EP3130203B1 - Configuring a plurality of sensor devices of a structure - Google Patents
Configuring a plurality of sensor devices of a structure Download PDFInfo
- Publication number
- EP3130203B1 EP3130203B1 EP15773366.8A EP15773366A EP3130203B1 EP 3130203 B1 EP3130203 B1 EP 3130203B1 EP 15773366 A EP15773366 A EP 15773366A EP 3130203 B1 EP3130203 B1 EP 3130203B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor
- devices
- fixed
- mobile computing
- computing device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 claims description 48
- 230000001419 dependent effect Effects 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 27
- 230000004936 stimulating effect Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 12
- 230000007613 environmental effect Effects 0.000 claims description 9
- 230000000638 stimulation Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 238000012790 confirmation Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/19—Controlling the light source by remote control via wireless transmission
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/196—Controlling the light source by remote control characterised by user interface arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/198—Grouping of control procedures or address assignation to light sources
- H05B47/199—Commissioning of light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/115—Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
- H05B47/13—Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by using passive infrared detectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Definitions
- the described embodiments relate generally to a structure plan of a structure. More particularly, the described embodiments relate to apparatuses, methods and systems for configuring a plurality of sensor devices of a structure, and placement of the sensor devices on floor plan of the structure.
- Lighting control can be used to automatically control lighting under certain conditions, thereby conserving power.
- lighting control specifically advanced lighting controls have not been widely adopted in the general commercial market because the installation, setup related costs and complexity have made these lighting systems prohibitively expensive for most commercial customers.
- US 2014/031987 A1 discloses a method for configuring a set of devices of a structure.
- the method includes loading a structure plan to a mobile computing device, wherein the structure plan is associated with the structure, communicating, by the mobile computing device, with one or more of the set of devices, communicating, by each of the one or more of the set of devices, a device identifier and proximity dependent information of the device back to the mobile computing device, wherein the proximity dependent information allows the mobile computing device to estimate a proximate location of the device, and placing, by the mobile computing device, each of the one or more of the set of devices on the structure floor plan based at least in part on the proximity dependent information.
- a method of commissioning a set of fixed devices of a structure includes communicating through a communication channel, by a radio of a mobile computing device, with one or more of the set of fixed devices, wherein the set of fixed devices each have a fixed location within the structure, stimulating, by the mobile computing device, a sensor of the one or more of the set of fixed devices, communicating through the communication channel, by each of the one or more of the set of fixed devices, a device identifier upon the sensor of the one or more of the set of fixed devices having been stimulated by the mobile computing device, and placing each of the one or more of the set of fixed devices on a floor plan of the structure based at least in part on proximity dependent information of the one or more of the set of fixed devices.
- the sensor includes a power metering device of the one or more of the set of fixed devices, wherein stimulating the sensor comprises loading the power metering device with a particular type of load, so that the identification of the devices belonging to the structure can be improved.
- a system includes a plurality of fixed sensor units and a mobile device.
- the mobile device is operative to communicate through a communication channel with one or more of the plurality of fixed sensor units, wherein the plurality of fixed sensor units each have a fixed location within a structure.
- the system further includes a processor operative to place each of the one or more of the plurality of fixed sensor units on a floor plan of a structure based at least in part on proximity dependent information of the one or more of the plurality of fixed sensor units.
- the one or more of the plurality of fixed sensor units Upon a sensor of the one or more of the plurality of fixed sensor units receiving stimulation from the mobile device, the one or more of the plurality of fixed sensor units communicate a device identifier through the communication channel after receiving the stimulation from the mobile device, wherein the sensor includes a power metering device of the one or more of the plurality of fixed sensor units, wherein stimulating the sensor comprises loading the power metering device with a particular type of load, so that the identification of the specific devices belonging to the structure can be improved.
- the described embodiments are embodied in an apparatuses, systems and methods of placing devices (such as, lighting fixtures, temperature control devices, power receptacles or other devices that include a sensor) on a plan (such as, a floor plan) of a structure (such as a building).
- the devices being placed on the plan each include a sensor that is stimulated.
- at least one device Upon receiving the stimulation, at least one device communicates a device identifier. Based on the device identifier and proximity dependent information of the device, the device is placed on a plan of a structure in which the devices are located.
- the stimulation of the sensor of the at least one device is performed by a mobile device (or other type of computing device).
- Various embodiments include different types of stimulus, such as, radio frequency (RF) communication with the device, light stimulus of a light sensor, motion stimulus of a motion or sound sensor, temperature stimulus of a temperature sensor, and/or loading of a loading sensor (such as, a power meter) of the device.
- RF radio frequency
- Figure 1A shows a mobile computing device 112 downloading a plan of a structure from a central server (or backend server) 110, according to an embodiment.
- the structure can include, for example, a building, a parking lot, or any other structure that might include lighting devices or any other devices, such as, temperature and environmental control units. While this embodiment includes the plan (for example, a floor plan) being downloaded to the mobile computing device 112, it is to be understood that other embodiments include the floor plan being retained at a central or backend server.
- the plan provides for placement of the devices, but may not include exact or precise knowledge of which devices are placed at which location within the structure. That is, for example, the plan may provide approximate location of a device, but may not include information of which device is at which approximate location.
- the mobile computing device can use this information as a first data point in determining the precise locations of each of the devices within the structure.
- Figure IB shows a mobile computing device collecting information about devices within a structure, and placing the devices on the downloaded plan of the structure, according to an embodiment.
- the mobile device can include, for example, a smart mobile phone (such as an iPhone) or a laptop personal computer (which possibly include GPS capability).
- the mobile device can be used to communicate information from the mobile device to a sensor device using radio technology or other means of communications. This is, for example, to specify the location of the sensor, give a command to a sensor, and associate two or more sensors. Additionally, the mobile device can receive communications from a sensor device using radio technology or other means of communications. This allows a sensor device to be identified (and location recorded), give commands (such as direct motion), and provide results from an operation.
- a structure 100 includes devices (such as fixtures 121 - 129) that are located within or around the structure. While generally described as devices, for at least some embodiments, the devices include a variety of types of devices, such as, but not limited to, a lighting fixture, a power receptacle, a power junction box, an environmental control unit, and/or a sensor utilized for lighting or environmental control.
- a general plan, or floor plan of the structure may provide approximate placement of the devices within the structure.
- the mobile computing device 112 is transported around the structure. One exemplary path of travel is shown.
- the mobile computing device 112 communicates with one or more of the devices 121-129.
- the mobile computing device 112 includes a radio that allows the mobile computing device to communicate with each of the devices 121-129 through a communications channel utilized by, for example, the central server 110, or gateways associated with the central server 110 to communicate with the devices 121-129.
- the mobile computing device communicates with one or more of the devices by stimulating a sensor of the one or more devices, rather than communicating through the communications channel.
