EP3175008B1 - Cobalt based alloy - Google Patents
Cobalt based alloy Download PDFInfo
- Publication number
- EP3175008B1 EP3175008B1 EP15750314.5A EP15750314A EP3175008B1 EP 3175008 B1 EP3175008 B1 EP 3175008B1 EP 15750314 A EP15750314 A EP 15750314A EP 3175008 B1 EP3175008 B1 EP 3175008B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- cobalt
- alloys
- temperature
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 229910000531 Co alloy Inorganic materials 0.000 title description 4
- 229910000601 superalloy Inorganic materials 0.000 claims description 50
- 229910052759 nickel Inorganic materials 0.000 claims description 24
- 229910052721 tungsten Inorganic materials 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910052715 tantalum Inorganic materials 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 description 51
- 239000000956 alloy Substances 0.000 description 51
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 46
- 229910017052 cobalt Inorganic materials 0.000 description 31
- 239000010941 cobalt Substances 0.000 description 31
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 31
- 238000005242 forging Methods 0.000 description 19
- 238000001556 precipitation Methods 0.000 description 18
- 239000011651 chromium Substances 0.000 description 15
- 239000010936 titanium Substances 0.000 description 15
- 230000003647 oxidation Effects 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 229910052750 molybdenum Inorganic materials 0.000 description 9
- 238000005275 alloying Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- 229910001247 waspaloy Inorganic materials 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 229910052732 germanium Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000029142 excretion Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052735 hafnium Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910020630 Co Ni Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910002058 ternary alloy Inorganic materials 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000002051 biphasic effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910002515 CoAl Inorganic materials 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
Definitions
- the invention relates to polycrystalline precipitation hardened and oxidation resistant ⁇ / ⁇ 'cobalt base superalloys for high temperature applications.
- the mechanical properties of the specified cobalt-based superalloys exceed those of conventional carbide-hardened cobalt alloys. Up to a temperature of 800 ° C similar and at temperatures above 800 ° C even higher hot strengths than the nickel-based ⁇ / ⁇ 'forging alloys are achieved. The creep strengths are also significantly higher. In comparison to ⁇ / ⁇ 'nickel-base superalloys, similar proportions of the ⁇ ' precipitation phase are achieved despite the low solvus temperature. Due to the large temperature range between the solidus and solvus temperatures, the precipitation-hardened ⁇ / ⁇ 'cobalt-base superalloys are particularly suitable as polycrystalline forging alloys.
- Cobalt base and especially ⁇ / ⁇ 'nickel base superalloys are essential materials for a variety of components in jet engines of commercial aircraft or in stationary gas turbines for power conversion. Efforts to increase the efficiency of these turbines, reduce costs and reduce fossil fuel consumption can all be achieved through new materials that offer higher temperature resistance, longer service life and lower manufacturing and processing costs.
- ⁇ / ⁇ 'Cobalt base superalloys generally have a very high solidus temperature in the temperature range of 1300 ° C to 1450 ° C in conjunction with a relatively low ⁇ ' solvus temperature in the temperature range of 900 ° C to 1150 ° C.
- very high ⁇ ' volume fractions of more than 75% can be realized at temperatures up to 900 ° C (see, for example, US Pat. B. Bauer et al., Microstructure and creep strength of different ⁇ / ⁇ '-enhanced co-base superalloy variants, Scripta Materialia 63 (2010) 1197-1200 ).
- Nickel base superalloys in comparison, either have a low ⁇ 'solvus temperature below 1100 ° C, combined with a low ⁇ ' volume fraction at use temperatures of up to 700 ° C (eg, Waspaloy: ⁇ 'solvus temperature: 1038 ° C ( Semiatin et al., Deformation behavior of Waspaloy at hot-working temperatures, Scripta Materialia 50 (2004) 625-629 ); ⁇ 'volume fraction at application temperature: 25% ( ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed.
- alloys are either malleable, but have a lower strength or that they still have a relatively high proportion of the precipitation phase at forging temperatures of 1000 ° C to 1150 ° C and thus difficult or no longer deformable are and can only be processed powder metallurgy. This significantly increases the costs.
- cobalt-based alloys are known to have higher hot-gas corrosion resistance than nickel-base alloys, since a liquid co-sulfur phase can occur only at 877 ° C, whereas a liquid Ni-S phase already occurs at 637 ° C ( please refer Bürgel, Maier, Niendorf, Handbook High Temperature Materials Technology, 4th Revised Edition 2011, Vieweg + Teubner Verlag, Springer crampmedien Wiesbaden GmbH 2011 or ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed. Davies et al, ASM International, Materials Park, OH 44073, USA ). Increased hot gas corrosion resistance can thus lead to a lifetime extension.
- Cobalt base superalloys are known per se, for example Titus et al., "Creep and directional coarsening in single crystals of new ⁇ - ⁇ 'cobalt-base alloys", Scripta Mat. 66 (2012) 574-577 . US 2011/0268989 A1 . US 2010/0291406 A1 . EP 2 251 446 A1 . CA2 620 606 A1 . EP 1 925 683 A1 . US 2008/0185078 A1 . EP 2 163 656 A1 . US 2011/0062214 A1 . EP 2 298 486 A2 . EP 2 383 356 A1 . EP 2 045 345 A1 and EP 2 532 762 A1 ,
- the object of the invention is the development of polycrystalline, higher-strength, precipitation-hardened ⁇ / ⁇ 'cobalt-base superalloys, with very good oxidation properties, which can be processed by means of various forming processes, such as forging.
- a cobalt-base superalloy comprising 32-45% by weight of Co, 28-40% by weight of Ni, 10-15% by weight of Cr, 2.5-5.5% by weight of Al, 6 , 5-16% by weight W, 0-9% by weight Ta, 0-8% by weight Ti, 0.1-1% by weight Si, 0-0.5% by weight B, 0-0.5 wt% C, 0-2 wt% Hf, 0-0.1 wt% Zr, 0-8 wt% Fe, 0-6 wt% Nb, 0 7 wt% Mo, 0-4 wt% Ge and a balance of unavoidable impurities.
- the cobalt-base superalloy comprises 32-45% by weight of Co, 28-40% by weight of Ni, 10-15% by weight of Cr, 2.5-5.5% by weight of Al, 6.5 -16 wt% W, 0-9 wt% Ta, 0-8 wt% Ti, 0.1-1 wt% Si, 0-0.5 wt% B, 0-0 , 5% by weight C, 0 to ⁇ 2% by weight Hf, 0 to ⁇ 0.1% by weight Zr, 0 to ⁇ 8% by weight Fe, 0 to ⁇ 6% by weight Nb, 0 to ⁇ 7 wt .-% Mo, 0 to ⁇ 4 wt .-% Ge and a balance of unavoidable impurities.
- the cobalt base superalloy comprises 32-45 wt.% Co, 28-40 wt.% Ni, 10-15 wt.% Cr, 2.5-5.5 wt.% Al, 6, 5-16 wt% W, 0.2-9 wt% Ta, 0.2-8 wt% Ti, 0.1-1 wt% Si, ⁇ 0.5 wt% B, ⁇ 0.5 wt .-% C, 0 to ⁇ 2 wt .-% Hf, 0 to ⁇ 0.1 wt .-% Zr, 0 to ⁇ 8 wt .-% Fe, 0 to ⁇ 6 wt. -% Nb, 0 to ⁇ 7 wt .-% Mo, 0 to ⁇ 4 wt .-% Ge and a balance of unavoidable impurities.
