EP3168312A1 - Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part - Google Patents
Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part Download PDFInfo
- Publication number
- EP3168312A1 EP3168312A1 EP15194741.3A EP15194741A EP3168312A1 EP 3168312 A1 EP3168312 A1 EP 3168312A1 EP 15194741 A EP15194741 A EP 15194741A EP 3168312 A1 EP3168312 A1 EP 3168312A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- content
- forging
- noble
- structural steel
- steel according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 71
- 239000010959 steel Substances 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000005242 forging Methods 0.000 claims abstract description 57
- 229910000746 Structural steel Inorganic materials 0.000 claims abstract description 30
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 25
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 25
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 22
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 6
- 230000000717 retained effect Effects 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims description 19
- 238000005496 tempering Methods 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910001562 pearlite Inorganic materials 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 11
- 238000005516 engineering process Methods 0.000 abstract description 4
- 235000019362 perlite Nutrition 0.000 abstract description 4
- 239000010451 perlite Substances 0.000 abstract description 4
- 239000010955 niobium Substances 0.000 description 22
- 239000010936 titanium Substances 0.000 description 22
- 239000011572 manganese Substances 0.000 description 16
- 239000010949 copper Substances 0.000 description 11
- 238000005275 alloying Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000008092 positive effect Effects 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 239000011265 semifinished product Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000161 steel melt Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
Definitions
- the invention relates to a structural steel with high strength and a structure which consists of at least 80 vol .-% of bainite.
- the invention relates to a forged part, which is made of such a structural engineering steel.
- the invention relates to a method for producing a forged component from a noble structural steel according to the invention.
- the article states that promising materials with a bainitic structure have been found to combine good strength and toughness properties without the need for additional heat treatment resulting in tensile strengths greater than 1200 MPa, a yield strength of more than 850 MPa and an elongation at break of more than 10% at a impact energy of 27 J at room temperature.
- the article contains a steel having (in wt%) 0.18% C, 1.53% Si, 1.47% Mn 0.007% S, 1.30% Cr , 0.07% Mo, 0.0020% B, 0.027% Nb, 0.026% Ti, 0.0080% N, balance iron and unavoidable impurities and a steel with 0.22% C, 1.47% Si, 1, 50% Mn, 0.006% S, 1.31% Cr, 0.09% Mo, 0.0025% B, 0.035% Nb, 0.026% Ti, 0.0108% N, balance iron and unavoidable impurities presented.
- EP 0 787 812 B1 discloses a production method of a steel forgings in which a steel having (in wt.%) 0.1-0.4% C, 1-1.8% Mn, 0.15-1.7% Si, up to 1 % Ni, up to 1.2% Cr, up to 0.3% Mo, up to 0.3% V, up to 0.35% Cu and each optionally 0.005-0.06% Al, 0.0005-0 , 01% B, 0.005 - 0.03% Ti, 0.005% - 0.06% Nb, 0.005 - 0.1% S, up to 0.006% calcium, up to 0.03% Te, up to 0.05% Se, up to 0.05% Bi and the remainder cast iron and unavoidable impurities to a semi-finished product, which is then hot-forged to a forging in a conventional manner.
- the forging is subjected to a heat treatment comprising cooling at a cooling rate Vr of more than 0.5 ° C / sec from a temperature at which the steel is austenitic to a temperature Tm of between Ms +100 ° C and Ms -20 ° C is.
- the forging is then held for at least two minutes at a temperature which is between the temperature Tm and a temperature Tf, for which Tf> Tm -100 ° C.
- a steel component having a substantially bainitic structure comprising at least 15% lower bainite and preferably at least 20% bainite formed between Tm and Tf.
- the object of the invention to provide a steel which has a high strength, without the need to complete complex heat treatment process, which has a low tendency to warping and as such in particular for the forging production of forgings with their length has large cross-sectional changes.
- a forged part should be specified, which has an optimal combination of properties without complex heat treatment process.
- the invention has achieved the object mentioned above by the structural steel specified in claim 1.
- the solution according to the invention of the abovementioned object consists in that such a steel component is produced from a steel according to the invention.
- the invention has finally achieved the abovementioned object by carrying out the operations recited in claim 13 during the production of a forging component.
- An inventive structural steel has at a yield strength of at least 750 MPa and a tensile strength of at least 950 MPa and at least 80% by volume bainitic structure, the remaining 20% by volume of the microstructure being retained austenite, ferrite, pearlite or martensite.
- the steel according to the invention is characterized by a high elongation at break A of at least 10%, in particular at least 12%, whereby it is shown in practice that steels according to the invention regularly achieve an elongation at break A of at least 15%.
- the engineering structural steel consists of (in% by weight) up to 0.25% C, up to 1.5% Si, in particular up to 1% Si or up to 0.45% Si, 0.20-2, 00% Mn, up to 4.00% Cr, 0.7-3.0% Mo, 0.004-0.020% N, up to 0.40% S, 0.001-0.035% Al, 0.0005-0.0025% B, up to 0.015% Nb, up to 0.01% Ti, up to 0.50% V, up to 1.5% Ni, up to 2.0% Cu and balance iron and unavoidable impurities, the Al Content% Al, the Nb content% Nb, the Ti content% Ti, the V content% V and the N content% N of the noble structural steel each satisfy the following condition: % Al / 27 +% Nb / 45 +% Ti / 48 +% V / 25>% N / 3.75
- the unavoidable impurities due to production include all elements which are present in terms of alloying inefficiencies with regard to the properties of interest here and which enter the steel on the basis of the respectively selected melting route or the respective selected starting material (scrap).
- the unavoidable impurities also include levels of P of up to 0.0035% by weight.
- a steel according to the invention and the forging components produced therefrom are characterized by a particularly uniform property distribution, even if, due to changing component dimensions during cooling from forging heat over the Forged part volume considered locally very different cooling conditions prevail.
- This insensitivity to the cooling conditions is achieved in that the noble structural steel according to the invention has a homogeneous, largely exclusively bainitic microstructure with a low variance of the hardness. At the same time, this homogeneous microstructure contains low residual stresses, which has a positive effect on the distortion behavior.
- steel according to the invention is particularly suitable for the production of forged components in which sections of very different volumes and diameters abut one another.
- forgings for whose forging technology production of the steel according to the invention is particularly suitable, are crankshafts, connecting rods and the like, which are intended in particular for internal combustion engines.
- steel parts according to the invention in the area of the undercarriage and the suspension can be manufactured reliably with very different cross-sections without much subsequent reworking by grinding while maintaining the predetermined strength properties.
- a particularly wide window can be used for bainitizing a noble structural steel according to the invention if the engineering steel according to the invention is continuously cooled from forging heat.
- the alloy of the structural steel according to the invention is chosen so that in the course of cooling do not affect its properties affecting amounts of martensite or ferrite or perlite in the structure.
- Noble structural steel according to the invention is thus distinguished by the fact that it is predominantly, ie has at least 80 vol .-% bainic microstructure, wherein the content of non-bainitic microstructure constituents in steels of the invention is typically minimized so much that the steel according to the invention has a completely bainitic structure in the technical sense.
- the noble steel steel according to the invention largely independent of the cooling rate in bainite an almost constant hardness.
- the constant hardness is a consequence of the almost complete transformation of the former austenite into bainite, preferably into a bainitic transformation stage.
- a noble structural steel according to the invention has good elongation and toughness properties despite its maximized strength.
- the low C content also contributes to the acceleration of the bainite transformation in a steel according to the invention, so that the formation of undesired structural constituents is avoided.
- a certain amount of carbon in the engineering steel according to the invention can also contribute to the strength.
- contents of at least 0.09 wt .-% C can be provided in the steel.
- An optimized effect of the presence of C in the steel according to the invention can thus be achieved by adjusting the C content to 0.09-0.25% by weight.
- the Si content of a steel according to the invention is limited to 1.5% by weight, in particular 1% by weight or 0.75% by weight, in order to allow the bainite transformation to proceed as early as possible. In order to achieve this effect particularly reliably, the Si content can also be limited to at most 0.45 wt .-%.
- Mo is present in the noble structural steel according to the invention in contents of 0.6-3.0% by weight, in order to delay the transformation of the microstructure into ferrite or perlite. This effect occurs in particular when at least 0.7 wt .-%, in particular more than 0.70 wt .-% Mo, are present in the steel. At contents of more than 3.0% by weight, no economically viable further increase in the positive effect of Mo occurs in the steel according to the invention. In addition, above 3.0 wt% Mo, there is a risk of forming a molybdenum-rich carbide phase which may adversely affect the toughness properties. Optimum effects of Mo in the steel of the present invention can be expected when the Mo content is at least 0.7 wt%. Mo contents of not more than 2.0% by weight have proved to be particularly effective.
- Manganese is present at levels of 0.20-2.00% by weight in the steel of the present invention to adjust the tensile strength and yield strength.
