherein the pressurized water containers are arranged relative to one another such that the connecting line enters Has slope and is connected at its lowest point (eg collector, water lock) with the inlet of the turbine (eg dip tube).
Zwischen einem Auslass eines Druckluftbehälters und einem Einlass eines Druckwasserbehälters kann genau eine Druckleitung vorhanden sein, welche ausgebildet ist, bei Energiespeicherung Druckluft vom Druckwasserbehälter zum Druckluftbehälter und bei Energierückgewinnung Druckluft vom Druckluftbehälter zum Druckwasserbehälter zu leiten. Die Leitung ist derart dimensioniert, dass bei Bersten eines Druckluftbehälters nur ein geringes Volumen ausströmen kann und somit nur ein geringer Nachschub an Druckluft nötig ist. In der Verbindungsleitung zwischen dem Druckluftbehälter und dem Druckwasserbehälter kann eine Absperrvorrichtung angeordnet sein, welche eingerichtet ist bei einem plötzlichen Druckabfall die Verbindungsleitung zu schließen. Damit wird sichergestellt, dass beim Bersten eines Druckluftbehälters oder eines Druckwasserbehälters nicht die gesamte gespeicherte Druckluft entweichen kann.Exactly one pressure line can be present between an outlet of a compressed air tank and an inlet of a pressurized water tank, which is designed to conduct compressed air from the pressurized water tank to the compressed air tank and energy recovery compressed air from the compressed air tank to the pressurized water tank at energy storage. The line is dimensioned so that when bursting a compressed air tank only a small volume can flow out and thus only a small supply of compressed air is necessary. In the connecting line between the compressed air tank and the pressurized water container, a shut-off device may be arranged which is set to close the connection line in the event of a sudden drop in pressure. This ensures that not all the stored compressed air can escape when bursting a compressed air tank or a pressurized water tank.
Bei mehreren Druckluftbehältern kann eine Verbindungsleitung vorhanden sein, welche die Auslasse mehrerer Druckluftbehältern miteinander verbindet, wobei die mehreren Druckluftbehälter derart zueinander angeordnet sind, dass die Verbindungsleitung ein Gefälle aufweist und an ihrem tiefsten Punkt mit einem Einlass eines Druckwasserbehälters verbunden ist. Damit ist sichergestellt, dass in den Druckluftbehältern entstandenes Kondensat durch die Verbindungsleitung in den Druckwasserbehälter fließt. Hierbei ist es somit möglich, dass mehrere Druckluftbehälter einem einzelnen Druckwasserbehälter zugeordnet sind. Umfasst das System auch mehrere Druckwasserbehälter so ist hierbei sichergestellt, dass beim Bersten eines Druckluft- und/oder Druckwasserbehälters nicht das gesamte im System gespeicherte Druckvolumen entweichen kann. Mit anderen Worten, in dieser Ausführungsform umfasst das erfindungsgemäße System mehrere Gruppen von Druckbehältern, wobei jede Gruppe aus mehreren Druckluftbehältern und einem Druckwasserbehälter besteht. Bei der Fehlfunktion einer Gruppe kann das System durch Trennung der betroffenen Gruppen mittels Absperrschieber, weiterhin auf die anderen Gruppen zugreifen.In a plurality of compressed air tanks, a connection line may be present, which connects the outlet of several compressed air tanks together, wherein the plurality of compressed air tanks are arranged to each other such that the connecting line has a slope and is connected at its lowest point to an inlet of a pressurized water tank. This ensures that condensate formed in the compressed air tanks flows through the connecting line into the pressurized water tank. It is thus possible that several compressed air tanks are assigned to a single pressurized water tank. If the system also includes several pressurized water containers, this ensures that when a compressed air and / or pressurized water container bursts, not all the pressure volume stored in the system can escape. In other words, in this embodiment, the system according to the invention comprises a plurality of groups of pressure vessels, each group consisting of a plurality of compressed air tanks and a pressurized water tank. In the case of a malfunction of a group, the system can continue to access the other groups by separating the affected groups by means of a gate valve.
Der Druckluftbehälter und der Druckwasserbehälter sind derart miteinander verbunden, dass ein ständiger Druckausgleich zwischen den beiden Behältern stattfindet, so dass während der Energiespeicherung als auch während der Energiegewinnung der Druck in den beiden Behältern immer ausgeglichen ist, d.h. zwischen dem Druckwasserbehälter und dem Druckluftbehälter besteht ein Druckgleichgewicht. Dies bedeutet also, dass bei Energiespeicherung, d.h. Wasser wird in den Druckwasserbehälter eingeleitet, der Druck im Gesamtvolumen des Druckwasserbehälters einerseits stets ansteigt, andererseits der Druck im Gesamtvolumen des Druckwasserbehälters stets identisch ist zum Druck im Druckluftbehälter. Bei der Energierückgewinnung, d.h. Wasser wird aus dem Druckwasserbehälter hinausgeleitet, sinkt der Druck im Gesamtvolumen des Druckwasserbehälters einerseits stets ab, andererseits ist der Druck im Gesamtvolumen des Druckwasserbehälters stets identisch zu dem Druck im Druckluftbehälter. Insbesondere ist ein Druckluftbehälter und ein Druckwasserbehälter über genau eine Druckleitung verbunden, welche ausgebildet ist, bei Energiespeicherung Druckluft vom Druckwasserbehälter zum Druckluftbehälter und bei Energierückgewinnung Druckluft vom Druckluftbehälter zum Druckwasserbehälter zu leiten. Diese Druckleitung dient bei der Energierückgewinnung dazu, dass Druckluft aus dem Druckluftbehälter ohne Druckverlust in den Druckwasserbehälter strömen kann. Bei der Energiespeicherung dient diese Druckleitung dazu, dass Druckluft aus dem Druckwasserbehälter ohne Druckverlust in den Druckluftbehälter strömen kann. Damit wird ein einfacher Aufbau sichergestellt.The compressed air tank and the pressure water tank are connected to each other so that a constant pressure equalization between the two containers takes place, so that during the energy storage as well as during the energy production of the pressure in the two containers is always balanced, ie between the pressurized water tank and the compressed air tank is a pressure equilibrium. This means that when energy storage, ie water is introduced into the pressure water tank, the pressure in the total volume of the pressurized water container always increases, on the other hand, the pressure in the total volume of the pressurized water tank is always identical to the pressure in the compressed air tank. In the energy recovery, ie water is led out of the pressurized water tank, the pressure in the total volume of the pressurized water tank always decreases on the one hand, on the other hand, the pressure in the total volume of the pressurized water tank is always identical to the pressure in the compressed air tank. In particular, a compressed air tank and a pressure water tank is connected via exactly one pressure line, which is designed to direct compressed air from the pressurized water tank to the compressed air tank and energy recovery compressed air from the compressed air tank to the pressurized water tank at energy storage. This pressure line is used in the energy recovery that compressed air from the compressed air tank can flow without pressure loss in the pressure water tank. When storing energy, this pressure line is used to allow compressed air from the pressurized water tank to flow into the compressed air tank without loss of pressure. This ensures a simple construction.