- the mobile computing device communicates with one or more of the devices by stimulating a power load sensor (by, for example, loading the power load sensor with a specified load) of the one or more devices, rather than communicating through the communications channel.
- the mobile computing device 112 transmits a communications signal that is received by one or more of the devices 121-129.
- the devices 121-129 respond to the communication or communications signal from the mobile computing device with a device identifier.
- the response includes communication of the device identifier to at least one of the mobile computing device and/or central server (alternatively referred to as a backend server) 110.
- the devices 121-129 respond to the communications signal with a device identifier and proximity dependent information.
- the device identifier includes a MAC (media access control) address of the device.
- the proximity dependent information includes a Link Quality Indicator (LQI) of the received communication signal.
- the LQI includes, for example, a received signal strength indicator (RSSI) that provides an indication of how close the mobile computing device is to the particular device.
- RSSI received signal strength indicator
- the proximity dependent information is communicated from the mobile computing device. That is, owing to the fact that the mobile computing device has just stimulated the sensor of one or more devices, the mobile computing device is proximate to the one or more devices. As such, an embodiment includes approximating the location of the device based on the location of the mobile computing device.
- the transmit power of the mobile device is varied which adjusts, the size of the set of responding devices. For example, by sufficiently reducing the transmit power of the mobile device, only the nearest device or devices (to the mobile device) will respond, a procedure which may further augment the process of locating a device on a floor plan. That is, for example, by varying the transmit power, an LQI list generated by the responding devices can be adjusted in length (that is, the number of responding devices is adjusted).
- At least some embodiments include adjusting the timing of the response of the devices. By adjusting the timing of the response of the devices, congestion due to near simultaneous responses can be alleviated.
- the response times of the devices is randomly selected.
- the response time of each device is selected based at least in part on a MAC (media access control) address of the device. For example, the response time of each device can be selected based on the last bit or byte of the MAC address of the device.
- MAC media access control
- a user that is operating the mobile computing device has a visual of the devices the mobile computing device is communicating with, but this is not required.
- the mobile computing device can attempt to place each of the devices on the plan or floor plan based on the proximity dependent information. For example, typically the device responding with the highest or best LQI is the device located most proximate to the mobile computing device. Therefore, the mobile computing device can place the device on the plan based on this information.
- the mobile computing device (or a user of the mobile computing device) can confirm the placement by sending a message to a specifically placed device using the device identification (such as, MAC address).
- the message indicates to the specific device to provide a user observable indicator.
- the user observable indicator can be visual, audible or any other means that allows for the mobile computing device or a user of the mobile computing device to confirm the indicator.
- the mobile computing device can confirm the placement of the device on the plan or floor plan.
- One embodiment includes sending a command to the target device to identify itself, after which the device responds with a visual or audio or other signal.
- an embodiment includes a bulk process that includes instructing each device in a floor plan, selected in an order (for an embodiment, the order includes a serpentine order), to respond and identify itself.
- the serpentine order proceeds down one row of devices, verifying each device at a time, and when the last device in the row is processed, the last device on the next row is selected. This procedure ensures that the next device to be verified is physically close to the prior device. The process continues automatically and un-attended until all devices have been verified.
- at least some embodiment include capabilities to issue wireless commands to all devices to turn off/on the light simultaneously, or selected devices from the software user interface to do the same.
- Figure 2A shows a mobile computing device 112 uploading a plan of a structure that includes placement of devices of the structure, to a central server 110, according to an embodiment. After going through the described process of placing the devices of the structure on the plan, for an embodiment, the plan is then uploaded to the central server 110. The central server now has placement of each of the devices within the structure, and the device identifier (MAC address) of the device.
- MAC address device identifier
- FIG. 2B shows a central server 110 communicating with the devices 121-129 of the structure 100 after the devices 121-129 have been placed in the structure, according to an embodiment.
- the central server (backend server) 110 is network connected to gateways 240, 242.
- the central server 110 includes a user interface 212 that provides user control.
- the gateways 240, 242 then communicate with the devices 121-129.
- Some of the devices 121-129 will naturally be located farther away, or otherwise have inferior quality links to the gateways 240, 242. Accordingly, for an embodiment, certain of the devices are designated as repeater devices.
- certain of the devices are designated as repeater devices based on the proximity of the devices to gateways and other device as determined by the placement of the devices and gateways on the plan or floor plan.
- device 128 is designated as a repeater device.
- gateway 240 communicates with device 123
- the gateway 240 communicated through the repeater device 128 to the device 123.
- Figure 3 is a flow chart that includes steps of a method of commissioning a set of devices of a structure.
- a first step 310 includes communicating, by a mobile computing device, with one or more of the set of devices.
- a second step 320 includes communicating, by each of the one or more of the set of devices, a device identifier.
- a third step 330 includes placing each of the one or more of the set of devices on a floor plan of the structure based at least in part on proximity dependent information of the device.
- the proximity dependent information allows an estimation of a proximate location of the device.
- the proximity dependent information is communicated by each of the one or more of the set of devices.
- the proximity dependent information is communicated by the mobile device.
- a backend server receives the communicating, by each of the one or more of the set of devices, the device identifier, and the backend server places each of the one or more of the set of devices on the floor plan of the structure based at least in part on proximity dependent information of the device.
- At least some embodiments further include loading the floor plan to the mobile computing device, wherein the floor plan is associated with the structure.
- the communicating, by each of the one or more of the set of devices, the device identifier includes communication back to the mobile computing device the device identifier and proximity dependent information, wherein the proximity dependent information allows the mobile computing device to an estimate a proximate location of the device.
- communicating with one or more of the set of devices includes stimulating a sensor of the one or more of the set of devices, wherein the stimulation is provided by the mobile device.
- the sensor of the one or more devices includes a power metering device.
- stimulating the sensor comprises loading the power metering device with a particular type of load. That is, a sensor includes a power meter that is included within a power receptacle. The power meter senses the amount of power being provided by the power receptacle. Therefore, the mobile device is able to communicate with device (power receptacle) be plugging in a load that has a predetermined characteristic. For example, the mobile computing device can provide a highly capacitive load that is identifiable by the device (power receptacle). Once receiving the identifiable load, the device communicates its unique identifier so that is location can be approximated.
- the senor includes at least one of a PIR sensor, an ambient sensor or a temperature sensor.
- the list of possible sensors and possible methods of stimulating the sensor are not to be limited as described. Alternate methods of communicating between the mobile computing device and the sensor of the one or more devices can be realized.
- the senor includes an RGB (red, green and blue) ambient sensor
- the communicating, by a mobile computing device, with one or more of the set of devices comprises the mobile computing device stimulating RGB ambient sensor with a particular color of emitted light.