- the cobalt base superalloy comprising an aforesaid composition characterized by an intermetallic ⁇ 'phase of the composition (Co, Ni) 3 (Al, W, Ti, Ta), each clip containing at least one of the elements listed in parentheses ,
- the intermetallic ⁇ 'phase (precipitation phase) is contained with a volume fraction of more than 35%, preferably of more than 45%.
- Co forms the cubic face-centered ⁇ matrix phase as a basic element among other elements and is an important constituent of the hardening ⁇ '- (Co, Ni) 3 (Al, W, Ti, Ta) precipitation phase. Co also lowers the stacking fault energy.
- Ni (nickel) 28-40% by weight
- Ni in the specified range expands the ⁇ / ⁇ 'two-phase region to a sufficient extent, so that further alloying elements, in particular Cr, can be added to a sufficient extent.
- Cr contents from about 4% by weight destabilize the biphasic ⁇ / ⁇ 'microstructure in ternary Co-Al-W alloys, and further undesirable intermetallic phases are formed.
- Ni shifts the maximum possible concentration of Cr to higher concentrations. Furthermore, with Ni, the ⁇ 'solvus temperature can be increased.
- the alloying element Cr should be added to the specified range.
- Cr acts as a mixed crystal hardener.
- Al forms the ⁇ 'precipitation phase (Co, Ni) 3 (Al, W, Ti, Ta), which contributes significantly to the increase in strength. Furthermore, Al increases the oxidation resistance. Higher levels of Al in the specified composition range can lead to the formation of additional intermetallic phases, such as CoAl, which can limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved.
- Si is a crucial element and significantly improves the oxidation resistance. However, excessive amounts of Si can lead to further undesirable intermetallic phases.
- B acts as a grain boundary strengthening alloying element and improves the oxidation properties. Too high concentrations lead to too high a proportion of borides. Preferably, B is contained at more than 0.01% by weight.
- C acts as a grain boundary strengthening alloying element.
- C forms carbides.
- C is preferably contained with more than 0.01% by weight.
- Ta (Tantalum): 0.2-9% by weight
- Ta contributes to the formation of the ⁇ 'precipitation phase, increases the ⁇ ' solvus temperature and the ⁇ / ⁇ 'lattice mismatch. Ta hardens the ⁇ 'precipitation phase and leads to an increase in strength. In particular, when high toughness at 800 ° C is required, the two elements Ta and Ti are required.
- Ti contributes to the formation of the ⁇ 'precipitation phase, increases the ⁇ ' solvus temperature and the ⁇ / ⁇ 'lattice mismatch. Ti hardens the ⁇ 'precipitation phase and leads to an increase in strength. In particular, when high toughness at 800 ° C is required, the two elements Ta and Ti are required. Ti can largely replace W, thereby significantly reducing the density.
- Hf stabilizes the ⁇ 'excretion phase.
- Hf is contained at more than 0.2% by weight.
- Zr serves to increase the grain boundary strength and to stabilize the ⁇ 'precipitation phase.
- Zr is included at more than 0.01% by weight.
- Fe lowers the ⁇ 'solvus temperature and can be used to adjust this especially for forging alloys. Fe is also a low cost element and can improve weldability. Too high concentrations destabilize the ⁇ / ⁇ 'microstructure. Preference is given to containing Fe more than 0.1% by weight.
- Nb contributes to the formation of the ⁇ 'precipitation phase, leads to an increase in strength and increases the ⁇ ' solvus temperature. Higher concentrations within the given concentration range may lead to the formation of additional intermetallic phases which may limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved.
- Nb is contained at more than 0.1% by weight.
- Mo serves as a solid-solution-hardening element and can partially replace W, thereby decreasing the density. Higher concentrations lead to the formation of additional intermetallic phases, which can limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved.
- Mo is contained with more than 0.1 wt .-%.
- Ge forms the ⁇ 'precipitation phase Co 3 (Al, Ge, W), lowers the ⁇ ' solvus temperature and can be used to adjust this in particular for forging alloys.
- Ge preferably contains more than 0.1% by weight.
- compositions of some embodiments of the ⁇ / ⁇ 'cobalt base superalloys of the present invention hereinafter referred to as CoWAlloy®, CoWAlloy1, and CoWAlloy2, as well as some reference alloys, are set forth in Table 1 below.
- Table 1 Compositions of the ⁇ / ⁇ 'cobalt base superalloys described here CoWAlloy0, CoWAlloy1 and CoWAlloy2 as well as some polycrystalline, cobalt and nickel based reference alloys (% by weight).
- the developed alloys described here have the distinct advantage compared to nickel-based forging alloys that despite the relatively low ⁇ 'solvus temperatures of about 1050 ° C (CoWAlloy), 1070 ° C (CoWAlloy1) or 1030 ° C (CoWAlloy2) high Excretion volume ratios of more than 45% (CoWAlloy0) at 750 ° C can be achieved.
- Fig. 1 shows the relationship between the excretion fraction at the application temperature and the solvus temperature of the y'-phase of ⁇ / ⁇ 'nickel-base superalloys and the presently stated ⁇ / ⁇ ' cobalt-base superalloy CoWAlloy0.
- the relatively low ⁇ 'solvus temperatures facilitate easier forming at typical forging temperatures of 1000 ° C to 1150 ° C.
- Fig. 2 shows here in different resolution the microstructure of the ⁇ / ⁇ 'cobalt-base superalloys CoWAlloy1 a) and c) or CoWAlloy2 b) and d) in the heat-treated state.
- Fig. 3 shows an electron back scattering diffraction (EBSD) measurement to determine the grain size and twin density of the CoWAlloy 2 ⁇ / ⁇ cobalt base superalloy described herein.
- the twin density of the alloy CoWAlloy2 which was determined by means of EBSD, is considerably higher at 55% compared to the nickel base superalloy Udimet 720Li with only 33%. This is due to the lower stacking fault energy of the cobalt base superalloys.
- Fig. 4 shows the yield strength as a function of the temperature of the alloys CoWAlloy1 and CoWAlloy2 specified here in comparison with the nickel-based alloys Waspaloy and Udimet 720Li and with the cobalt alloy Mar-M509.
- the yield strengths determined by compression tests at room temperature with 1110 MPa (CoWAlloy1) and 995 MPa (CoWAlloy2) are in the range of the yield strengths of Waspaloy (1010 MPa) and Udimet (1155 MPa) and reach significantly higher values at 800 ° C (880 MPa (CoWAlloy1) compared to Waspaloy (680 MPa) and Udimet 720Li (about 800 MPa)).
- Fig. 5 shows the creep strength of the ⁇ / ⁇ 'cobalt base superalloy CoWAlloy2 compared to the polycrystalline ⁇ / ⁇ ' nickel base superalloys Waspaloy and Udimet 720LI at 700 ° C. Accordingly, the alloy CoWAlloy2 at 700 ° C also has a significantly higher creep resistance than the nickel-based alloys Waspaloy and Udimet 720Li.
- the oxidation behavior can be assessed on the basis of the oxide layer thicknesses formed at 900 ° C in 50 h.
- Fig. 6 shows for this purpose microstructural images of the oxide layers of the ternary alloy Co9Al9W (a) and the presently stated alloy CoWAlloy2 (b).
- the oxide layer thickness after annealing at 900 ° C for 50 h is at least 10 times smaller in the alloy CoWAlloy2 than in the ternary alloy Co9Al9W (see a with b).
- the alloy CoWAlloy2 Fig. 6b
- the alloy CoWAlloy2 Fig. 6b
- Fig. 7 shows the element distributions in the different oxide layers of the alloy CoWAlloy2 after annealing at 900 ° C for 50 h, determined by energy dispersive X-ray spectroscopy EDS in the scanning electron microscope SEM.