Zwischen dem Druckluftbehälter und dem Druckwasserbehälter kann, insbesondere in der Verbindungleitung zwischen dem Druckluftbehälter und dem Druckwasserbehälter eine Druckluftturbine angeordnet sein. Dadurch kann zusätzliche Energie beim Durchströmen von Druckluft durch die Verbindungsleitung gewonnen werden, wodurch der Wirkungsgrad des erfindungsgemäßen Systems verbessert und gesteigert werden kannBetween the compressed air tank and the pressurized water tank can be arranged, in particular in the connection line between the compressed air tank and the pressurized water tank, a compressed air turbine. As a result, additional energy can be obtained when flowing through compressed air through the connecting line, whereby the efficiency of the system according to the invention can be improved and increased
Aus dem bekannten Stand der Technik ist es nicht bekannt, dass während des Betriebs der Energiespeicherung bzw. -rückgewinnung ein Druckgleichgewicht zwischen Druckluftbehälter und Druckwasserbehälter vorhanden ist.From the known prior art it is not known that during operation of the energy storage or recovery a pressure equilibrium between compressed air tank and pressurized water tank is present.
Im Weiteren sei klargestellt, dass die vorgeschlagenen Systeme der Energiespeicherung als auch der Energierückgewinnung dienen. Selbstverständlich weisen die vorgeschlagenen Systeme hierfür jeweils einen Betriebszustand auf, nämlich einen ersten Zustand für die Energiespeicherung und einen zweiten Zustand für die Energierückgewinnung.It should be further clarified that the proposed systems are used for energy storage as well as for energy recovery. Of course, the proposed systems for this purpose each have an operating state, namely a first state for energy storage and a second state for energy recovery.
Bei der Energiespeicherung wird, wie später noch beschrieben wird, Wasser über eine Hochdruckpumpe aus einem Wasserspeicher in den Druckwasserbehälter gepumpt, wobei die Hochdruckpumpe mittels überschüssiger Energie aus einem öffentlichen oder nichtöffentlichen Stromnetz betrieben wird. Durch die anwachsende Wassermenge im Druckwasserbehälter wird die restliche Druckluft im Druckwasserbehälter in den angeschlossenen Druckluftbehälter verdrängt unter gleichzeitiger Druckerhöhung aufgrund des konstanten Volumens der Behälter. Aufgrund des Druckausgleichs zwischen Druckwasserbehälter und Druckluftbehälter herrscht in beiden Behältern stets identischer Druck. Dieser Druck steigt bei zunehmender Wassermenge im Druckwasserbehälter kontinuierlich bis zu einem vorgebbaren Maximalwert an.In the energy storage, as will be described later, water is pumped via a high-pressure pump from a water reservoir into the pressurized water tank, wherein the high-pressure pump is operated by means of excess energy from a public or non-public power grid. Due to the increasing amount of water in the pressurized water tank, the remaining compressed air in the pressurized water tank is displaced into the connected compressed air tank with simultaneous pressure increase due to the constant volume of the tank. Due to the pressure balance between the pressurized water tank and the compressed air tank, there is always identical pressure in both tanks. This pressure increases continuously with increasing amount of water in the pressurized water tank up to a predetermined maximum value.
Bei der Energierückgewinnung wird Wasser aus dem Druckwasserbehälter der Peltonturbine oder der Überdruckturbine und der mit dieser verbundenen Gleichdruckturbine zugeführt. Ein Generator, der an der Antriebswelle der Peltonturbine oder an der gemeinsamen Antriebswelle der Überdruckturbine und Gleichdruckturbine angeschlossen ist erzeugt Energie, welcher einem angeschlossenen öffentlichen oder nichtöffentlichen Stromnetz zugeführt wird. Durch die abnehmende Wassermenge bei konstantem Volumen der Behälter sinkt der Druck in dem Druckwasserbehälter. Aufgrund des Druckausgleichs zwischen Druckwasserbehälter und Druckluftbehälter herrscht in beiden Behältern zu jedem Zeitpunkt identischer Druck. Dieser Druck sinkt bei abnehmender Wassermenge im Druckwasserbehälter und im Druckluftbehälter kontinuierlich bis zu einem vorgebbaren Minimalwert ab.During energy recovery, water is supplied from the pressurized water tank to the Pelton turbine or the overpressure turbine and to the constant pressure turbine connected to it. A generator, which is connected to the drive shaft of the Pelton turbine or to the common drive shaft of the positive pressure turbine and constant pressure turbine generates energy which is supplied to a connected public or non-public power grid. Due to the decreasing amount of water at a constant volume of the container, the pressure in the pressurized water tank decreases. Due to the equalization of pressure between the pressurized water tank and the compressed air tank, both tanks have identical pressure at all times. This pressure decreases with decreasing amount of water in the pressure water tank and in the compressed air tank continuously up to a predetermined minimum value.
Das vorgeschlagene System arbeitet mit Betriebsdrucken bis 500 bar. Bei entsprechender Auslegung der Druckbehälter (Druckwasserbehälter, Druckluftbehälter) sind sogar Drücke bis 1000 bar möglich. Dadurch wird eine hohe Energiedichte erzielt, die auf kleinstem Raum gespeichert werden kann. Auf diese Weise sind z.B. Leistungen zwischen 2 und 450 MW möglich. Durch Erweiterung, d.h. Vergrößerung der Druckluftbehälter und Druckwasserbehälter können beliebige Energiemengen wesentlich kostengünstiger als bei bisher bekannten Speichersystemen gespeichert werden. So ist es z.B. möglich, dass das Volumenverhältnis zwischen Druckwasserbehälter und Druckluftbehälter 1:1, 1:2, 1:3 oder 1:4 und mehr beträgt.The proposed system works with operating pressures up to 500 bar. With appropriate design of the pressure vessel (pressurized water tank, compressed air tank) even pressures up to 1000 bar are possible. As a result, a high energy density is achieved, which can be stored in the smallest space. In this way, for example, powers between 2 and 450 MW are possible. By enlargement, ie enlargement of the compressed air tank and pressurized water tank any amount of energy can be stored much cheaper than previously known storage systems. For example, it is possible that the volume ratio between pressurized water tank and compressed air tank is 1: 1, 1: 2, 1: 3 or 1: 4 and more.