- a minimum content of 0.20% by weight of Mn is required in order to increase the strength. If this effect is to be achieved particularly reliably, then an Mn content of at least 0.35 wt .-% can be provided. Too high Mn contents lead to the delay of the bainite transformation and thus to a predominantly martensitic transformation. Therefore, the Mn content is limited to at most 2.00 wt%, especially 1.5 wt%. Negative influences of the presence of Mn can be avoided particularly reliably by limiting the Mn content in the steel according to the invention to a maximum of 1.1% by weight.
- the sulfur content of a steel according to the invention can be up to 0.4 wt .-%, in particular max. 0.1% by weight or max. 0.05 wt .-% to assist the machinability of the steel.
- the fine-grade alloying with respect to the mechanical properties and the texture of a structural steel according to the invention is carried out according to the inventive alloying concept via a combined microalloying of the elements boron in amounts of 0.0005-0.0025% by weight, nitrogen in contents of 0.004-0.020% by weight, in particular at least 0.006% by weight N or up to 0.0150% by weight % N, aluminum in amounts of 0.001-0.035% by weight and niobium in amounts of up to 0.015% by weight, titanium in contents of up to 0.01% by weight and vanadium in contents of up to 0, 10% by weight.
- the contents% Al,% Nb,% Ti,% V and% N of Al, Nb, Ti, V and N are on the condition % Al / 27 +% Nb / 45 +% Ti / 48 +% V / 25>% N / 3.75 linked together so that the nitrogen contained in the structural steel over the respective existing contents of Al and the addition of necessary additionally added levels of Nb, Ti and V is fully bonded and boron can thus delay conversion.
- the setting of N according to the invention makes it possible for boron to become effective as a dissolved element in the matrix and to suppress the formation of ferrite and / or perlite.
- the micro-alloying elements V, Ti, Nb on the one hand and Al on the other hand may be present in each case in combination with one or more elements of the group "Al, V, Ti, Nb" or alone in amounts above said minimum contents.
- contents of Cr of up to 4.00 wt .-%, in particular up to 3 wt .-% or up to 2.5 wt .-%, contribute to the hardenability and corrosion resistance of the steel according to the invention.
- at least 0.5% by weight or at least 0.8% by weight of Cr may be provided for this purpose.
- levels of Ni of up to 1.5 wt .-% may also contribute to the hardenability of the steel.
- a positive effect of the optional presence of copper in the alloy of a structural steel according to the invention consists in the formation of finest Austenitfilmen and the associated significant increase in the toughness level. This effect can be achieved by providing at least 0.3% by weight of Cu, in particular more than 0.3% by weight of Cu, in the structural steel according to the invention. By limiting the Cu content to at most 0.9 wt%, an optimized positive effect of the copper content can be obtained.
- steel according to the invention is heated to thermal temperatures of at least 100.degree. C. above the respective Ac.sub.3 temperature, in particular more than 900.degree. C., then heat-deformed and finally regulated or uncontrolled to quiescent or agitated air to a temperature of less than 200 ° C, in particular cooled to room temperature, so sets itself at an extremely wide range of cooling rate after the transformation, a uniform bainitic structure.
- the Ac3 temperature of the steel may be determined in a manner known per se based on its composition.
- the upper limit of the range of the heat temperature is typically 1300 ° C, especially 1250 ° C or 1200 ° C.
- the t8 / 5 time can be used here, ie the time within which each thermoformed part cools from 800 ° C to 500 ° C. This t8 / 5 time should be at 10 - 1000 s in the cooling of manufactured from inventive steel components.
- the specific cooling time selected should be selected as a function of the respective heat temperature.
- the influence of the heat temperature can be calculated using the Fig. 2 enclosed ZTU diagram is reproduced, in which for the heat temperatures 900 ° C (solid line), 1100 ° C (dashed line) and 1300 ° C (dotted line) the respective position of the respective bainite over the cooling time is shown.
- the heat temperatures 900 ° C (solid line), 1100 ° C (dashed line) and 1300 ° C (dotted line) the respective position of the respective bainite over the cooling time is shown.
- the bainite is made regardless of the respective heat temperature exists for Steels according to the invention at a temperature in the range of 900 - 1300 ° C heat temperatures therefore when the t8 / 5 time is 100 - 800 s.
- the alloying concept according to the invention thus permits high thermoforming temperatures of more than 1150 ° C., as a result of which the forming forces during hot forming can be reduced without undesired grain growth occurring.
- a further adjustment of the mechanical properties, in particular the strength and toughness, of the hot-formed steel according to the invention, in particular forged components can be carried out by means of a tempering treatment in which the respective part over a tempering time of 0.5 - 2 h in the temperature range of 180 - 375 ° C is held.
- tensile strengths of at least 950 MPa, a yield strength of at least 750 MPa, and an elongation at break A of at least 15% can be reliably determined in the steel according to the invention, with it being found in practice that even higher elongation values A of at least 17% are regularly achieved become.
- the semi-finished products are heated to a forging temperature Tw for a forging temperature, then thermoformed in a conventional manner by drop forging to forgings and then in air cooled to room temperature. For some of the obtained forgings a tempering treatment was then carried out.
- the heat temperatures used in the examples are Tw, the t8 / 5 time required for the passage of the critical temperature range of 800-500 ° C, the temperature and duration of the tempering treatment, if any, and the bainite content in the microstructure, the tensile strength Rm, the yield strength Re, the elongation A and the impact energy W of the forging obtained after forging indicated.
- Table 1 stolen C Si Mn Cr Not a word N S al B Nb Ti V Ni Cu P (1) (2) (1)> (2) E1 0.13 0.4 0.55 2.37 1.04 0.0069 0,003 0,015 0.0012 0,003 0,002 0.03 0.24 0.19 0.019 0.006864 0.00184 YES E2 0.17 0.25 0.72 2.05 0.71 0.0100 0.005 0,020 0.0012 0,021 0.001 0.10 0.24 0.23 0,021 0.005228 0.002667 YES E3 0.17 0.24 0.90 1.72 0.74 0.0082 0,003 0.031 0.0008 0,007 0.001 0.03 0.22 0.62 0,017 0.002525 0.002187 YES E4 0.23 0.27 0.43 1.23 0.77 0.0076 0.034 0,017 0.0013
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat Treatment Of Steel (AREA)
- Forging (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Die Erfindung stellt einen Stahl zur Verfügung, der eine hohe Festigkeit besitzt, ohne dass dazu aufwändige Wärmebehandlungsverfahren absolviert werden müssen, und dabei eine geringe Neigung zum Verzug hat. Der erfindungsgemäß Edelbaustahl besteht dazu aus (in Gew.-%) bis zu 0,25 % C, bis zu 0,45 % Si, 0,20 - 2,00 % Mn,: bis zu 4,00 % Mn, 0,6 - 3,0 % Mo, 0,004 - 0,020 % N, bis zu 0,40 % S, 0,001 - 0,035 % Al, 0,0005 - 0,0025 % B, bis zu 0,015 % Nb, bis zu 0,01 % Ti, bis zu 0,10 % V, bis zu 1,5 % Ni und bis zu 2,0 % Cu, Rest Eisen und unvermeidbaren Verunreinigungen, wobei der Al-Gehalt %Al, der Nb-Gehalt %Nb, der Ti-Gehalt %Ti, der V-Gehalt %V und der N-Gehalt %N des Edelbaustahls jeweils folgende Bedingung erfüllen: % Al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3 , 75 Der erfindungsgemäße Edelbaustahl weist eine Streckgrenze von mindestens 750 MPa, eine Zugfestigkeit von mindestens 950 MPa und ein Gefüge auf, das zu mindestens 80 Vol.-% aus Bainit besteht und in Summe höchstens 20 Vol.-% an Restaustenit, Ferrit, Perlit und/oder Martensit enthält. Aufgrund seines Eigenschaftsprofils ist der erfindungsgemäße Stahl insbesondere für die schmiedetechnische Herstellung von Schmiedeteilen mit über ihre Länge großen Querschnittsänderungen geeignet. Die Erfindung offenbart auch ein Verfahren zur Herstellung von derartigen Schmiedebauteilen.The invention provides a steel having a high strength without the need for complex heat treatment processes, while having a low tendency to warp. The noble steel steel according to the invention consists of (in% by weight) up to 0.25% C, up to 0.45% Si, 0.20-2.00% Mn, up to 4.00% Mn, 0, 6 - 3.0% Mo, 0.004 - 0.020% N, up to 0.40% S, 0.001 - 0.035% Al, 0.0005 - 0.0025% B, up to 0.015% Nb, up to 0.01% Ti, up to 0.10% V, up to 1.5% Ni and up to 2.0% Cu, remainder iron and unavoidable impurities, the Al content being% Al, the Nb content being% Nb, the Ti Content% Ti, the V content% V and the N content% N of the structural steel respectively satisfy the following condition:% Al / 27 +% Nb / 45 +% Ti / 48 +% V / 25>% N / 3, 75 The engineering structural steel according to the invention has a yield strength of at least 750 MPa, a tensile strength of at least 950 MPa and a microstructure consisting of at least 80% by volume of bainite and a total of at most 20% by volume of retained austenite, ferrite, perlite and / or martensite. Due to its property profile of the steel according to the invention is particularly suitable for the forging technology production of forgings with over its length large cross-sectional changes. The invention also discloses a method of making such forging components.