- the relatively good oxidation properties result from the protective oxide layers rich in Al, Si and Cr.
- the cobalt-base superalloys of the present invention are characterized by being based on the element cobalt, hardened with the intermetallic ⁇ 'phase (Co, Ni) 3 (Al, W, Ti, Ta) to have better mechanical properties than conventional ones carbide-hardened cobalt-base superalloys have higher strengths than comparable polycrystalline ⁇ / ⁇ 'nickel-base superalloys at temperatures above 800 ° C, that they have higher creep strengths than comparable polycrystalline ⁇ / ⁇ ' nickel-base superalloys at temperatures of 700 ° C, making them better Have oxidation properties as previous ⁇ / ⁇ 'Kobaltbasissuperlegleiteren and / or that they have high ⁇ ' volume fractions at application temperatures of up to 850 ° C at comparatively low ⁇ 'solvus temperatures and thus can be used as a forging alloy.
- the intermetallic ⁇ 'phase (Co, Ni) 3 (Al, W, Ti, Ta) to have better mechanical properties than
- a ⁇ / ⁇ 'cobalt base superalloy is added with the addition of molybdenum (CoWAlloy3).
- the composition is shown again in Table 2 together with the other exemplary alloys CoWAlloy0, CoWAlloy1 and CoWAlloy2 described above.
- the content of Mo is changed at the expense of Co.
- Mo serves as a solid solution hardening element and can partially replace W, thereby reducing the density.
- Mo results in the formation of additional "grain boundary pinning" intermetallic phases which can limit grain growth in forging alloys.
- Table 2 Compositions of ⁇ / ⁇ 'cobalt base superalloy CoWAlloy3 together with CoWAlloy®, CoWAlloy® and CoWAlloy® (% by weight).
- Co-based Co Ni al Cr W Ta Ti Hf Zr Si B C Not a word CoWAlloy0 39.8 28.8 2.7 12.8 9.0 4.4 2.0 0.3 0.02 0.2 0,014 0.016 CoWAlloy1 40.6 30.6 2.7 10.2 9.0 4.4 2.0 0.3 0.02 0.2 0,014 0.016 CoWAlloy2 39.2 30.5 4.0 10.1 14.9 0.6 0.2 0.3 0.02 0.2 0,014 0.016 CoWAlloy3 37.9 30.3 4.0 10.1 14.9 0.6 0.2 0.3 0.02 0.2 0,014 0.016 1.55
- CoWAlloy3 As with the previously described CoWAlloy alloys 0, 1, 2, a relatively low solvus temperature of about 1050 ° C is expected for CoWAlloy3, at the same time relatively high solidus temperature, which is advantageous for the processing in particular by casting and forging, since these two temperatures span the window for processing and heat treatment.
- the alloy CoWAlloy3 was after a homogenization annealed at 1250 ° C for 3h at 1100 ° C for 1h and then hot rolled. The diameter was reduced in several passes from 40 mm to 15 mm. Subsequently, a recrystallization heat treatment was carried out to obtain a homogeneous, fine-grained texture. The simultaneous precipitation of the ⁇ -phase allows a targeted variation of the grain size by a suitable choice of the heat treatment parameters.
- Fig. 8 shows SEM micrographs of CoWAlloy3 after recrystallization for 4 h at (a) 1000 ° C and (b) 1100 ° C.
- the predominantly grain boundary white contrast phase is the W and Mo containing ⁇ phase. It is clear that at a higher recrystallization temperature, the proportion of ⁇ -phase decreases and at the same time the grain size increases significantly.
- the recrystallization at 1000 ° C leads to a ⁇ -phase content of about 3.2% and a median grain size of about 5 microns.
- the same heat-treated CoWAlloy2 has a median of about 8 microns, which illustrates the grain boundary pinning effect of the ⁇ -phase.
- FIG. 9 shows the ⁇ / ⁇ 'microstructure after a two-stage heat treatment (900 ° C, 4 h + 750 ° C, 16 h): (a) SEM with primary and secondary ⁇ ' fragments, (b) TEM Darkfield image with secondary and tertiary ⁇ '-particles.
- the ⁇ 'particles are round, as in the comparative alloy CoWAlloy2, indicating a low lattice mismatch.
- the particle diameter is about 65 nm also in the range of the comparative alloy.
- a difference can be seen in the ⁇ 'portion, which is about 37% lower than in CoWAlloy2.
- the reason for this can be assumed to be the formation of a ⁇ phase Co 7 (W, Mo) 6 , which reduces the W content available in the co-mixed crystal to form ⁇ '.
- this slightly lower phase content does not adversely affect the high temperature strength.
- Fig. 10 shows the yield stress above the temperature of the Mo-containing alloy CoWAlloy3 with grain boundary pinning ⁇ -phase compared to CoWAlloy2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung betrifft polykristalline, ausscheidungsgehärtete und oxidationsbeständige γ/γ' Kobaltbasissuperlegierungen für Hochtemperaturanwendungen. Die mechanischen Eigenschaften der angegebenen Kobaltbasissuperlegierungen übertreffen dabei die von konventionellen, karbidgehärteten Kobaltlegierungen. Bis zu einer Temperatur von 800 °C werden ähnliche und bei Temperaturen über 800 °C sogar höhere Warmfestigkeiten als die von nickelbasierten γ/γ' Schmiedelegierungen erreicht. Die Kriechfestigkeiten sind ebenfalls deutlich höher. Im Vergleich zu γ/γ' Nickelbasissuperlegierungen werden trotz niedriger Solvustemperatur ähnliche Anteile an der γ' Ausscheidungsphase erreicht. Aufgrund des großen Temperaturbereichs zwischen Solidus- und Solvustemperatur eignen sich die ausscheidungsgehärteten γ/γ' Kobaltbasissuperlegierungen insbesondere als polykristalline Schmiedelegierungen.The invention relates to polycrystalline precipitation hardened and oxidation resistant γ / γ 'cobalt base superalloys for high temperature applications. The mechanical properties of the specified cobalt-based superalloys exceed those of conventional carbide-hardened cobalt alloys. Up to a temperature of 800 ° C similar and at temperatures above 800 ° C even higher hot strengths than the nickel-based γ / γ 'forging alloys are achieved. The creep strengths are also significantly higher. In comparison to γ / γ 'nickel-base superalloys, similar proportions of the γ' precipitation phase are achieved despite the low solvus temperature. Due to the large temperature range between the solidus and solvus temperatures, the precipitation-hardened γ / γ 'cobalt-base superalloys are particularly suitable as polycrystalline forging alloys.
Kobaltbasis- und insbesondere γ/γ' Nickelbasissuperlegierungen sind essentielle Werkstoffe für eine Vielzahl von Komponenten in Strahltriebwerken von Verkehrsflugzeugen oder in stationären Gasturbinen zur Stromumwandlung. Bestrebungen, die Effizienz dieser Turbinen zu erhöhen, die Kosten zu senken und den Verbrauch an fossilen Brennstoff zu reduzieren, können durch neue Werkstoffe, die eine höhere Temperaturbeständigkeit, längere Lebensdauer sowie geringere Herstellungs- und Verarbeitungskosten besitzen, realisiert werden.Cobalt base and especially γ / γ 'nickel base superalloys are essential materials for a variety of components in jet engines of commercial aircraft or in stationary gas turbines for power conversion. Efforts to increase the efficiency of these turbines, reduce costs and reduce fossil fuel consumption can all be achieved through new materials that offer higher temperature resistance, longer service life and lower manufacturing and processing costs.