Das vorgeschlagene System arbeitet im Wesentlichen mit umlaufendem Wasser, das durch die Peltonturbine oder durch die serielle Anordnung der Überdruckturbine und Gleichdruckturbine entspannt und mit Hilfe von Hochdruckpumpen in den Druckwasserbehälter zurückgepumpt wird. Das System arbeitet mit einer geringen Menge an Ergänzungsluft. Ergänzungsluft kann aufgrund von Leckagen im Drucksystem nötig werden und bei Bedarf in die jeweiligen Behälter nachgefüllt werden. Die benötigte Menge wird während des Betriebes des vorgeschlagenen Systems über die Steuereinheit ermittelt und über einen Druckluftspeicher zugeführt.The proposed system essentially works with circulating water, which is expanded by the Pelton turbine or by the serial arrangement of the overpressure turbine and constant pressure turbine and pumped back by means of high-pressure pumps in the pressure water tank. The system works with a small amount of supplementary air. Supplementary air may be required due to leaks in the pressure system and can be topped up in the respective containers if necessary. The required amount is determined during operation of the proposed system via the control unit and supplied via a compressed air reservoir.
Es kann eine Vergleichseinrichtung vorgesehen sein zum Vergleichen des momentanen Drucks im Druckwasserbehälter und/oder des momentanen Drucks im Druckluftbehälter und der momentanen Wassermenge im Druckwasserbehälter mit einem Solldruckwert. Die Vergleichseinrichtung ist derart ausgebildet, dass in Abhängigkeit vom Ergebnis des Vergleichs dem Druckluftbehälter Druckluft aus einem Druckluftspeicher (Windkessel) zugeführt wird. Die durch Leckage entwichene Luft wird somit durch Ergänzungsluft ausgeglichen. Insbesondere ist der Druckluftspeicher mit einem Kompressor verbunden zur Förderung von Außenluft in den Druckluftspeicher. Mit anderen Worten, der Druckluftbehälter wird ausschließlich über einen vorgelagerten Druckluftspeicher, welcher durch einen Kompressor befüllbar ist, mit Druckluft befüllt.It may be provided for comparing the instantaneous pressure in the pressure water tank and / or the instantaneous pressure in the compressed air tank and the instantaneous amount of water in the pressure water tank with a target pressure value, a comparison device. The comparison device is designed such that, depending on the result of the comparison, compressed air is supplied to compressed air from a compressed air reservoir (air chamber). The leaked by leakage air is thus compensated by supplementary air. In particular, the compressed air reservoir is connected to a compressor for conveying outside air into the compressed air reservoir. In other words, the compressed air tank is filled exclusively with compressed air via an upstream compressed air reservoir, which can be filled by a compressor.
Mit Hilfe des Kompressors wird der Druck einmalig im Druckluftbehälter und Druckwasserbehälter vor Inbetriebnahme des Speicherkraftwerks je nach Auslegung auf einen Druck von 50, 100, 200 oder bis zu 1000 bar komprimiert. Nach Inbetriebnahme des Systems, d.h. während der Betriebsphase, in welcher das System als Kraftwerk zur Energiespeicherung und Energierückgewinnung genutzt wird, dient der Kompressor ausschließlich der Zuleitung von Druckluft in einen Druckluftspeicher, welcher dem Druckluftbehälter vorgeschaltet ist und nur dem Ersatz von Leckluft dient. Das Speicherkraftwerk kann somit bei Drucken von 50, 100, 200 oder bis zu 1000 bar betrieben werden.With the help of the compressor, the pressure is compressed once in the compressed air tank and pressurized water tank before commissioning of the storage power plant depending on the design to a pressure of 50, 100, 200 or up to 1000 bar. After startup of the system, i. during the operating phase, in which the system is used as a power plant for energy storage and energy recovery, the compressor is used exclusively for the supply of compressed air in a compressed air storage, which is upstream of the compressed air tank and only serves to replace the air leakage. The storage power plant can thus be operated at pressures of 50, 100, 200 or up to 1000 bar.
Es kann eine Steuereinheit vorhanden sein, welche ausgebildet ist, in Abhängigkeit der Auslastung eines mit dem System verbundenen oder verbindbaren öffentlichen oder nicht öffentlichen Stromnetzes, die Hochdruckpumpe mittels Strom aus dem öffentlichen Stromnetz anzusteuern, um Wasser aus einem Wasserspeicher in den Druckwasserbehälter zu pumpen, wenn im öffentlichen Stromnetz ein Energieüberschuss vorhanden ist. Druckwasser wird aus dem Druckwasserbehälter zur Turbine geleitet und der in dem an die Turbine angeschlossenen Generator erzeugte Strom dem öffentlichen Stromnetz zugeführt, wenn im öffentlichen Stromnetz ein Energiebedarf besteht. Mit dem vorgeschlagenen System kann so mit kurzen Reaktionszeiten entweder überschüssige Energie gespeichert oder gespeicherte Energie zur Verfügung gestellt werden.There may be a control unit, which is designed to control the high-pressure pump by means of electricity from the public power grid, depending on the utilization of a connected to the system or connectable public or non-public power grid to water from a water reservoir in the pressurized water tank to pump if there is an energy surplus in the public power grid. Pressurized water is passed from the pressurized water tank to the turbine and the power generated in the generator connected to the turbine is supplied to the public power grid when there is an energy demand in the public power grid. The proposed system can be stored with short reaction times either excess energy or stored energy can be made available.
