[go: up one dir, main page]

EP3179557B1 - Multi-band elementary radiating cell - Google Patents

Multi-band elementary radiating cell Download PDF

Info

Publication number
EP3179557B1
EP3179557B1 EP16201682.8A EP16201682A EP3179557B1 EP 3179557 B1 EP3179557 B1 EP 3179557B1 EP 16201682 A EP16201682 A EP 16201682A EP 3179557 B1 EP3179557 B1 EP 3179557B1
Authority
EP
European Patent Office
Prior art keywords
frequency band
radiating
band
access
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16201682.8A
Other languages
German (de)
French (fr)
Other versions
EP3179557A1 (en
Inventor
Olivier Maas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3179557A1 publication Critical patent/EP3179557A1/en
Application granted granted Critical
Publication of EP3179557B1 publication Critical patent/EP3179557B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/16Folded slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present invention is in the field of radiating devices designed to operate in two distinct frequency bands. It applies in particular to dual-band radiating cells produced in printed technology, and used by radars with electronic scans for the surveillance of airspace. These radars operate in the S band, and in the band dedicated to IFF applications (English acronym for "Identification, Friend or Foe", or friend or enemy identification).
  • State-of-the-art electronic scanning radars consist of directional antennas made from radiating elements, or radiating cells, assembled within a network. The modification of the amplitude and the phase of each of the radiating elements of the network makes it possible to orient the direction of the radar beam.
  • the frequencies of interest for aerial surveillance applications are the S band, used for the primary radar, and in particular the sub-band 2.9GHz to 3.3GHz, as well as frequency bands of a few MHz or tens of MHz located around frequencies 1.03GHz and 1.09GHz, and used for IFF applications.
  • Current radar equipment whether it be ground speed radars or radars on board a carrier such as a vehicle, ship or aircraft, generally includes two independent systems: a rotary directive antenna dedicated to IFF applications and a array of radiant cells for the Band S radar. The rotary antenna is positioned above or next to the S band radar antenna. The two volumes are therefore added together, which can cause problems during transport or installation of antennas.
  • the invention seeks to solve the general problem of the multiplication of systems by proposing a radiating cell operating simultaneously and without interference, in two distinct frequency bands, in particular the S-band and the frequency band dedicated to IFF applications.
  • a radiating cell makes it possible to create a network radiating dual-band, thereby reducing the overall size of the radar system, as well as the installation complexity and associated usage constraints.
  • the invention proposes a radiating cell for which the accesses to the different frequency bands are independent, which makes it possible to integrate the invention into existing radar devices in a transparent manner.
  • the use, within the same radiating cell of elements specific to each of the operating bands, separated by a gap making it possible to minimize the problems of coupling between elements, is not a solution to the problem when the radiating cell is implemented in a radiating network.
  • the size of the cell is constrained by the pitch of the lattice of the network, which is generally equal to ⁇ / 2, with ⁇ the wavelength in the air corresponding to the maximum frequency.
  • the radiating elements required by the low frequency band become incompatible with the size of this networking step.
  • the step of networking a radiating mesh in S band at 3.3 GHz is around 5 cm.
  • a patch suitable for the band S when produced in the context of a substrate having a relative dielectric constant of 3.55, has dimensions of the order of 25mm x 25mm, compatible with the pitch of networking.
  • a patch for IFF applications due to the frequency ratio 3 between the two bands, will be 3 times larger (and with a surface area 9 times greater). It will then have a size of 75mm x 75mm.
  • a device comprising an S band patch and a patch for IFF applications will therefore not be compatible with the pitch of the radiating mesh.
  • the Australian patent AU 2015101429 A4 presents a dual-band device operating in the Wifi bands at 2.4GHz and 5GHz.
  • the frequency ratio is not an odd multiple, so it does not present any particular coupling problems. It also does not have independent access to each of the frequency bands: the radiating elements associated with each of the frequency bands cannot then be controlled independently.
  • a first known solution to the problem of making a bi-band cell of reduced dimensions consists in using a single broadband radiating element. Once networked, the result is a single broadband network, covering all the bands of interest. However, the production of such a radiating element proves to be complex when the band gap increases, and does not meet the need for independent access to each of the frequency bands.
  • a known solution consists in using, for the low frequency band, elements of the folded monopole or dipole type, or folded slots so as to be able to accommodate them in a reduced surface.
  • the simultaneous use of a patch for the high frequency band, and a slot for the low frequency band is of practical interest, because the slot can be housed in the metallization of the patch, or in that of its plane of mass.
  • Various solutions of this type have been explored, but they run up against the fact that, under these conditions, the radiating slots have a very narrow bandwidth, which limits their advantage.
  • the invention addresses the problem posed by associating a radiating element in the high frequency band of the patch type, with at least one radiating element in the low frequency band of the folded slot type.
  • This approach makes it possible to house the two radiating elements in a reduced size cell, compatible with a network of unit elements operating at the high frequency, that is to say less than a square with a side less than ⁇ H / 2.
  • the elements of the high frequency band (patch) and the low frequency band (slot) are each connected to a separate access, which allows them to be controlled independently in amplitude and in phase. Filters adapted to each of the frequency bands are implemented on each of the ports, so as to eliminate the undesirable contributions linked to the coupling resulting from the proximity between the radiating elements.
  • the invention therefore consists of a device radiating in two distinct frequency bands according to claim 1.
  • the slot-type element is housed in a ground plane of the device.
  • the one or more elements of the folded slot type are folded in a U shape and positioned at the periphery of the device.
  • the number of slot-type elements is equal to the number of sub-bands of the low frequency band, said slot-type elements being supplied by the same second port.
  • the number of slot-type elements is equal to the number of sub-bands of the low frequency band, said slot-type elements being supplied by different ports.
  • the device comprises a single slot-type element supplied by said second access to which it is connected by a resonator circuit, the coupling between said slot and said resonator circuit being adjusted to radiate in two distinct sub-bands of the low frequency band.
  • the resonator circuit is a parallel resonator circuit comprising an inductor and a capacitor.
  • the resonator is connected to the slit type element by a waveguide of length ⁇ / 4, where ⁇ is the wavelength associated with the center frequency of the low frequency band.
  • the filter positioned between the patch-type element and the first access comprises a plurality of sections of microstrip line of different widths.
  • This property allows it to radiate only for one of the frequency bands when these are multiples of one another.
  • the device further comprises a low-pass filter positioned between the said slot-type element or elements and said second port, and configured to filter the high frequency band.
  • the device further comprises a second patch type element suitable for the high frequency band, said second patch type element being disposed above said first patch type element.
  • the device according to the invention can be implemented in a multilayer printed circuit for which said patch type element, said slit type element (s), and said filter positioned between the patch type element and the first access are in different layers of the circuit board.
  • This layer distribution makes it possible to limit the surface of the printed circuit as much as possible. It is possible because the radiating elements do not come to hide, the slit type element or elements being positioned on the periphery of the printed circuit, and therefore of the patch type element.
  • the device according to the invention is adapted to operate when at least one frequency of the high frequency band is an odd integer multiple of a frequency of the frequency band low.
  • the device according to the invention is adapted to operate when the high frequency band comprises the band 2.9GHz - 3.3GHz.
  • the device according to the invention can easily be produced in printed technology.
  • the invention relates to a radiating network configured to radiate in two distinct frequency bands, and characterized in that it comprises radiating cells conforming to the radiating device in two distinct frequency bands according to the invention.
  • the descriptions of the embodiments set out below are dedicated to a particular mode of operation of the invention. This operating mode meets the needs of radar applications for airspace surveillance.
  • the radiating cell presented below seeks to operate in a dissociated manner in the band 2.9GHz - 3.3GHz (sub-band of the S band dedicated to radar applications), as well as in two sub-bands of a few MHz in the frequency band dedicated to IFF applications, a first centered around the 1030MHz frequency and a second centered around the 1090MHz frequency. These two sub-bands correspond to the outward and return paths of the IFF applications.
  • the invention is not limited to this operation or to this type of application, and can be extended mutatis mutandis to other frequency bands, or to other embodiments in which the number of sub-bands chosen within the low frequency band varies.
  • the ratio of the frequency bands is equal to about three. From this in fact, the coupling phenomena between the various radiating elements, introduced by their physical proximity, are reinforced. This is linked to the fact that, when the frequency ratio between the bands is an odd whole number, all the line-based resonant structures function naturally in the same way as the frequency f 0 and all of its odd multiples. As a result, the radiating elements dimensioned for the IFF applications also radiate for the S band.
  • the figure 1 represents a radiating cell according to a first embodiment of the invention.
  • This radiating cell 100 or antenna with printed radiating elements, is a printed circuit comprising multiple layers separated by a dielectric substrate, using distributed elements, that is to say microstrip lines (also designated by the English term “microstrip ").
  • microstrip lines also designated by the English term “microstrip ".
  • This technology is very widespread in microwave frequencies because, for high frequencies, the manipulation of waves from waveguides is simpler than the manipulation of currents and voltages.
  • One of the layers of the printed circuit forms a ground plane.
  • the radiating cell comprises a radiating element 101 of the patch type.
  • a patch is a metallized layer of square or rectangular shape supplied. The dimensions of the patch are chosen so that it radiates in the high frequency band (S band). It is positioned in one of the layers of the circuit.
  • the radiating cell also includes two folded radiating slots 102. These slots have the behavior of dipoles, while being less sensitive to coupling phenomena. They are tuned to operate around the sub-bands of interest in the low frequency band (in the example, 1030MHz and 1090MHz). This agreement is achieved by dimensioning each one with respect to a wavelength close to the desired wavelength, the slit then having a length of ⁇ / 2. In order to slightly decrease the size of the slits, tuning can be achieved by dimensioning them with respect to a wavelength slightly greater than the desired wavelength, then by adjusting their positions relative, the position of their exciter, and their position relative to the patch, so that the coupling phenomena push their operating frequency back onto the desired frequency.
  • slots whose length is adapted to an operating frequency slightly greater than 1100 MHz, which makes them compatible, once folded in three in shape of U, of a mesh dimensioned compared to the frequency of 3.3 GHz, then to push back by coupling their operating frequency on the frequencies of interest 1030 MHz and 1090 MHz by adjusting their positions.
  • the number of slots is adapted to the number of desired low frequency bands.
  • the use of two slots folded in three in the shape of a U and a patch antenna makes it possible to accommodate the three radiating elements in a very reduced environment. It is also possible to fold the slots in more than three to make them fit into the radiating cell according to the invention.
  • the slots are produced by partial de-metallization of the ground plane of the cell.
  • the excitation of the slots is carried out by a radiating strip 103 positioned between the two slots in one of the planes of the printed circuit, preferably the plane adjacent to the ground plane, and connected to the supply of the slots.
  • the relative positioning of the two slots 102 and the exciter 103 creates coupling phenomena, both between the elements of the low frequency band, but also with the patch 101. Their positioning must therefore be adjusted in order to repel the artifacts generated by this coupling outside the useful bands. Adjusting the gap between the slits allows the resonant frequency of each slit to be adjusted and their operation to be pushed back to the triple frequency outside the high frequency band.
  • the exciter 103 is supplied by the low frequency band access 105, to which it is connected by a coaxial line 104 and a low pass filter 106.
  • This low-pass filter comprises, for example, two capacitors 107, which in printed technology take the form of open line sections.
  • the role of the filter is to filter the components of the high frequency band due to the strong coupling between the slots and the patch.
  • the radiating element of the patch type 101 is supplied by the high frequency band access 109 to which it is connected by a coaxial line 108 and a filter 110.
  • the filter 110 has the role of filtering the components of the low frequency band due to the strong coupling between the slots and the patch.
  • a parallel waveguide acts as a series resonator circuit, and has a very small footprint. Its length is proportional to the wavelength in the dielectric of the frequency that it short-circuits.
  • a stub made from a microstrip line section of length ⁇ B / 4, with ⁇ B the wavelength of the low frequency band, will play the role of short circuit in its resonance band. In the example, this is the low frequency band.
  • resonant structures based on lines naturally function in the same way at the frequency f 0 and for all the odd multiples of this frequency. This is the case in the example, where the ratio of the frequency bands is 3.
  • such a stub will also play the role of short circuit for the high frequency band.
  • variable stub whose total length is divided into several sections of different impedances (known in English as "stepped impedance").
  • stepped impedance Such a stub is dispersive. It is dimensioned so as to present a short circuit on its fundamental frequency, and an open circuit on its triple frequency.
  • the filter 110 of the figure 1 has such a stub, consisting of several sections of microstrip line of different widths, and therefore having several distinct impedances. In the example, it has three different impedances, but the number of hops is a parameter specific to each implementation. Due to variable impedances, the system is not homogeneous, its electrical length no longer depends linearly on the frequency.
  • the different elements constituting the radiating cell according to the invention are arranged in different layers of the printed circuit.
  • the figure 2 shows the exploded view of a radiating cell according to the first embodiment of the invention, in which the arrangement of the elements is intended to limit the size of the radiating cell.
  • the printed circuit comprises four layers.
  • Each of the layers comprises a dielectric substrate on which an etched metal layer is deposited.