Description
Die Erfindung betrifft einen Edelbaustahl mit hoher Festigkeit und einem Gefüge, das zu mindestens 80 Vol.-% aus Bainit besteht.The invention relates to a structural steel with high strength and a structure which consists of at least 80 vol .-% of bainite.
Des Weiteren betrifft die Erfindung ein Schmiedeteil, das aus einem solchen Edelbaustahl hergestellt ist.Furthermore, the invention relates to a forged part, which is made of such a structural engineering steel.
Schließlich betrifft die Erfindung ein Verfahren zur Herstellung eines Schmiedebauteils aus einem erfindungsgemäßen Edelbaustahl.Finally, the invention relates to a method for producing a forged component from a noble structural steel according to the invention.
Wenn nachfolgend "%"-Angaben zu Legierungen oder Stahlzusammensetzungen gemacht werden, so beziehen diese sich jeweils auf das Gewicht, soweit nichts ausdrücklich anderes angegeben ist.If "%" information is given below on alloys or steel compositions, these are in each case based on the weight, unless expressly stated otherwise.
Sämtlich der im vorliegenden Text angegebenen mechanischen Eigenschaften des erfindungsgemäßen Stahls und der gegebenenfalls zum Vergleich angeführten Stähle sind, soweit nicht anders angegeben, nach DIN EN ISO 6892-1 bestimmt worden.All of the mechanical properties of the steel according to the invention and of the steels which may be mentioned for comparison have been determined according to DIN EN ISO 6892-1, unless stated otherwise.
Wie von Dipl.-Ing.
Eine andere Entwicklung, welche ebenfalls auf einen Stahl zur Herstellung von Gesenkschmiedeteilen abzielt, die ohne eine zusätzliche Wärmebehandlung eine hohe Festigkeit bei gleichzeitig hoher Zähigkeit besitzen, ist in der
Als wesentlich wird dabei angesehen, dass die notwendige Zähigkeitsverbesserung durch eine Absenkung des Kohlenstoffgehaltes im Stahl erreicht wird. Der nach dem Stand der Technik damit prinzipiell einhergehende Festigkeitsverlust wird durch die übrigen Legierungselemente ausgeglichen, deren Gehalte so abgestimmt sind, dass es zur Verfestigung durch Mischkristallbildung kommt.It is regarded as essential that the necessary toughness improvement is achieved by lowering the carbon content in the steel. The strength loss associated with this in principle according to the prior art is compensated by the other alloying elements, the contents of which are adjusted so that solidification by solid solution formation takes place.
Des Weiteren ist aus der
Praktische Versuche mit Stahlwerkstoffen der voranstehend erläuterten Art haben gezeigt, dass derartige bainitische Stähle aufgrund ihrer Neigung zum Verzug und stark schwankenden mechanischen Eigenschaften für Bauteile mit großen Querschnittsänderungen ungeeignet sind.Practical experiments with steel materials of the type described above have shown that such bainitic steels are unsuitable for components with large cross-sectional changes due to their tendency to warp and greatly fluctuating mechanical properties.
Vor diesem Hintergrund bestand die Aufgabe der Erfindung darin, einen Stahl zu schaffen, der eine hohe Festigkeit besitzt, ohne dass dazu aufwändige Wärmebehandlungsverfahren absolviert werden müssen, der eine geringe Neigung zum Verzug hat und der als solcher insbesondere für die schmiedetechnische Herstellung von Schmiedeteilen mit über ihre Länge großen Querschnittsänderungen hat.Against this background, the object of the invention to provide a steel which has a high strength, without the need to complete complex heat treatment process, which has a low tendency to warping and as such in particular for the forging production of forgings with their length has large cross-sectional changes.
Ebenso sollte ein Schmiedeteil angegeben werden, das ohne aufwändige Wärmebehandlungsverfahren eine optimale Eigenschaftskombination besitzt.Likewise, a forged part should be specified, which has an optimal combination of properties without complex heat treatment process.
Schließlich sollte ein Verfahren zur Herstellung eines Schmiedestücks vorgeschlagen werden, das mit einfachen Mitteln die Erzeugung von Schmiedeteilen mit optimierter Eigenschaftskombination ermöglicht.Finally, a method for producing a forging should be proposed, which allows the production of forgings with optimized property combination by simple means.
In Bezug auf den Stahl hat die Erfindung die voranstehend genannte Aufgabe durch den in Anspruch 1 angegebenen Edelbaustahl gelöst.With respect to the steel, the invention has achieved the object mentioned above by the structural steel specified in claim 1.
In Bezug auf das Schmiedebauteil besteht die erfindungsgemäße Lösung der voranstehend genannten Aufgabe darin, dass ein solches Stahlbauteil aus einem erfindungsgemäßen Stahl hergestellt ist.With regard to the forging component, the solution according to the invention of the abovementioned object consists in that such a steel component is produced from a steel according to the invention.
In Bezug auf das Verfahren hat die Erfindung die oben genannte Aufgabe schließlich dadurch gelöst, dass bei der Herstellung eines Schmiedebauteils die in Anspruch 13 genannten Arbeitsschritte durchlaufen werden.With regard to the method, the invention has finally achieved the abovementioned object by carrying out the operations recited in claim 13 during the production of a forging component.
Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous embodiments of the invention are specified in the dependent claims and are explained below as the general inventive concept in detail.
Ein erfindungsgemäßer Edelbaustahl besitzt bei einer Streckgrenze von mindestens 750 MPa und einer Zugfestigkeit von mindestens 950 MPa und ein zu mindestens 80 Vol.-% bainitisches Gefüge, wobei die verbleibenden 20 Vol.-% des Gefüges Restaustenit, Ferrit, Perlit oder Martensit sein können.An inventive structural steel has at a yield strength of at least 750 MPa and a tensile strength of at least 950 MPa and at least 80% by volume bainitic structure, the remaining 20% by volume of the microstructure being retained austenite, ferrite, pearlite or martensite.
Dabei zeichnet sich der erfindungsgemäß Stahl durch eine hohe Bruchdehnung A von mindestens 10 %, insbesondere mindestens 12 %, aus, wobei sich in der Praxis zeigt, dass erfindungsgemäße Stähle regelmäßig eine Bruchdehnung A von mindestens 15 % erreichen.In this case, the steel according to the invention is characterized by a high elongation at break A of at least 10%, in particular at least 12%, whereby it is shown in practice that steels according to the invention regularly achieve an elongation at break A of at least 15%.
Erfindungsgemäß besteht der Edelbaustahl dazu aus (in Gew.-%) bis zu 0,25 % C, bis zu 1,5 % Si, insbesondere bis zu 1 % Si oder bis zu 0,45 % Si, 0,20 - 2,00 % Mn, bis zu 4,00 % Cr, 0,7 - 3,0 % Mo, 0,004 - 0,020 % N, bis zu 0,40 % S, 0,001 - 0,035 % Al, 0,0005 - 0,0025 % B, bis zu 0,015 % Nb, bis zu 0,01 % Ti, bis zu 0,50 % V, bis zu 1,5 % Ni, bis zu 2,0 % Cu und als Rest Eisen und unvermeidbaren Verunreinigungen, wobei der Al-Gehalt %Al, der Nb-Gehalt %Nb, der Ti-Gehalt %Ti, der V-Gehalt %V und der N-Gehalt %N des Edelbaustahls jeweils folgende Bedingung erfüllen:
%Al/27 + %Nb/45 + %Ti/48 + %V/25 > %N/3,75
According to the invention, the engineering structural steel consists of (in% by weight) up to 0.25% C, up to 1.5% Si, in particular up to 1% Si or up to 0.45% Si, 0.20-2, 00% Mn, up to 4.00% Cr, 0.7-3.0% Mo, 0.004-0.020% N, up to 0.40% S, 0.001-0.035% Al, 0.0005-0.0025% B, up to 0.015% Nb, up to 0.01% Ti, up to 0.50% V, up to 1.5% Ni, up to 2.0% Cu and balance iron and unavoidable impurities, the Al Content% Al, the Nb content% Nb, the Ti content% Ti, the V content% V and the N content% N of the noble structural steel each satisfy the following condition:
% Al / 27 +% Nb / 45 +% Ti / 48 +% V / 25>% N / 3.75
Zu den herstellungsbedingt unvermeidbaren Verunreinigungen gehören alle Elemente, die in Bezug auf die hier interessierenden Eigenschaften legierungstechnisch unwirksamen Mengen vorhanden sind und aufgrund der jeweils gewählten Erschmelzungsroute oder das jeweils gewählte Ausgangsmaterial (Schrott) in den Stahl gelangen. Insbesondere gehören zu den unvermeidbaren Verunreinigungen auch Gehalte an P von bis zu 0,0035 Gew.-%.The unavoidable impurities due to production include all elements which are present in terms of alloying inefficiencies with regard to the properties of interest here and which enter the steel on the basis of the respectively selected melting route or the respective selected starting material (scrap). In particular, the unavoidable impurities also include levels of P of up to 0.0035% by weight.