Die Energiespeicherung erfolgt ausnahmslos durch Rückführung des Kreislaufwassers mit Hochdruckpumpen in die Druckwasserbehälter. Dieser Vorgang erfolgt nur mit überschüssiger Energie aus dem öffentlichen Stromnetz. Die erforderliche Druckluft wird ebenfalls nur mit überschüssiger Energie aus dem öffentlichen Stromnetz erzeugt. Das erfindungsgemäße System kann in ca. 65 sec. von 0 auf 100 % hochgefahren werden. Lastwechsel erfolgen im Sekundenbereich. Die Hochdruckpumpen können so ausgelegt sein, dass sie ca. 25 sec. aus dem Stillsand auf 100 % Leistung gefahren werden können. Das Volumen der Druckluftbehälter und der Druckwasserbehälter kann so ausgelegt sein, dass das erfindungsgemäße System über eine Dauer von bis zu 4 h die volle Auslegungsleistung liefern kann.The energy storage takes place without exception by recycling the circulation water with high-pressure pumps in the pressurized water tank. This process takes place only with excess energy from the public grid. The required compressed air is also generated only with excess energy from the public grid. The system according to the invention can be raised from 0 to 100% in about 65 seconds. Load changes occur in seconds. The high-pressure pumps can be designed so that they can be driven out of the stillsands to 100% power for about 25 seconds. The volume of the compressed air tank and the pressurized water tank can be designed so that the system of the invention over a period of up to 4 h can deliver the full design performance.
Diesbezüglich ist vorgeschlagen, dass die Steuereinheit ausgebildet ist, für den Fall der Energierückgewinnung die von der Überdruckturbine und/oder der Gleichdruckturbine erzeugte Leistung durch Öffnung oder Schließen von mit der Überdruckturbine und/oder der Gleichdruckturbine verbundenen Leitwerke (Wassereinlaufdüsen) zu regeln.In this regard, it is proposed that the control unit is designed, in the case of energy recovery, to regulate the power generated by the overpressure turbine and / or the constant pressure turbine by opening or closing tail units (water inlet nozzles) connected to the overpressure turbine and / or the constant pressure turbine.
Vorteil der vorgeschlagenen Systeme ist, dass es nur einen geringen Flächenbedarf in Anspruch nimmt und an jeder beliebigen Stelle in der Nähe von Hochspannungsleitungen, Windparks, Solaranalgen oder Großverbrauchern aufstellbar ist. Ferner benötigt das vorgeschlagene System keine zusätzlichen Ressourcen. Aus Gründen der Sicherheit sei hier angemerkt, dass das erfindungsgemäße Speichersystem, insbesondere die Druckbehälter, zweckmäßig unterirdisch verbaut ist. Insbesondere kann das erfindungsgemäße System auf flachem oder abfallendem Gelände, auf kleinstem Raum aufgebaut werden. Nach Einlassen der Druckluft- und Druckwasserbehälter in die Erde werden diese abgedeckt und als Grünfläche oder Ackerland wieder genutzt. Somit wird die Umwelt minimal belastet und Ressourcen gegenüber üblichen Systemen erheblich geschont. Durch Unterbringung des Wasserspeichers zur Aufnahme des aus dem Turbinensystem entspannten Wassers unter dem Gebäude zur Aufnahme der Turbinen wird auch dafür keine zusätzliche Fläche benötigt. Gleichzeitig wird das System vor Verunreinigungen geschützt.Advantage of the proposed systems is that it takes only a small space requirement and can be set up at any point in the vicinity of power lines, wind farms, Solaranalgen or large consumers. Furthermore, the proposed system does not require additional resources. For reasons of safety, it should be noted here that the storage system according to the invention, in particular the pressure vessels, is expediently installed underground. In particular, the system according to the invention can be constructed on flat or sloping terrain, in the smallest space. After the compressed air and pressurized water containers have been let into the earth, they are covered and reused as green space or arable land. Thus, the environment is minimally burdened and resources compared to conventional systems considerably spared. By housing the water reservoir to accommodate the relaxed from the turbine system water under the building to accommodate the turbines no additional space is needed for this. At the same time, the system is protected against contamination.
Die Erfindung sowie weitere Vorteile der Erfindung werden im Weiteren anhand von Figuren näher erläutert. Es zeigen
- Fig. 1
- die Anordnung einer Überdruckturbine und einer Gleichdruckturbine in einem erfindungsgemäßen System zur Energiespeicherung- und rückgewinnung,
- Fig. 2
- ein erfindungsgemäßes System zur Energiespeicherung- und rückgewinnung mit einer Kombination aus Überdruckturbine und Gleichdruckturbine und beispielhaft vier Druckluftbehältern und vier Druckwasserbehältern,
- Fig. 3
- ein erfindungsgemäßes System zur Energiespeicherung- und rückgewinnung. mit beispielhaft zwei Gruppen bestehend jeweils aus zwei Druckluftbehältern und einem Druckwasserbehälter
- Fig. 1
- the arrangement of an overpressure turbine and a constant pressure turbine in an energy storage and recovery system according to the invention,
- Fig. 2
- an energy storage and recovery system according to the invention with a combination of overpressure turbine and constant pressure turbine and, by way of example, four compressed air tanks and four pressurized water tanks,
- Fig. 3
- an inventive system for energy storage and recovery. by way of example two groups each consisting of two compressed air tanks and a pressurized water tank
Die Überdruckturbine 3, z.B,. eine Francis-Turbine weist einen Einlass E3 und einen Auslass A3 auf. Der Einlass E3 ist über eine Druckleitung 5 mit dem/den nicht dargestellten Druckwasserbehältern verbunden. Der Auslass A3 der Überdruckturbine 3 ist mit dem Einlass einer Gleichdruckturbine 3a, z.B. einer Peltonturbine verbunden. Der Auslass (nicht dargestellt) der Gleichdruckturbine 3a ist mit einem Wasserspeicher zur Bevorratung und Auffangen des Wassers verbunden.The
Die Antriebswelle AW der Überdruckturbine 3 ist mit der Antriebswelle AW der Gleichdruckturbine 3a verbunden. An der Antriebswelle AW ist ferner ein Generator 4 zur Erzeugung von elektrischer Energie angeschlossen. Die Antriebswelle AW ist im Wesentlichen zentrisch durch die Gleichdruckturbine 3a geführt. Insbesondere handelt es sich bei der Antriebswelle AW um eine einstückige Antriebswelle AW.The drive shaft AW of the
Mit Pfeilen ist die Fließrichtung des Wassers durch die Druckleitung 5 zu dem Einlass E3 der Überdruckturbine 3, zwischen der Überdruckturbine 3 und der Gleichdruckturbine 3a gezeigt.Arrows indicate the direction of flow of the water through the
Jeder Druckluftbehälter 1 weist einen Einlass 1e für Druckluft und einen Auslass 1a für Druckluft auf. Der Einlass 1e eines Druckluftbehälters 1 steht in Verbindung mit einem Druckluftspeicher 18, welcher auch die Funktion eines Druckluftausgleichsbehälter übernimmt. Dieser Druckluftspeicher 18 ist mit einem Kompressor 17 verbunden, welcher komprimierte Außenluft dem Druckluftspeicher 18 zuführen kann. Die Stromversorgung des Kompressors 17 erfolgt durch ein an das System angeschlossenes oder anschließbares Stromnetz S. Das Nachfüllen von Druckluft aus dem Druckluftspeicher 18 in einen Druckluftbehälter 1 erfolgt, wie weiter unten erläutert, nach Bedarfsermittlung durch eine Steuer- und Vergleichseinheit 13.Each compressed air tank 1 has an
Die Steuer- und Vergleichseinheit 13 ist über eine Datenleitung 16 mit einem Regelventil 19 verbunden. Dieses Regelventil 19 ist zwischen dem Druckluftspeicher 18 und dem Druckluftbehälter 1, insbesondere zwischen dem Ausgang des Druckluftspeicher 18 und dem Eingang 1e eines Druckluftbehälters 1, angeordnet.