Konventionelle Kobaltbasissuperlegierungen werden aufgrund ihres hohen Schmelzpunktes, ihrer hohen Verschleißbeständigkeit, ihrer guten Schweißbarkeit und insbesondere wegen ihrer exzellenten Heißgaskorrosions- und Sulfidationsbeständigkeit als Hochtemperaturwerkstoffe in Flugtriebwerken und stationären Gasturbinen eingesetzt (siehe z. B.
Da sie mischkristall- und karbidgehärtet sind, werden sie jedoch wegen ihrer im Vergleich zu den ausscheidungsgehärteten γ/γ' Nickelbasissuperlegierungen geringeren Hochtemperaturfestigkeit nur für geringer belastete bzw. statische Bauteile wie Leitschaufeln verwendet. Als Werkstoffe für Laufschaufeln oder Turbinenscheiben werden diese somit nicht eingesetzt. Mit der Entdeckung der intermetallischen γ'-Phase Co3(Al,W) mit L12-Kristallstruktur im ternären Co-Al-W-System im Jahr 2006 können nun auch auf Basis von Kobalt höherfeste, ausscheidungsgehärtete, zweiphasige γ/γ' Superlegierungen (γ: kubisch flächenzentrierter Kobaltmischkristall) mit gleicher Mikrostruktur wie die seit Jahrzehnten eingesetzten γ/γ' Nickelbasissuperlegierungen hergestellt werden, wie dies beispielsweise in
γ/γ' Kobaltbasissuperlegierungen besitzen im Allgemeinen eine sehr hohe Solidustemperatur im Temperaturbereich von 1300 °C bis 1450 °C in Verbindung mit einer relativ niedrigen γ' Solvustemperatur im Temperaturbereich von 900 °C bis 1150 °C. Trotz der relativ niedrigen γ' Solvustemperatur können bei Temperaturen bis 900 °C sehr hohe γ' Volumenanteile von über 75 % realisiert werden (siehe z.
Des Weiteren ist von kobaltbasierten Legierungen bekannt, dass sie eine höhere Heißgaskorrosionsbeständigkeit als nickelbasierte Legierungen besitzen können, da eine flüssige Co-Schwefel-Phase erst bei 877 °C auftreten kann, wohingegen eine flüssige Ni-S-Phase schon bei 637 °C entsteht (siehe
Außerdem konnte in den vergangenen Jahren gezeigt werden, dass mit erhöhtem Co-Gehalt in nickelbasierten Schmiedelegierungen mit γ/γ' Mikrostruktur die Stapelfehlerenergie abnimmt und dadurch die Zwillingsdichte ("twin density") im Material zunimmt, was zu einem zusätzlichen Härtungseffekt in den polykristallinen Schmiedelegierungen führt und somit höhere Warmfestigkeiten erzielt werden können (siehe z.B.
Trotz vermehrter Forschungsaktivitäten auf dem Gebiet dieser neuen Werkstoffklasse der γ/γ' Kobaltbasissuperlegierungen wurden bisher meist nur einfache Legierungen mit relativ wenigen Legierungselementen und einer nicht ausreichenden Oxidationsbeständigkeit entwickelt und untersucht. Kobaltbasissuperlegierungen sind an sich z.B. bekannt aus
Eine gute Oxidationsbeständigkeit in Verbindung mit guten mechanischen Eigenschaften ist jedoch essentiell, um diese neuen γ/γ' Kobaltbasissuperlegierungen zukünftig als Hochtemperaturwerkstoff einsetzen zu können.However, a good oxidation resistance in combination with good mechanical properties is essential to be able to use these new γ / γ 'cobalt base superalloys as a high-temperature material in the future.
Aufgabe der Erfindung ist die Entwicklung von polykristallinen, höherfesten, ausscheidungsgehärteten γ/γ' Kobaltbasissuperlegierungen, mit sehr guten Oxidationseigenschaften, die mittels verschiedener Umformverfahren, wie dem Schmieden prozessiert werden können.The object of the invention is the development of polycrystalline, higher-strength, precipitation-hardened γ / γ 'cobalt-base superalloys, with very good oxidation properties, which can be processed by means of various forming processes, such as forging.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Kobaltbasissuperlegierung umfassend 32-45 Gew.-% Co, 28-40 Gew.-% Ni, 10-15 Gew.-% Cr, 2,5-5,5 Gew.-% Al, 6,5-16 Gew.-% W, 0-9 Gew.-% Ta, 0-8 Gew.-% Ti, 0,1-1 Gew.-% Si, 0-0,5 Gew.-% B, 0-0,5 Gew.-% C, 0-2 Gew.-% Hf, 0-0,1 Gew.-% Zr, 0-8 Gew.-% Fe, 0-6 Gew.-% Nb, 0-7 Gew.-% Mo, 0-4 Gew.-% Ge sowie einen Rest an unvermeidbaren Verunreinigungen.This object is achieved according to the invention by a cobalt-base superalloy comprising 32-45% by weight of Co, 28-40% by weight of Ni, 10-15% by weight of Cr, 2.5-5.5% by weight of Al, 6 , 5-16% by weight W, 0-9% by weight Ta, 0-8% by weight Ti, 0.1-1% by weight Si, 0-0.5% by weight B, 0-0.5 wt% C, 0-2 wt% Hf, 0-0.1 wt% Zr, 0-8 wt% Fe, 0-6 wt% Nb, 0 7 wt% Mo, 0-4 wt% Ge and a balance of unavoidable impurities.
In einer vorteilhaften Variante umfasst die Kobaltbasissuperlegierung 32-45 Gew.-% Co, 28-40 Gew.-% Ni, 10-15 Gew.-% Cr, 2,5-5,5 Gew.-% Al, 6,5-16 Gew.-% W, 0-9Gew.-% Ta, 0-8 Gew.-% Ti, 0,1-1 Gew.-% Si, 0-0,5 Gew.-% B, 0-0,5 Gew.-% C, 0 bis <2 Gew.-% Hf, 0 bis <0,1 Gew.-% Zr, 0 bis <8 Gew.-% Fe, 0 bis <6 Gew.-% Nb, 0 bis <7 Gew.-% Mo, 0 bis<4 Gew.-% Ge sowie einen Rest an unvermeidbaren Verunreinigungen.
Vorteilhaft sind von der Kobaltbasissuperlegierung in einer weiteren Ausführungsvariante 32-45 Gew.-% Co, 28-40 Gew.-% Ni, 10-15 Gew.-% Cr, 2,5-5,5 Gew.-% Al, 6,5-16 Gew.-% W, 0,2-9 Gew.-% Ta, 0,2-8 Gew.-% Ti, 0,1-1 Gew.-% Si, <0,5 Gew.-% B, <0,5 Gew.-% C, 0-2 Gew.-% Hf, 0-0,1 Gew.-% Zr, 0-8 Gew.-% Fe, 0-6 Gew.-% Nb, 0-7 Gew.-% Mo, 0-4 Gew.-% Ge sowie ein Rest an unvermeidbaren Verunreinigungen umfasst.