Ein erfindungsgemäßer Stahl und die daraus hergestellten Schmiedebauteile zeichnen sich selbst dann durch eine besonders gleichmäßige Eigenschaftsverteilung aus, wenn aufgrund wechselnder Bauteilabmessungen bei der Abkühlung aus der Schmiedehitze über das Schmiedeteilvolumen betrachtet lokal stark unterschiedliche Abkühlbedingungen herrschen. Diese Unempfindlichkeit gegen die Abkühlbedingungen wird dadurch erreicht, dass der erfindungsgemäße Edelbaustahl ein homogenes, weitestgehend ausschließlich bainitisches Gefüge mit geringer Varianz der Härte besitzt. Dieser homogene Gefügezustand beinhaltet gleichzeitig geringe Eigenspannungen, was sich positiv auf das Verzugsverhalten auswirkt.A steel according to the invention and the forging components produced therefrom are characterized by a particularly uniform property distribution, even if, due to changing component dimensions during cooling from forging heat over the Forged part volume considered locally very different cooling conditions prevail. This insensitivity to the cooling conditions is achieved in that the noble structural steel according to the invention has a homogeneous, largely exclusively bainitic microstructure with a low variance of the hardness. At the same time, this homogeneous microstructure contains low residual stresses, which has a positive effect on the distortion behavior.
Dementsprechend ist erfindungsgemäßer Stahl insbesondere zur Herstellung von geschmiedeten Bauteilen geeignet, bei denen Abschnitte mit stark unterschiedlichen Volumina und Durchmesser aneinander stoßen. Beispiele für solche Schmiedestücke, für deren schmiedetechnische Herstellung sich der erfindungsgemäße Stahl besonders eignet, sind Kurbelwellen, Pleuel und desgleichen, die insbesondere für Verbrennungsmotoren bestimmt sind.Accordingly, steel according to the invention is particularly suitable for the production of forged components in which sections of very different volumes and diameters abut one another. Examples of such forgings, for whose forging technology production of the steel according to the invention is particularly suitable, are crankshafts, connecting rods and the like, which are intended in particular for internal combustion engines.
Des Weiteren können aus erfindungsgemäßem Stahl Teile im Bereich des Fahrwerks und der Radaufhängung mit stark unterschiedlichen Querschnitten ohne große anschließende Nachbearbeitung durch Schleifen unter Einhaltung der vorgegebenen Festigkeitseigenschaften prozesssicher hergestellt werden.Furthermore, steel parts according to the invention in the area of the undercarriage and the suspension can be manufactured reliably with very different cross-sections without much subsequent reworking by grinding while maintaining the predetermined strength properties.
Wie anhand des als
Hierbei stellt sich beim erfindungsgemäßen Edelbaustahl weitestgehend unabhängig von der Abkühlgeschwindigkeit im Bainit eine nahezu konstante Härte ein. Die konstante Härte ist eine Folge der nahezu vollständigen Umwandlung des ehemaligen Austenits in Bainit, bevorzugt in eine bainitische Umwandlungsstufe.Here, the noble steel steel according to the invention largely independent of the cooling rate in bainite an almost constant hardness. The constant hardness is a consequence of the almost complete transformation of the former austenite into bainite, preferably into a bainitic transformation stage.
Durch die Begrenzung des C-Gehalts auf höchstens 0,25 Gew.-% wird einerseits erreicht, dass ein erfindungsgemäßer Edelbaustahl trotz seiner maximierten Festigkeit gute Dehnungs- und Zähigkeitseigenschaften besitzt. Der geringe C-Gehalt trägt bei einem erfindungsgemäßen Stahl auch zur Beschleunigung der Bainitumwandlung bei, so dass die Entstehung von unerwünschten Gefügebestandteilen vermieden wird.By limiting the C content to at most 0.25% by weight, on the one hand it is achieved that a noble structural steel according to the invention has good elongation and toughness properties despite its maximized strength. The low C content also contributes to the acceleration of the bainite transformation in a steel according to the invention, so that the formation of undesired structural constituents is avoided.
Gleichzeitig kann eine gewisse Menge an Kohlenstoff im erfindungsgemäßen Edelbaustahl aber auch zur Festigkeit beitragen. Hierzu können Gehalte von mindestens 0,09 Gew.-% C im Stahl vorgesehen werden. Eine optimierte Wirkung der Anwesenheit von C im erfindungsgemäßen Stahl kann somit dadurch erreicht werden, dass der C-Gehalt auf 0,09 - 0,25 Gew.-% eingestellt wird.At the same time, however, a certain amount of carbon in the engineering steel according to the invention can also contribute to the strength. For this purpose, contents of at least 0.09 wt .-% C can be provided in the steel. An optimized effect of the presence of C in the steel according to the invention can thus be achieved by adjusting the C content to 0.09-0.25% by weight.
Der Si-Gehalt eines erfindungsgemäßen Stahls ist auf 1,5 Gew.-%, insbesondere 1 Gew.-% oder 0,75 Gew.-%, beschränkt, um die Bainitumwandlung möglichst früh ablaufen zu lassen. Um diesen Effekt besonders sicher zu erreichen, kann der Si-Gehalt auch auf höchstens 0,45 Gew.-% beschränkt werden.The Si content of a steel according to the invention is limited to 1.5% by weight, in particular 1% by weight or 0.75% by weight, in order to allow the bainite transformation to proceed as early as possible. In order to achieve this effect particularly reliably, the Si content can also be limited to at most 0.45 wt .-%.
Mo ist im erfindungsgemäßen Edelbaustahl in Gehalten von 0,6 - 3,0 Gew.-% vorhanden, um die Umwandlung des Gefüges in Ferrit oder Perlit zu verzögern. Diese Wirkung tritt insbesondere dann ein, wenn mindestens 0,7 Gew.-%, insbesondere mehr als 0,70 Gew.-% Mo, im Stahl vorhanden sind. Bei Gehalten von mehr als 3,0 Gew.-% tritt im erfindungsgemäßen Stahl keine wirtschaftlich vertretbare weitere Steigerung der positiven Wirkung von Mo mehr ein. Außerdem besteht oberhalb 3,0 Gew.-% Mo die Gefahr der Bildung einer molybdänreichen Karbidphase, welche die Zähigkeitseigenschaften negativ beeinflussen kann. Optimale Wirkungen von Mo im erfindungsgemäßen Stahl können erwartet werden, wenn der Mo-Gehalt mindestens 0,7 Gew.-% beträgt. Als besonders effektiv haben sich dabei Mo-Gehalte von höchstens 2,0 Gew.-% erwiesen.Mo is present in the noble structural steel according to the invention in contents of 0.6-3.0% by weight, in order to delay the transformation of the microstructure into ferrite or perlite. This effect occurs in particular when at least 0.7 wt .-%, in particular more than 0.70 wt .-% Mo, are present in the steel. At contents of more than 3.0% by weight, no economically viable further increase in the positive effect of Mo occurs in the steel according to the invention. In addition, above 3.0 wt% Mo, there is a risk of forming a molybdenum-rich carbide phase which may adversely affect the toughness properties. Optimum effects of Mo in the steel of the present invention can be expected when the Mo content is at least 0.7 wt%. Mo contents of not more than 2.0% by weight have proved to be particularly effective.
Mangan ist in Gehalten von 0,20 - 2,00 Gew.-% im erfindungsgemäßen Stahl vorhanden, um die Zugfestigkeit und Streckgrenze einzustellen. Ein Mindestgehalt von 0,20 Gew.-% Mn ist erforderlich, damit es zu einer Festigkeitssteigerung kommt. Soll dieser Effekt besonders sicher erreicht werden, so kann ein Mn-Gehalt von mindestens 0,35 Gew.-% vorgesehen werden. Zu hohe Mn-Gehalte führen zur Verzögerung der Bainitumwandlung und damit zu einer überwiegend martensitischen Umwandlung. Daher ist der Mn-Gehalt auf höchstens 2,00 Gew.-%, insbesondere 1,5 Gew.-%, beschränkt. Negative Einflüsse der Anwesenheit von Mn lassen sich besonders sicher vermeiden, indem der Mn-Gehalt beim erfindungsgemäßen Stahl auf maximal 1,1 Gew.-% beschränkt wird.Manganese is present at levels of 0.20-2.00% by weight in the steel of the present invention to adjust the tensile strength and yield strength. A minimum content of 0.20% by weight of Mn is required in order to increase the strength. If this effect is to be achieved particularly reliably, then an Mn content of at least 0.35 wt .-% can be provided. Too high Mn contents lead to the delay of the bainite transformation and thus to a predominantly martensitic transformation. Therefore, the Mn content is limited to at most 2.00 wt%, especially 1.5 wt%. Negative influences of the presence of Mn can be avoided particularly reliably by limiting the Mn content in the steel according to the invention to a maximum of 1.1% by weight.