Der Auslass 1a des Druckluftbehälters 1 ist über eine Druckleitung 5 mit dem Einlass 2e eines Druckwasserbehälters 2 verbunden. Nicht dargestellt sind Absperrventile welche zwischen dem Druckluftbehälter 1 und dem Druckwasserbehälter 2 angeordnet sind. Ferner sind nicht dargestellt Druckluftturbinen, welche zwischen dem Auslass 1a des Druckluftbehälters 1 und dem Einlass des Druckwasserbehälters 2 angeordnet sind.The
Der Ausgang 2a eines Druckwasserbehälters 2 ist über ein Absperrventil 6 und eine Druckleitung 5 mit dem Einlass E3 der Überdruckturbine 3 verbunden. Bezüglich der Anordnung der Überdruckturbine 3 und der Gleichdruckturbine 3a wird hier auf die Erläuterungen zu
Die Überdruckturbine 3 und die Gleichdruckturbine 3a weisen jeweils ein regelbares Leitwerk 7, 7a auf, über welches der Auslaufdruck von der Überdruckturbine 3 in die Gleichdruckturbine 3a und die Zulaufmenge in die Überdruckturbine 3a und die Gleichdruckturbine 3 reguliert werden kann. Dadurch kann die Ausgangsleistung der Turbinenanordnung 3, 3a geregelt werden. Hierzu sind die Einlaufleitwerke 7, 7a über eine Datenleitung 16 mit der Steuer- und Vergleichseinheit 13 verbunden. Die Überdruckturbine 3a und die Gleichdruckturbine 3 sind über eine gemeinsame Antriebswelle AW mit einem Generator 4 zur Energieerzeugung verbunden. Dieser Generator 4 ist an ein Stromnetz S angeschlossen oder mit einem Stromnetz S verbindbar.The
Die Anordnung aus Überdruckturbine 3 und Gleichdruckturbine 3a ist derart ausgebildet, dass das im Falle der Energierückgewinnung durch die Anordnung aus Überdruckturbine 3 und Gleichdruckturbine 3a geleitete Wasser aus dem Druckwasserbehälter 1 in einen Wasserspeicher 9 entspannt wird.The arrangement of
Der Wasserspeicher 9 weist eine Vorkammer 10 auf zur Entnahme des Wassers im Falle der Energiespeicherung. Diese Vorkammer 10 weist eine Öffnung 10a auf, welche derart ausgeführt ist, dass die untere Begrenzung dieser Einlauföffnung 10a oberhalb des Bodens der Vorkammer 10 angeordnet ist. Die obere Begrenzung der Öffnung 10a ist unterhalb des Wasserspiegels (nicht dargestellt) im Wasserspeicher 9 angeordnet. Durch die Begrenzung wird verhindert, dass Schwereteile im Wasser in die Vorkammer 10 gelangen. Durch Eintauchen der oberen Kante unter den minimalen Wasserspiegel wird verhindert, dass lufthaltiges Wasser in die Vorkammer gelangt, was zu Störungen der Hochdruckpumpe 11 und Verunreinigungen im Druckwasserbehälter 2 führen kann. Die Verunreinigungen können zu Störungen in den Turbinen 3, 3a führen. Ferner wird verhindert, dass der durch die Wasserentspannung von der Gleichdruckturbine 3 erzeugte Schaum durch Mikrobläschen im Wasser, in die Vorkammer 10 und zur Hochdruckpumpe 11 gelangt.The
An die Vorkammer 10 ist eine Hochdruckpumpe 11 angeschlossen. Die Hochdruckpumpe 12 fördert über eine Verbindungsleitung 12 Wasser aus der Vorkammer 10 in die Druckwasserbehälter 2. Die Stromversorgung der Hochdruckpumpe 11 erfolgt dazu aus dem angeschlossenen oder anschließbaren Stromnetz S. Darüber hinaus ist in der Verbindungsleitung 12 zwischen Hochdruckpumpe 11 und Druckwasserbehälter 2 ein Rückschlagventil 8 vorgesehen. Dieses Rückschlagventil 8 dient dazu, dass der während der Energiespeicherung aufgebaute Druck im Druckwasserbehälter 2 keine Rückkopplung auf die Hochdruckpumpe 11 bewirkt. Selbstverständlich kann der Druckwasserbehälter 2 am Zugang 2a der Verbindungsleitung 12 in den Druckwasserbehälter 2 ein Absperrventil (nicht dargestellt) aufweisen.To the
Das System weist eine Steuer- und Vergleichseinheit 13 auf. Diese Steuer- und Vergleichseinheit 13 ist über eine Datenleitung 16 mit Drucksensoren SD im Druckluftbehälter 1 sowie mit Füllstandssensoren SN im Druckwasserbehälter 2 verbunden. Die Steuer- und Vergleichseinheit 13 umfasst eine Vergleichseinrichtung zum Vergleichen des momentanen Drucks im Druckwasserbehälter 2 bzw. des momentanen Drucks im Druckluftbehälter 1 und der momentanen Wassermenge im Druckwasserbehälter 2 mit einem Solldruckwert. Die Steuer- und Vergleichseinheit 13 ist derart eingerichtet, dass in Abhängigkeit vom Ergebnis des Vergleichs dem Druckluftbehälter 1 Druckluft aus dem Druckluftspeicher 18 über ein Regelventil 19 zugeführt wird.The system has a control and
Die Steuer- und Vergleichseinheit 13 ist mit einer Datenleitung 16 mit einem Netzrechner 15 eines angeschlossenen oder anschließbaren öffentlichen oder nicht öffentlichen Stromnetzes S verbunden. Über den Netzrechner 15 wird eine Anforderung an die Steuer- und Vergleichseinheit 13 gestellt, ob das System zur Energiegewinnung oder zur Energiespeicherung genutzt werden soll oder kann.The control and