- the one or more of the set of devices includes at least one of a lighting fixture, a power receptacle, a power junction box, an environmental control unit, or a sensor utilized for lighting or environmental control.
- the method of Figure 3 is implemented on or within a system.
- the system includes a plurality of sensor units (such as the previously described devices that include sensors), and a mobile device, wherein the mobile device is operative to communicate with one or more of the plurality of sensor units.
- the mobile device Upon receiving the communication from the mobile device, the one or more of the plurality of sensor units communicate a device identifier.
- the system includes a processor operative to place each of the one or more of the plurality of sensor units on a floor plan of a structure based at least in part on proximity dependent information of the device.
- the mobile device includes the processor, and wherein the mobile device is further operative to receive the floor plan, receive the device identifier from the one or more of the plurality of sensor units, and place each of the one or more of the plurality of sensor units on the floor plan of the structure based at least in part on proximity dependent information of the device.
- a backend server includes the processor, and wherein the backend server is operative to receive the device identifier from the one or more of the plurality of sensor units, and place each of the one or more of the plurality of sensor units on the floor plan of the structure based at least in part on proximity dependent information of the device.
- Figure 4 is a flow chart that includes steps of a method of configuring a set of devices of a structure, according to an embodiment.
- a first step 410 includes loading a structure plan to a mobile computing device, wherein the structure plan is associated with the structure.
- a second step 420 includes communicating, by the mobile computing device, with one or more of the set of devices.
- a third step 430 includes communicating, by each of the one or more of the set of devices, a device identifier and proximity dependent information the device back to the mobile computing device, wherein the proximity dependent information allows the mobile computing device to estimate a proximate location of the device.
- a fourth step 440 includes placing, by the mobile computing device, each of the one or more of the set of devices on the structure floor plan based at least in part on the proximity dependent information.
- An embodiment further includes each of the one or more of the set of devices, communicating an observable feedback to an operator of the mobile computing device.
- the observable feedback can be visual, audible, or any other means of feedback that the user of the mobile computing device, or the mobile computing device itself can receive, and therefore, confirm placement of the device providing the observable feedback.
- the mobile computing device includes a user interface that more readily allows the user of the mobile computing device to confirm locations of each of the devices.
- the user interface of the mobile computing device provides an in-range list of devices.
- the in-range list includes the devices that are within the communication range of, for example, wireless communication from the mobile computing device to the devices.
- the list of devices of the in-range list are listed in an estimated order of proximity to the mobile computing device. The proximity can be estimated, for example, based on the link quality between the mobile computing device and each of the devices.
- the user interface allows the user to select a device from the list, and further, communicate a command to the device, wherein the device provides a user-observable feedback in response to being selected. Further, the user interface can easily allow the user to then select the next device of the list for placement confirmation.
- the mobile computing device then uploads the placement of each of the one or more of the set of devices on the structure floor plan to a central server.
- An embodiment can further include the central server confirming or supplementing the placements of one or more of the set of devices on the structure floor plan through activation of a user-selected device of the one or more of the set of device.
- An embodiment further includes providing a user-interface that depicts at least a portion of the structure floor plan and at least a portion of the set of devices, and further depicts the user-selected device, and further facilitates communication to the user-selected device.
- An embodiment further includes providing a capability to record meta data and other information (such as diagnostic data) about each device on a floorplan, either in the mobile device or central server or both.
- This capability enables, for example, a "punchlist" (a list of diagnostic problems) of the sensor devices to be created and maintained, which will simplify the repair process and overall maintenance of the sensor devices. That is, the responses of the devices to the communication by the mobile device can include information related to the operating condition and health of the device.
- the operating condition and health information of each device can be used by a system operator to schedule maintenance of the devices.
- the operating condition and health information of each device can be used to identify problem conditions associated with the devices.
- the mobile computing device communicates with the one or more of the set of devices through a wireless channel that a central server or a gateway uses to communicate with each of the set of devices. This saves resources because each of the devices already has the electronics required to communicate with the central server or gateways connected to the central server. That is, an extra channel for communication between the mobile computing device and each device is not required. An existing communication channel is utilized.
- the mobile computing device receives a device identifier and proximity dependent information back from the devices.
- the proximity dependent information includes a received signal strength of communication received by the device.
- the proximity dependent information includes a Link Quality Indicator of communication received by the device.
- the device identifier includes a MAC address of the device.
- an embodiment further includes designating at least a portion of the set of devices as repeater devices, wherein repeater devices receive communication signals from either a gateway or another repeater device, and transmit the communication signals to another device.
- the gateway device is located on the floor plan, and the portion of the set of devices are designated as repeater devices based on a proximity of the portion of the set of devices relative to the gateway.
- the devices are lighting fixtures that are controllable, for example, by the central server. Further, for at least some embodiment, the lighting fixtures include sensors.
- An embodiment further includes a network setup being executed after the placement of the devices on the floor plan has been completed.
- the network setup can include associating certain devices with particular gateways, thereby establishing groups of devices.
- the central controller can then communication with particular groups through corresponding gateways.
- An embodiment further includes the central controller initiating or causing the devices to provide a sequential user observable feedback after all of the devices have been placed. That is, each device sequentially generates a user observable feedback that allows a user to confirm the placement of the devices. For example, the lighting of lighting devices can be sequentially performed to allow the user to confirm that each device has been properly placed on a floor plan of a building.
- FIG. 5 shows a power receptacle device 500, according to an embodiment.
- the power receptacle device 500 includes a receptacle output 511, a controller 520, and a transceiver 530.
- a mobile device can communicate with the power receptacle device 500 by connecting a load to the receptacle output 511.
- the power receptacle device 500 further includes a power meter 540, which for at least some embodiments characterizes the load applied or connected to the receptacle output 511.
- the power meter 540 includes a current sensor 541 that senses current conducted by the receptacle 500, and a voltage sensor 542 that senses a voltage at the power input to the receptacle 500. Further, for at least some embodiments, the power meter is operable to measure a power factor of a load connected to the receptacle output 511.
- the power receptacle device 500 determines that the mobile device is communicating with the power receptacle device 500. The sensing of this communication prompts the power receptacle device 500 to communicate an identifier of the power receptacle device 500.
- the communication of the identifier includes the power receptacle device 500 communicating the identifier to a backend server.
- the communication of the identifier includes the power receptacle device 500 communicating the identifier back to the mobile device. This communication can occur, for example, through the transceiver 530.
- the power receptacle device 500 includes a sensor 550.
- the sensor 550 can include any of the previously described sensors, or others.
- the mobile device communicates with the power receptacle device 500 through this sensor 550.
- Figure 6 shows a lighting device (lighting fixture 600), according to an embodiment.
- this embodiment includes a light 610, a light intensity controller 620, a controller 630, and a communications interface 650.