Der Schwefelgehalt eines erfindungsgemäßen Stahls kann bis zu 0,4 Gew.-%, insbesondere max. 0,1 Gew.-% oder max. 0,05 Gew.-% betragen, um die Zerspanbarkeit des Stahls zu unterstützen.The sulfur content of a steel according to the invention can be up to 0.4 wt .-%, in particular max. 0.1% by weight or max. 0.05 wt .-% to assist the machinability of the steel.
Die legierungstechnische Feinjustierung in Bezug auf die mechanischen Eigenschaften und die Gefügebeschaffenheit eines erfindungsgemäßen Edelbaustahls erfolgt nach dem erfindungsgemäßen Legierungskonzept über eine kombinierte Mikrolegierung aus den Elementen Bor in Gehalten von 0,0005 - 0,0025 Gew.-%, Stickstoff in Gehalten von 0,004 - 0,020 Gew.-%, insbesondere mindestens 0,006 Gew.-% N oder bis zu 0,0150 Gew.-% N, Aluminium in Gehalten von 0,001 - 0,035 Gew.-% sowie Niob in Gehalten von bis zu 0,015 Gew.-%, Titan in Gehalten von bis 0,01 Gew.-% und Vanadium in Gehalten von bis zu 0,10 Gew.-%.The fine-grade alloying with respect to the mechanical properties and the texture of a structural steel according to the invention is carried out according to the inventive alloying concept via a combined microalloying of the elements boron in amounts of 0.0005-0.0025% by weight, nitrogen in contents of 0.004-0.020% by weight, in particular at least 0.006% by weight N or up to 0.0150% by weight % N, aluminum in amounts of 0.001-0.035% by weight and niobium in amounts of up to 0.015% by weight, titanium in contents of up to 0.01% by weight and vanadium in contents of up to 0, 10% by weight.
Die Gehalte %Al, %Nb, %Ti, %V und %N an Al, Nb, Ti, V und N sind dabei über die Bedingung
%Al/27 + %Nb/45 + %Ti/48 + %V/25 > %N/3,75
miteinander so verknüpft, dass der im Edelbaustahl enthaltene Stickstoff über die jeweils vorhandenen Gehalte an Al sowie die erforderlichenfalls zusätzlich zugegebenen Gehalte an Nb, Ti und V vollständig abgebunden ist und Bor somit umwandlungsverzögernd wirken kann. Gleichzeitig tragen die erfindungsgemäß vorgesehenen und aufeinander sowie den N-Gehalt abgestimmten Gehalte an Mikroelementen zur Erhöhung der Feinkornstabilität und Festigkeit bei.The contents% Al,% Nb,% Ti,% V and% N of Al, Nb, Ti, V and N are on the condition
% Al / 27 +% Nb / 45 +% Ti / 48 +% V / 25>% N / 3.75
linked together so that the nitrogen contained in the structural steel over the respective existing contents of Al and the addition of necessary additionally added levels of Nb, Ti and V is fully bonded and boron can thus delay conversion. At the same time, the inventively provided and matched to each other and the N content levels of microelements to increase the fine grain stability and strength.
Die erfindungsgemäße Abbindung von N ermöglicht darüber hinaus, dass Bor als gelöstes Element in der Matrix wirksam wird und die Bildung von Ferrit und oder Perlit unterdrückt.Moreover, the setting of N according to the invention makes it possible for boron to become effective as a dissolved element in the matrix and to suppress the formation of ferrite and / or perlite.
Um die Vorteile der Anwesenheit der Mikrolegierungselemente und von Aluminium sicher zu nutzen, kann es zweckmäßig sein, den Al-Gehalt auf mindestens 0,004 Gew.-%, den Ti-Gehalt auf mindestens 0,001 Gew.-%, den V-Gehalt auf mindestens 0,02 Gew.-% oder den Nb-Gehalt auf mindestens 0,003 Gew.-% einzustellen. Dabei können die Mikrolegierungselemente V, Ti, Nb einerseits und Al andererseits jeweils in Kombination mit einem oder mehreren Elementen der Gruppe "Al, V, Ti, Nb" oder alleine in oberhalb der genannten Mindestgehalte liegenden Mengen vorhanden sein.In order to safely utilize the advantages of the presence of the micro-alloying elements and of aluminum, it may be expedient to set the Al content to at least 0.004% by weight, the Ti content to at least 0.001% by weight, the V content to at least 0 , 02 wt .-% or the Nb content to at least 0.003 wt .-% set. In this case, the micro-alloying elements V, Ti, Nb on the one hand and Al on the other hand may be present in each case in combination with one or more elements of the group "Al, V, Ti, Nb" or alone in amounts above said minimum contents.
Bei Gehalten von bis zu 0,008 Gew.-% Ti, von bis zu 0,01 Gew.-% Nb, von bis zu 0,075 Gew.-% V oder von bis zu 0,020 Gew.-% Al lassen sich die Wirkungen dieser Elemente im erfindungsgemäßen Baustahl besonders wirksam nutzen. Gleichzeitig führen die gebildeten Nitride bzw. Karbonitride zu einem Anstieg der Festigkeit und tragen zur Feinkornstabilität bei. Auch hier können die genannten Obergrenzen der Gehalte an Ti, Nb, V oder Al jeweils alleine oder in Kombination miteinander eingehalten werden, um die jeweils optimale Wirkung des betreffenden Legierungselements zu erzielen.At levels of up to 0.008 wt.% Ti, up to 0.01 wt.% Nb, up to 0.075 wt.% V or up to 0.020 wt.% Al, the effects of these elements can be seen in Use particularly effective construction steel according to the invention. At the same time, the nitrides or carbonitrides formed increase the strength and contribute to fine grain stability. Again, the stated upper limits of the contents of Ti, Nb, V or Al can be maintained alone or in combination with each other in order to achieve the optimum effect of the respective alloying element.
Optional vorhandene Gehalte an Cr von bis zu 4,00 Gew.-%, insbesondere bis zu 3 Gew.-% oder bis zu 2,5 Gew.-%, tragen zur Härtbarkeit und Korrosionsbeständigkeit des erfindungsgemäßen Stahls bei. Hierzu können beispielsweise mindestens 0,5 Gew.-% oder mindestens 0,8 Gew.-% Cr vorgesehen sein.Optionally present contents of Cr of up to 4.00 wt .-%, in particular up to 3 wt .-% or up to 2.5 wt .-%, contribute to the hardenability and corrosion resistance of the steel according to the invention. For example, at least 0.5% by weight or at least 0.8% by weight of Cr may be provided for this purpose.
Ebenso optional vorhandene Gehalte an Ni von bis zu 1,5 Gew.-% können ebenfalls zur Härtbarkeit des Stahls beitragen.Also optionally present levels of Ni of up to 1.5 wt .-% may also contribute to the hardenability of the steel.
Zu den über das Ausgangsmaterial in den erfindungsgemäßen Stahl gelangenden oder gezielt zugegebenen Legierungselementen gehört auch Cu, dessen Gehalt zur Vermeidung von negativen Einflüssen im erfindungsgemäßen Stahl auf max. 2,0 Gew.-% begrenzt ist. Eine positive Wirkung der optionalen Anwesenheit von Kupfer in der Legierung eines erfindungsgemäßen Baustahls besteht in der Ausbildung von feinsten Restaustenitfilmen und der damit einhergehenden deutlichen Anhebung des Zähigkeitsniveaus. Dieser Effekt kann dadurch erzielt werden, dass mindestens 0,3 Gew.-% Cu, insbesondere mehr als 0,3 Gew.-% Cu, im erfindungsgemäßen Baustahl vorhanden sind. Indem der Cu-Gehalt auf höchstens 0,9 Gew.-% beschränkt wird, kann eine optimierte positive Wirkung des Kupfergehalts erzielt werden.Among the alloying elements which pass through the starting material into the steel according to the invention or which have been deliberately added, is Cu, whose content, in order to avoid negative influences in the steel according to the invention, is limited to max. 2.0 wt .-% is limited. A positive effect of the optional presence of copper in the alloy of a structural steel according to the invention consists in the formation of finest Austenitfilmen and the associated significant increase in the toughness level. This effect can be achieved by providing at least 0.3% by weight of Cu, in particular more than 0.3% by weight of Cu, in the structural steel according to the invention. By limiting the Cu content to at most 0.9 wt%, an optimized positive effect of the copper content can be obtained.