Hierzu ist die Steuer- und Vergleichseinheit 13 über eine Datenleitung 16 mit den regelbaren Einlaufleitwerken 7, 7a der Turbinen 3, 3a verbunden. Damit ist es möglich, die vom Netzrechner 15 des öffentlichen Stromnetzes angeforderte Leistung an den Turbinen 3, 3a einzustellen. Ferner ist die Steuer- und Vergleichseinheit 13 über eine Datenleitung 16 mit dem Absperrventil 6 verbunden. Damit wird sichergestellt, dass nur im Falle der Energierückgewinnung das Absperrventil 6 geöffnet wird und eine Verbindung zwischen Druckwasserbehälter 2 und Turbinen 3, 3a hergestellt ist.For this purpose, the control and
Ferner ist die Steuer- und Vergleichseinheit 13 über eine Datenleitung 16 mit einem Steuergerät (nicht dargestellt) der Hochdruckpumpe 11 verbunden. Damit ist es möglich, die aus dem Stromnetz S dem System zur Verfügung gestellte überschüssige Energie bei Bedarf in Förderung von Wasser in den Druckwasserbehälter 2 umzusetzen.Furthermore, the control and
Um Wiederholungen zu vermeiden, wird auf die Beschreibung der
Die Druckwasserbehälter 2 der Gruppen sind an den Ausgängen 2a mit der Überdruckturbine 3 (siehe Erläuterungen zu
Bei den in
Durch Anforderung von Energie durch den Netzrechner des Stromnetzes S wird über die Steuer- und Vergleichseinheit 13 das Absperrventil 6 zwischen Druckwasserbehälter 2 und den Turbinen 3, 3a geöffnet und somit das unter Druck stehende Wasser im Druckwasserbehälter 2 der Überdruckturbine 3 und der mit dieser gekoppelten Gleichdruckturbine 3a zugeführt. Die Menge des in die Überdruckturbine 3 strömenden Wassers wird über die Steuer- und Vergleichseinheit 13 geregelt. Dadurch wird die von Überdruckturbine 3 und Gleichdruckturbine 3a erzeugte Leistung geregelt. Der an die Überdruckturbine 3 und Gleichdruckturbine 3a gekoppelte Generator 4 erzeugt die vom Netzrechner 15 des Stromnetzes S angeforderte Energiemenge und speist diese in das Stromnetz S ein.By requesting energy through the network computer of the power grid S, the shut-off
Es ist somit möglich, dass die Steuer- und Vergleichseinheit 13 die Energierückgewinnung und die Energiespeicherung im System regelt. Die Steuer- und Vergleichseinheit 13 erhält über entsprechende Datenleitungen 16 vom Netzrechner 15 des Stromnetzes S Vorgaben bezüglich der jeweiligen Betriebsphase, d.h. ob sich das System in der Betriebsphase der Energierückgewinnung oder der Energiespeicherung befindet.It is thus possible that the control and
- 11
- DruckluftbehälterAir receiver
- 1e1e
- Eingangentrance
- 1a1a
- Ausgangoutput
- 22
- DruckwasserbehälterPressurized water tank
- 2e2e
- Eingangentrance
- 2a2a
- Ausgangoutput
- 33
- ÜberdruckturbineReaction turbine
- 3a3a
- GleichdruckturbineImpulse turbine
- E3E3
- Eingang ÜberdruckturbineInput overpressure turbine
- A3A3
- Ausgang ÜberdruckturbineOutput overpressure turbine
- E3aE3a
- Eingang GleichlaufturbineInput synchronous turbine
- A3aA3a
- Ausgang GleichlaufturbineOutput synchronous turbine
- AWAW
- Antriebswelledrive shaft
- 44
- Generatorgenerator
- 55
- Druckleitung/VerbindungsleitungPressure pipe / connection cable
- 66
- Absperrventilshut-off valve
- 77
- WassereinlaufleitwerkWater inlet tail
- 7a7a
- WassereinlaufleitwerkWater inlet tail
- 88th
- Rückschlagventilcheck valve
- 99
- Wasserspeicherwater-tank
- 1010
- Vorkammerantechamber
- 10a10a
- Öffnungopening
- 1111
- HochdruckwasserpumpeHigh pressure water pump
- 1212
- Verbindungsleitungconnecting line
- 1313
- Steuer- und VergleichseinheitControl and comparison unit
- 1515
- Netzrechnernetwork computer
- 1616
- Datenleitungdata line
- 1717
- Kompressorcompressor
- 1818
- DruckluftspeicherCompressed air storage
- 1919
- Absperrventilshut-off valve
- SS
- Stromnetzpower grid
- SNSN
- Sensor NiveauSensor level
- SDSD
- Drucksensorpressure sensor
Claims (13)
- A system for energy storage and recovery, comprising:at least one compressed-air tank (1),at least one pressurized-water tank (2) in communication with the at least one compressed-air tank (1),at least one turbine (3) in effective communication with the at least one pressurized-water tank (2),a generator (4) for generating electrical energy, anda high-pressure pump (11) for pumping water from a water reservoir (9) into the at least one pressurized-water tank (2),characterized in thatthe at least one turbine (3) in effective communication with the at least one pressurized-water tank (2) is a reaction turbine, which is connected in series with a constant pressure turbine (3a) in such a manner that a drive shaft (AW) of the reaction turbine (3) is connected to a drive shaft (AW) of the constant pressure turbine (3a) and a drive shaft (AW) of the generator (4) and thatthe constant pressure turbine (3a) is arranged between the reaction turbine (3) and the generator (4), whereinthe generator (4) includes an interface for connection to a public power grid (S).