- the intensity of light emitted from the light is controlled by the light intensity controller 620 which can be of different forms depending, for example, if the light 610 is an LED (light emitting diode) or florescent light.
- the controller 630 is operative to communicate with external devices (such as, a gateway or the mobile computing device) through the communications interface 650.
- the communications interface 650 includes a wireless communication interface.
- the controller 630 is further operative to receive commands and react accordingly. For an embodiment, when the controller 630 receives a first command from the mobile computing device, the controller 630 transmits back to the mobile computing device the device identifies and proximity dependent information of the lighting fixture 600. Further the controller 630 can provide user observable feedback, thereby indicating to a user that the lighting fixture has received the first command. For an embodiment, the controller 630 is further operative to provide the user-observable feedback to the mobile computing device upon receiving communication specifically for the lighting fixture as identified by the device identifier (for example, MAC address). As described, the user-observable feedback can take one of many different forms, but one form includes controlling the intensity of emitted light, which can be observer by the user of the mobile computing device.
- the lighting device receives communication from the mobile device through a sensor 660.
- the sensor 660 can include any of the previously described sensors, or others.
- Figure 7 shows a user interface 710 of a mobile computing device that facilitates placements of the devices on the plan, according to an embodiment.
- the user interface includes at least a portion of a floor plan of a building (structure) in which placement of devices is being performed.
- the user interface can provide a visual depiction of the placed devices and their corresponding MAC addresses.
- the user can then select a device, and the mobile computing device sends the selected device a command. Upon receiving the command, the device provides the user observable feedback.
- the user interface includes a device in-range list.
- the device in-range list orders the devices according to the signal quality of the communication signal receive from the mobile computing device. It can be inferred that the devices having the best link quality are the closest or most proximate to the mobile computing device.
- the user of the mobile computing device can then select a device from the device in-range list for confirmation of placement. Once confirmation of a device has been made, the list can then move to the next device on the list for confirmation.
- the in-range list can be varies or adjusted by varying or adjusting the transmit power of the mobile device. That is, by varying the transmit power of the mobile device, the number of devices that receive the communication from the mobile device is adjusted. Accordingly, the size of number of devices of the in-range list can by controllably adjusted. Further, the response times of the devices can be adjusted.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Description
- This patent application is a continuation-in-part (CIP) of
US Patent Application No. 14/040,640, filed 09/28/2013 , which claims priority toUS Provisional Patent Application No. 61/790,037, filed 03/15/2013 US Patent Application No. 12/874,331, filed 09/02/2010 US Patent Application No. 12,584,444 filed 09/05/2009 - The described embodiments relate generally to a structure plan of a structure. More particularly, the described embodiments relate to apparatuses, methods and systems for configuring a plurality of sensor devices of a structure, and placement of the sensor devices on floor plan of the structure.
- Lighting control can be used to automatically control lighting under certain conditions, thereby conserving power. However, lighting control, specifically advanced lighting controls have not been widely adopted in the general commercial market because the installation, setup related costs and complexity have made these lighting systems prohibitively expensive for most commercial customers.
-
US 2014/031987 A1 discloses a method for configuring a set of devices of a structure. The method includes loading a structure plan to a mobile computing device, wherein the structure plan is associated with the structure, communicating, by the mobile computing device, with one or more of the set of devices, communicating, by each of the one or more of the set of devices, a device identifier and proximity dependent information of the device back to the mobile computing device, wherein the proximity dependent information allows the mobile computing device to estimate a proximate location of the device, and placing, by the mobile computing device, each of the one or more of the set of devices on the structure floor plan based at least in part on the proximity dependent information. However, it is not possible to select
specific devices so that also devices can be placed on the structure plan which do not belong to the structure. - It is desirable to improve methods, systems and apparatuses for configuring a plurality of sensor devices of a structure, and placement of the sensor devices on floor plan of the structure such that the sensor devices can be located more reliable and more secure on the structure plan and for avoiding that devices which do not belong to the structure appear on the structure plan
- The invention is defined by the independent claims, taking due account of any element which is equivalent to an element specified in the claims. The dependent claims concern optional features of some embodiments of the invention.
- According to a first aspect of the present invention, a method of commissioning a set of fixed devices of a structure is provided. The method includes communicating through a communication channel, by a radio of a mobile computing device, with one or more of the set of fixed devices, wherein the set of fixed devices each have a fixed location within the structure, stimulating, by the mobile computing device, a sensor of the one or more of the set of fixed devices, communicating through the communication channel, by each of the one or more of the set of fixed devices, a device identifier upon the sensor of the one or more of the set of fixed devices having been stimulated by the mobile computing device, and placing each of the one or more of the set of fixed devices on a floor plan of the structure based at least in part on proximity dependent information of the one or more of the set of fixed devices. The sensor includes a power metering device of the one or more of the set of fixed devices, wherein stimulating the sensor comprises loading the power metering device with a particular type of load, so that the identification of the devices belonging to the structure can be improved.
- According to a second aspect of the present invention, a system is provided. The system includes a plurality of fixed sensor units and a mobile device. The mobile device is operative to communicate through a communication channel with one or
more of the plurality of fixed sensor units, wherein the plurality of fixed sensor units each have a fixed location within a structure. The system further includes a processor operative to place each of the one or more of the plurality of fixed sensor units on a floor plan of a structure based at least in part on proximity dependent information of the one or more of the plurality of fixed sensor units. Upon a sensor of the one or more of the plurality of fixed sensor units receiving stimulation from the mobile device, the one or more of the plurality of fixed sensor units communicate a device identifier through the communication channel after receiving the stimulation from the mobile device, wherein the sensor includes a power metering device of the one or more of the plurality of fixed sensor units, wherein stimulating the sensor comprises loading the power metering device with a particular type of load, so that the identification of the specific devices belonging to the structure can be improved. - By stimulating a sensor of the one or more of the set of fixed devices, another source of proximity dependent information is made available. Furthermore, the commissioning is more secure, as another trigger for communicating back the device identifier is required.
- Other aspects and advantages of the described embodiments will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the described embodiments.
-
-
Figure 1A shows a mobile computing device downloading a plan of a structure, according to an embodiment. - Figure IB shows a mobile computing device collecting information about devices within a structure, and placing the devices on the downloaded plan of the structure, according to an embodiment.