  • the upper layer 201 comprises the patch type element 101 tuned to operate in the high frequency band.
  • the immediately lower layer 202 comprises the ground plane of the radiating cell, in which two slot-type elements 102, tuned for the low frequency bands, are produced by de-metallization of the ground plane.
  • the slots are arranged so as not to be obstructed by the patch 101.
  • An advantageous positioning then consists in placing them on the periphery of the radiating cell, opposite the patch.
  • the lower layer 203 comprises the slot exciter 103.
  • the lowest layer 204 comprises the low-pass filter element 106 connected on the one hand to the access 105 and on the other hand to the exciter 103 by the bias of a coaxial line, described under reference 104 in the figure 1 , allowing it to pass through the different layers of the printed circuit, and the band pass filtering elements 110 connected on the one hand to the access 109 and on the other hand to the patch 101 by means of a coaxial line 108.
  • the resulting radiating cell has a format slightly larger than the format of the S band patch.
  • the size of the patch band S is 25mm x 25mm.
  • This cell radiates simultaneously in the upper frequency band and in the lower frequency band, but has separate access to each of these bands.
  • the different filtering elements ensure a strong decoupling between the two accesses.
  • an additional layer 205 comprising a second patch antenna 206 adapted to the high frequency band.
  • This additional layer is positioned on the highest layer 201, the second patch being superimposed on the first patch 101.
  • This addition makes it possible to increase the bandwidth in the high frequency band, by playing on the coupling effects between the two patches , without changing the size of the cell.
  • the Figures 3a and 3b represent an example of reflection coefficient of the inputs and of decoupling, respectively in the low frequency band and in the high frequency band, associated with each input of a radiating cell according to the first embodiment of the invention.
  • the results are obtained by simulations using an electromagnetic simulation software by the finite element method.
  • the reflection coefficient of the inputs is representative of the power of the signal reflected as a function of the frequency. When this coefficient tends to 1 (ie OdB), then all of the signal power at the frequency concerned is rejected. The lower this coefficient, the better the antenna.
  • Decoupling measures the leakage power in the first antenna when the second antenna is working and vice versa. It is therefore representative of the performance of coexistence of the two types of radiating elements within the same cell.
  • the curve 301 represents the reflection coefficient of the access dedicated to the low frequency band, for the low frequency band (the frequency sub-bands envisaged in this embodiment are bands of a few MHz or tens of MHz around the frequencies 1.03GHz and 1.09GHz). This coefficient is less than - 10dB around the frequencies 1.03GHz and 1.09GHz. Dedicated access to the low frequency band is therefore suitable for IFF applications.
  • the curve 302 represents the reflection coefficient of the access dedicated to the high frequency band, for the low frequency band.
  • this coefficient is constant, and is equal to 1 (i.e. OdB).
  • Dedicated access to the high frequency band therefore rejects all of the components of the low frequency band. It is not affected by coupling with the radiating elements in the low frequency band. This analysis is confirmed by measuring the decoupling 303 between the two inputs, which is greater than 24 dB across the band.
  • the curve 311 represents the reflection coefficient of the access dedicated to the low frequency band, for the high frequency band (the frequency band envisaged in this embodiment is the band 2.9GHz - 3.3GHz). This coefficient is constant, and is worth 1 (that is to say OdB). Dedicated access to the low frequency band therefore rejects all of the components of the high frequency band. It is then not affected by the coupling with the radiating elements in the high frequency band.
  • Curve 312 represents the reflection coefficient of the access dedicated to the high frequency band, for the high frequency band. In the 2.9GHz - 3.3GHz band, this coefficient is less than -12.5dB. The dedicated access to the high frequency band is therefore adapted to this frequency band. The decoupling 313 between the two antennas is greater than 25 dB in the band.
  • FIGS. 4a and 4b represent an example of radiation diagrams of the input associated with the low frequency band of a radiating cell according to the first embodiment of the invention.
  • the figure 4a represents the radiation diagram in the horizontal plane of access to the low frequency band, for a frequency of 1.03GHz in main polarization (401) and crossed (403), as well as for a frequency of 1.09GHz in main polarization ( 402) and crossed (404).
  • the cross-polarization response in this plane is almost zero (-30dB).
  • the main polarization of a radiating element is the axis on which the radiated electric field is maximum.
  • Cross polarization is the axis perpendicular to the axis of the main polarization. These two axes lie in the plane perpendicular to the direction of propagation.
  • the main polarization is situated in the vertical plane (represented by the y axis in the figures), while the crossed polarization is situated in the horizontal plane (represented by the x axis in the figures).
  • the figure 4b represents the radiation diagram in the vertical plane of access to the low frequency band, for a frequency of 1.03GHz (411) and 1.09GHz (412). In this plane, the level of cross polarization is almost zero.
  • the radiation patterns observed on the access to the low frequency band in the horizontal and vertical plane vary in cosine ⁇ for the main polarization, ⁇ being the direction of observation. This characteristic is necessary for the production of an antenna with electronic scanning.
  • FIGS. 5a and 5b represent an example of radiation diagrams of the input associated with the high frequency band of a radiating cell according to the first embodiment of the invention.
  • the figure 5a represents the radiation pattern in the horizontal plane of access to the high frequency band, for a frequency of 2.9GHz in main (501) and cross (502) polarization.
  • the response according to the cross polarization is weak compared to the response according to the main polarization (typically 15dB to 30dB difference).
  • the figure 5b represents the radiation diagram in the vertical plane of access to the high frequency band, for a frequency of 2.9 GHz in main polarization (511). The response in cross polarization in this plane is negligible.
  • the radiation patterns observed in the high frequency band are characteristic of the radiation pattern of a patch. Indeed, this diagram has a variation close to a cosine function ⁇ , necessary for the realization of an antenna with electronic scanning.
  • the figure 6 represents a radiating cell according to a second embodiment of the invention. This operating mode limits the number of sub-bands in the low frequency band to two.
  • the radiating cell 600 designed according to the second embodiment of the invention comprises a radiating element 101 of patch type tuned to the upper frequency band.
  • This radiating element is supplied by the high band output 109 to which it is connected by means of a coaxial line 108 allowing it to pass through the different layers of the printed circuit, and of a filter 110 produced in the form of a stub. having several sections of variable impedance, making it possible to filter the low frequency band while passing for the high frequency band.
  • a second patch type element, identical to the first can be superimposed on the first patch type element 101, in order to widen the passband in the high frequency band.
  • the main difference between this embodiment and the first consists in that it contains only a single slit-type element 601, folded in a U, and positioned to be free from the masking represented by the patch (s) 101
  • the operating band of this element is then widened to the whole of the low frequency band, in order to to understand the two sub-bands required by IFF applications, by the association of a 602 resonator.
  • the radiating slot which forms a parallel resonator, can be supplemented by a series resonator placed in the output plane, or by a parallel resonator placed a quarter wave further.
  • the resonator 602 is then placed at a distance L 1 from the connector 104 connecting it to the exciter 103 of the slot, L 1 being equal to ⁇ / 4, where ⁇ is the central wavelength of the low frequency band.
  • the slot 601 is not tuned to one of the sub-bands of the low frequency band, but to the central frequency, ie in the case of the example chosen, the frequency 1.06 GHz. It can also be tuned to a slightly higher frequency, so as to be compatible, once folded into three parts, of a mesh at the high frequency.
  • the resonator 602 is designed to resonate at the same frequency. The action on the coupling between these two elements, that is to say the mismatch created between these two elements, will cause them to resonate around the frequencies sought. The coupling between the two elements is adjusted by varying the position of the exciter 103 of the slot.
  • the slot 601, the resonator circuit 602 and the exciter 103 are therefore dimensioned and positioned so that the assembly resonates around the frequencies 1030MHz and 1090MHz, while allowing a strong mismatch in the intermediate frequency zone.
  • the radiating element thus obtained is dual-frequency. This approach offers the advantage of only introducing a single radiating slit into the cell, and of reducing the interference between the slit and the patch, and therefore the coupling phenomena between the low frequency band and the high frequency band. .
  • the positioning of the slot 601 and of the exciter 103 is therefore simplified compared to the first embodiment.
  • the resonator circuit 602 is of the parallel capacitance and inductance type.
  • Inductance 603 is of low value. It is produced in the form of a microstrip line of length L 2 connected to ground.
  • the capacitor 604 is produced in the form of a short-circuited microstrip line of length L 3 , L 3 being much greater than L 2 .
  • a low pass filter similar to the filter 106 of the first embodiment of the invention can be added to filter the components of the high bands linked to the coupling between the slot and the patch.
  • a filter is not essential in the second embodiment, the resonator circuit naturally performing the role of low pass filter.
  • the reduction in the number of radiating elements (slots) is compensated by an additional effort on the microwave circuit for adapting the slot.
  • the Figures 7a and 7b represent an example of reflection coefficient and decoupling associated with each input of a radiating cell according to the second embodiment of the invention.
  • the results are obtained by simulations using an electromagnetic simulation software by the finite element method.
  • the curve 701 represents the reflection coefficient of the access dedicated to the low frequency band for the low frequency band (the frequency bands envisaged in this embodiment are bands of a few MHz or tens of MHz around the frequencies 1.03GHz and 1.09GHz). This coefficient is close to or less than -10dB around the frequencies 1.03GHz and 1.09GHz. Dedicated access to the low frequency band is therefore suitable for IFF applications.
  • the curve 702 represents the reflection coefficient of the access dedicated to the high frequency band, for the low frequency band. In the 1GHz - 1.15GHz band, this coefficient is constant, and is equal to 1 (i.e. OdB). Dedicated access to the high frequency band therefore rejects all of the components of the low frequency band. It is not affected by coupling with the radiating elements in the low frequency band.
  • the decoupling 703 between the accesses of the slot and the patch is of the order of 30 dB.
  • the curve 711 represents the reflection coefficient of the access dedicated to the low frequency band, for the high frequency band (the frequency band envisaged in this embodiment is the band 2.9GHz - 3.3GHz). This coefficient is almost constant, and is equal to 1 (ie OdB) over almost the entire band. Dedicated access at the low frequency band therefore rejects all of the components of the high frequency band, it is not affected by the coupling with the radiating elements in the high frequency band.
  • Curve 712 represents the reflection coefficient of the access dedicated to the high frequency band. In the 2.9GHz - 3.3GHz band, this coefficient is much lower than -12.5dB. The dedicated access to the high frequency band is therefore adapted to this frequency band.
  • the decoupling 713 between the 2 antennas is greater than 12.5 dB in the band.
  • FIGS. 8a and 8b represent an example of radiation diagrams of the input associated with the low frequency band of a radiating cell according to the second embodiment of the invention.
  • the figure 8a represents the radiation diagram in the horizontal plane of access to the low frequency band, for a frequency of 1.03GHz in main polarization (801) and crossed (803), as well as for a frequency of 1.09GHz in main polarization ( 802) and crossed (804).
  • the response according to the main polarization in this plane is almost zero (-30dB).
  • the figure 8b represents the radiation diagram in the vertical plane of access to the low frequency band, for a frequency of 1.03GHz in main polarization (811), as well as for a frequency of 1.09GHz in main polarization (812). In this plane, the cross polarization is negligible.
  • the radiation patterns observed on the access to the low frequency band in the first and second plan vary in cosine ⁇ for the main polarization, ⁇ being the direction of observation. This characteristic is necessary for the production of an antenna with electronic scanning.
  • FIGS. 9a and 9b represent an example of radiation diagrams of the input associated with the high frequency band of a radiating cell according to the first embodiment of the invention
  • the figure 9a represents the radiation diagram in the horizontal plane of access to the high frequency band, for a frequency of 2.9 GHz in main (901) and cross (902) polarization.
  • the response according to the cross polarization is weak compared to the response according to the main polarization (typically 30dB difference).
  • the figure 9b represents the radiation diagram in a vertical plane of access to the high frequency band, for a frequency of 2.9 GHz in main polarization (911). There is no cross polarization response in this plane of the cell.
  • the radiation patterns observed in the high frequency band are characteristic of the radiation pattern of a patch. Indeed, this radiation diagram in the foreground has a variation in cosine ⁇ characteristic of a patch antenna, and necessary for the realization of an antenna with electronic scanning.
  • the figure 10 represents a radiating cell according to a third embodiment of the invention. It is a variant of the first embodiment, which comprises a radiating element of the slit type for each of the sub-bands envisaged in the low frequency band.
  • This embodiment differs from the first in that the two slot-type elements 1001 and 1011 are dissociated and placed on each side of the patch-type element, always on the periphery of the radiating cell so as not to be masked by the patch. This distance between the two slots makes it possible to reduce the coupling phenomena between them.
  • Each of the slots is tuned relative to the center frequency of one of the sub-bands of the low frequency band, or reduced to this frequency by coupling.
  • each of the slots is connected to a separate access.
  • the radiating cell then has three accesses: a first access to the high frequency band, and an access for each of the sub-bands of the low frequency band.
  • the first slot 1001 is supplied by the access 1003 to which it is connected by means of an exciter 1002, a coaxial line 1004, and a low pass filter 1005.
  • the second slot 1011 is supplied by the access 1013 to which it is connected by means of an exciter 1012, a coaxial line 1014, and a low pass filter 1015.
  • the invention also includes a radiating network produced from dual-band radiating cells as defined above.
  • Each of the cells can then be controlled in amplitude and / or in phase in each of the bands of interest, that is to say in the specific example, in the S band (and more particularly the 2.9GHz-3.3GHz subband) and in the band dedicated to IFF applications (1.03GHz and 1.09GHz).
  • a dual-band radar comprising a single electronic scanning antenna, the antenna being produced from the radiating network described above, and operating independently in the two frequency bands.