In einer weiter bevorzugten Ausgestaltung umfasst die Kobaltbasissuperlegierung 32-45 Gew.-% Co, 28-40 Gew.-% Ni, 10-15 Gew.-% Cr, 2,5-5,5 Gew.-% Al, 6,5-16 Gew.-% W, 0,2-9 Gew.-% Ta, 0,2-8 Gew.-% Ti, 0,1-1 Gew.-% Si, <0,5 Gew.-% B, <0,5 Gew.-% C, 0 bis <2 Gew.-% Hf, 0 bis <0,1 Gew.-% Zr, 0 bis <8 Gew.-% Fe, 0 bis <6 Gew.-% Nb, 0 bis <7 Gew.-% Mo, 0 bis <4 Gew.-% Ge sowie einen Rest an unvermeidbaren Verunreinigungen.In an advantageous variant, the cobalt-base superalloy comprises 32-45% by weight of Co, 28-40% by weight of Ni, 10-15% by weight of Cr, 2.5-5.5% by weight of Al, 6.5 -16 wt% W, 0-9 wt% Ta, 0-8 wt% Ti, 0.1-1 wt% Si, 0-0.5 wt% B, 0-0 , 5% by weight C, 0 to <2% by weight Hf, 0 to <0.1% by weight Zr, 0 to <8% by weight Fe, 0 to <6% by weight Nb, 0 to <7 wt .-% Mo, 0 to <4 wt .-% Ge and a balance of unavoidable impurities.
Advantageously, from the cobalt-base superalloy in another embodiment, 32-45 wt.% Co, 28-40 wt.% Ni, 10-15 wt.% Cr, 2.5-5.5 wt.% Al, 6 , 5-16 wt.% W, 0.2-9 wt.% Ta, 0.2-8 wt.% Ti, 0.1-1 wt.% Si, <0.5 wt. % B, <0.5 wt% C, 0-2 wt% Hf, 0-0.1 wt% Zr, 0-8 wt% Fe, 0-6 wt% Nb , 0-7 wt% Mo, 0-4 wt% Ge and a balance of unavoidable impurities.
In a further preferred embodiment, the cobalt base superalloy comprises 32-45 wt.% Co, 28-40 wt.% Ni, 10-15 wt.% Cr, 2.5-5.5 wt.% Al, 6, 5-16 wt% W, 0.2-9 wt% Ta, 0.2-8 wt% Ti, 0.1-1 wt% Si, <0.5 wt% B, <0.5 wt .-% C, 0 to <2 wt .-% Hf, 0 to <0.1 wt .-% Zr, 0 to <8 wt .-% Fe, 0 to <6 wt. -% Nb, 0 to <7 wt .-% Mo, 0 to <4 wt .-% Ge and a balance of unavoidable impurities.
Vorteilhaft ist die Kobaltbasissuperlegierung, die eine vorgenannte Zusammensetzung umfasst, gekennzeichnet durch eine intermetallische γ' Phase der Zusammensetzung (Co, Ni)3 (Al, W, Ti, Ta), wobei aus jeder Klammer jeweils wenigstens eines der in Klammern aufgeführten Elemente enthalten ist. Vorteilhafterweise ist die intermetallische γ' Phase (Ausscheidungsphase) mit einem Volumenanteil von mehr als 35%, bevorzugt von mehr als 45% enthalten.
Diese durch ihre Zusammensetzung gekennzeichneten oxidationsbeständigen, ausscheidungsgehärteten Kobaltbasissuperlegierungen setzen sich aus einer Vielzahl von Legierungselementen zusammen. Die Gründe für die gewählten Konzentrationsbereiche der Legierungselemente und deren wesentlichen Wirkungsweisen werden nachfolgend beschrieben:Advantageously, the cobalt base superalloy comprising an aforesaid composition characterized by an intermetallic γ 'phase of the composition (Co, Ni) 3 (Al, W, Ti, Ta), each clip containing at least one of the elements listed in parentheses , Advantageously, the intermetallic γ 'phase (precipitation phase) is contained with a volume fraction of more than 35%, preferably of more than 45%.
These oxidation resistant, precipitation hardened cobalt base superalloys, characterized by their composition, are composed of a variety of alloying elements. The reasons for the selected concentration ranges The alloying elements and their essential effects are described below:
Co bildet als Basiselement neben anderen Elementen die kubisch flächenzentrierte γ-Matrixphase und ist wichtiger Bestandteil der härtenden γ'-(Co,Ni)3(Al,W,Ti,Ta) - Ausscheidungsphase. Co erniedrigt außerdem die Stapelfehlerenergie.Co forms the cubic face-centered γ matrix phase as a basic element among other elements and is an important constituent of the hardening γ '- (Co, Ni) 3 (Al, W, Ti, Ta) precipitation phase. Co also lowers the stacking fault energy.
Ni im angegebenen Bereich erweitert im ausreichenden Maße das γ/γ' Zweiphasengebiet, so dass weitere Legierungselemente, insbesondere Cr, im ausreichenden Maße hinzugegeben werden können. Cr-Anteile ab ca. 4 Gew.-% destabilisieren in ternären Co-Al-W-Legierungen die zweiphasige γ/γ' Mikrostruktur, und weitere nicht gewünschte intermetallische Phasen werden gebildet. Durch Ni wird die maximal mögliche Konzentration an Cr zu höheren Konzentrationen verschoben. Des Weiteren kann mit Ni die γ' Solvustemperatur erhöht werden.Ni in the specified range expands the γ / γ 'two-phase region to a sufficient extent, so that further alloying elements, in particular Cr, can be added to a sufficient extent. Cr contents from about 4% by weight destabilize the biphasic γ / γ 'microstructure in ternary Co-Al-W alloys, and further undesirable intermetallic phases are formed. Ni shifts the maximum possible concentration of Cr to higher concentrations. Furthermore, with Ni, the γ 'solvus temperature can be increased.
Um eine ausreichende Korrosions- und Oxidationsbeständigkeit zu erlangen, soll das Legierungselement Cr im angegebenen Bereich hinzulegiert werden. Außerdem wirkt Cr als Mischkristallhärter.In order to obtain a sufficient corrosion and oxidation resistance, the alloying element Cr should be added to the specified range. In addition, Cr acts as a mixed crystal hardener.
Al bildet die γ' Ausscheidungsphase (Co,Ni)3(Al,W,Ti,Ta), die zur Festigkeitssteigerung entscheidend beiträgt. Des Weiteren erhöht Al die Oxidationsbeständigkeit. Höhere Anteile an Al im angegebenen Zusammensetzungsbereich können zu der Bildung weiterer intermetallischer Phasen wie CoAl führen, die das Kornwachstum bei Schmiedelegierungen einschränken können. Dadurch können kleinere Korngrößen und damit höhere Festigkeiten erzielt werden.Al forms the γ 'precipitation phase (Co, Ni) 3 (Al, W, Ti, Ta), which contributes significantly to the increase in strength. Furthermore, Al increases the oxidation resistance. Higher levels of Al in the specified composition range can lead to the formation of additional intermetallic phases, such as CoAl, which can limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved.
W bildet die γ' Ausscheidungsphase Co3(Al,W), die zur Festigkeitssteigerung entscheidend beiträgt und erhöht als langsam diffundierendes Element die Kriechfestigkeit. Höhere Gehalte führen zu einer zu hohen Dichte und weitere unerwünschte intermetallische Phasen können sich bilden.W forms the γ 'precipitation phase Co 3 (Al, W), which contributes decisively to the increase in strength and increases the creep resistance as a slowly diffusing element. Higher contents lead to too high a density and further undesirable intermetallic phases can form.
Si ist ein entscheidendes Element und verbessert deutlich die Oxidationsbeständigkeit. Zu hohe Mengen an Si können jedoch zu weiteren unerwünschten intermetallischen Phasen führen.Si is a crucial element and significantly improves the oxidation resistance. However, excessive amounts of Si can lead to further undesirable intermetallic phases.
B wirkt als korngrenzenfestigendes Legierungselement und verbessert die Oxidationseigenschaften. Zu hohe Konzentrationen führen zu einem zu hohen Anteil an Boriden. Bevorzugt ist B mit mehr als 0,01 Gew.-% enthalten.B acts as a grain boundary strengthening alloying element and improves the oxidation properties. Too high concentrations lead to too high a proportion of borides. Preferably, B is contained at more than 0.01% by weight.