Figure 2A shows a mobile computing device uploading a plan of a structure that includes placement of devices of the structure to a central server, according to an embodiment. -
Figure 2B shows a central server communicating with the devices of the structure after the devices have been placed in the structure, according to an embodiment. -
Figure 3 is a flow chart that includes steps of a method of commissioning a set of devices of a structure. -
Figure 4 is a flow chart that includes steps of a method of configuring a set of devices of a structure, according to an embodiment. -
Figure 5 shows a power receptacle, according to an embodiment. -
Figure 6 shows a lighting device, according to an embodiment. -
Figure 7 shows a user interface of a mobile computing device that facilitates placements of the devices on the plan, according to an embodiment. - The described embodiments are embodied in an apparatuses, systems and methods of placing devices (such as, lighting fixtures, temperature control devices, power receptacles or other devices that include a sensor) on a plan (such as, a floor plan) of a structure (such as a building). The devices being placed on the plan each include a sensor that is stimulated. Upon receiving the stimulation, at least one device communicates a device identifier. Based on the device identifier and proximity dependent information of the device, the device is placed on a plan of a structure in which the devices are located. For an embodiment, the stimulation of the sensor of the at least one device is performed by a mobile device (or other type of computing device). Various embodiments include different types of stimulus, such as, radio frequency (RF) communication with the device, light stimulus of a light sensor, motion stimulus of a motion or sound sensor, temperature stimulus of a temperature sensor, and/or loading of a loading sensor (such as, a power meter) of the device.
-
Figure 1A shows amobile computing device 112 downloading a plan of a structure from a central server (or backend server) 110, according to an embodiment. The structure can include, for example, a building, a parking lot, or any other structure that might include lighting devices or any other devices, such as, temperature and environmental control units. While this embodiment includes the plan (for example, a floor plan) being downloaded to themobile computing device 112, it is to be understood that other embodiments include the floor plan being retained at a central or backend server. - For an embodiment, the plan provides for placement of the devices, but may not include exact or precise knowledge of which devices are placed at which location within the structure. That is, for example, the plan may provide approximate location of a device, but may not include information of which device is at which approximate location. The mobile computing device can use this information as a first data point in determining the precise locations of each of the devices within the structure.
- Figure IB shows a mobile computing device collecting information about devices within a structure, and placing the devices on the downloaded plan of the structure, according to an embodiment. The mobile device can include, for example, a smart mobile phone (such as an iPhone) or a laptop personal computer (which possibly include GPS capability). The mobile device can be used to communicate information from the mobile device to a sensor device using radio technology or other means of communications. This is, for example, to specify the location of the sensor, give a command to a sensor, and associate two or more sensors. Additionally, the mobile device can receive communications from a sensor device using radio technology or other means of communications. This allows a sensor device to be identified (and location recorded), give commands (such as direct motion), and provide results from an operation.
- As shown, a
structure 100 includes devices (such as fixtures 121 - 129) that are located within or around the structure. While generally described as devices, for at least some embodiments, the devices include a variety of types of devices, such as, but not limited to, a lighting fixture, a power receptacle, a power junction box, an environmental control unit, and/or a sensor utilized for lighting or environmental control. A general plan, or floor plan of the structure may provide approximate placement of the devices within the structure. For an embodiment, themobile computing device 112 is transported around the structure. One exemplary path of travel is shown. - As the
mobile computing device 112 travels around thestructure 100, for at least some embodiments, themobile computing device 112 communicates with one or more of the devices 121-129. - For an embodiment, the
mobile computing device 112 includes a radio that allows the mobile computing device to communicate with each of the devices 121-129 through a communications channel utilized by, for example, thecentral server 110, or gateways associated with thecentral server 110 to communicate with the devices 121-129. - For at least some other embodiments, the mobile computing device communicates with one or more of the devices by stimulating a sensor of the one or more devices, rather than communicating through the communications channel.
- For at least some other embodiments, the mobile computing device communicates with one or more of the devices by stimulating a power load sensor (by, for example, loading the power load sensor with a specified load) of the one or more devices, rather than communicating through the communications channel.
- For an embodiment, as the
mobile computing device 112 moves within the structure, themobile computing device 112 transmits a communications signal that is received by one or more of the devices 121-129. - For an embodiment, the devices 121-129 respond to the communication or communications signal from the mobile computing device with a device identifier. For an embodiment, the response includes communication of the device identifier to at least one of the mobile computing device and/or central server (alternatively referred to as a backend server) 110.
- For an embodiment, the devices 121-129 respond to the communications signal with a device identifier and proximity dependent information. For an embodiment, the device identifier includes a MAC (media access control) address of the device. For an embodiment, the proximity dependent information includes a Link Quality Indicator (LQI) of the received communication signal. The LQI includes, for example, a received signal strength indicator (RSSI) that provides an indication of how close the mobile computing device is to the particular device.
- For an embodiment, the proximity dependent information is communicated from the mobile computing device. That is, owing to the fact that the mobile computing device has just stimulated the sensor of one or more devices, the mobile computing device is proximate to the one or more devices. As such, an embodiment includes approximating the location of the device based on the location of the mobile computing device.
- For at least some embodiments, the transmit power of the mobile device is varied which adjusts, the size of the set of responding devices. For example, by sufficiently reducing the transmit power of the mobile device, only the nearest device or devices (to the mobile device) will respond, a procedure which may further augment the process of locating a device on a floor plan. That is, for example, by varying the transmit power, an LQI list generated by the responding devices can be adjusted in length (that is, the number of responding devices is adjusted).
- Further, at least some embodiments include adjusting the timing of the response of the devices. By adjusting the timing of the response of the devices, congestion due to near simultaneous responses can be alleviated. For an embodiment, the response times of the devices is randomly selected. For an embodiment, the response time of each device is selected based at least in part on a MAC (media access control) address of the device. For example, the response time of each device can be selected based on the last bit or byte of the MAC address of the device.
- Typically, a user that is operating the mobile computing device has a visual of the devices the mobile computing device is communicating with, but this is not required. Upon receiving responses back from one or more of the devices, the mobile computing device can attempt to place each of the devices on the plan or floor plan based on the proximity dependent information. For example, typically the device responding with the highest or best LQI is the device located most proximate to the mobile computing device. Therefore, the mobile computing device can place the device on the plan based on this information.
- For an embodiment, the mobile computing device (or a user of the mobile computing device) can confirm the placement by sending a message to a specifically placed device using the device identification (such as, MAC address). The message indicates to the specific device to provide a user observable indicator. The user observable indicator can be visual, audible or any other means that allows for the mobile computing device or a user of the mobile computing device to confirm the indicator. Once the indicator has been received, the mobile computing device can confirm the placement of the device on the plan or floor plan.
- Many different embodiments for device identification and placement are possible. One embodiment includes sending a command to the target device to identify itself, after which the device responds with a visual or audio or other signal. To facilitate mass verification of device identity and placement, an embodiment includes a bulk process that includes instructing each device in a floor plan, selected in an order (for an embodiment, the order includes a serpentine order), to respond and identify itself. For an embodiment, the serpentine order proceeds down one row of devices, verifying each device at a time, and when the last device in the row is processed, the last device on the next row is selected. This procedure ensures that the next device to be verified is physically close to the prior device. The process continues automatically and un-attended until all devices have been verified. To further speed up the verification and identification process (and verifying that radio communications is established with each device), at least some embodiment include capabilities to issue wireless commands to all devices to turn off/on the light simultaneously, or selected devices from the software user interface to do the same.