Wird erfindungsgemäßer Stahl auf für eine Warmumformung typische Wärmetemperaturen von mindestens 100 °C oberhalb der jeweiligen Ac3-Temperatur liegende, insbesondere mehr als 900 °C betragende Wärmetemperatur für die Warmverformung erwärmt, dann warmverformt und schließlich geregelt oder ungeregelt an ruhender oder bewegter Luft auf eine Temperatur von weniger als 200 °C, insbesondere auf Raumtemperatur, abgekühlt, so stellt sich bei einer extrem weiten Spanne der Abkühlgeschwindigkeit nach der Umwandlung ein gleichmäßig bainitisches Gefüge ein. Die Ac3-Temperatur des Stahls kann in an sich bekannter Weise auf Grundlage seiner jeweiligen Zusammensetzung bestimmt werden. Die Obergrenze des Bereichs der Wärmetemperatur beträgt typischerweise 1300 °C, insbesondere 1250 °C oder 1200 °C.If steel according to the invention is heated to thermal temperatures of at least 100.degree. C. above the respective Ac.sub.3 temperature, in particular more than 900.degree. C., then heat-deformed and finally regulated or uncontrolled to quiescent or agitated air to a temperature of less than 200 ° C, in particular cooled to room temperature, so sets itself at an extremely wide range of cooling rate after the transformation, a uniform bainitic structure. The Ac3 temperature of the steel may be determined in a manner known per se based on its composition. The upper limit of the range of the heat temperature is typically 1300 ° C, especially 1250 ° C or 1200 ° C.
Als Maß für die Spanne der Abkühlgeschwindigkeiten kann hier die t8/5-Zeit herangezogen werden, also die Zeit, innerhalb der das jeweils warmgeformte Teil von 800 °C auf 500 °C abkühlt. Diese t8/5-Zeit soll bei der Abkühlung von aus erfindungsgemäßem Stahl hergestellten Bauteilen bei 10 - 1000 s liegen.As a measure of the range of cooling rates, the t8 / 5 time can be used here, ie the time within which each thermoformed part cools from 800 ° C to 500 ° C. This t8 / 5 time should be at 10 - 1000 s in the cooling of manufactured from inventive steel components.
Die jeweils konkret gewählte Abkühlzeit sollte in Abhängigkeit von der jeweiligen Wärmetemperatur gewählt werden. Der Einfluss der Wärmetemperatur kann anhand des als
Das erfindungsgemäße Legierungskonzept lässt somit hohe Warmformtemperaturen von mehr als 1150 °C zu, wodurch sich die Umformkräfte bei der Warmformgebung vermindern lassen, ohne dass ein unerwünschtes Kornwachstum eintritt.The alloying concept according to the invention thus permits high thermoforming temperatures of more than 1150 ° C., as a result of which the forming forces during hot forming can be reduced without undesired grain growth occurring.
Das erfindungsgemäße Verfahren zur Herstellung von Schmiedestücken mit einer Streckgrenze von mindestens 750 MPa und einer Zugfestigkeit von mindestens 950 MPa sowie einem zu mindestens 80 Vol.-% bainitischem Gefüge, das in Summe bis zu 20 Vol.-% Restaustenit, Ferrit, Perlit oder Martensit enthalten kann, umfasst dementsprechend folgende Arbeitsschritte:
- a) Bereitstellen eines Schmiedehalbzeugs, das aus einem in der voranstehend erläuterten Weise erfindungsgemäß zusammengesetzten Edelbaustahl besteht;
- b) Erwärmen des Schmiedehalbzeugs auf eine
Schmiedetemperatur von mindestens 100 °C über der Ac3-Temperatur des jeweiligen Edelbaustahls, wobei die Ac3-Temperatur in konventioneller Weise in Abhängigkeit von der jeweiligen Zusammensetzung des Edelbaustahls bestimmt wird; - c) Schmieden des auf die Schmiedetemperatur erwärmten Schmiedehalbzeugs zu dem Schmiedestück;
- d) Abkühlen des Schmiedestücks aus der Schmiedehitze auf eine unterhalb von 500 °C liegende Temperatur, wobei die t8/5-Zeit bei der Abkühlung 10 - 1000 s beträgt.
- a) providing a forging tool, which consists of a composite according to the invention in the above-explained construction engineering steel;
- b) heating the forging die to a forging temperature of at least 100 ° C above the Ac3 temperature of the particular engineering steel, the Ac3 temperature being determined in a conventional manner depending on the particular composition of the engineering grade steel;
- c) forging the forging temperature heated forging to the forging;
- d) cooling the forging from forging heat to a temperature below 500 ° C, the t8 / 5 time during cooling being 10-1000 sec.
Zur Verminderung der Umformkräfte kann es sich auch im Zuge des erfindungsgemäßen Verfahrens im Hinblick auf eine Minimierung der erforderlichen Schmiedekräfte als vorteilhaft erweisen, wenn das jeweils den Ausgangspunkt der Schmiedeverformung bildende Halbzeug für das Schmieden auf eine Schmiedetemperatur von mehr als 1150 °C erwärmt wird.To reduce the forming forces, it may also be in the course of the inventive method with a view to minimizing the required forging forces prove to be advantageous if the respectively the starting point of forging deformation forming semi-finished forging is heated to a forging temperature of more than 1150 ° C.
Eine weitere Einstellung der mechanischen Eigenschaften, insbesondere die Festigkeit und Zähigkeit, der aus erfindungsgemäßem Stahl warmgeformten, insbesondere geschmiedeten Bauteile kann mittels einer Anlassbehandlung erfolgen, bei der das jeweilige Teil über eine Anlassdauer von 0,5 - 2 h im Temperaturintervall von 180 - 375 °C gehalten wird.A further adjustment of the mechanical properties, in particular the strength and toughness, of the hot-formed steel according to the invention, in particular forged components can be carried out by means of a tempering treatment in which the respective part over a tempering time of 0.5 - 2 h in the temperature range of 180 - 375 ° C is held.
In der Praxis lassen sich beim erfindungsgemäßen Stahl zuverlässig Zugfestigkeiten von mindestens 950 MPa, eine Streckgrenze von mindestens 750 MPa, und eine Bruchdehnung A von mindestens 15 %, wobei sich in der Praxis zeigt, dass regelmäßig sogar noch höhere Dehnwerte A von mindestens 17 % erreicht werden. Diese Eigenschaftkombination bei aus erfindungsgemäßem Stahl bestehenden Schmiedestücken insbesondere dann vor, wenn sie in der erfindungsgemäßen Weise erzeugt worden sind.In practice, tensile strengths of at least 950 MPa, a yield strength of at least 750 MPa, and an elongation at break A of at least 15% can be reliably determined in the steel according to the invention, with it being found in practice that even higher elongation values A of at least 17% are regularly achieved become. This combination of properties in existing from steel according to the invention forgings, especially if they have been produced in the manner according to the invention.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.The invention will be explained in more detail by means of exemplary embodiments.
Es wurden erfindungsgemäße Stahlschmelzen E1 - E6 und eine Vergleichsschmelze V1 mit den in Tabelle 1 angegebenen Zusammensetzungen erschmolzen und zu Halbzeugen vergossen, bei denen es sich um Blöcke handelte, wie sie üblicherweise für die schmiedetechnische Weiterverarbeitung zur Verfügung gestellt werden.Steel melts E1-E6 according to the invention and a comparative melt V1 having the compositions specified in Table 1 were melted and cast into semi-finished products which were blocks, as are customarily made available for forging technology further processing.
Die Halbzeuge sind für eine Schmiedeverformung auf eine Wärmtemperatur Tw durcherwärmt, anschließend in konventioneller Weise durch Gesenkschmieden zu Schmiedestücken warmumgeformt und dann an Luft auf Raumtemperatur abgekühlt worden. Bei einigen der erhaltenen Schmiedeteile ist anschließend eine Anlassbehandlung durchgeführt worden.The semi-finished products are heated to a forging temperature Tw for a forging temperature, then thermoformed in a conventional manner by drop forging to forgings and then in air cooled to room temperature. For some of the obtained forgings a tempering treatment was then carried out.
In Tabelle 2 sind die bei den Beispielen angewendeten Wärmetemperaturen Tw, die jeweils für den Durchlauf des kritischen Temperaturbereichs von 800 - 500 °C benötigte t8/5-Zeit, die Temperatur und Dauer der Anlassbehandlung, sofern eine solche durchgeführt worden ist, sowie der Bainitanteil im Gefüge, die Zugfestigkeit Rm, die Streckgrenze Re, die Dehnung A und die Kerbschlagarbeit W des nach dem Schmieden erhaltenen Schmiedestücks angegeben.In Table 2, the heat temperatures used in the examples are Tw, the t8 / 5 time required for the passage of the critical temperature range of 800-500 ° C, the temperature and duration of the tempering treatment, if any, and the bainite content in the microstructure, the tensile strength Rm, the yield strength Re, the elongation A and the impact energy W of the forging obtained after forging indicated.
Die Beispiele zeigen, dass sich bei Einhaltung der erfindungsgemäßen Vorgaben Schmiedestücke herstellen lassen, die es erlauben, die bei ihrer Erzeugung eingestellten Betriebsparameter über eine große Bandbreite zu variieren und dabei zuverlässig warmgeformte Bauteile mit optimierten mechanischen Eigenschaften zu erhalten.