- The system according to claim 1, characterized in that the drive shaft of the reaction turbine (3) and the drive shaft (AW) of the constant pressure turbine (3a) form a common shaft, or the drive shaft (AW) of the reaction turbine (3) and the drive shaft (AW) of the constant pressure turbine (3a) are coupled to each other via a rigid coupling, or the drive shaft (AW) of the reaction turbine (3) is connected to the drive shaft (AW) of the constant pressure turbine (3a) via a transmission,
and that an outlet of the at least one pressurized-water tank (2) is connected to an inlet of the reaction turbine (3) and an outlet of the reaction turbine (3) is connected to an inlet of the constant pressure turbine (3a). - The system according to claim 2, characterized in that a means for pressure regulation of the inlet pressure of the constant pressure turbine (3a) is arranged between an outlet of the reaction turbine (3) and an inlet of the constant pressure turbine (3a).
- The system according to any one of the preceding claims, characterized in that when a plurality of pressurized-water tanks (2) are provided, a connection line is present connecting the outlets of the pressurized-water tanks (2) with one another, wherein the pressurized-water tanks (2) are arranged in such a manner with respect to each other that the connection line has a gradient and has a sump at its lowest point, which is connected to an inlet of the turbine (3, 3a).
- The system according to any one of the preceding claims, characterized in that wherein a stop valve (6) is provided at an inlet of the turbine (3, 3a).
- The system according to any one of the preceding claims, characterized in that the at least one compressed-air tank (1) is in constant pressure equilibrium with the at least one pressurized-water tank (2), in such a manner that during energy storage and recovery the pressure in the at least one compressed-air tank (1) is equal to the pressure in the at least one pressurized-water tank (2).
- The system according to any one of the preceding claims, characterized in that a compressed-air turbine is present between the at least one compressed-air tank (1) and the at least one pressurized-water tank (2).
- The system according to any one of the preceding claims, characterized in that precisely one pressure line (5) is present between an outlet of the at least one compressed-air tank (1) and an inlet of the at least one pressurized-water tank (2) and is adapted to conduct compressed air from the at least one pressurized-water tank (2) to the at least one compressed-air tank (1) during energy storage and to conduct compressed air from the at least one compressed-air tank (1) to the at least one pressurized-water tank (2) during energy recovery.
- The system according to claim 8, characterized in that a stop device is arranged in the pressure line (5), which is configured to block the pressure line (5) at a sudden pressure drop.
- The system according to any one of the preceding claims, characterized in that the ratio of a volume of the at least one pressurized-water tank (2) to a volume of the at least one compressed-air tank (1) is 1:1, 1:2, 1:3, or 1:4.
- The system according to any one of the preceding claims, characterized in that a control and a comparison unit (13) is provided which is configured, as a function of the load on a public power grid (S), to drive the high-pressure pump (11) with energy from the public power grid (S) to pump water from the water reservoir (9) into the at least one pressurized-water tank (2) when there is a surplus of energy in the public power grid (S),
or to conduct pressurized water from the at least one pressurized-water tank (2) to the at least one turbine (3, 3a) and to feed the energy generated in the generator (4, 4a) to the public power grid (S), when there is a demand for energy in the public power grid (S). - The system according to claim 11, characterized in that, in the case of energy recovery, the control unit (13) is configured to regulate the power generated by the at least one turbine (3, 3a) by opening or closing of water inlet nozzles (7) connected to the turbine (3, 3a).
- The system according to any one of the preceding claims, characterized in that a control and a comparison unit (13) is provided for comparing a current pressure in the at least one pressurized-water tank (2) and a current pressure in the at least one compressed-air tank (1) and a current water level in the at least one pressurized-water tank (2) with a set pressure value, wherein the control and the comparison unit (13) is configured in such a manner that compressed air is fed from a compressed-air reservoir (18) to the at least one compressed-air tank (1) as a function of the comparison result.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK17206440.4T DK3321501T3 (en) | 2015-12-22 | 2015-12-22 | ENERGY STORAGE AND RECOVERY SYSTEM |
DK15003640.8T DK3184807T3 (en) | 2015-12-22 | 2015-12-22 | ENERGY STORAGE AND RECOVERY SYSTEM |
EP15003640.8A EP3184807B1 (en) | 2015-12-22 | 2015-12-22 | System for energy storage and recovery |
EP17206440.4A EP3321501B1 (en) | 2015-12-22 | 2015-12-22 | System for energy storage and recovery |
ES15003640.8T ES2688211T3 (en) | 2015-12-22 | 2015-12-22 | Energy storage and recovery system |
ES17206440T ES2750001T3 (en) | 2015-12-22 | 2015-12-22 | Energy storage and recovery system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15003640.8A EP3184807B1 (en) | 2015-12-22 | 2015-12-22 | System for energy storage and recovery |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17206440.4A Division EP3321501B1 (en) | 2015-12-22 | 2015-12-22 | System for energy storage and recovery |
EP17206440.4A Division-Into EP3321501B1 (en) | 2015-12-22 | 2015-12-22 | System for energy storage and recovery |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3184807A1 EP3184807A1 (en) | 2017-06-28 |
EP3184807B1 true EP3184807B1 (en) | 2018-08-08 |
Family
ID=55022249
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17206440.4A Not-in-force EP3321501B1 (en) | 2015-12-22 | 2015-12-22 | System for energy storage and recovery |
EP15003640.8A Not-in-force EP3184807B1 (en) | 2015-12-22 | 2015-12-22 | System for energy storage and recovery |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17206440.4A Not-in-force EP3321501B1 (en) | 2015-12-22 | 2015-12-22 | System for energy storage and recovery |
Country Status (3)
Country | Link |
---|---|
EP (2) | EP3321501B1 (en) |
DK (2) | DK3184807T3 (en) |
ES (2) | ES2688211T3 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201700087718A1 (en) * | 2017-07-31 | 2019-01-31 | Walter Cassani | GENERATOR AND ELECTRIC ENERGY ACCUMULATOR SYSTEM. |
CN116792245A (en) * | 2019-05-31 | 2023-09-22 | è¥¿å®‰äº¤é€šå¤§å¦ | A method of pumping compressed air energy storage using underground aquifers |
DE102020112724A1 (en) | 2020-05-11 | 2021-11-11 | Johann Tauscher | Energy storage and recovery system |
AT17253U1 (en) | 2020-07-02 | 2021-10-15 | Gregor Anton Ulrich | Method and system for storing and delivering electrical energy and use therefor |
DE102020127762A1 (en) * | 2020-10-21 | 2022-04-21 | Johann Tauscher | Energy storage and recovery system |
BE1029196B1 (en) | 2021-03-15 | 2022-10-17 | Rutten New Energy System Sa | Pelton hydro turbine and installation |