-
Figure 2A shows amobile computing device 112 uploading a plan of a structure that includes placement of devices of the structure, to acentral server 110, according to an embodiment. After going through the described process of placing the devices of the structure on the plan, for an embodiment, the plan is then uploaded to thecentral server 110. The central server now has placement of each of the devices within the structure, and the device identifier (MAC address) of the device. -
Figure 2B shows acentral server 110 communicating with the devices 121-129 of thestructure 100 after the devices 121-129 have been placed in the structure, according to an embodiment. For an embodiment, the central server (backend server) 110 is network connected togateways central server 110 includes auser interface 212 that provides user control. Thegateways gateways Figure 2B ,device 128 is designated as a repeater device. When, for example,gateway 240 communicates withdevice 123, thegateway 240 communicated through therepeater device 128 to thedevice 123. -
Figure 3 is a flow chart that includes steps of a method of commissioning a set of devices of a structure. Afirst step 310 includes communicating, by a mobile computing device, with one or more of the set of devices. Asecond step 320 includes communicating, by each of the one or more of the set of devices, a device identifier. Athird step 330 includes placing each of the one or more of the set of devices on a floor plan of the structure based at least in part on proximity dependent information of the device. - For at least some embodiments, the proximity dependent information allows an estimation of a proximate location of the device. For at least some embodiments, the proximity dependent information is communicated by each of the one or more of the set of devices. For at least some embodiments, the proximity dependent information is communicated by the mobile device.
- For at least some embodiments, a backend server receives the communicating, by each of the one or more of the set of devices, the device identifier, and the backend server places each of the one or more of the set of devices on the floor plan of the structure based at least in part on proximity dependent information of the device.
- At least some embodiments further include loading the floor plan to the mobile computing device, wherein the floor plan is associated with the structure. Further, the communicating, by each of the one or more of the set of devices, the device identifier includes communication back to the mobile computing device the device identifier and proximity dependent information, wherein the proximity dependent information allows the mobile computing device to an estimate a proximate location of the device.
- For at least some embodiments, communicating with one or more of the set of devices includes stimulating a sensor of the one or more of the set of devices, wherein the stimulation is provided by the mobile device. For at least some embodiments, the sensor of the one or more devices includes a power metering device. For at least some embodiments, stimulating the sensor comprises loading the power metering device with a particular type of load. That is, a sensor includes a power meter that is included within a power receptacle. The power meter senses the amount of power being provided by the power receptacle. Therefore, the mobile device is able to communicate with device (power receptacle) be plugging in a load that has a predetermined characteristic. For example, the mobile computing device can provide a highly capacitive load that is identifiable by the device (power receptacle). Once receiving the identifiable load, the device communicates its unique identifier so that is location can be approximated.
- For at least some embodiments, the sensor includes at least one of a PIR sensor, an ambient sensor or a temperature sensor. The list of possible sensors and possible methods of stimulating the sensor are not to be limited as described. Alternate methods of communicating between the mobile computing device and the sensor of the one or more devices can be realized.
- For at least some embodiments, the sensor includes an RGB (red, green and blue) ambient sensor, and the communicating, by a mobile computing device, with one or more of the set of devices comprises the mobile computing device stimulating RGB ambient sensor with a particular color of emitted light.
- For at least some embodiments, the one or more of the set of devices includes at least one of a lighting fixture, a power receptacle, a power junction box, an environmental control unit, or a sensor utilized for lighting or environmental control.
- For an embodiment, the method of
Figure 3 is implemented on or within a system. For an embodiment, the system includes a plurality of sensor units (such as the previously described devices that include sensors), and a mobile device, wherein the mobile device is operative to communicate with one or more of the plurality of sensor units. Upon receiving the communication from the mobile device, the one or more of the plurality of sensor units communicate a device identifier. Further, the system includes a processor operative to place each of the one or more of the plurality of sensor units on a floor plan of a structure based at least in part on proximity dependent information of the device. - For at least some embodiments, the mobile device includes the processor, and wherein the mobile device is further operative to receive the floor plan, receive the device identifier from the one or more of the plurality of sensor units, and place each of the one or more of the plurality of sensor units on the floor plan of the structure based at least in part on proximity dependent information of the device.
- For at least some embodiments, a backend server includes the processor, and wherein the backend server is operative to receive the device identifier from the one or more of the plurality of sensor units, and place each of the one or more of the plurality of sensor units on the floor plan of the structure based at least in part on proximity dependent information of the device.
-
Figure 4 is a flow chart that includes steps of a method of configuring a set of devices of a structure, according to an embodiment. Afirst step 410 includes loading a structure plan to a mobile computing device, wherein the structure plan is associated with the structure. Asecond step 420 includes communicating, by the mobile computing device, with one or more of the set of devices. Athird step 430 includes communicating, by each of the one or more of the set of devices, a device identifier and proximity dependent information the device back to the mobile computing device, wherein the proximity dependent information allows the mobile computing device to estimate a proximate location of the device. Afourth step 440 includes placing, by the mobile computing device, each of the one or more of the set of devices on the structure floor plan based at least in part on the proximity dependent information. - An embodiment further includes each of the one or more of the set of devices, communicating an observable feedback to an operator of the mobile computing device. As previously describe, the observable feedback can be visual, audible, or any other means of feedback that the user of the mobile computing device, or the mobile computing device itself can receive, and therefore, confirm placement of the device providing the observable feedback.
- For an embodiment, the mobile computing device includes a user interface that more readily allows the user of the mobile computing device to confirm locations of each of the devices. For an embodiment, the user interface of the mobile computing device provides an in-range list of devices. The in-range list includes the devices that are within the communication range of, for example, wireless communication from the mobile computing device to the devices. For an embodiment, the list of devices of the in-range list, are listed in an estimated order of proximity to the mobile computing device. The proximity can be estimated, for example, based on the link quality between the mobile computing device and each of the devices.
- For an embodiment, the user interface allows the user to select a device from the list, and further, communicate a command to the device, wherein the device provides a user-observable feedback in response to being selected. Further, the user interface can easily allow the user to then select the next device of the list for placement confirmation.