(1): %Al/27 + %Nb/45 + %Ti/48 + %V/25
(2): %N/3,75
(1):% Al / 27 +% Nb / 45 +% Ti / 48 +% V / 25
(2):% N / 3.75
Claims (15)
besteht und
der Al-Gehalt %Al, der Nb-Gehalt %Nb, der Ti-Gehalt %Ti, der V-Gehalt %V und der N-Gehalt %N des Edelbaustahls jeweils folgende Bedingung erfüllen:
%Al/27 + %Nb/45 + %Ti/48 + %V/25 > %N/3,75
Noble structural steel with a yield strength of at least 750 MPa, a tensile strength of at least 950 MPa and a microstructure consisting of at least 80% by volume of bainite and not more than 20% by volume of retained austenite, ferrite, pearlite and / or martensite where the steel is (in% by weight)
exists and
the Al content% Al, the Nb content% Nb, the Ti content% Ti, the V content% V and the N content% N of the noble structural steel each satisfy the following condition:
% Al / 27 +% Nb / 45 +% Ti / 48 +% V / 25>% N / 3.75
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK15194741.3T DK3168312T3 (en) | 2015-11-16 | 2015-11-16 | Structural steel with bainitic structure, forging blank made therefrom and method for producing a forging blank |
PL15194741T PL3168312T3 (en) | 2015-11-16 | 2015-11-16 | Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part |
PT15194741T PT3168312T (en) | 2015-11-16 | 2015-11-16 | Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part |
ES15194741T ES2733805T3 (en) | 2015-11-16 | 2015-11-16 | Structural fine steel with bainitic structure, forged part manufactured from it and procedure for manufacturing a forged part |
EP15194741.3A EP3168312B1 (en) | 2015-11-16 | 2015-11-16 | Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part |
RU2018121935A RU2703085C1 (en) | 2015-11-16 | 2016-11-15 | Structural steel with bainitic structure, obtained from it forged parts and method of forged part production |
JP2018521262A JP6616501B2 (en) | 2015-11-16 | 2016-11-15 | Industrial steel materials having a bainite structure, forged parts produced from the steel materials, and methods for producing forged parts |
CN201680069274.3A CN108474049B (en) | 2015-11-16 | 2016-11-15 | High-quality structural steel having a bainitic microstructure, forged part produced therefrom and method for producing forged part |
KR1020187014749A KR102178736B1 (en) | 2015-11-16 | 2016-11-15 | High-grade structural steel with bainite structure, high-grade structural steel with bainite structure, and method for manufacturing forgings and forgings |
PCT/EP2016/077761 WO2017085072A1 (en) | 2015-11-16 | 2016-11-15 | High-grade structural steel with bainitic structure, forged part produced therefrom and method for producing a forged part |
CA3005378A CA3005378C (en) | 2015-11-16 | 2016-11-15 | Engineering steel with a bainitic structure, forged parts produced therefrom and method for producing a forged part |
US15/773,745 US20180327873A1 (en) | 2015-11-16 | 2016-11-15 | Engineering Steel with a Bainitic Structure, Forged Parts Produced Therefrom and Method for Producing a Forged Part |
UAA201806486A UA121604C2 (en) | 2015-11-16 | 2016-11-15 | STRUCTURAL STEEL WITH BAINETIC STRUCTURE, FORGED PARTS MADE FROM IT, AND METHOD OF OBTAINING THE FORGED PART |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15194741.3A EP3168312B1 (en) | 2015-11-16 | 2015-11-16 | Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3168312A1 true EP3168312A1 (en) | 2017-05-17 |
EP3168312B1 EP3168312B1 (en) | 2019-04-10 |
Family
ID=54695477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15194741.3A Active EP3168312B1 (en) | 2015-11-16 | 2015-11-16 | Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part |
Country Status (13)
Country | Link |
---|---|
US (1) | US20180327873A1 (en) |
EP (1) | EP3168312B1 (en) |
JP (1) | JP6616501B2 (en) |
KR (1) | KR102178736B1 (en) |
CN (1) | CN108474049B (en) |
CA (1) | CA3005378C (en) |
DK (1) | DK3168312T3 (en) |
ES (1) | ES2733805T3 (en) |
PL (1) | PL3168312T3 (en) |
PT (1) | PT3168312T (en) |
RU (1) | RU2703085C1 (en) |
UA (1) | UA121604C2 (en) |
WO (1) | WO2017085072A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3591081A1 (en) | 2018-07-05 | 2020-01-08 | Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG | Use of a steel for producing a steel component, namely for a gearwheel, a shaft, an axle or a tool holder to a thermochemically cured edge layer and such steel component having a thermochemically cured edge layer |
EP3591078A1 (en) | 2018-07-05 | 2020-01-08 | Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG | Use of a steel for an additive production method, method for producing a steel component and steel component |
CZ308108B6 (en) * | 2018-07-20 | 2020-01-08 | Univerzita Pardubice | Bainitic steel with increased contact-fatigue resistance |
CN111041344A (en) * | 2019-10-23 | 2020-04-21 | 舞阳钢铁有限责任公司 | High-strength-toughness low-yield-ratio easy-to-weld fixed offshore structure steel plate and production method thereof |
CN115094350A (en) * | 2022-07-13 | 2022-09-23 | 江油市长祥特殊钢制造有限公司 | Preparation method of nuclear power SA182F316L valve body forging |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021009543A1 (en) * | 2019-07-16 | 2021-01-21 | Arcelormittal | Method for producing a steel part and steel part |
CN110527912A (en) * | 2019-09-24 | 2019-12-03 | 王平 | A kind of preparation of the high tough weather-proof refractory alloy structural steel of smelting laterite-nickel ores |
CN111394661B (en) * | 2020-04-30 | 2021-07-27 | 西京学院 | A kind of preparation technology of low-alloy high-strength-toughness Mape composite phase steel |
CN115491605B (en) * | 2022-09-27 | 2023-03-31 | 东风商用车有限公司 | Bainite steel for hot forging, process, device and system for manufacturing hot forged parts |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0787812B1 (en) | 1996-02-08 | 2004-03-17 | ASCOMETAL (Société anonyme) | Process for manufacturing steel forging |
EP1408131A1 (en) * | 2002-09-27 | 2004-04-14 | CARL DAN. PEDDINGHAUS GMBH & CO. KG | Steel composition and forged workpieces made thereof |
EP1780293A2 (en) * | 2005-10-28 | 2007-05-02 | Saarstahl AG | Procedure for manufacturing of steel starting material by warm deforming |
US20140283954A1 (en) * | 2013-03-22 | 2014-09-25 | Caterpiller Inc. | Bainitic microalloy steel with enhanced nitriding characteristics |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4394187A (en) * | 1981-02-25 | 1983-07-19 | Sumitomo Metal Industries, Ltd. | Method of making steels which are useful in fabricating pressure vessels |
JPH05287439A (en) * | 1992-04-07 | 1993-11-02 | Nippon Steel Corp | Mo-V super high strength ERW steel pipe with excellent ductility |
JPH0741856A (en) * | 1993-07-28 | 1995-02-10 | Nkk Corp | Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance |
JP3241897B2 (en) * | 1993-10-12 | 2001-12-25 | 新日本製鐵株式会社 | Non-heat treated steel for hot forging with excellent tensile strength, fatigue strength and machinability |
JP3300500B2 (en) * | 1993-10-12 | 2002-07-08 | 新日本製鐵株式会社 | Method for producing hot forging steel excellent in fatigue strength, yield strength and machinability |
CN1163942A (en) * | 1996-02-08 | 1997-11-05 | 阿斯克迈塔尔公司 | Steel for manufacturing forgings and method for manufacturing forgings |
FR2757877B1 (en) * | 1996-12-31 | 1999-02-05 | Ascometal Sa | STEEL AND PROCESS FOR THE MANUFACTURE OF A SHAPED STEEL PART BY COLD PLASTIC DEFORMATION |
JP3854807B2 (en) * | 2001-03-08 | 2006-12-06 | 株式会社神戸製鋼所 | High tensile steel plate with excellent weldability and uniform elongation |
JP3901994B2 (en) * | 2001-11-14 | 2007-04-04 | 新日本製鐵株式会社 | Non-tempered high-strength and high-toughness forged product and its manufacturing method |
JP3668713B2 (en) * | 2001-11-26 | 2005-07-06 | 株式会社神戸製鋼所 | High tensile steel plate with excellent weldability and uniform elongation |
FR2847273B1 (en) * | 2002-11-19 | 2005-08-19 | Usinor | SOLDERABLE CONSTRUCTION STEEL PIECE AND METHOD OF MANUFACTURE |
JP4174041B2 (en) * | 2004-08-06 | 2008-10-29 | 新日本製鐵株式会社 | Method for producing welding steel having a tensile strength of 1150 MPa or more |
US7214278B2 (en) * | 2004-12-29 | 2007-05-08 | Mmfx Technologies Corporation | High-strength four-phase steel alloys |
JP5472423B2 (en) * | 2005-03-29 | 2014-04-16 | Jfeスチール株式会社 | High-strength, high-toughness steel plate with excellent cutting crack resistance |
EP2123787A1 (en) * | 2008-05-06 | 2009-11-25 | Industeel Creusot | High-grade steel for massive parts. |
JP5176885B2 (en) * | 2008-11-10 | 2013-04-03 | 新日鐵住金株式会社 | Steel material and manufacturing method thereof |
JP5729803B2 (en) * | 2010-05-27 | 2015-06-03 | 株式会社神戸製鋼所 | High-tensile steel plate and manufacturing method thereof |
CN102337478B (en) * | 2010-07-15 | 2012-11-14 | 宝山钢铁股份有限公司 | Excellent 100 kg-grade quenched and tempered steel plate with strong toughness and plasticity, and manufacturing method thereof |
KR20130083925A (en) * | 2011-05-26 | 2013-07-23 | 신닛테츠스미킨 카부시키카이샤 | Steel component for mechanical structural use and manufacturing method for same |
KR20130081312A (en) * | 2011-05-26 | 2013-07-16 | 신닛테츠스미킨 카부시키카이샤 | Steel component for mechanical structural use and manufacturing method for same |