Landscapes

  • Waveguide Aerials (AREA)

Description

La présente invention se situe dans le domaine des dispositifs rayonnants conçus pour opérer dans deux bandes de fréquences distinctes. Elle s'applique notamment aux cellules rayonnantes bi-bandes réalisées en technologie imprimée, et utilisées par des radars à balayages électroniques pour la surveillance de l'espace aérien. Ces radars opèrent en bande S, et dans la bande dédiée aux applications IFF (acronyme anglais pour « Identification, Friend or Foe », ou identification ami ou ennemi).The present invention is in the field of radiating devices designed to operate in two distinct frequency bands. It applies in particular to dual-band radiating cells produced in printed technology, and used by radars with electronic scans for the surveillance of airspace. These radars operate in the S band, and in the band dedicated to IFF applications (English acronym for "Identification, Friend or Foe", or friend or enemy identification).

Les radars à balayage électronique de l'état de l'art sont constitués d'antennes directives réalisées à partir d'éléments rayonnants, ou cellules rayonnantes, assemblés au sein d'un réseau. La modification de l'amplitude et de la phase de chacun des éléments rayonnants du réseau permet d'orienter la direction du faisceau radar.State-of-the-art electronic scanning radars consist of directional antennas made from radiating elements, or radiating cells, assembled within a network. The modification of the amplitude and the phase of each of the radiating elements of the network makes it possible to orient the direction of the radar beam.

Les fréquences d'intérêt pour les applications de surveillance aérienne sont la bande S, utilisée pour le radar primaire, et en particulier la sous-bande 2.9GHz à 3.3GHz, ainsi que des bandes de fréquences de quelques MHz ou dizaines de MHz situées autour des fréquences 1.03GHz et 1.09GHz, et utilisées pour les applications IFF. Les équipements radars actuels, qu'il s'agisse de radars au sol ou de radars embarqués sur un porteur comme par exemple un véhicule, un navire ou un avion, comprennent généralement deux systèmes indépendants : une antenne directive rotative dédiée aux applications IFF et un réseau de cellules rayonnantes pour le radar Bande S. L'antenne rotative est positionnée au-dessus ou à côté de l'antenne radar bande S. Les deux volumes s'ajoutent donc, ce qui peut poser problème lors du transport ou de l'installation des antennes.The frequencies of interest for aerial surveillance applications are the S band, used for the primary radar, and in particular the sub-band 2.9GHz to 3.3GHz, as well as frequency bands of a few MHz or tens of MHz located around frequencies 1.03GHz and 1.09GHz, and used for IFF applications. Current radar equipment, whether it be ground speed radars or radars on board a carrier such as a vehicle, ship or aircraft, generally includes two independent systems: a rotary directive antenna dedicated to IFF applications and a array of radiant cells for the Band S radar. The rotary antenna is positioned above or next to the S band radar antenna. The two volumes are therefore added together, which can cause problems during transport or installation of antennas.

L'invention cherche à résoudre la problématique générale de la multiplication des systèmes en proposant une cellule rayonnante fonctionnant simultanément et sans interférences, dans deux bandes de fréquences distinctes, en particulier la Bande S et la bande de fréquences dédiée aux applications IFF. Une telle cellule permet de réaliser un réseau rayonnant bi-bande, réduisant ainsi l'encombrement du système radar dans son ensemble, ainsi que la complexité d'installation et les contraintes d'utilisation associées. L'invention propose une cellule rayonnante pour laquelle les accès aux différentes bandes de fréquences sont indépendants, ce qui permet d'intégrer l'invention dans les dispositifs radars existant de manière transparente.The invention seeks to solve the general problem of the multiplication of systems by proposing a radiating cell operating simultaneously and without interference, in two distinct frequency bands, in particular the S-band and the frequency band dedicated to IFF applications. Such a cell makes it possible to create a network radiating dual-band, thereby reducing the overall size of the radar system, as well as the installation complexity and associated usage constraints. The invention proposes a radiating cell for which the accesses to the different frequency bands are independent, which makes it possible to integrate the invention into existing radar devices in a transparent manner.

L'utilisation d'éléments rayonnants bi-bande ou large bande à l'intérieur de réseaux rayonnants est un problème rencontré fréquemment.The use of dual-band or broadband radiating elements within radiating networks is a problem frequently encountered.

Il est d'autant plus complexe que, lorsque des éléments rayonnants sont proches, de forts phénomènes de couplage apparaissent. Ces phénomènes de couplage sont d'autant plus marqués lorsque le rapport des fréquences entre la bande haute et la bande basse se rapproche d'un nombre entier impair. En effet, les éléments rayonnants sont dimensionnés par rapport à la longueur d'onde à laquelle ils opèrent. Un élément dimensionné pour rayonner dans la bande de fréquence basse aura généralement une taille proche de λB/2, avec λB la longueur d'onde maximum de la bande de fréquence basse. De par le rapport des bandes de fréquences, sa taille sera également de N.λH/2, avec N le rapport des bandes de fréquences et λH la longueur d'onde maximum de la bande de fréquence haute dans le diélectrique. De ce fait, lorsque N s'approche d'un nombre entier impair, le dispositif rayonne également pour la bande de fréquence haute, amplifiant ainsi les phénomènes de couplage.It is all the more complex that, when radiating elements are close, strong coupling phenomena appear. These coupling phenomena are all the more marked when the frequency ratio between the high band and the low band approaches an odd whole number. Indeed, the radiating elements are sized relative to the wavelength at which they operate. An element dimensioned to radiate in the low frequency band will generally have a size close to λ B / 2, with λ B the maximum wavelength of the low frequency band. Due to the ratio of the frequency bands, its size will also be N.λ H / 2, with N the ratio of the frequency bands and λ H the maximum wavelength of the high frequency band in the dielectric. Therefore, when N approaches an odd whole number, the device also radiates for the high frequency band, thus amplifying the coupling phenomena.

L'utilisation, au sein d'une même cellule rayonnante d'éléments propres à chacune des bandes de fonctionnement, séparés d'un écart permettant de minimiser les problèmes de couplage entre éléments, n'est pas une solution au problème lorsque la cellule rayonnante est mise en œuvre dans un réseau rayonnant. En effet, la taille de la cellule est contrainte par le pas de la maille du réseau, qui vaut généralement λ/2, avec λ la longueur d'onde dans l'air correspondant à la fréquence maximale. Ainsi, lorsque le rapport de fréquences entre la bande de fréquences haute et la bande de fréquences basse augmente, les éléments rayonnants requis par la bande de fréquences basse deviennent incompatibles de la taille de ce pas de mise en réseau. A titre d'exemple, le pas de mise en réseau d'une maille rayonnante en bande S à 3.3GHz est d'environ 5cm. Un patch adapté à la bande S, lorsqu'il est réalisé dans le cadre d'un substrat ayant une constante diélectrique relative valant 3.55, a des dimensions de l'ordre de 25mm x 25mm, compatible avec le pas de mise en réseau. Un patch pour les applications IFF, du fait du rapport 3 de fréquence entre les deux bandes, sera 3 fois plus grand (et de surface 9 fois supérieure). Il aura alors une taille de 75mm x 75mm. Un dispositif comprenant un patch bande S et un patch pour applications IFF ne sera donc pas compatible avec le pas de la maille rayonnante.The use, within the same radiating cell of elements specific to each of the operating bands, separated by a gap making it possible to minimize the problems of coupling between elements, is not a solution to the problem when the radiating cell is implemented in a radiating network. Indeed, the size of the cell is constrained by the pitch of the lattice of the network, which is generally equal to λ / 2, with λ the wavelength in the air corresponding to the maximum frequency. Thus, when the frequency ratio between the high frequency band and the low frequency band increases, the radiating elements required by the low frequency band become incompatible with the size of this networking step. AT As an example, the step of networking a radiating mesh in S band at 3.3 GHz is around 5 cm. A patch suitable for the band S, when produced in the context of a substrate having a relative dielectric constant of 3.55, has dimensions of the order of 25mm x 25mm, compatible with the pitch of networking. A patch for IFF applications, due to the frequency ratio 3 between the two bands, will be 3 times larger (and with a surface area 9 times greater). It will then have a size of 75mm x 75mm. A device comprising an S band patch and a patch for IFF applications will therefore not be compatible with the pitch of the radiating mesh.

Ainsi, la demande de brevet US 2003/0164800 A1 présente un dispositif tri-bande fonctionnant dans les bandes AMPS (800-850 MHz), GPS (1.4 GHz) et PCS (1.85-1.99 GHz) à partir d'une antenne patch et de deux fentes. Le rapport des fréquences de fonctionnement n'étant pas des multiples impairs, le dispositif ne présente pas de moyens de suppressions des interférences liées au couplage entre les éléments rayonnants. De plus, l'utilisation d'une fente accordée à la bande de fréquence basse le rend incompatible de son intégration dans une maille rayonnante dimensionnée par rapport à la fréquence haute.So the patent application US 2003/0164800 A1 presents a tri-band device operating in the AMPS (800-850 MHz), GPS (1.4 GHz) and PCS (1.85-1.99 GHz) bands from a patch antenna and two slots. The ratio of the operating frequencies not being odd multiples, the device does not have means for suppressing interference linked to the coupling between the radiating elements. In addition, the use of a slot tuned to the low frequency band makes it incompatible with its integration into a radiating mesh dimensioned with respect to the high frequency.

Le brevet Australien AU 2015101429 A4 présente un dispositif bi-bande fonctionnant dans les bandes Wifi à 2.4GHz et 5GHz. Cependant, dans ce dispositif, le rapport des fréquences n'est pas un multiple impair, il ne présente donc pas de problèmes particulier de couplage. Il ne présente pas non plus d'accès indépendant à chacune des bandes de fréquences : les éléments rayonnants associés à chacune des bandes de fréquence ne peuvent alors pas être pilotées indépendamment.The Australian patent AU 2015101429 A4 presents a dual-band device operating in the Wifi bands at 2.4GHz and 5GHz. However, in this device, the frequency ratio is not an odd multiple, so it does not present any particular coupling problems. It also does not have independent access to each of the frequency bands: the radiating elements associated with each of the frequency bands cannot then be controlled independently.

Une première solution connue au problème de réalisation d'une cellule bi-bande de dimensions réduites consiste à utiliser un unique élément rayonnant large bande. Une fois mis en réseau, le résultat est alors un réseau unique large bande, couvrant l'ensemble des bandes d'intérêt. Cependant, la réalisation d'un tel élément rayonnant s'avère complexe lorsque l'écart de bande augmente, et ne répond pas au besoin d'un accès indépendant à chacune des bandes de fréquences.A first known solution to the problem of making a bi-band cell of reduced dimensions consists in using a single broadband radiating element. Once networked, the result is a single broadband network, covering all the bands of interest. However, the production of such a radiating element proves to be complex when the band gap increases, and does not meet the need for independent access to each of the frequency bands.

Pour répondre à la problématique de la taille du réseau, une solution connue consiste à utiliser, pour la bande de fréquences basse, des éléments de type monopôles ou dipôles repliés, ou des fentes repliées de manière à pouvoir les loger dans une surface réduite. L'utilisation simultanée d'un patch pour la bande de fréquences haute, et d'une fente pour la bande de fréquences basse présente un intérêt pratique, car la fente peut être logée dans la métallisation du patch, ou dans celle de son plan de masse. Diverses solutions de ce type ont été explorées, mais elles se heurtent au fait que, dans ces conditions, les fentes rayonnantes présentent une bande passante très étroite, ce qui limite leur intérêt.To respond to the problem of the size of the network, a known solution consists in using, for the low frequency band, elements of the folded monopole or dipole type, or folded slots so as to be able to accommodate them in a reduced surface. The simultaneous use of a patch for the high frequency band, and a slot for the low frequency band is of practical interest, because the slot can be housed in the metallization of the patch, or in that of its plane of mass. Various solutions of this type have been explored, but they run up against the fact that, under these conditions, the radiating slots have a very narrow bandwidth, which limits their advantage.

L'article « A Dual Band Quasi-Magneto-Electric Patch Antenna for X-band Phased Array », S.E Valavan, Proceedings of the 44th European Microwave Conférence 2014 , a passé outre cette limitation en utilisant les phénomènes de couplage entre les deux éléments. Il propose de perturber un patch rayonnant dans la bande de fréquences haute à l'aide d'une fente logée à l'intérieur de la surface rayonnante du patch. La réponse du dispositif, résultant du couplage entre les deux éléments, présente un fonctionnement dans deux bandes de fréquences distinctes dont les fréquences centrales sont éloignées d'un rapport 1.5, mais ayant des bandes passantes significatives (supérieures à 5%).The article "A Dual Band Quasi-Magneto-Electric Patch Antenna for X-band Phased Array", SE Valavan, Proceedings of the 44th European Microwave Conference 2014 , has overcome this limitation by using the coupling phenomena between the two elements. It proposes to disturb a radiating patch in the high frequency band by means of a slot housed inside the radiating surface of the patch. The response of the device, resulting from the coupling between the two elements, presents an operation in two distinct frequency bands whose central frequencies are distant from a ratio 1.5, but having significant bandwidths (greater than 5%).