C wirkt als korngrenzenfestigendes Legierungselement. Außerdem bildet C Carbide. Bevorzugt ist C mit mehr 0,01 Gew.-% enthalten.C acts as a grain boundary strengthening alloying element. In addition, C forms carbides. C is preferably contained with more than 0.01% by weight.
Ta trägt zur Bildung der γ' Ausscheidungsphase bei, erhöht die γ' Solvustemperatur und die γ/γ' Gitterfehlpassung. Ta härtet die γ' Ausscheidungsphase und führt zu einer Festigkeitssteigerung. Insbesondere wenn hohe Warmfestigkeiten bei 800 °C benötigt werden, sind die beiden Elemente Ta und Ti erforderlich.Ta contributes to the formation of the γ 'precipitation phase, increases the γ' solvus temperature and the γ / γ 'lattice mismatch. Ta hardens the γ 'precipitation phase and leads to an increase in strength. In particular, when high toughness at 800 ° C is required, the two elements Ta and Ti are required.
Ti trägt zur Bildung der γ' Ausscheidungsphase bei, erhöht die γ' Solvustemperatur und die γ/γ' Gitterfehlpassung. Ti härtet die γ' Ausscheidungsphase und führt zu einer Festigkeitssteigerung. Insbesondere wenn hohe Warmfestigkeiten bei 800°C benötigt werden sind die beiden Elemente Ta und Ti erforderlich. Ti kann in hohem Maße W ersetzen und verringert dadurch die Dichte signifikant.Ti contributes to the formation of the γ 'precipitation phase, increases the γ' solvus temperature and the γ / γ 'lattice mismatch. Ti hardens the γ 'precipitation phase and leads to an increase in strength. In particular, when high toughness at 800 ° C is required, the two elements Ta and Ti are required. Ti can largely replace W, thereby significantly reducing the density.
Hf stabilisiert die γ' Ausscheidungsphase. Bevorzugt ist Hf mit mehr als 0,2 Gew.-% enthalten.Hf stabilizes the γ 'excretion phase. Preferably, Hf is contained at more than 0.2% by weight.
Zr dient der Steigerung der Korngrenzenfestigkeit und vermag die γ' Ausscheidungsphase zu stabilisieren. Bevorzugt ist Zr mit mehr als 0,01 Gew.-% enthalten.Zr serves to increase the grain boundary strength and to stabilize the γ 'precipitation phase. Preferably, Zr is included at more than 0.01% by weight.
Fe erniedrigt die γ' Solvustemperatur und kann zur Einstellung dieser insbesondere für Schmiedelegierungen verwendet werden. Fe ist außerdem ein kostengünstiges Element und kann die Schweißbarkeit verbessern. Zu hohe Konzentrationen destabilisieren die γ/γ' Mikrostruktur. Bevorzugt ist Fe mit mehr als 0,1 Gew.-% enthalten.Fe lowers the γ 'solvus temperature and can be used to adjust this especially for forging alloys. Fe is also a low cost element and can improve weldability. Too high concentrations destabilize the γ / γ 'microstructure. Preference is given to containing Fe more than 0.1% by weight.
Nb trägt zur Bildung der γ' Ausscheidungsphase bei, führt zu einer Festigkeitssteigerung und erhöht die γ' Solvustemperatur. Höhere Konzentrationen innerhalb des angegebenen Konzentrationsbereiches können zur Bildung von weiteren intermetallischen Phasen führen, die das Kornwachstum bei Schmiedelegierungen einschränken können. Dadurch können kleinere Korngrößen und damit höhere Festigkeiten erzielt werden. Bevorzugt ist Nb mit mehr als 0,1 Gew.-% enthalten.Nb contributes to the formation of the γ 'precipitation phase, leads to an increase in strength and increases the γ' solvus temperature. Higher concentrations within the given concentration range may lead to the formation of additional intermetallic phases which may limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved. Preferably, Nb is contained at more than 0.1% by weight.
Mo dient als mischkristallhärtendes Element und kann W teilweise ersetzen und erniedrigt damit die Dichte. Höhere Konzentrationen führen zur Bildung von weiteren intermetallischen Phasen, die das Kornwachstum bei Schmiedelegierungen einschränken können. Dadurch können kleinere Korngrößen und damit höhere Festigkeiten erzielt werden. Bevorzugt ist Mo mit mehr als 0,1 Gew.-% enthalten.Mo serves as a solid-solution-hardening element and can partially replace W, thereby decreasing the density. Higher concentrations lead to the formation of additional intermetallic phases, which can limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved. Preferably, Mo is contained with more than 0.1 wt .-%.
Ge bildet die γ' Ausscheidungsphase Co3(Al,Ge,W), erniedrigt die γ' Solvustemperatur und kann zur Einstellung dieser insbesondere für Schmiedelegierungen verwendet werden. Bevorzugt ist Ge mit mehr als 0,1 Gew.-% enthalten.Ge forms the γ 'precipitation phase Co 3 (Al, Ge, W), lowers the γ' solvus temperature and can be used to adjust this in particular for forging alloys. Ge preferably contains more than 0.1% by weight.
Ausführungsbeispiele der Erfindung werden durch eine Zeichnung sowie durch die nachfolgenden Angaben näher erläutert. Dabei zeigen:
- Fig.1
- in einer Grafik den Zusammenhang zwischen dem Ausscheidungsanteil bei Anwendungstemperatur und der Solvustemperatur der γ'-Phase von γ/γ' Nickelbasissuperlegierungen im Vergleich zu Ausführungsbeispielen der Erfindung,
- Fig. 2
- die Mikrostruktur von beispielhaften Legierungen der Erfindung,
- Fig. 3
- eine EBSD-Messung zur Bestimmung der Korngröße und der Zwillingsdichte einer beispielhaften Legierung der Erfindung,
- Fig. 4
- in einer Grafik die Streckgrenze in Abhängigkeit der Temperatur für beispielhafte Legierungen der Erfindung,
- Fig. 5
- in einer Grafik die Kriechfestigkeit einer beispielhaften Legierung der Erfindung im Vergleich zu Nickelbasissuperlegierungen,
- Fig. 6
- Mikrostrukturbilder der ternären Legierung Co9Al9W im Vergleich einer beispielhaften Legierung der Erfindung,
- Fig. 7
- die Elementverteilung der Oxidschicht einer beispielhaften Legierung der Erfindung,
- Fig. 8
- REM-Aufnahmen einer beispielhaften Legierung der Erfindung,
- Fig. 9
- REM- und TEM-Aufnahmen einer beispielhaften Legierung der Erfindung und
- Fig. 10
- in einer Grafik die Streckgrenze in Abhängigkeit der Temperatur für eine weitere beispielhafte Legierung der Erfindung.
- Fig.1
- in a graph, the relationship between the precipitation rate at the application temperature and the solvus temperature of the γ'-phase of γ / γ 'nickel-base superalloys compared to embodiments of the invention,
- Fig. 2
- the microstructure of exemplary alloys of the invention,
- Fig. 3
- an EBSD measurement to determine the grain size and the twin density of an exemplary alloy of the invention,
- Fig. 4
- in a graph, the yield strength versus temperature for exemplary alloys of the invention,
- Fig. 5
- FIG. 4 is a graph of creep resistance of an exemplary alloy of the invention compared to nickel base superalloys; FIG.