- For an embodiment, once the mobile computing device has placed each of the devices on the plan, the mobile computing device then uploads the placement of each of the one or more of the set of devices on the structure floor plan to a central server. An embodiment can further include the central server confirming or supplementing the placements of one or more of the set of devices on the structure floor plan through activation of a user-selected device of the one or more of the set of device. An embodiment further includes providing a user-interface that depicts at least a portion of the structure floor plan and at least a portion of the set of devices, and further depicts the user-selected device, and further facilitates communication to the user-selected device. An embodiment further includes providing a capability to record meta data and other information (such as diagnostic data) about each device on a floorplan, either in the mobile device or central server or both. This capability enables, for example, a "punchlist" (a list of diagnostic problems) of the sensor devices to be created and maintained, which will simplify the repair process and overall maintenance of the sensor devices. That is, the responses of the devices to the communication by the mobile device can include information related to the operating condition and health of the device. The operating condition and health information of each device can be used by a system operator to schedule maintenance of the devices. The operating condition and health information of each device can be used to identify problem conditions associated with the devices.
- For an embodiment, the mobile computing device communicates with the one or more of the set of devices through a wireless channel that a central server or a gateway uses to communicate with each of the set of devices. This saves resources because each of the devices already has the electronics required to communicate with the central server or gateways connected to the central server. That is, an extra channel for communication between the mobile computing device and each device is not required. An existing communication channel is utilized.
- As previously described, and embodiment further includes physically transporting the mobile computing device about the structure, and the mobile computing device communicating with one or more of the set of devices. As previously described, the mobile computing device receives a device identifier and proximity dependent information back from the devices. For an embodiment, the proximity dependent information includes a received signal strength of communication received by the device. For an embodiment, the proximity dependent information includes a Link Quality Indicator of communication received by the device. For an embodiment, the device identifier includes a MAC address of the device.
- As previously described, an embodiment further includes designating at least a portion of the set of devices as repeater devices, wherein repeater devices receive communication signals from either a gateway or another repeater device, and transmit the communication signals to another device. For an embodiment, the gateway device is located on the floor plan, and the portion of the set of devices are designated as repeater devices based on a proximity of the portion of the set of devices relative to the gateway.
- While the devices have been described generally, for an embodiment, the devices are lighting fixtures that are controllable, for example, by the central server. Further, for at least some embodiment, the lighting fixtures include sensors.
- An embodiment further includes a network setup being executed after the placement of the devices on the floor plan has been completed. The network setup can include associating certain devices with particular gateways, thereby establishing groups of devices. As described, the central controller can then communication with particular groups through corresponding gateways.
- An embodiment further includes the central controller initiating or causing the devices to provide a sequential user observable feedback after all of the devices have been placed. That is, each device sequentially generates a user observable feedback that allows a user to confirm the placement of the devices. For example, the lighting of lighting devices can be sequentially performed to allow the user to confirm that each device has been properly placed on a floor plan of a building.
-
Figure 5 shows apower receptacle device 500, according to an embodiment. As shown, thepower receptacle device 500 includes areceptacle output 511, acontroller 520, and atransceiver 530. A mobile device can communicate with thepower receptacle device 500 by connecting a load to thereceptacle output 511. As shown, thepower receptacle device 500 further includes apower meter 540, which for at least some embodiments characterizes the load applied or connected to thereceptacle output 511. For an embodiment, thepower meter 540 includes acurrent sensor 541 that senses current conducted by thereceptacle 500, and avoltage sensor 542 that senses a voltage at the power input to thereceptacle 500. Further, for at least some embodiments, the power meter is operable to measure a power factor of a load connected to thereceptacle output 511. - For an embodiment, if the
receptacle output 511 senses a particular type of load, thepower receptacle device 500 determines that the mobile device is communicating with thepower receptacle device 500. The sensing of this communication prompts thepower receptacle device 500 to communicate an identifier of thepower receptacle device 500. - For an embodiment, the communication of the identifier includes the
power receptacle device 500 communicating the identifier to a backend server. For an embodiment, the communication of the identifier includes thepower receptacle device 500 communicating the identifier back to the mobile device. This communication can occur, for example, through thetransceiver 530. - For an embodiment, the
power receptacle device 500 includes asensor 550. Thesensor 550 can include any of the previously described sensors, or others. For an embodiment, the mobile device communicates with thepower receptacle device 500 through thissensor 550. -
Figure 6 shows a lighting device (lighting fixture 600), according to an embodiment. As shown, this embodiment includes a light 610, alight intensity controller 620, acontroller 630, and acommunications interface 650. The intensity of light emitted from the light is controlled by thelight intensity controller 620 which can be of different forms depending, for example, if the light 610 is an LED (light emitting diode) or florescent light. - For at least some embodiments, the
controller 630 is operative to communicate with external devices (such as, a gateway or the mobile computing device) through thecommunications interface 650. For an embodiment, thecommunications interface 650 includes a wireless communication interface. - The
controller 630 is further operative to receive commands and react accordingly. For an embodiment, when thecontroller 630 receives a first command from the mobile computing device, thecontroller 630 transmits back to the mobile computing device the device identifies and proximity dependent information of thelighting fixture 600. Further thecontroller 630 can provide user observable feedback, thereby indicating to a user that the lighting fixture has received the first command. For an embodiment, thecontroller 630 is further operative to provide the user-observable feedback to the mobile computing device upon receiving communication specifically for the lighting fixture as identified by the device identifier (for example, MAC address). As described, the user-observable feedback can take one of many different forms, but one form includes controlling the intensity of emitted light, which can be observer by the user of the mobile computing device. - For at least some embodiments, the lighting device receives communication from the mobile device through a
sensor 660. Thesensor 660 can include any of the previously described sensors, or others. -
Figure 7 shows a user interface 710 of a mobile computing device that facilitates placements of the devices on the plan, according to an embodiment. There are many different forms that the user interface can take. For an embodiment, the user interface includes at least a portion of a floor plan of a building (structure) in which placement of devices is being performed. The user interface can provide a visual depiction of the placed devices and their corresponding MAC addresses. The user can then select a device, and the mobile computing device sends the selected device a command. Upon receiving the command, the device provides the user observable feedback. - For an embodiment, the user interface includes a device in-range list. For an embodiment, the device in-range list orders the devices according to the signal quality of the communication signal receive from the mobile computing device. It can be inferred that the devices having the best link quality are the closest or most proximate to the mobile computing device. The user of the mobile computing device can then select a device from the device in-range list for confirmation of placement. Once confirmation of a device has been made, the list can then move to the next device on the list for confirmation.
- As previously described, the in-range list can be varies or adjusted by varying or adjusting the transmit power of the mobile device. That is, by varying the transmit power of the mobile device, the number of devices that receive the communication from the mobile device is adjusted. Accordingly, the size of number of devices of the in-range list can by controllably adjusted. Further, the response times of the devices can be adjusted.
- Although specific embodiments have been described and illustrated, the described embodiments are not to be limited to the specific forms or arrangements of parts so described and illustrated. The embodiments are limited only by the appended claims.