Cependant, un tel dispositif présente deux défauts majeurs :

  • le rapport de bande vaut 1.5, ce qui ne permet pas de répondre aux applications radar Bande S et IFF, pour lesquels le rapport de bande de fréquences vaut 3,
  • il ne répond pas au besoin d'avoir deux antennes séparées reliées chacune à un accès distinct, car il propose un système couplé ayant deux bandes de résonnance. Les amplitudes et phases des éléments rayonnants associés à chaque bande de fréquence ne peuvent alors pas être pilotées indépendamment. De plus, l'intégration d'une telle cellule dans des équipements existant requiert la séparation entre ces deux bandes, pour piloter séparément le signal en bande de fréquences haute et basse. Cette séparation requiert la réalisation d'un équipement supplémentaire à l'interface entre le réseau rayonnant et les équipements radio. Elle peut s'avérer délicate, la qualité des signaux résultants dépendant de la propreté du filtrage mis en œ uvre.
However, such a device has two major flaws:
  • the band ratio is 1.5, which does not make it possible to respond to Band S and IFF radar applications, for which the frequency band ratio is 3,
  • it does not meet the need to have two separate antennas each connected to a separate access, because it offers a coupled system having two resonance bands. The amplitudes and phases of the radiating elements associated with each frequency band cannot then be controlled independently. In addition, the integration of such a cell in existing equipment requires separation between these two bands, to drive the signal in high and low frequency bands separately. This separation requires the realization of equipment additional to the interface between the radiating network and the radio equipment. It can be delicate, the quality of the resulting signals depending on the cleanliness of the filtering implemented.

L'invention répond au problème posé en associant un élément rayonnant dans la bande de fréquences haute de type patch, avec au moins un élément rayonnant dans la bande de fréquence basse de type fente repliée. Cette approche permet de loger les deux éléments rayonnants dans une cellule de taille réduite, compatible d'un réseau d'éléments unitaires fonctionnant à la fréquence haute, c'est à dire inférieure à un carré de côté inférieur à λH/2.The invention addresses the problem posed by associating a radiating element in the high frequency band of the patch type, with at least one radiating element in the low frequency band of the folded slot type. This approach makes it possible to house the two radiating elements in a reduced size cell, compatible with a network of unit elements operating at the high frequency, that is to say less than a square with a side less than λ H / 2.

Les éléments de la bande de fréquences haute (patch) et de la bande de fréquences basse (fente) sont chacun reliés à un accès distinct, ce qui permet de pouvoir les piloter indépendamment en amplitude et en phase. Des filtres adaptés à chacune des bandes de fréquences sont implémentés sur chacun des accès, de manière à supprimer les contributions indésirables liées au couplage résultant de la proximité entre les éléments rayonnants.The elements of the high frequency band (patch) and the low frequency band (slot) are each connected to a separate access, which allows them to be controlled independently in amplitude and in phase. Filters adapted to each of the frequency bands are implemented on each of the ports, so as to eliminate the undesirable contributions linked to the coupling resulting from the proximity between the radiating elements.

L'invention consiste donc en un dispositif rayonnant dans deux bandes de fréquences distinctes selon la revendication 1.The invention therefore consists of a device radiating in two distinct frequency bands according to claim 1.

Avantageusement, l'élément de type fente est logé dans un plan de masse du dispositif.Advantageously, the slot-type element is housed in a ground plane of the device.

Avantageusement, le ou les dits éléments de type fente repliée sont repliées en forme de U et positionnées en périphérie du dispositif.Advantageously, the one or more elements of the folded slot type are folded in a U shape and positioned at the periphery of the device.

Selon un mode de réalisation du dispositif, le nombre d'éléments de type fente est égal au nombre de sous-bandes de la bande de fréquences basse, lesdits éléments de type fente étant alimentées par un même deuxième accès.According to one embodiment of the device, the number of slot-type elements is equal to the number of sub-bands of the low frequency band, said slot-type elements being supplied by the same second port.

Selon un autre mode de réalisation du dispositif, le nombre d'éléments de type fente est égal au nombre de sous-bandes de la bande de fréquences basses, lesdits éléments de type fente étant alimentées par des accès différents.According to another embodiment of the device, the number of slot-type elements is equal to the number of sub-bands of the low frequency band, said slot-type elements being supplied by different ports.

Selon un autre mode de réalisation, le dispositif comprend un unique élément de type fente alimenté par ledit deuxième accès auquel il est relié par un circuit résonateur, le couplage entre ladite fente et ledit circuit résonateur étant ajusté pour rayonner dans deux sous-bandes distinctes de la bande fréquences basse.According to another embodiment, the device comprises a single slot-type element supplied by said second access to which it is connected by a resonator circuit, the coupling between said slot and said resonator circuit being adjusted to radiate in two distinct sub-bands of the low frequency band.

Avantageusement, dans ce mode de réalisation, le circuit résonateur est un circuit résonateur parallèle comprenant une inductance et un condensateur. Le résonateur est relié à l'élément de type fente par un guide d'onde de longueur λ/4, où λ est la longueur d'onde associée à la fréquence centrale de la bande de fréquences basse.Advantageously, in this embodiment, the resonator circuit is a parallel resonator circuit comprising an inductor and a capacitor. The resonator is connected to the slit type element by a waveguide of length λ / 4, where λ is the wavelength associated with the center frequency of the low frequency band.

Avantageusement, dans l'ensemble des modes de réalisation, le filtre positionné entre l'élément de type patch et le premier accès comprend une pluralité de tronçons de ligne microruban de largeurs différentes.Advantageously, in all of the embodiments, the filter positioned between the patch-type element and the first access comprises a plurality of sections of microstrip line of different widths.

Cette propriété lui permet de ne rayonner que pour l'une des bandes de fréquences lorsque celles-ci sont des multiples l'une de l'autre.This property allows it to radiate only for one of the frequency bands when these are multiples of one another.

Avantageusement, le dispositif comprend en outre un filtre passe-bas positionné entre le ou les dits éléments de type fente et ledit deuxième accès, et configuré pour filtrer la bande de fréquences haute.Advantageously, the device further comprises a low-pass filter positioned between the said slot-type element or elements and said second port, and configured to filter the high frequency band.

Avantageusement, le dispositif comprend en outre un deuxième élément de type patch adapté à la bande de fréquences haute, ledit deuxième élément de type patch étant disposé au-dessus dudit premier élément de type patch.Advantageously, the device further comprises a second patch type element suitable for the high frequency band, said second patch type element being disposed above said first patch type element.

Le dispositif selon l'invention peut être mis en œuvre dans un circuit imprimé multicouches pour lequel ledit élément de type patch, le ou les dits éléments de type fente, et ledit filtre positionné entre l'élément de type patch et le premier accès sont dans des couches différentes du circuit imprimé.The device according to the invention can be implemented in a multilayer printed circuit for which said patch type element, said slit type element (s), and said filter positioned between the patch type element and the first access are in different layers of the circuit board.

Cette répartition en couche permet de limiter au maximum la surface du circuit imprimé. Elle est possible car les éléments rayonnants ne viennent pas se masquer, le ou les éléments de type fente étant positionnés en périphérie du circuit imprimé, et donc de l'élément de type patch.This layer distribution makes it possible to limit the surface of the printed circuit as much as possible. It is possible because the radiating elements do not come to hide, the slit type element or elements being positioned on the periphery of the printed circuit, and therefore of the patch type element.

Grâce à l'élément de filtrage de la bande de fréquence haute, le dispositif selon l'invention est adapté pour fonctionner lorsqu'au moins une fréquence de la bande de fréquences haute est un multiple entier impair d'une fréquence de la bande de fréquences basse.Thanks to the filter element of the high frequency band, the device according to the invention is adapted to operate when at least one frequency of the high frequency band is an odd integer multiple of a frequency of the frequency band low.

Le dispositif selon l'invention est adapté pour fonctionner lorsque la bande de fréquences haute comprend la bande 2.9GHz - 3.3GHz.The device according to the invention is adapted to operate when the high frequency band comprises the band 2.9GHz - 3.3GHz.

Il est également adapté pour fonctionner lorsqu'au moins une sous-bande de la bande de fréquences basse est centrée autour d'une fréquence choisie parmi la fréquence 1030MHz et la fréquence 1090MHz.It is also suitable for operating when at least one sub-band of the low frequency band is centered around a frequency chosen from the frequency 1030MHz and the frequency 1090MHz.

Le dispositif selon l'invention peut aisément être réalisé en technologie imprimée.The device according to the invention can easily be produced in printed technology.

Enfin, l'invention concerne un réseau rayonnant configurée pour rayonner dans deux bandes de fréquences distinctes, et caractérisée en ce qu'il comprend des cellules rayonnantes conformes au dispositif rayonnant dans deux bandes de fréquences distinctes selon l'invention.Finally, the invention relates to a radiating network configured to radiate in two distinct frequency bands, and characterized in that it comprises radiating cells conforming to the radiating device in two distinct frequency bands according to the invention.

Elle adresse également un radar à balayage électronique configuré pour fonctionner simultanément dans deux bandes de fréquences différentes, et caractérisé en ce qu'il comprend un réseau rayonnant tel que décrit par l'invention.It also addresses an electronic scanning radar configured to operate simultaneously in two different frequency bands, and characterized in that it comprises a radiating network as described by the invention.

L'invention sera mieux comprise et d'autres caractéristiques et avantages apparaîtront mieux à la lecture de la description qui suit, donnée à titre non limitatif, et grâce aux figures annexées parmi lesquelles :

  • La figure 1 représente une cellule rayonnante selon un premier mode de réalisation de l'invention,
  • La figure 2 représente la vue en éclaté d'une cellule rayonnante selon le premier mode de réalisation de l'invention,
  • Les figures 3a et 3b représentent un exemple de coefficient de réflexion des entrées et de découplage, respectivement dans la bande de fréquences basse et dans la bande de fréquences haute, associés à chaque entrée d'une cellule rayonnante selon le premier mode de réalisation de l'invention,
  • Les figures 4a et 4b représentent un exemple de diagrammes de rayonnements de l'entrée associée à la bande de fréquences basse d'une cellule rayonnante selon le premier mode de réalisation de l'invention,
  • Les figures 5a et 5b représentent un exemple de diagrammes de rayonnements de l'entrée associée à la bande de fréquences haute d'une cellule rayonnante selon le premier mode de réalisation de l'invention,
  • La figure 6 représente une cellule rayonnante selon un deuxième mode de réalisation de l'invention,
  • Les figures 7a et 7b représentent un exemple de coefficient de réflexion des entrées et de découplage, respectivement dans la bande de fréquences basse et dans la bande de fréquences haute, associés à chaque entrée d'une cellule rayonnante selon le deuxième mode de réalisation de l'invention,
  • Les figures 8a et 8b représentent un exemple de diagrammes de rayonnements de l'entrée associée à la bande de fréquences haute d'une cellule rayonnante selon le deuxième mode de réalisation de l'invention,
  • Les figures 9a et 9b représentent un exemple de diagrammes de rayonnements de l'entrée associée à la bande de fréquences haute d'une cellule rayonnante selon le deuxième mode de réalisation de l'invention,
  • La figure 10 représente une cellule rayonnante selon un troisième mode de réalisation.
The invention will be better understood and other characteristics and advantages will appear better on reading the description which follows, given without limitation, and thanks to the appended figures among which:
  • The figure 1 represents a radiating cell according to a first embodiment of the invention,
  • The figure 2 represents the exploded view of a radiating cell according to the first embodiment of the invention,
  • The Figures 3a and 3b represent an example of reflection coefficient of the inputs and of decoupling, respectively in the low frequency band and in the high frequency band, associated with each input of a radiating cell according to the first embodiment of the invention,
  • The Figures 4a and 4b represent an example of radiation diagrams of the input associated with the low frequency band of a radiating cell according to the first embodiment of the invention,
  • The Figures 5a and 5b represent an example of radiation diagrams of the input associated with the high frequency band of a radiating cell according to the first embodiment of the invention,
  • The figure 6 represents a radiating cell according to a second embodiment of the invention,
  • The Figures 7a and 7b represent an example of reflection coefficient of the inputs and of decoupling, respectively in the low frequency band and in the high frequency band, associated with each input of a radiating cell according to the second embodiment of the invention,
  • The Figures 8a and 8b represent an example of radiation diagrams of the input associated with the high frequency band of a radiating cell according to the second embodiment of the invention,
  • The Figures 9a and 9b represent an example of radiation diagrams of the input associated with the high frequency band of a radiating cell according to the second embodiment of the invention,
  • The figure 10 represents a radiating cell according to a third embodiment.

Les descriptions des modes de réalisation exposés ci-dessous sont dédiées à un mode de fonctionnement particulier de l'invention. Ce mode de fonctionnement répond aux besoins des applications radars pour la surveillance de l'espace aérien. La cellule rayonnante présentée ci-après cherche à fonctionner de manière dissociée dans la bande 2.9GHz - 3.3GHz (sous-bande de la bande S dédiée aux applications radars), ainsi que dans deux sous-bandes de quelques MHz dans la bande de fréquences dédiée aux applications IFF, une première centrée autour de la fréquence 1030MHz et une deuxième centrée autour de la fréquence 1090MHz. Ces deux sous-bandes correspondent aux voies aller et retour des applications IFF.The descriptions of the embodiments set out below are dedicated to a particular mode of operation of the invention. This operating mode meets the needs of radar applications for airspace surveillance. The radiating cell presented below seeks to operate in a dissociated manner in the band 2.9GHz - 3.3GHz (sub-band of the S band dedicated to radar applications), as well as in two sub-bands of a few MHz in the frequency band dedicated to IFF applications, a first centered around the 1030MHz frequency and a second centered around the 1090MHz frequency. These two sub-bands correspond to the outward and return paths of the IFF applications.