- Fig. 6
- Microstructural images of the ternary alloy Co9Al9W compared to an exemplary alloy of the invention,
- Fig. 7
- the element distribution of the oxide layer of an exemplary alloy of the invention,
- Fig. 8
- SEM images of an exemplary alloy of the invention,
- Fig. 9
- REM and TEM images of an exemplary alloy of the invention and
- Fig. 10
- in a graph, the yield strength versus temperature for another exemplary alloy of the invention.
Die Zusammensetzungen einiger Ausführungsbeispiele der erfindungsgemäßen γ/γ' Kobaltbasissuperlegierungen, im Nachfolgenden CoWAlloy0, CoWAlloy1, und CoWAlloy2 genannt, sowie einiger Referenzlegierungen sind in der nachfolgenden Tabelle 1 angegeben. Ebenso werden im Folgenden die Eigenschaften von Ausführungsbeispielen der Erfindung anhand der Figuren und Untersuchungen näher beschrieben.
Die entwickelten, hier beschriebenen Legierungen weisen im Vergleich zu nickelbasierten Schmiedelegierungen den entscheidenden Vorteil auf, dass trotz der relativ niedrigen γ' Solvustemperaturen von ca. 1050 °C (CoWAlloy0), 1070 °C (CoWAlloy1) bzw. 1030 °C (CoWAlloy2) hohe Ausscheidungsvolumenanteile von mehr als 45% (CoWAlloy0) bei 750 °C erzielt werden können.
Nach Warmwalzen bei einer Walzguttemperatur von 1100 °C und einer anschließenden Wärmebehandlung von 1050 °C / 4h + 900 °C / 8h (CoWAlloy1) bzw. 1000 °C / 4h + 900 °C / 4h + 750 °C / 16h (CoWAlloy2) können mittlere Korngrößen von etwa 8 bis 15 µm und eine typische γ/γ' Mikrostruktur eingestellt werden. Dies ist unmittelbar aus
Das Oxidationsverhalten lässt sich anhand der bei 900 °C in 50h gebildeten Oxidschichtdicken beurteilen.
Die erfindungsgemäßen Kobaltbasissuperlegierungen zeichnen sich insbesondere dadurch aus, dass sie auf dem Element Kobalt basieren, dass sie mit der intermetallischen γ' Phase (Co,Ni)3(Al,W,Ti,Ta) gehärtet sind, dass sie bessere mechanische Eigenschaften als konventionelle, karbidgehärtete Kobaltbasissuperlegierungen besitzen, dass sie höhere Festigkeiten als vergleichbare, polykristalline γ/γ' Nickelbasissuperlegierungen bei Temperaturen über 800°C aufweisen, dass sie höhere Kriechfestigkeiten als vergleichbare, polykristalline γ/γ' Nickelbasissuperlegierungen bei Temperaturen von 700°C aufweisen, dass sie bessere Oxidationseigenschaften als bisherige γ/γ' Kobaltbasissuperlegierungen aufweisen und/oder dass sie bei vergleichsweisen niedrigen γ' Solvustemperaturen hohe γ' Volumenanteile bei Anwendungstemperaturen von bis zu 850°C besitzen und somit als Schmiedelegierung verwendet werden können.In particular, the cobalt-base superalloys of the present invention are characterized by being based on the element cobalt, hardened with the intermetallic γ 'phase (Co, Ni) 3 (Al, W, Ti, Ta) to have better mechanical properties than conventional ones carbide-hardened cobalt-base superalloys have higher strengths than comparable polycrystalline γ / γ 'nickel-base superalloys at temperatures above 800 ° C, that they have higher creep strengths than comparable polycrystalline γ / γ' nickel-base superalloys at temperatures of 700 ° C, making them better Have oxidation properties as previous γ / γ 'Kobaltbasissuperlegierungen and / or that they have high γ' volume fractions at application temperatures of up to 850 ° C at comparatively low γ 'solvus temperatures and thus can be used as a forging alloy.
Als weiteres Ausführungsbeispiel der Erfindung wird eine γ/γ' Kobaltbasissuperlegierung mit Zusatz von Molybdän (CoWAlloy3) angegeben. Die Zusammensetzung ist in Tabelle 2 nochmals zusammen mit den weiteren vorbeschriebenen beispielhaften Legierungen CoWAlloy0, CoWAlloy1 und CoWAlloy2 gezeigt. Im Vergleich zu CoWAlloy2 ist der Gehalt an Mo auf Kosten von Co verändert. Mo dient, wie bereits beschrieben, als mischkristallhärtendes Element und kann W teilweise ersetzen, wodurch sich die Dichte verringert. Mo führt insbesondere zur Bildung von weiteren "korngrenzpinnenden" intermetallischen Phasen, die das Kornwachstum bei Schmiedelegierungen einschränken können.
Wie auch bei den bereits vorbeschriebenen CoWAlloy-Legierungen 0, 1, 2 wird für CoWAlloy3 eine relativ niedrige Solvustemperatur von etwa 1050 °C erwartet, bei gleichzeitig relativ hoher Solidustemperatur, was für die Prozessierung insbesondere durch Gießen und Schmieden vorteilhaft ist, da diese beiden Temperaturen das Fenster zur Verarbeitung und Wärmebehandlung aufspannen. Die Legierung CoWAlloy3 wurde nach einer Homogenisierungsglühung bei 1250 °C für 3h bei 1100 °C für 1h zwischengeglüht und anschließend heißgewalzt. Dabei wurde der Durchmesser in mehreren Stichen von 40 mm auf 15 mm reduziert. Anschließend erfolgte eine Rekristallisations-Wärmebehandlung, um ein homogenes, feinkörniges Gefüge zu erhalten. Die gleichzeitige Ausscheidung der µ-Phase ermöglicht durch eine passende Wahl der Wärmebehandlungsparameter eine gezielte Variation der Korngröße.As with the previously described
Die γ'-Teilchen sind wie in der Vergleichslegierung CoWAlloy2 rund, was auf eine geringe Gitterfehlpassung hinweist. Der Teilchendurchmesser liegt mit etwa 65 nm ebenfalls im Bereich der Vergleichslegierung. Ein Unterschied ist im γ'-Anteil zu erkennen, der mit ca. 37% niedriger liegt, als bei CoWAlloy2. Als Grund hierfür kann die Bildung einer µ-Phase Co7(W,Mo)6 angenommen werden, die den im Co-Mischkristall verfügbaren W-Gehalt zur γ' Bildung verringert. Dieser etwas geringere Phasenanteil wirkt sich jedoch nicht nachteilig auf die Hochtemperaturfestigkeit aus.
Claims (4)
- Cobolt-based superalloy consisting of 32-45% by weight of Co, 28-40% by weight of Ni, 10-15% by weight of Cr, 2.5-5.5% by weight of Al, 6.5-16% by weight of W, 0-9% by weight of Ta, 0-8% by weight of Ti, 0.1-1% by weight of Si, 0-0.5% by weight of B, 0-0.5% by weight of C, 0-2% by weight of Hf, 0-0.1% by weight of Zr, 0-8% by weight of Fe, 0-6% by weight of Nb, 0-7% by weight of Mo, 0-4% by weight of Ge and a balance of unavoidable impurities.
- Cobolt-based superalloy according to Claim 1, comprising less than 2% by weight of Hf, less than 0.1% by weight of Zr, less than 8% by weight of Fe, less than <6% by weight of Nb, less than 7% by weight of Mo and less than 4% by weight of Ge.
- Cobolt-based superalloy according to Claims 1 and 2, comprising at least 0.2% by weight of Ta, at least 0.2% by weight of Ti, less than 0.5% by weight of B and less than 0.5% by weight of C.