GB2608390A (en) * | 2021-06-29 | 2023-01-04 | Owners Capital Gmbh | System for repurposing defunct nuclear power plant |
IT202100020120A1 (en) * | 2021-07-28 | 2023-01-28 | Walter Cassani | IMPROVED ELECTRIC CURRENT GENERATOR AND ACCUMULATOR PLANT |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2717679A1 (en) | 1977-04-21 | 1978-10-26 | Michael Wangen | Wind powered energy generating system - uses wind turbine to compress air which can be stored or used to drive generators |
DE3666489D1 (en) * | 1985-03-28 | 1989-11-23 | Shell Int Research | Energy storage and recovery |
DE3601288A1 (en) | 1986-01-17 | 1987-07-23 | Siemens Ag | WATER-DRIVEN MACHINE SET WITH EFFICIENCY OPTIMUM SPECIFICATION OF THE SPEED SETPOINT |
DE60118987T2 (en) | 2000-11-28 | 2007-01-11 | Shep Ltd., Douglas | HYDRAULIC ENERGY STORAGE SYSTEMS |
WO2006084748A1 (en) | 2005-02-10 | 2006-08-17 | Westphal Werner | Pressure tank |
EP2280841A2 (en) | 2008-04-09 | 2011-02-09 | Sustainx, Inc. | Systems and methods for energy storage and recovery using compressed gas |
GB201002937D0 (en) | 2010-02-22 | 2010-04-07 | Champion Hilary | Energy storage device |
DE102011082726A1 (en) | 2011-09-15 | 2013-03-21 | Gaby Traute Reinhardt | Method for manufacturing cylindrical or conical pressure-accumulator device used as tower for wind power plant, involves filling binder in intermediate spaces between inner wall and outer wall of pressure-accumulator device |
DE102013112196A1 (en) | 2013-02-18 | 2014-01-23 | Ed. Züblin Ag | Method for recovering mechanical energy from compressed gas in compressed gas reservoir, involves controlling quasi-isothermal expansion of compressed gas, to produce electrical energy from mechanical work of working machine |
DE102013018741A1 (en) | 2013-03-27 | 2014-10-02 | Andreas Buchmann | Device unit and method for energy storage and recovery |
CH708605A2 (en) * | 2013-09-25 | 2015-03-31 | Emil Bächli Emil Bächli Energietechnik Ag | Pump water pressure Air Cushion energy storage with adjustable via the compressed air Controlled constant water pressure for the turbine drive. |
FR3012537B1 (en) | 2013-10-31 | 2016-01-01 | Pierre-Armand Thomas | ENERGY STORAGE FACILITY FOR POWERING AN ELECTRICITY NETWORK |
-
2015
- 2015-12-22 ES ES15003640.8T patent/ES2688211T3/en active Active
- 2015-12-22 EP EP17206440.4A patent/EP3321501B1/en not_active Not-in-force
- 2015-12-22 EP EP15003640.8A patent/EP3184807B1/en not_active Not-in-force
- 2015-12-22 ES ES17206440T patent/ES2750001T3/en active Active
- 2015-12-22 DK DK15003640.8T patent/DK3184807T3/en active
- 2015-12-22 DK DK17206440.4T patent/DK3321501T3/en active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
DK3184807T3 (en) | 2018-12-03 |
EP3184807A1 (en) | 2017-06-28 |
EP3321501B1 (en) | 2019-07-10 |
EP3321501A1 (en) | 2018-05-16 |
DK3321501T3 (en) | 2019-10-21 |
ES2688211T3 (en) | 2018-10-31 |
ES2750001T3 (en) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3184807B1 (en) | System for energy storage and recovery | |
EP2773866B1 (en) | Units and methods for energy storage | |
DE102014112356B4 (en) | PUMPED STORAGE POWER PLANT | |
DE4025168C2 (en) | Speed-controlled pump system | |
EP2488752B1 (en) | Solar thermal power plant and method for operating a solar thermal power plant | |
EP3025031B1 (en) | Method of operating a steam turbine plant | |
DE102014101263B3 (en) | Apparatus and method for storing energy using supercritical carbon dioxide | |
DE102011107835A1 (en) | Pumped-storage power plant installed in e.g. landscape, has lower reservoirs that are arranged in salt dome | |
WO2010054844A2 (en) | Method for operating a wind turbine and wind turbine | |
EP2261503A1 (en) | Wind turbine | |
WO2001096736A1 (en) | Hydroelectric plant | |
WO2006097494A1 (en) | Method and device for the buffering of electrical wind energy generated from the force of the wind | |
DE102013018741A1 (en) | Device unit and method for energy storage and recovery | |
WO2013107557A2 (en) | Auxiliary steam generator system for a power plant | |
EP0976914A1 (en) | System and process providing rapid power reserve in combined gas- and steam turbines plants | |
DE102020005091B4 (en) | High pressure pumped storage power plant system | |
WO2021228569A1 (en) | System for storing and recovering energy | |
WO2020127515A1 (en) | Energy system and method for pressure adjustment in an energy system | |
DE102014016491A1 (en) | Energy storage and recovery system | |
DE2806656A1 (en) | HEAT TRANSFER DEVICE | |
DE102022113552A1 (en) | Storage system for temporarily storing electrical energy and method for operating such a storage system | |
EP4483465A1 (en) | Arrangement for stabilising electricity grids, having caverns for gas storage | |
EP0165532A1 (en) | Storage device for pure gas transport systems | |
EP3166196B1 (en) | Power plant, power plant combination with a power plant, and method of operation | |
DE102018111997A1 (en) | Storage generator for energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20171229 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180405 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RENESTOR-M GMBH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MAIER, JOSEPH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1027307 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015005342 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2688211 Country of ref document: ES Kind code of ref document: T3 Effective date: 20181031 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20181126 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181208 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181109 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181108 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015005342 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151222 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180808 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180808 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20211227 Year of fee payment: 7 Ref country code: AT Payment date: 20211228 Year of fee payment: 7 Ref country code: DK Payment date: 20211227 Year of fee payment: 7 Ref country code: IE Payment date: 20211230 Year of fee payment: 7 Ref country code: GB Payment date: 20211229 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20211227 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20211227 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20211223 Year of fee payment: 7 Ref country code: CH Payment date: 20220125 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20211227 Year of fee payment: 7 Ref country code: ES Payment date: 20220119 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502015005342 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20221231 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230101 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1027307 Country of ref document: AT Kind code of ref document: T Effective date: 20221222 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221222 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221222 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221222 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230701 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221222 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221223 |