Cependant, l'invention ne se limite pas à ce fonctionnement ni à ce type d'applications, et peut être étendue mutatis mutandis à d'autres bandes de fréquences, où à d'autres modes de réalisation dans lesquels le nombre de sous-bandes choisies à l'intérieur de la bande de fréquences basse varie.However, the invention is not limited to this operation or to this type of application, and can be extended mutatis mutandis to other frequency bands, or to other embodiments in which the number of sub-bands chosen within the low frequency band varies.

Dans les exemples présentés, le rapport des bandes de fréquences, c'est-à-dire le rapport entre les fréquences de la bande de fréquence haute et les fréquences de la bande de fréquences basse, vaut environ trois. De ce fait, les phénomènes de couplage entre les divers éléments rayonnants, introduits par leur proximité physique, se trouvent renforcé. Ceci est lié à ce que, lorsque le rapport de fréquence entre les bandes est un nombre entier impair, toutes les structures résonantes à base de lignes fonctionnement naturellement de manière identique à la fréquence f0 et à tous ses multiples impairs. De ce fait, les éléments rayonnants dimensionnés pour les applications IFF rayonnent également pour la bande S.In the examples presented, the ratio of the frequency bands, that is to say the ratio between the frequencies of the high frequency band and the frequencies of the low frequency band, is equal to about three. From this in fact, the coupling phenomena between the various radiating elements, introduced by their physical proximity, are reinforced. This is linked to the fact that, when the frequency ratio between the bands is an odd whole number, all the line-based resonant structures function naturally in the same way as the frequency f 0 and all of its odd multiples. As a result, the radiating elements dimensioned for the IFF applications also radiate for the S band.

La figure 1 représente une cellule rayonnante selon un premier mode de réalisation de l'invention. Cette cellule rayonnante 100, ou antenne à éléments rayonnants imprimés, est un circuit imprimé comprenant de multiples couches séparées par un substrat diélectrique, utilisant des éléments distribués, c'est-à-dire des lignes microrubans (désignées aussi par le terme anglais « microstrip »). Cette technologie est très répandue en hyperfréquences car, pour les fréquences élevées, la manipulation des ondes à partir de guides d'ondes est plus simple que la manipulation des courants et tensions. L'une des couches du circuit imprimé forme un plan de masse.The figure 1 represents a radiating cell according to a first embodiment of the invention. This radiating cell 100, or antenna with printed radiating elements, is a printed circuit comprising multiple layers separated by a dielectric substrate, using distributed elements, that is to say microstrip lines (also designated by the English term “microstrip "). This technology is very widespread in microwave frequencies because, for high frequencies, the manipulation of waves from waveguides is simpler than the manipulation of currents and voltages. One of the layers of the printed circuit forms a ground plane.

La cellule rayonnante comprend un élément rayonnant 101 de type patch. En éléments distribués, un patch est une couche métallisée de forme carrée ou rectangulaire alimentée. Les dimensions du patch sont choisies afin qu'il rayonne dans la bande de fréquences haute (bande S). Il est positionné dans l'une des couches du circuit.The radiating cell comprises a radiating element 101 of the patch type. In distributed elements, a patch is a metallized layer of square or rectangular shape supplied. The dimensions of the patch are chosen so that it radiates in the high frequency band (S band). It is positioned in one of the layers of the circuit.

La cellule rayonnante comprend également deux fentes rayonnantes 102 repliées. Ces fentes ont le comportement de dipôles, tout en étant moins sensibles aux phénomènes de couplage. Elles sont accordées pour fonctionner aux alentours des sous-bandes d'intérêt de la bande de fréquences basse (dans l'exemple, 1030MHz et 1090MHz). Cet accord se fait en les dimensionnant chacune par rapport à une longueur d'onde proche de la longueur d'onde recherchée, la fente ayant alors une longueur de λ/2. De manière à diminuer légèrement la taille des fentes, l'accord peut être réalisé en les dimensionnant par rapport à une longueur d'onde légèrement supérieure à la longueur d'onde recherchée, puis en ajustant leurs positions relatives, la position de leur excitateur, et leur position par rapport au patch, pour que les phénomènes de couplage repoussent leur fréquence de fonctionnement sur la fréquence recherchée. Dans le cadre d'une application IFF/Bande S, il est ainsi possible d'utiliser des fentes dont la longueur est adaptée à une fréquence de fonctionnement légèrement supérieure à 1100 MHz, ce qui les rend compatible, une fois repliées en trois en forme de U, d'une maille dimensionnée par rapport à la fréquence de 3.3 GHz, puis de repousser par couplage leur fréquence de fonctionnement sur les fréquences d'intérêt 1030 MHz et 1090 MHz en ajustant leurs positions. Le nombre de fentes est adapté au nombre de bandes de fréquences basses souhaitées. L'utilisation de deux fentes repliées en trois en forme de U et d'une antenne patch permet de loger les trois éléments rayonnants dans un environnement très réduit. Il est également possible de plier les fentes en plus de trois pour les faire rentrer dans la cellule rayonnante selon l'invention.The radiating cell also includes two folded radiating slots 102. These slots have the behavior of dipoles, while being less sensitive to coupling phenomena. They are tuned to operate around the sub-bands of interest in the low frequency band (in the example, 1030MHz and 1090MHz). This agreement is achieved by dimensioning each one with respect to a wavelength close to the desired wavelength, the slit then having a length of λ / 2. In order to slightly decrease the size of the slits, tuning can be achieved by dimensioning them with respect to a wavelength slightly greater than the desired wavelength, then by adjusting their positions relative, the position of their exciter, and their position relative to the patch, so that the coupling phenomena push their operating frequency back onto the desired frequency. In the context of an IFF / Band S application, it is thus possible to use slots whose length is adapted to an operating frequency slightly greater than 1100 MHz, which makes them compatible, once folded in three in shape of U, of a mesh dimensioned compared to the frequency of 3.3 GHz, then to push back by coupling their operating frequency on the frequencies of interest 1030 MHz and 1090 MHz by adjusting their positions. The number of slots is adapted to the number of desired low frequency bands. The use of two slots folded in three in the shape of a U and a patch antenna makes it possible to accommodate the three radiating elements in a very reduced environment. It is also possible to fold the slots in more than three to make them fit into the radiating cell according to the invention.

Les fentes sont réalisées par dé-métallisation partielle du plan de masse de la cellule. L'excitation des fentes est réalisée par un ruban rayonnant 103 positionné entre les deux fentes dans l'un des plans du circuit imprimé, de préférence le plan adjacent au plan de masse, et relié à l'alimentation des fentes. Le positionnement relatif des deux fentes 102 et de l'excitateur 103 crée des phénomènes de couplages, à la fois entre les éléments de la bande de fréquences basse, mais aussi avec le patch 101. Leur positionnement doit donc être ajusté afin de repousser les artefacts générés par ce couplage en dehors des bandes utiles. L'ajustement de l'écart entre les fentes permet d'ajuster la fréquence de résonance de chaque fente et de repousser leur fonctionnement sur la fréquence triple en dehors de la bande de fréquence haute.The slots are produced by partial de-metallization of the ground plane of the cell. The excitation of the slots is carried out by a radiating strip 103 positioned between the two slots in one of the planes of the printed circuit, preferably the plane adjacent to the ground plane, and connected to the supply of the slots. The relative positioning of the two slots 102 and the exciter 103 creates coupling phenomena, both between the elements of the low frequency band, but also with the patch 101. Their positioning must therefore be adjusted in order to repel the artifacts generated by this coupling outside the useful bands. Adjusting the gap between the slits allows the resonant frequency of each slit to be adjusted and their operation to be pushed back to the triple frequency outside the high frequency band.

L'excitateur 103 est alimenté par l'accès bande de fréquences basse 105, auquel il est relié par une ligne coaxiale 104 et un filtre passe bas 106.The exciter 103 is supplied by the low frequency band access 105, to which it is connected by a coaxial line 104 and a low pass filter 106.

Ce filtre passe bas comprend, par exemple, deux condensateurs 107, qui en technologie imprimée prennent la forme de tronçons de ligne ouverts. Le filtre a pour rôle le filtrage des composantes de la bande de fréquences haute dues au fort couplage entre les fentes et le patch.This low-pass filter comprises, for example, two capacitors 107, which in printed technology take the form of open line sections. The role of the filter is to filter the components of the high frequency band due to the strong coupling between the slots and the patch.

L'élément rayonnant de type patch 101 est alimenté par l'accès bande de fréquences haute 109 auquel il est relié par une ligne coaxiale 108 et un filtre 110.The radiating element of the patch type 101 is supplied by the high frequency band access 109 to which it is connected by a coaxial line 108 and a filter 110.

Le filtre 110 a pour rôle le filtrage des composantes de la bande de fréquences basse dues au fort couplage entre les fentes et le patch.The filter 110 has the role of filtering the components of the low frequency band due to the strong coupling between the slots and the patch.

La réalisation d'un filtre passe haut ou passe bande nécessite un enchaînement de capacités séries et d'inductances parallèles difficile à réaliser en technologie distribuée, et dont la taille des composants, liés à la bande de fréquence basse, présente le problème de l'encombrement. Une manière alternative de réaliser un filtre passe bande consiste alors à insérer un ou plusieurs guides d'onde parallèles court-circuités, plus connus sous le nom anglais de stub.The realization of a high pass or band pass filter requires a series capacitance series and parallel inductances difficult to achieve in distributed technology, and the size of the components, related to the low frequency band, presents the problem of size. An alternative way of making a bandpass filter then consists in inserting one or more short-circuited parallel waveguides, better known by the English name of stub.

Un guide d'onde parallèle joue le rôle de circuit résonateur série, et présente un encombrement très réduit. Sa longueur est proportionnelle à la longueur d'onde dans le diélectrique de la fréquence qu'il vient court-circuiter. Ainsi, un stub réalisé à partir d'un tronçon de ligne microruban de longueur λB/4, avec λB la longueur d'onde de la bande de fréquences basse, jouera le rôle de court-circuit dans sa bande de résonnance. Dans l'exemple, il s'agit de la bande de fréquences basse. Cependant, les structures résonnantes à base de lignes fonctionnent naturellement de la même manière à la fréquence f0 et pour tous les multiples impairs de cette fréquence. C'est le cas dans l'exemple, où le rapport des bandes de fréquences est de 3. Ainsi, un tel stub jouera également le rôle de court-circuit pour la bande de fréquences haute.A parallel waveguide acts as a series resonator circuit, and has a very small footprint. Its length is proportional to the wavelength in the dielectric of the frequency that it short-circuits. Thus, a stub made from a microstrip line section of length λ B / 4, with λ B the wavelength of the low frequency band, will play the role of short circuit in its resonance band. In the example, this is the low frequency band. However, resonant structures based on lines naturally function in the same way at the frequency f 0 and for all the odd multiples of this frequency. This is the case in the example, where the ratio of the frequency bands is 3. Thus, such a stub will also play the role of short circuit for the high frequency band.

Ce problème est résolu en implémentant un stub dont la longueur totale est fractionnée en plusieurs tronçons d'impédances différentes (connu en anglais sous le terme de « stepped impedance ») variable. Un tel stub est dispersif. Il est dimensionné de manière à présenter un court-circuit sur sa fréquence fondamentale, et un circuit ouvert sur sa fréquence triple. Le filtre 110 de la figure 1 présente un tel stub, constitué de plusieurs tronçons de ligne microruban de largeurs différentes, et présentant donc plusieurs impédances distinctes. Dans l'exemple, il présente trois impédances différentes, mais le nombre de tronçons est un paramètre propre à chaque implémentation. Du fait des impédances variables, le système n'est pas homogène, sa longueur électrique ne dépend plus linéairement de la fréquence. Sa taille étant de λB/4, il est accordé pour bloquer les composantes dans la bande de fréquences basse, mais n'est plus adapté à la longueur électrique 3.λH/4. Il réalise alors bien les fonctions recherchées de filtrage des composantes de la bande de fréquences basse tout en laissant passer les composantes de la bande de fréquences haute.This problem is solved by implementing a variable stub whose total length is divided into several sections of different impedances (known in English as "stepped impedance"). Such a stub is dispersive. It is dimensioned so as to present a short circuit on its fundamental frequency, and an open circuit on its triple frequency. The filter 110 of the figure 1 has such a stub, consisting of several sections of microstrip line of different widths, and therefore having several distinct impedances. In the example, it has three different impedances, but the number of hops is a parameter specific to each implementation. Due to variable impedances, the system is not homogeneous, its electrical length no longer depends linearly on the frequency. Its size being λ B / 4, it is tuned to block the components in the low frequency band, but is no longer suitable for the electrical length 3.λ H / 4. It then performs well the desired functions of filtering the components of the low frequency band while letting the components of the high frequency band pass.

Les différents éléments constituant la cellule rayonnante selon l'invention sont disposés dans différentes couches du circuit imprimé. La figure 2 représente la vue en éclaté d'une cellule rayonnante selon le premier mode de réalisation de l'invention, dans lequel la disposition des éléments a pour but de limiter la taille de la cellule rayonnante.The different elements constituting the radiating cell according to the invention are arranged in different layers of the printed circuit. The figure 2 shows the exploded view of a radiating cell according to the first embodiment of the invention, in which the arrangement of the elements is intended to limit the size of the radiating cell.

Dans cet exemple non limitatif, le circuit imprimé comporte quatre couches. Chacune des couches comprend un substrat diélectrique sur lequel est déposée une couche métallique gravée. La couche supérieure 201 comprend l'élément de type patch 101 accordé pour fonctionner dans la bande de fréquences haute.In this nonlimiting example, the printed circuit comprises four layers. Each of the layers comprises a dielectric substrate on which an etched metal layer is deposited. The upper layer 201 comprises the patch type element 101 tuned to operate in the high frequency band.