- Cobolt-based superalloy, having a composition according to any of the preceding claims, characterized by an intermetallic γ' phase (Co,Ni)3(Al, W, Ti, Ta).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014011249 | 2014-08-01 | ||
PCT/EP2015/067697 WO2016016437A2 (en) | 2014-08-01 | 2015-07-31 | Cobalt-based super alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3175008A2 EP3175008A2 (en) | 2017-06-07 |
EP3175008B1 true EP3175008B1 (en) | 2018-10-17 |
Family
ID=53836558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15750314.5A Not-in-force EP3175008B1 (en) | 2014-08-01 | 2015-07-31 | Cobalt based alloy |
Country Status (3)
Country | Link |
---|---|
US (1) | US20170342527A1 (en) |
EP (1) | EP3175008B1 (en) |
WO (1) | WO2016016437A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113684398A (en) * | 2021-08-26 | 2021-11-23 | 大连理工大学 | Cubic gamma' nano particle coherent precipitation strengthened high-temperature alloy with stable structure at 900 ℃ and preparation method thereof |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016200135A1 (en) * | 2016-01-08 | 2017-07-13 | Siemens Aktiengesellschaft | Gamma, gamma cobalt based alloys for additive manufacturing or soldering, welding, powder and component |
US11866805B2 (en) * | 2017-04-21 | 2024-01-09 | Oerlikon Surface Solutions Ag, Pfaffikon | Superalloy target |
KR102403029B1 (en) * | 2017-04-21 | 2022-05-30 | 씨알에스 홀딩즈, 엘엘씨 | Precipitation hardenable cobalt-nickel based superalloys and articles made therefrom |
US11725263B2 (en) | 2018-04-04 | 2023-08-15 | The Regents Of The University Of California | High temperature oxidation resistant co-based gamma/gamma prime alloys DMREF-Co |
DE102018208736A1 (en) * | 2018-06-04 | 2019-12-05 | Siemens Aktiengesellschaft | Y, Y 'hardened cobalt-nickel base alloy, powder, component and process |
DE102018208737A1 (en) * | 2018-06-04 | 2019-12-05 | Siemens Aktiengesellschaft | Y, Y` hardened cobalt-nickel base alloy, powder, component and process |
DE102020203436A1 (en) | 2020-03-18 | 2021-09-23 | Siemens Aktiengesellschaft | Cobalt-based alloy, powder mixture, process and component |
CN114086049B (en) * | 2021-11-17 | 2022-08-23 | 沈阳航空航天大学 | 2.0GPa grade CoCrNi-based medium entropy alloy with ultrahigh yield strength and plasticity and preparation method thereof |
US11913093B2 (en) * | 2022-07-11 | 2024-02-27 | Liburdi Engineering Limited | High gamma prime nickel based welding material |
CN115233074A (en) * | 2022-07-12 | 2022-10-25 | 北京科技大学 | Cobalt-nickel-based high-temperature alloy for gas turbine moving blade and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0719195D0 (en) * | 2007-10-02 | 2007-11-14 | Rolls Royce Plc | A nickel base superalloy |
JP5201334B2 (en) * | 2008-03-19 | 2013-06-05 | 大同特殊鋼株式会社 | Co-based alloy |
US20110268989A1 (en) * | 2010-04-29 | 2011-11-03 | General Electric Company | Cobalt-nickel superalloys, and related articles |
US9034247B2 (en) * | 2011-06-09 | 2015-05-19 | General Electric Company | Alumina-forming cobalt-nickel base alloy and method of making an article therefrom |
CN102212725B (en) * | 2011-06-10 | 2012-10-10 | 深圳市新星轻合金材料股份有限公司 | Application of aluminium-zirconium-titanium-carbon intermediate alloy in magnesium and magnesium alloy deformation processing |
GB201312000D0 (en) * | 2013-07-04 | 2013-08-21 | Rolls Royce Plc | Alloy |
GB201421949D0 (en) * | 2014-12-10 | 2015-01-21 | Rolls Royce Plc | Alloy |
-
2015
- 2015-07-31 WO PCT/EP2015/067697 patent/WO2016016437A2/en active Application Filing
- 2015-07-31 US US15/500,992 patent/US20170342527A1/en not_active Abandoned
- 2015-07-31 EP EP15750314.5A patent/EP3175008B1/en not_active Not-in-force
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113684398A (en) * | 2021-08-26 | 2021-11-23 | 大连理工大学 | Cubic gamma' nano particle coherent precipitation strengthened high-temperature alloy with stable structure at 900 ℃ and preparation method thereof |
CN113684398B (en) * | 2021-08-26 | 2022-05-13 | 大连理工大学 | 900℃ Microstructure Stable Cubic γ' Nanoparticle Coherent Precipitation Strengthened Superalloy and Preparation Method |
Also Published As
Publication number | Publication date |
---|---|
WO2016016437A2 (en) | 2016-02-04 |
US20170342527A1 (en) | 2017-11-30 |
WO2016016437A3 (en) | 2016-04-07 |
EP3175008A2 (en) | 2017-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3175008B1 (en) | Cobalt based alloy | |
EP2956562B1 (en) | Nickel-cobalt alloy | |
DE69014085T2 (en) | Oxidation-resistant alloys with a low coefficient of expansion. | |
EP2163656B1 (en) | High-temperature-resistant cobalt-base superalloy | |
DE2415074C2 (en) | Use of a nickel-based superalloy to manufacture gas turbine parts | |
DE68915095T2 (en) | Nickel-based alloy and process for its manufacture. | |
DE602006000160T2 (en) | Heat resistant alloy for 900oC sustainable exhaust valves and exhaust valves made from this alloy | |
DE3023576C2 (en) | ||
EP1819838B1 (en) | Titanium aluminide based alloy | |
DE60302108T2 (en) | Precipitation-hardened cobalt-nickel alloy with good heat resistance and associated production method | |
DE112016005830B4 (en) | Metal gasket and process for its manufacture | |
EP3775308B1 (en) | Use of a nickel-chromium-iron-aluminium alloy | |
EP2145967A2 (en) | Titanium aluminide alloys | |
DE3024645A1 (en) | TITANIUM ALLOY, ESPECIALLY TITANIUM-ALUMINUM ALLOY | |
DE1238672B (en) | Use of a nickel-cobalt-chromium alloy for castings that are resistant to creep at high temperatures | |
DE69414529T2 (en) | Fe-based superalloy | |
EP2620517A1 (en) | Heat-resistant TiAl alloy | |
EP2196550B1 (en) | High temperature and oxidation resistant material on the basis of NiAl | |
AT399165B (en) | CHROME BASED ALLOY | |
EP1420075A1 (en) | Nickel-base superalloy | |
EP3091095B1 (en) | Low density rhenium-free nickel base superalloy | |
CH674019A5 (en) | ||
EP3287535A1 (en) | Sx nickel alloy with improved tmf properties, raw material and component | |
EP3133178B1 (en) | Optimized nickel based superalloy | |
WO2012041276A2 (en) | Heat-resistant tial alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
17P | Request for examination filed |
Effective date: 20170217 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180424 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015006497 Country of ref document: DE Ref country code: AT Ref legal event code: REF Ref document number: 1054118 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190117 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190217 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190118 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190217 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015006497 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
26N | No opposition filed |
Effective date: 20190718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200724 Year of fee payment: 6 Ref country code: FR Payment date: 20200727 Year of fee payment: 6 Ref country code: DE Payment date: 20200727 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20200724 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150731 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1054118 Country of ref document: AT Kind code of ref document: T Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502015006497 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220201 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181017 |