JP2013104124A (en) * | 2011-11-16 | 2013-05-30 | Jfe Steel Corp | Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same |
-
2015
- 2015-11-16 PT PT15194741T patent/PT3168312T/en unknown
- 2015-11-16 ES ES15194741T patent/ES2733805T3/en active Active
- 2015-11-16 PL PL15194741T patent/PL3168312T3/en unknown
- 2015-11-16 EP EP15194741.3A patent/EP3168312B1/en active Active
- 2015-11-16 DK DK15194741.3T patent/DK3168312T3/en active
-
2016
- 2016-11-15 CN CN201680069274.3A patent/CN108474049B/en active Active
- 2016-11-15 RU RU2018121935A patent/RU2703085C1/en active
- 2016-11-15 KR KR1020187014749A patent/KR102178736B1/en active IP Right Grant
- 2016-11-15 UA UAA201806486A patent/UA121604C2/en unknown
- 2016-11-15 CA CA3005378A patent/CA3005378C/en active Active
- 2016-11-15 US US15/773,745 patent/US20180327873A1/en not_active Abandoned
- 2016-11-15 WO PCT/EP2016/077761 patent/WO2017085072A1/en active Application Filing
- 2016-11-15 JP JP2018521262A patent/JP6616501B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0787812B1 (en) | 1996-02-08 | 2004-03-17 | ASCOMETAL (Société anonyme) | Process for manufacturing steel forging |
DE69728076T2 (en) | 1996-02-08 | 2004-08-05 | Ascometal (S.A.) | Manufacturing process of a steel forging |
EP1408131A1 (en) * | 2002-09-27 | 2004-04-14 | CARL DAN. PEDDINGHAUS GMBH & CO. KG | Steel composition and forged workpieces made thereof |
EP1546426B1 (en) | 2002-09-27 | 2008-04-09 | CDP Bharat Forge GmbH | Steel composition and parts forged by a forging die |
EP1780293A2 (en) * | 2005-10-28 | 2007-05-02 | Saarstahl AG | Procedure for manufacturing of steel starting material by warm deforming |
US20140283954A1 (en) * | 2013-03-22 | 2014-09-25 | Caterpiller Inc. | Bainitic microalloy steel with enhanced nitriding characteristics |
Non-Patent Citations (1)
Title |
---|
CHRISTOPH KEUL ET AL.: "Schmiede-Journal", September 2010, article "Entwicklung eines hochfesten duktilen bainitischen (HDB) Stahls für hochbeanspruchte Schmiedebauteile" |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3591081A1 (en) | 2018-07-05 | 2020-01-08 | Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG | Use of a steel for producing a steel component, namely for a gearwheel, a shaft, an axle or a tool holder to a thermochemically cured edge layer and such steel component having a thermochemically cured edge layer |
EP3591078A1 (en) | 2018-07-05 | 2020-01-08 | Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG | Use of a steel for an additive production method, method for producing a steel component and steel component |
CZ308108B6 (en) * | 2018-07-20 | 2020-01-08 | Univerzita Pardubice | Bainitic steel with increased contact-fatigue resistance |
CN111041344A (en) * | 2019-10-23 | 2020-04-21 | 舞阳钢铁有限责任公司 | High-strength-toughness low-yield-ratio easy-to-weld fixed offshore structure steel plate and production method thereof |
CN115094350A (en) * | 2022-07-13 | 2022-09-23 | 江油市长祥特殊钢制造有限公司 | Preparation method of nuclear power SA182F316L valve body forging |
CN115094350B (en) * | 2022-07-13 | 2023-01-24 | 江油市长祥特殊钢制造有限公司 | Preparation method of nuclear power SA182F316L valve body forging |
Also Published As
Publication number | Publication date |
---|---|
JP6616501B2 (en) | 2019-12-04 |
RU2703085C1 (en) | 2019-10-15 |
PL3168312T3 (en) | 2019-09-30 |
KR102178736B1 (en) | 2020-11-13 |
UA121604C2 (en) | 2020-06-25 |
CA3005378C (en) | 2020-07-14 |
CN108474049B (en) | 2021-01-08 |
JP2019501280A (en) | 2019-01-17 |
KR20180071357A (en) | 2018-06-27 |
WO2017085072A1 (en) | 2017-05-26 |
CA3005378A1 (en) | 2017-05-26 |
PT3168312T (en) | 2019-07-16 |
US20180327873A1 (en) | 2018-11-15 |
ES2733805T3 (en) | 2019-12-03 |
DK3168312T3 (en) | 2019-07-01 |
CN108474049A (en) | 2018-08-31 |
EP3168312B1 (en) | 2019-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3168312B1 (en) | Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part | |
DE69427189T3 (en) | HIGH-RESISTANCE, ABRASIVE-RESISTANT RAIL WITH PERLIT STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF | |
DE102008051992B4 (en) | Method for producing a workpiece, workpiece and use of a workpiece | |
EP3083239B1 (en) | Flat steel product for components of a car body for a motor vehicle | |
EP3591078B1 (en) | Use of a steel for an additive production method, method for producing a steel component and steel component | |
DE69911732T2 (en) | HIGH-STRENGTH, HIGH-SPEED ROLLED STEEL AND METHOD FOR PRODUCING THE SAME | |
DE69224562T2 (en) | Process for the production of steel bars for cold working | |
EP1780293B1 (en) | Procedure for manufacturing of steel starting material by warm deforming | |
EP2905348B1 (en) | High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product | |
DE60300561T3 (en) | Process for producing a hot-rolled steel strip | |
EP3797176A1 (en) | Shaped sheet-metal part with a high tensile strength formed from a steel and method for the production thereof | |
EP2924140A1 (en) | Method for manufacturing a high strength flat steel product | |
DE69529563T2 (en) | High-strength steel alloy with improved low-temperature toughness | |
DE112016005223T5 (en) | Non-tempered wire rod with excellent cold workability and manufacturing method thereof | |
DE69418565T2 (en) | HEAT-UNTREATED STEEL FOR HOT FORGING, METHOD FOR PRODUCING A FORGING PIECE MADE THEREOF AND A FORGING PIECE | |
DE2800444C2 (en) | Use of a Cr-Mo steel | |
DE112006003553B4 (en) | Thick steel plate for a welded construction having excellent strength and toughness in a central region of thickness and small property changes by its thickness and production process therefor | |
WO2021032893A1 (en) | Tool steel for cold-working and high-speed applications | |
DE60315339T2 (en) | WELDABLE STEEL COMPONENT AND MANUFACTURING METHOD THEREFOR | |
DE19920324B4 (en) | Use of a steel with excellent fracture splittability and fatigue strength in connecting rods | |
EP1398390B1 (en) | Steel with a very fine ferritic and martensitic microstructure having a high tensile strength | |
DE112008001181B4 (en) | Use of a steel alloy for axle tubes and axle tube | |
DE60009620T2 (en) | Production process of high-strength H-steel profiles | |
DE4125648A1 (en) | HIGH TOE, UNCOVERED STEEL AND METHOD FOR THEIR PRODUCTION | |
WO2020038883A1 (en) | Hot-rolled non-heat-treated and hot-rolled heat-treated flat steel product and method for the production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170920 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180122 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DEUTSCHE EDELSTAHLWERKE SPECIALTY STEEL GMBH & CO. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180912 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190207 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1118713 Country of ref document: AT Kind code of ref document: T Effective date: 20190415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015008616 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20190624 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3168312 Country of ref document: PT Date of ref document: 20190716 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20190410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190711 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2733805 Country of ref document: ES Kind code of ref document: T3 Effective date: 20191203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190810 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015008616 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20191120 Year of fee payment: 5 Ref country code: NL Payment date: 20191119 Year of fee payment: 5 Ref country code: FI Payment date: 20191119 Year of fee payment: 5 Ref country code: SE Payment date: 20191119 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20191121 Year of fee payment: 5 Ref country code: BE Payment date: 20191122 Year of fee payment: 5 |
|
26N | No opposition filed |
Effective date: 20200113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20191119 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191116 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP Ref country code: DK Ref legal event code: EBP Effective date: 20201130 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20201201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151116 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201116 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201117 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20211011 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20221116 Year of fee payment: 8 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20231024 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221116 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241126 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241126 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241126 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20241127 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241127 Year of fee payment: 10 Ref country code: ES Payment date: 20241220 Year of fee payment: 10 |