La couche immédiatement inférieure 202 comprend le plan de masse de la cellule rayonnante, dans lequel deux éléments de type fente 102, accordés pour les bandes de fréquences basses, sont réalisés par dé-métallisation du plan de masse. Les fentes sont disposées de manière à ne pas être obstruées par le patch 101. Un positionnement avantageux consiste alors à les placer en périphérie de la cellule rayonnante, à l'opposé du patch.The immediately lower layer 202 comprises the ground plane of the radiating cell, in which two slot-type elements 102, tuned for the low frequency bands, are produced by de-metallization of the ground plane. The slots are arranged so as not to be obstructed by the patch 101. An advantageous positioning then consists in placing them on the periphery of the radiating cell, opposite the patch.

La couche inférieure 203 comprend l'excitateur des fentes 103. Enfin la couche 204 la plus basse comprend l'élément de filtrage passe bas 106 relié d'une part à l'accès 105 et d'autre part à l'excitateur 103 par le biais d'une ligne coaxiale, décrite sous la référence 104 dans la figure 1, lui permettant de traverser les différentes couches du circuit imprimé, et les éléments de filtrage passe bande 110 relié d'une part à l'accès 109 et d'autre part au patch 101 par le biais d'une ligne coaxiale 108.The lower layer 203 comprises the slot exciter 103. Finally the lowest layer 204 comprises the low-pass filter element 106 connected on the one hand to the access 105 and on the other hand to the exciter 103 by the bias of a coaxial line, described under reference 104 in the figure 1 , allowing it to pass through the different layers of the printed circuit, and the band pass filtering elements 110 connected on the one hand to the access 109 and on the other hand to the patch 101 by means of a coaxial line 108.

La cellule rayonnante résultante a un format légèrement supérieur au format du patch bande S. A titre d'exemple, dans le cas précis d'un fonctionnement pour la bande S et les applications IFF, la taille du patch bande S est de 25mm x 25mm. En utilisant des fentes dimensionnées pour fonctionner à 1150 MHz, puis en ajustant la position des différents éléments du dispositif de manière à les faire rayonner dans les bandes de fréquences recherchées, ou en utilisant des fentes ajustées aux bandes de fréquences IFF et pliées en plus de trois parties, la cellule rayonnante résultante du premier mode de réalisation tient dans un encombrement de 45mm x 45mm, soit λH/2 x λH/2.The resulting radiating cell has a format slightly larger than the format of the S band patch. For example, in the specific case of operation for S band and IFF applications, the size of the patch band S is 25mm x 25mm. By using slots sized to operate at 1150 MHz, then by adjusting the position of the various elements of the device so as to radiate them in the desired frequency bands, or by using slots adjusted to the IFF frequency bands and folded in addition to three parts, the radiating cell resulting from the first embodiment takes up a space of 45mm x 45mm, ie λ H / 2 x λ H / 2.

Cette cellule rayonne simultanément dans la bande de fréquences supérieure et dans la bande de fréquences inférieure, mais présente un accès séparé à chacune de ces bandes. Les différents éléments de filtrage permettent d'assurer un fort découplage entre les deux accès.This cell radiates simultaneously in the upper frequency band and in the lower frequency band, but has separate access to each of these bands. The different filtering elements ensure a strong decoupling between the two accesses.

Avantageusement, il est possible de compléter la cellule rayonnante par une couche supplémentaire 205, comprenant une deuxième antenne patch 206 adaptée à la bande de fréquences hautes. Cette couche supplémentaire est positionnée sur la couche 201 la plus haute, le deuxième patch étant superposé au premier patch 101. Cet ajout permet d'augmenter la bande passante dans la bande de fréquences haute, en jouant sur les effets de couplage entre les deux patchs, sans modifier la taille de la cellule.Advantageously, it is possible to supplement the radiating cell with an additional layer 205, comprising a second patch antenna 206 adapted to the high frequency band. This additional layer is positioned on the highest layer 201, the second patch being superimposed on the first patch 101. This addition makes it possible to increase the bandwidth in the high frequency band, by playing on the coupling effects between the two patches , without changing the size of the cell.

Les figures 3a et 3b représentent un exemple de coefficient de réflexion des entrées et de découplage, respectivement dans la bande de fréquences basse et dans la bande de fréquences haute, associés à chaque entrée d'une cellule rayonnante selon le premier mode de réalisation de l'invention.The Figures 3a and 3b represent an example of reflection coefficient of the inputs and of decoupling, respectively in the low frequency band and in the high frequency band, associated with each input of a radiating cell according to the first embodiment of the invention.

Les résultats sont obtenus par simulations au moyen d'un logiciel de simulation électromagnétique par la méthode des éléments finis.The results are obtained by simulations using an electromagnetic simulation software by the finite element method.

Le coefficient de réflexion des entrées est représentatif de la puissance du signal réfléchie en fonction de la fréquence. Lorsque ce coefficient tend vers 1 (soit OdB), alors l'ensemble de la puissance du signal à la fréquence concernée est rejeté. Plus ce coefficient est faible, plus l'antenne est bonne.The reflection coefficient of the inputs is representative of the power of the signal reflected as a function of the frequency. When this coefficient tends to 1 (ie OdB), then all of the signal power at the frequency concerned is rejected. The lower this coefficient, the better the antenna.

Le découplage mesure la puissance de fuite dans la première antenne lorsque la deuxième antenne fonctionne et réciproquement. Il est donc représentatif de la performance de cohabitation des deux types d'éléments rayonnants au sein de la même cellule.Decoupling measures the leakage power in the first antenna when the second antenna is working and vice versa. It is therefore representative of the performance of coexistence of the two types of radiating elements within the same cell.

Dans la figure 3a, la courbe 301 représente le coefficient de réflexion de l'accès dédié à la bande de fréquences basse, pour la bande de fréquences basse (les sous-bandes de fréquences envisagées dans ce mode de réalisation sont des bandes de quelques MHz ou dizaines de MHz autour des fréquences 1.03GHz et 1.09GHz). Ce coefficient est inférieur à - 10dB autour des fréquences 1.03GHz et 1.09GHz. L'accès dédié à la bande de fréquences basse est donc adapté aux applications IFF.In the figure 3a , the curve 301 represents the reflection coefficient of the access dedicated to the low frequency band, for the low frequency band (the frequency sub-bands envisaged in this embodiment are bands of a few MHz or tens of MHz around the frequencies 1.03GHz and 1.09GHz). This coefficient is less than - 10dB around the frequencies 1.03GHz and 1.09GHz. Dedicated access to the low frequency band is therefore suitable for IFF applications.

La courbe 302 représente le coefficient de réflexion de l'accès dédié à la bande de fréquences haute, pour la bande de fréquences basse. Dans la bande 1.02GHz - 1.12GHz, ce coefficient est constant, et vaut 1 (soit OdB). L'accès dédié à la bande de fréquences haute rejette donc l'ensemble des composantes de la bande de fréquences basse. Il n'est pas affecté par le couplage avec les éléments rayonnants dans la bande de fréquences basse. Cette analyse est confirmée par la mesure du découplage 303 entre les deux entrées, qui est supérieur à 24 dB dans toute la bande.The curve 302 represents the reflection coefficient of the access dedicated to the high frequency band, for the low frequency band. In the 1.02GHz - 1.12GHz band, this coefficient is constant, and is equal to 1 (i.e. OdB). Dedicated access to the high frequency band therefore rejects all of the components of the low frequency band. It is not affected by coupling with the radiating elements in the low frequency band. This analysis is confirmed by measuring the decoupling 303 between the two inputs, which is greater than 24 dB across the band.

Dans la figure 3b, la courbe 311 représente le coefficient de réflexion de l'accès dédié à la bande de fréquences basse, pour la bande de fréquences haute (la bande de fréquences envisagée dans ce mode de réalisation est la bande 2.9GHz - 3.3GHz). Ce coefficient est constant, et vaut 1 (c'est-à-dire OdB). L'accès dédié à la bande de fréquences basse rejette donc l'ensemble des composantes de la bande de fréquences haute. Il n'est alors pas affecté par le couplage avec les éléments rayonnants dans la bande de fréquences haute.In the figure 3b , the curve 311 represents the reflection coefficient of the access dedicated to the low frequency band, for the high frequency band (the frequency band envisaged in this embodiment is the band 2.9GHz - 3.3GHz). This coefficient is constant, and is worth 1 (that is to say OdB). Dedicated access to the low frequency band therefore rejects all of the components of the high frequency band. It is then not affected by the coupling with the radiating elements in the high frequency band.

La courbe 312 représente le coefficient de réflexion de l'accès dédié à la bande de fréquences haute, pour la bande de fréquence haute. Dans la bande 2.9GHz - 3.3GHz, ce coefficient est inférieur à -12.5dB. L'accès dédié à la bande de fréquences haute est donc adapté à cette bande de fréquences. Le découplage 313 entre les deux antennes est supérieur à 25 dB dans la bande.Curve 312 represents the reflection coefficient of the access dedicated to the high frequency band, for the high frequency band. In the 2.9GHz - 3.3GHz band, this coefficient is less than -12.5dB. The dedicated access to the high frequency band is therefore adapted to this frequency band. The decoupling 313 between the two antennas is greater than 25 dB in the band.

Les figures 4a et 4b représentent un exemple de diagrammes de rayonnements de l'entrée associée à la bande de fréquences basse d'une cellule rayonnante selon le premier mode de réalisation de l'invention.The Figures 4a and 4b represent an example of radiation diagrams of the input associated with the low frequency band of a radiating cell according to the first embodiment of the invention.

La figure 4a représente le diagramme de rayonnement dans le plan horizontal de l'accès à la bande de fréquences basse, pour une fréquence de 1.03GHz en polarisation principale (401) et croisée (403), ainsi que pour une fréquence de 1.09GHz en polarisation principale (402) et croisée (404) . La réponse selon la polarisation croisée dans ce plan est presque nulle (-30dB).The figure 4a represents the radiation diagram in the horizontal plane of access to the low frequency band, for a frequency of 1.03GHz in main polarization (401) and crossed (403), as well as for a frequency of 1.09GHz in main polarization ( 402) and crossed (404). The cross-polarization response in this plane is almost zero (-30dB).

La polarisation principale d'un élément rayonnant est l'axe sur lequel le champ électrique rayonné est maximal. La polarisation croisée est l'axe perpendiculaire à l'axe de la polarisation principale. Ces deux axes se situent dans le plan perpendiculaire à la direction de propagation.The main polarization of a radiating element is the axis on which the radiated electric field is maximum. Cross polarization is the axis perpendicular to the axis of the main polarization. These two axes lie in the plane perpendicular to the direction of propagation.

Dans le cas du dispositif selon l'invention, la polarisation principale se situe dans le plan vertical (représenté par l'axe y sur les figures), tandis que la polarisation croisée se situe dans le plan horizontal (représenté par l'axe x sur les figures).In the case of the device according to the invention, the main polarization is situated in the vertical plane (represented by the y axis in the figures), while the crossed polarization is situated in the horizontal plane (represented by the x axis in the figures).

La figure 4b représente le diagramme de rayonnement dans le plan vertical de l'accès à la bande de fréquences basse, pour une fréquence de 1.03GHz (411) et de 1.09GHz (412). Dans ce plan, le niveau de polarisation croisée est quasiment nul.The figure 4b represents the radiation diagram in the vertical plane of access to the low frequency band, for a frequency of 1.03GHz (411) and 1.09GHz (412). In this plane, the level of cross polarization is almost zero.

Les diagrammes de rayonnement observés sur l'accès à la bande de fréquences basse dans le plan horizontal et vertical varient en cosinus θ pour la polarisation principale, θ étant la direction d'observation. Cette caractéristique est nécessaire pour la réalisation d'une antenne à balayage électronique.The radiation patterns observed on the access to the low frequency band in the horizontal and vertical plane vary in cosine θ for the main polarization, θ being the direction of observation. This characteristic is necessary for the production of an antenna with electronic scanning.

Les figures 5a et 5b représentent un exemple de diagrammes de rayonnements de l'entrée associée à la bande de fréquences haute d'une cellule rayonnante selon le premier mode de réalisation de l'invention.The Figures 5a and 5b represent an example of radiation diagrams of the input associated with the high frequency band of a radiating cell according to the first embodiment of the invention.

La figure 5a représente le diagramme de rayonnement dans le plan horizontal de l'accès à la bande de fréquences haute, pour une fréquence de 2.9GHz en polarisation principale (501) et croisée (502). La réponse selon la polarisation croisée est faible par rapport à la réponse selon la polarisation principale (typiquement 15dB à 30dB de différence).The figure 5a represents the radiation pattern in the horizontal plane of access to the high frequency band, for a frequency of 2.9GHz in main (501) and cross (502) polarization. The response according to the cross polarization is weak compared to the response according to the main polarization (typically 15dB to 30dB difference).

La figure 5b représente le diagramme de rayonnement dans le plan vertical de l'accès à la bande de fréquences haute, pour une fréquence de 2.9GHz en polarisation principale (511). La réponse en polarisation croisée dans ce plan est négligeable.The figure 5b represents the radiation diagram in the vertical plane of access to the high frequency band, for a frequency of 2.9 GHz in main polarization (511). The response in cross polarization in this plane is negligible.

Les diagrammes de rayonnement observés en bande de fréquences haute sont caractéristiques du diagramme de rayonnement d'un patch. En effet, ce diagramme possède une variation proche d'une fonction cosinus θ, nécessaire à la réalisation d'une antenne à balayage électronique.The radiation patterns observed in the high frequency band are characteristic of the radiation pattern of a patch. Indeed, this diagram has a variation close to a cosine function θ, necessary for the realization of an antenna with electronic scanning.

La figure 6 représente une cellule rayonnante selon un deuxième mode de réalisation de l'invention. Ce mode de fonctionnement limite le nombre de sous-bandes dans la bande de fréquences basse à deux.The figure 6 represents a radiating cell according to a second embodiment of the invention. This operating mode limits the number of sub-bands in the low frequency band to two.

De manière identique au premier mode de réalisation, la cellule rayonnante 600 conçue selon le deuxième mode de réalisation de l'invention comprend un élément rayonnant 101 de type patch accordé à la bande de fréquences supérieure. Cet élément rayonnant est alimenté par la sortie bande haute 109 à laquelle il est relié par le biais d'une ligne coaxiale 108 lui permettant de traverser les différentes couches du circuit imprimé, et d'un filtre 110 réalisé sous la forme d'un stub présentant plusieurs tronçons d'impédance variable, permettant de filtrer la bande de fréquences basse tout en étant passant pour la bande de fréquences haute. Avantageusement, un second élément de type patch, identique au premier, peut être superposé au premier élément de type patch 101, pour élargir la bande passante dans la bande de fréquences haute.Similarly to the first embodiment, the radiating cell 600 designed according to the second embodiment of the invention comprises a radiating element 101 of patch type tuned to the upper frequency band. This radiating element is supplied by the high band output 109 to which it is connected by means of a coaxial line 108 allowing it to pass through the different layers of the printed circuit, and of a filter 110 produced in the form of a stub. having several sections of variable impedance, making it possible to filter the low frequency band while passing for the high frequency band. Advantageously, a second patch type element, identical to the first, can be superimposed on the first patch type element 101, in order to widen the passband in the high frequency band.

La principale différence entre ce mode de réalisation et le premier consiste en ce qu'il ne contient qu'un élément unique de type fente 601, replié en U, et positionné pour se trouver dégagé par rapport au masquage que représentent le ou les patchs 101. La bande de fonctionnement de cet élément est alors élargie à l'ensemble de la bande de fréquences basse, afin de comprendre les deux sous-bandes requises par les applications IFF, par l'association d'un résonateur 602. La fente rayonnante, qui forme un résonateur parallèle, peut être complétée par un résonateur série placé dans le plan de sortie, ou par un résonateur parallèle placé un quart d'onde plus loin. Le résonateur 602 est alors placé à une distance L1 du connecteur 104 le reliant à l'excitateur 103 de la fente, L1 valant λ/4, où λ est la longueur d'onde centrale de la bande de fréquences basse.The main difference between this embodiment and the first consists in that it contains only a single slit-type element 601, folded in a U, and positioned to be free from the masking represented by the patch (s) 101 The operating band of this element is then widened to the whole of the low frequency band, in order to to understand the two sub-bands required by IFF applications, by the association of a 602 resonator. The radiating slot, which forms a parallel resonator, can be supplemented by a series resonator placed in the output plane, or by a parallel resonator placed a quarter wave further. The resonator 602 is then placed at a distance L 1 from the connector 104 connecting it to the exciter 103 of the slot, L 1 being equal to λ / 4, where λ is the central wavelength of the low frequency band.

La fente 601 n'est pas accordée à l'une des sous-bandes de la bande de fréquences basse, mais à la fréquence centrale, soit dans le cas de l'exemple choisi, la fréquence 1.06GHz. Elle peut également être accordée à une fréquence légèrement plus haute, de manière à être compatible, une fois repliée en trois parties, d'une maille à la fréquence haute. Le résonateur 602 est conçu pour résonner à la même fréquence. L'action sur le couplage entre ces deux éléments, c'est à dire la désadaptation créée entre ces deux éléments, va les faire résonner autour des fréquences recherchées. Le couplage entre les deux éléments est ajusté en faisant varier la position de l'excitateur 103 de la fente. La fente 601, le circuit résonateur 602 et l'excitateur 103 sont donc dimensionnés et positionnés afin que l'ensemble résonne autour des fréquences 1030MHz et 1090MHz, tout en autorisant une forte désadaptation dans la zone de fréquence intermédiaire. L'élément rayonnant ainsi obtenu est bi-fréquence. Cette approche offre l'avantage de n'introduire qu'une seule fente rayonnante dans la cellule, et de réduire les interférences entre la fente et le patch, et donc les phénomènes de couplage entre la bande de fréquences basse et la bande de fréquences haute. Le positionnement de la fente 601 et de l'excitateur 103 est donc simplifié par rapport au premier mode de réalisation.The slot 601 is not tuned to one of the sub-bands of the low frequency band, but to the central frequency, ie in the case of the example chosen, the frequency 1.06 GHz. It can also be tuned to a slightly higher frequency, so as to be compatible, once folded into three parts, of a mesh at the high frequency. The resonator 602 is designed to resonate at the same frequency. The action on the coupling between these two elements, that is to say the mismatch created between these two elements, will cause them to resonate around the frequencies sought. The coupling between the two elements is adjusted by varying the position of the exciter 103 of the slot. The slot 601, the resonator circuit 602 and the exciter 103 are therefore dimensioned and positioned so that the assembly resonates around the frequencies 1030MHz and 1090MHz, while allowing a strong mismatch in the intermediate frequency zone. The radiating element thus obtained is dual-frequency. This approach offers the advantage of only introducing a single radiating slit into the cell, and of reducing the interference between the slit and the patch, and therefore the coupling phenomena between the low frequency band and the high frequency band. . The positioning of the slot 601 and of the exciter 103 is therefore simplified compared to the first embodiment.

Dans la figure 6, le circuit résonateur 602 est de type capacité et inductance parallèles. L'inductance 603 est de faible valeur. Elle est réalisée sous la forme d'une ligne microruban de longueur L2 connectée à la masse. Le condensateur 604 est réalisé sous la forme d'une ligne microruban court-circuitée de longueur L3, L3 étant très supérieure à L2.In the figure 6 , the resonator circuit 602 is of the parallel capacitance and inductance type. Inductance 603 is of low value. It is produced in the form of a microstrip line of length L 2 connected to ground. The capacitor 604 is produced in the form of a short-circuited microstrip line of length L 3 , L 3 being much greater than L 2 .

Avantageusement, un filtre passe bas semblable au filtre 106 du premier mode de réalisation de l'invention peut être ajouté pour filtrer les composantes des bandes hautes liées au couplage entre la fente et le patch. Un tel filtre n'est cependant pas indispensable dans le deuxième mode de réalisation, le circuit résonateur réalisant naturellement le rôle de filtre passe bas.Advantageously, a low pass filter similar to the filter 106 of the first embodiment of the invention can be added to filter the components of the high bands linked to the coupling between the slot and the patch. However, such a filter is not essential in the second embodiment, the resonator circuit naturally performing the role of low pass filter.

Dans le deuxième mode de réalisation, la diminution du nombre d'éléments rayonnants (fentes) est compensée par un effort supplémentaire sur le circuit hyperfréquence d'adaptation de la fente.In the second embodiment, the reduction in the number of radiating elements (slots) is compensated by an additional effort on the microwave circuit for adapting the slot.

Les figures 7a et 7b représentent un exemple de coefficient de réflexion et de découplage associés à chaque entrée d'une cellule rayonnante selon le deuxième mode de réalisation de l'invention. Les résultats sont obtenus par simulations au moyen d'un logiciel de simulation électromagnétique par la méthode des éléments finis.The Figures 7a and 7b represent an example of reflection coefficient and decoupling associated with each input of a radiating cell according to the second embodiment of the invention. The results are obtained by simulations using an electromagnetic simulation software by the finite element method.

Dans la figure 7a, la courbe 701 représente le coefficient de réflexion de l'accès dédié à la bande de fréquences basse pour la bande de fréquences basse (les bandes de fréquences envisagées dans ce mode de réalisation sont des bandes de quelques MHz ou dizaines de MHz autour des fréquences 1.03GHz et 1.09GHz). Ce coefficient est proche ou inférieur à -10dB autour des fréquences 1.03GHz et 1.09GHz. L'accès dédié à la bande de fréquences basse est donc adapté aux applications IFF.In the figure 7a , the curve 701 represents the reflection coefficient of the access dedicated to the low frequency band for the low frequency band (the frequency bands envisaged in this embodiment are bands of a few MHz or tens of MHz around the frequencies 1.03GHz and 1.09GHz). This coefficient is close to or less than -10dB around the frequencies 1.03GHz and 1.09GHz. Dedicated access to the low frequency band is therefore suitable for IFF applications.

La courbe 702 représente le coefficient de réflexion de l'accès dédié à la bande de fréquences haute, pour la bande de fréquence basse. Dans la bande 1GHz - 1.15GHz, ce coefficient est constant, et vaut 1 (soit OdB). L'accès dédié à la bande de fréquences haute rejette donc l'ensemble des composantes de la bande de fréquences basse. Il n'est pas affecté par le couplage avec les éléments rayonnants dans la bande de fréquences basse. Le découplage 703 entre les accès de la fente et du patch est de l'ordre de 30 dB.The curve 702 represents the reflection coefficient of the access dedicated to the high frequency band, for the low frequency band. In the 1GHz - 1.15GHz band, this coefficient is constant, and is equal to 1 (i.e. OdB). Dedicated access to the high frequency band therefore rejects all of the components of the low frequency band. It is not affected by coupling with the radiating elements in the low frequency band. The decoupling 703 between the accesses of the slot and the patch is of the order of 30 dB.

Dans la figure 7b, la courbe 711 représente le coefficient de réflexion de l'accès dédié à la bande de fréquences basse, pour la bande de fréquences haute (la bande de fréquences envisagée dans ce mode de réalisation est la bande 2.9GHz - 3.3GHz). Ce coefficient est presque constant, et vaut 1 (soit OdB) sur la quasi-totalité de la bande. L'accès dédié à la bande de fréquences basse rejette donc l'ensemble des composantes de la bande de fréquences haute, il n'est pas affecté par le couplage avec les éléments rayonnants dans la bande de fréquences haute.In the figure 7b , the curve 711 represents the reflection coefficient of the access dedicated to the low frequency band, for the high frequency band (the frequency band envisaged in this embodiment is the band 2.9GHz - 3.3GHz). This coefficient is almost constant, and is equal to 1 (ie OdB) over almost the entire band. Dedicated access at the low frequency band therefore rejects all of the components of the high frequency band, it is not affected by the coupling with the radiating elements in the high frequency band.

La courbe 712 représente le coefficient de réflexion de l'accès dédié à la bande de fréquences haute. Dans la bande 2.9GHz - 3.3GHz, ce coefficient est bien inférieur à -12.5dB. L'accès dédié à la bande de fréquences haute est donc adapté à cette bande de fréquences.Curve 712 represents the reflection coefficient of the access dedicated to the high frequency band. In the 2.9GHz - 3.3GHz band, this coefficient is much lower than -12.5dB. The dedicated access to the high frequency band is therefore adapted to this frequency band.

Le découplage 713 entre les 2 antennes est supérieur à 12.5 dB dans la bande.The decoupling 713 between the 2 antennas is greater than 12.5 dB in the band.

Les figures 8a et 8b représentent un exemple de diagrammes de rayonnements de l'entrée associée à la bande de fréquences basse d'une cellule rayonnante selon le deuxième mode de réalisation de l'invention.The Figures 8a and 8b represent an example of radiation diagrams of the input associated with the low frequency band of a radiating cell according to the second embodiment of the invention.

La figure 8a représente le diagramme de rayonnement dans le plan horizontal de l'accès à la bande de fréquences basse, pour une fréquence de 1.03GHz en polarisation principale (801) et croisée (803), ainsi que pour une fréquence de 1.09GHz en polarisation principale (802) et croisée (804). La réponse selon la polarisation principale dans ce plan est presque nulle (-30dB).The figure 8a represents the radiation diagram in the horizontal plane of access to the low frequency band, for a frequency of 1.03GHz in main polarization (801) and crossed (803), as well as for a frequency of 1.09GHz in main polarization ( 802) and crossed (804). The response according to the main polarization in this plane is almost zero (-30dB).

La figure 8b représente le diagramme de rayonnement dans le plan vertical de l'accès à la bande de fréquences basse, pour une fréquence de 1.03GHz en polarisation principale (811), ainsi que pour une fréquence de 1.09GHz en polarisation principale (812). Dans ce plan, la polarisation croisée est négligeable.The figure 8b represents the radiation diagram in the vertical plane of access to the low frequency band, for a frequency of 1.03GHz in main polarization (811), as well as for a frequency of 1.09GHz in main polarization (812). In this plane, the cross polarization is negligible.

Les diagrammes de rayonnement observés sur l'accès à la bande de fréquences basse dans le premier et deuxième plan varient en cosinus θ pour la polarisation principale, θ étant la direction d'observation. Cette caractéristique est nécessaire pour la réalisation d'une antenne à balayage électronique.The radiation patterns observed on the access to the low frequency band in the first and second plan vary in cosine θ for the main polarization, θ being the direction of observation. This characteristic is necessary for the production of an antenna with electronic scanning.

Les figures 9a et 9b représentent un exemple de diagrammes de rayonnements de l'entrée associée à la bande de fréquences haute d'une cellule rayonnante selon le premier mode de réalisation de l'invention,The Figures 9a and 9b represent an example of radiation diagrams of the input associated with the high frequency band of a radiating cell according to the first embodiment of the invention,

La figure 9a représente le diagramme de rayonnement dans le plan horizontal de l'accès à la bande de fréquences haute, pour une fréquence de 2.9GHz en polarisation principale (901) et croisée (902). La réponse selon la polarisation croisée est faible par rapport à la réponse selon la polarisation principale (typiquement 30dB de différence).The figure 9a represents the radiation diagram in the horizontal plane of access to the high frequency band, for a frequency of 2.9 GHz in main (901) and cross (902) polarization. The response according to the cross polarization is weak compared to the response according to the main polarization (typically 30dB difference).

La figure 9b représente le diagramme de rayonnement dans un plan vertical de l'accès à la bande de fréquences haute, pour une fréquence de 2.9GHz en polarisation principale (911). Il n'y a pas de réponse en polarisation croisée dans ce plan de la cellule.The figure 9b represents the radiation diagram in a vertical plane of access to the high frequency band, for a frequency of 2.9 GHz in main polarization (911). There is no cross polarization response in this plane of the cell.

Les diagrammes de rayonnement observés en bande de fréquences haute sont caractéristiques du diagramme de rayonnement d'un patch. En effet, ce diagramme de rayonnement dans le premier plan possède une variation en cosinus θ caractéristique d'une antenne patch, et nécessaire à la réalisation d'une antenne à balayage électronique.The radiation patterns observed in the high frequency band are characteristic of the radiation pattern of a patch. Indeed, this radiation diagram in the foreground has a variation in cosine θ characteristic of a patch antenna, and necessary for the realization of an antenna with electronic scanning.

La figure 10 représente une cellule rayonnante selon un troisième mode de réalisation de l'invention. C'est une variante du premier mode de réalisation, qui comprend un élément rayonnant de type fente pour chacune des sous-bandes envisagées dans la bande de fréquences basse.The figure 10 represents a radiating cell according to a third embodiment of the invention. It is a variant of the first embodiment, which comprises a radiating element of the slit type for each of the sub-bands envisaged in the low frequency band.

Ce mode de réalisation se différentie du premier en ce que les deux éléments de type fente 1001 et 1011 sont dissociées et placées de chaque côté de l'élément de type patch, toujours en périphérie de la cellule rayonnante de manière à ne pas être masquées par le patch. Cet éloignement entre les deux fentes permet de réduire les phénomènes de couplage entre elles. Chacune des fentes est accordée par rapport à la fréquence centrale de l'une des sous-bandes de la bande de fréquences basse, ou ramenée à cette fréquence par couplage. Enfin, chacune des fentes est reliée à un accès distinct. La cellule rayonnante dispose alors de trois accès : un premier accès vers la bande de fréquences haute, et un accès pour chacune des sous-bandes de la bande de fréquences basse.This embodiment differs from the first in that the two slot-type elements 1001 and 1011 are dissociated and placed on each side of the patch-type element, always on the periphery of the radiating cell so as not to be masked by the patch. This distance between the two slots makes it possible to reduce the coupling phenomena between them. Each of the slots is tuned relative to the center frequency of one of the sub-bands of the low frequency band, or reduced to this frequency by coupling. Finally, each of the slots is connected to a separate access. The radiating cell then has three accesses: a first access to the high frequency band, and an access for each of the sub-bands of the low frequency band.

Dans ce mode de réalisation, la première fente 1001 est alimentée par l'accès 1003 auquel elle est reliée par le biais d'un excitateur 1002, d'une ligne coaxiale 1004, et d'un filtre passe bas 1005.In this embodiment, the first slot 1001 is supplied by the access 1003 to which it is connected by means of an exciter 1002, a coaxial line 1004, and a low pass filter 1005.

De manière totalement identique, la deuxième fente 1011 est alimentée par l'accès 1013 auquel elle est reliée par le biais d'un excitateur 1012, d'une ligne coaxiale 1014, et d'un filtre passe bas 1015.In a completely identical manner, the second slot 1011 is supplied by the access 1013 to which it is connected by means of an exciter 1012, a coaxial line 1014, and a low pass filter 1015.

L'invention comprend également un réseau rayonnant réalisé à partir de cellules rayonnantes bi-bandes telles que définies précédemment. Chacune des cellules peut alors être pilotée en amplitude et/ou en phase dans chacune des bandes d'intérêt, soit dans l'exemple précis, dans la bande S (et plus particulièrement la sous-bande 2.9GHz-3.3GHz) et dans la bande dédiée aux applications IFF (1.03GHz et 1.09GHz).The invention also includes a radiating network produced from dual-band radiating cells as defined above. Each of the cells can then be controlled in amplitude and / or in phase in each of the bands of interest, that is to say in the specific example, in the S band (and more particularly the 2.9GHz-3.3GHz subband) and in the band dedicated to IFF applications (1.03GHz and 1.09GHz).

Elle consiste enfin en un radar bi-bande comprenant une unique antenne à balayage électronique, l'antenne étant réalisée à partir du réseau rayonnant décrit ci-avant, et fonctionnant indépendamment dans les deux bandes de fréquences.Finally, it consists of a dual-band radar comprising a single electronic scanning antenna, the antenna being produced from the radiating network described above, and operating independently in the two frequency bands.

Claims (17)

  1. Radiating device operating in two distinct frequency bands, a high frequency band and at least one sub-band of a low frequency band, the said device being characterized in that it comprises:
    • at least one element of patch type (101) adapted to the high frequency band and connected to a first access (109),
    • at least one element of folded slot type (102), adapted to the low frequency band and connected to a second access (105) different from the said first access,
    • a filter (110) positioned between the said element of patch type and the said first access, configured to filter the low frequency band and to be passing for the high frequency band,
    and in that the elements of which it consists are positioned in a surface area of less than or equal to a square of edge λ/2, where λ is the wavelength corresponding to the maximum frequency of the high frequency band.
  2. Radiating device according to the preceding claim, in which the said element of slot type (102) is accommodated in a ground plane of the device.
  3. Radiating device according to one of the preceding claims, in which the said element or elements of folded slot type (102) are folded into a U shape and positioned at the periphery of the device.
  4. Radiating device according to one of the preceding claims, in which the number of elements of slot type is equal to the number of sub-bands of the low frequency band, the said elements of slot type being feed by one and the same second access.
  5. Radiating device according to one of claims 1 to 3, in which the number of elements of slot type is equal to the number of sub-bands of the low frequency band, the said elements of slot type being feed by different accesses.
  6. Radiating device according to one of claims 1 to 3, comprising a single element of slot type (601) feed by the said second access (109) to which it is connected by a resonator circuit (602), the coupling between the said slot and the said resonator circuit being adjusted to radiate in two distinct sub-bands of the low frequency band.
  7. Radiating device according to claim 6, in which the said resonator circuit (602) is a parallel resonator circuit comprising an inductor (603) and a capacitor (604), the said resonator being connected to the element of slot type (601) by a waveguide of length λ/4, where λ is the wavelength associated with the central frequency of the low frequency band.
  8. Radiating device according to one of the preceding claims, in which the said filter (110) positioned between the element of patch type (101) and the first access (109) comprises a plurality of segments of microstrip line of different widths.
  9. Radiating device according to one of the preceding claims, furthermore comprising a low-pass filter (106) positioned between the said element or elements of slot type (102) and the said second access (105), and configured to filter the high frequency band.
  10. Radiating device according to one of the preceding claims, furthermore comprising a second element (206) of patch type adapted to the high frequency band, the said second element of patch type being disposed above the said first element of patch type.
  11. Radiating device according to one of the preceding claims, implemented in a multilayer printed circuit for which the said element of patch type (101), the said element or elements of slot type (102), and the said filter (110) positioned between the element of patch type and the first access, are in different layers (201, 202, 203, 204) of the printed circuit.
  12. Radiating device according to the preceding claim, in which at least one frequency of the high frequency band is an odd integer multiple of a frequency of the low frequency band.
  13. Radiating device according to the preceding claim, in which the high frequency band comprises the 2.9GHz - 3.3GHz band.
  14. Radiating device according to one of the preceding claims, in which a sub-band of the low frequency band is centred around a frequency chosen from among the frequency 1,030MHz and the frequency 1,090MHz.
  15. Radiating device according to one of the preceding claims, produced using printed technology.
  16. Radiating array configured to radiate in two distinct frequency bands, characterized in that it comprises radiating devices according to one of the preceding claims.
  17. Electronic scanning radar configured to operate simultaneously in two different frequency bands, and characterized in that it comprises a radiating array according to Claim 16.
EP16201682.8A 2015-12-09 2016-12-01 Multi-band elementary radiating cell Active EP3179557B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1502559A FR3045219B1 (en) 2015-12-09 2015-12-09 MULTI-BAND ELEMENTARY RADIANT CELL

Publications (2)

Publication Number Publication Date
EP3179557A1 EP3179557A1 (en) 2017-06-14
EP3179557B1 true EP3179557B1 (en) 2020-06-17

Family

ID=56068928

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16201682.8A Active EP3179557B1 (en) 2015-12-09 2016-12-01 Multi-band elementary radiating cell

Country Status (5)

Country Link
US (1) US10122076B2 (en)
EP (1) EP3179557B1 (en)
ES (1) ES2815698T3 (en)
FR (1) FR3045219B1 (en)
IL (1) IL249390A0 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106486775A (en) * 2016-11-25 2017-03-08 华南理工大学 A kind of low section double frequency-band filtering paster antenna and its composition mimo antenna
CN108493590B (en) * 2018-01-15 2020-02-11 深圳市信维通信股份有限公司 Antenna unit, MIMO antenna and handheld device
CN109378579A (en) * 2018-10-15 2019-02-22 钟祥博谦信息科技有限公司 A kind of filtering type slot antenna
CN110336130B (en) * 2019-04-29 2021-08-31 中天宽带技术有限公司 Dipole filtering antenna and electronic equipment
CN110401026B (en) * 2019-06-10 2021-03-23 西安电子科技大学 Magnetoelectric dipole filtering antenna with approximate elliptical filtering response
EP4429020A1 (en) * 2023-03-09 2024-09-11 Nokia Technologies Oy Locating antennas in an apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919853B2 (en) * 2002-03-04 2005-07-19 M/A-Com, Inc. Multi-band antenna using an electrically short cavity reflector
JP4302738B2 (en) * 2003-05-14 2009-07-29 エヌエックスピー ビー ヴィ Improvements in or related to wireless terminals
EP1720216B1 (en) * 2004-02-27 2012-12-19 Fujitsu Ltd. Radio tag
US9543660B2 (en) * 2014-10-09 2017-01-10 Apple Inc. Electronic device cavity antennas with slots and monopoles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20170170553A1 (en) 2017-06-15
FR3045219B1 (en) 2017-12-15
ES2815698T3 (en) 2021-03-30
IL249390A0 (en) 2017-03-30
EP3179557A1 (en) 2017-06-14
FR3045219A1 (en) 2017-06-16
US10122076B2 (en) 2018-11-06

Similar Documents

Publication Publication Date Title
EP3179557B1 (en) Multi-band elementary radiating cell
EP3669422B1 (en) Patch antenna having two different radiation modes with two separate working frequencies, device using such an antenna
US9219313B2 (en) Antenna with effective and electromagnetic bandgap (EBG) media and related system and method
EP0825673A1 (en) Plane printed antenna with interposed short-circuited elements
WO2008065311A2 (en) Multi-sector antenna
CN114421152A (en) Miniaturized reconfigurable frequency selection surface with high selection characteristic and application
FR2751471A1 (en) WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION
EP3235058B1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
EP3179559A1 (en) Dual-band modular active antenna
Chen et al. Compact design of T‐type monopole antenna with asymmetrical ground plane for WLAN/WiMAX applications
US11502422B2 (en) Conformal RF antenna array and integrated out-of-band EME rejection filter
EP4046241B1 (en) Antenna array
EP3900113B1 (en) Elementary microstrip antenna and array antenna
Kim et al. Frequency selective surface superstrate for wideband code division multiple access system
EP3942649B1 (en) Compact directional antenna, device comprising such an antenna
Kapitanova et al. Right‐and left‐handed transmission line resonators and filters for dual‐band applications
FR3013909A1 (en) CORNET, ELEMENTARY ANTENNA, ANTENNA STRUCTURE AND TELECOMMUNICATION METHOD THEREOF
EP2744311B1 (en) Method for producing resonating patterns suitable for the performance of passive RF functions and printed circuit comprising said resonating patterns
Hmouda Frequency Reconfigurable Antennas for Airborne Applications
Martynyuk et al. Novel microstrip antenna array for anti-jam satellite navigation system
Barakat et al. 60 GHz high resistivity silicon on insulator interdigitated dipole antenna
Elsheakh et al. Passive Components for Ultra-Wide Band (UWB) Applications
WO2025032295A1 (en) Antenna system and corresponding array antenna
Soba et al. Dual-band patch antenna incorporated with SRR for GPS and WLAN application
FR3049775B1 (en) ANTENNA V / UHF WITH OMNIDIRECTIONAL RADIATION AND SCANNING A BROADBAND FREQUENCY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171013

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016038142

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1282470

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1282470

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016038142

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2815698

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240116

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241114

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20241127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20241128

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20241126

Year of fee payment: 9