Claims (12)
- A method of commissioning a set of fixed devices (121-129) of a structure (100), comprising:communicating (310, 420) through a communication channel, by a radio of a mobile computing device (112), with one or more of the set of fixed devices (121-129), wherein the set of fixed devices (121-129) each have a fixed location within the structure (100);stimulating, by the mobile computing device (112), a sensor (541, 542, 550, 660) of the one or more of the set of fixed devices (121-129);communicating (320) through the communication channel, by each of the one or more of the set of fixed devices (121-129), a device identifier in response to the sensor (541, 542, 550, 660) of the one or more of the set of fixed devices (121-129) having been stimulated by the mobile computing device (112); placing (330, 440) each of the one or more of the set of devices (121-129) on a floor plan of the structure (100) based at least in part on proximity dependent information of the one or more of the set of fixed devices (121-129); andwherein the sensor (541, 542) includes a power metering device (540) of the one or more of the set of fixed devices (121-129), wherein stimulating the sensor (541, 542) comprises loading the power metering device (540) with a particular type of load.
- The method of claim 1,wherein the proximity dependent information allows an estimation of a proximate location of the one or more of the set of fixed devices (121-129); and/orwherein the proximity dependent information is communicated by each of the one or more of the set of fixed devices (121-129); and/orwherein the proximity dependent information is communicated by the mobile computing device (112).
- The method of claim 1, wherein a backend server (110) receives the communicating, by each of the one or more of the set of fixed devices (121-129), the device identifier, and the backend server (110) places (330) each of the one or more of the set of fixed devices (121-129) on the floor plan of the structure (100) based at least in part on proximity dependent information of the one or more of the set of fixed devices (121-129).
- The method of claim 1, further comprising:loading (410) the floor plan to the mobile computing device (112), wherein the floor plan is associated with the structure (100);wherein the communicating (320), by each of the one or more of the set of fixed devices (121-129), the device identifier includes communication (430) back to the mobile computing device (112) the device identifier and proximity dependent information, wherein the proximity dependent information allows the mobile computing device (112) to estimate a proximate location of the one or more of the fixed devices (121-129).
- The method of claim 1,wherein the sensor (550, 660) includes at least one of a PIR sensor, an ambient sensor or a temperature sensor; and/orwherein the sensor (550, 660) includes an RGB (red, green and blue) ambient sensor, and the communicating (310, 420), by a mobile computing device (112), with one or more of the set of fixed devices (121-129) comprises the mobile computing device (112) stimulating RGB ambient sensor with a particular color of emitted light.
- The method of claim 1, wherein the one or more of the set of fixed devices (121-129) includes at least one of a lighting fixture (600), a power receptacle (500), a power junction box, an environmental control unit, or a sensor (550, 660) utilized for lighting or environmental control.
- A system, comprising:a plurality of fixed sensor units (121-129);a mobile device (112), wherein the mobile device (112) is operative to communicate (310, 420) through a communication channel with one or more of the plurality of fixed sensor units (121-129), wherein the plurality of fixed sensor units (121-129) each have a fixed location within a structure (100);wherein upon a sensor (541, 542, 550, 660) of the one or more of the plurality of fixed sensor units (121-129) receiving stimulation from the mobile device (112), the one or more of the plurality of fixed sensor units (121-129) communicate (320) a device identifier through the communication channel after receiving the stimulation from the mobile device (112); a processor operative to place (330, 440) each of the one or more of the plurality of fixed sensor units (121-129) on a floor plan of the structure (100) based at least in part on proximity dependent information of the one or more of the plurality of fixed sensor units (121-129); and wherein the sensor (541, 542) includes a power metering device (540) of the one or more of the plurality of fixed sensor units (121-129), wherein stimulating the sensor (541, 542) comprises loading the power metering device (540) with a particular type of load.
- The system of claim 7, wherein the mobile device (112) includes the processor, and wherein the mobile device (112) is further operative to:receive (410) the floor plan;receive (320) the device identifier from the one or more of the plurality of fixed sensor units (121-129); andplace (330, 440) each of the one or more of the plurality of fixed sensor units (121-129) on the floor plan of the structure (100) based at least in part on proximity dependent information of the one or more of the plurality of fixed sensor units (121-129).
- The system of claim 7, wherein a backend server (110) includes the processor, and wherein the backend server (110) is operative to:receive the device identifier from the one or more of the plurality of fixed sensor units (121-129); andplace (330) each of the one or more of the plurality of fixed sensor units (121-129) on the floor plan of the structure (100) based at least in part on proximity dependent information of the one or more of the plurality of fixed sensor units (121-129).
- The system of claim 7,wherein the proximity dependent information allows an estimation of a proximate location of the one or more of the plurality of fixed sensor units (121-129); and/orwherein the proximity dependent information is communicated by each of the one or more of the plurality of fixed sensor units (121-129); and/orwherein the proximity dependent information is communicated by the mobile device (112).
- The system of claim 7, wherein the sensor (550, 660) includes at least one of a PIR sensor, an ambient sensor or a temperature sensor.
- The system of claim 7, wherein the one or more of the plurality of sensor units (121-129) includes at least one of a lighting fixture (600), a power receptacle (500), a power junction box, an environmental control unit, or a sensor (550, 660) utilized for lighting or environmental control.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/246,046 US9618915B2 (en) | 2009-09-05 | 2014-04-05 | Configuring a plurality of sensor devices of a structure |
PCT/US2015/024283 WO2015153992A1 (en) | 2014-04-05 | 2015-04-03 | Configuring a plurality of sensor devices of a structure |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3130203A1 EP3130203A1 (en) | 2017-02-15 |
EP3130203A4 EP3130203A4 (en) | 2017-11-22 |
EP3130203B1 true EP3130203B1 (en) | 2021-09-08 |
Family
ID=54241329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15773366.8A Active EP3130203B1 (en) | 2014-04-05 | 2015-04-03 | Configuring a plurality of sensor devices of a structure |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3130203B1 (en) |
CN (1) | CN106465513A (en) |
WO (1) | WO2015153992A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3003146C (en) * | 2015-10-30 | 2020-08-25 | Lutron Electronics Co., Inc. | Commissioning load control systems |
DE102016121977A1 (en) * | 2016-11-16 | 2018-05-17 | Osram Gmbh | Create an installation layout of a lighting system |
DE102019201624A1 (en) * | 2019-02-08 | 2020-08-13 | Osram Gmbh | METHOD OF LOCATING A LAMP |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8188878B2 (en) * | 2000-11-15 | 2012-05-29 | Federal Law Enforcement Development Services, Inc. | LED light communication system |
US7382271B2 (en) * | 2004-09-29 | 2008-06-03 | Siemens Building Technologies, Inc. | Automated position detection for wireless building automation devices |
US8344665B2 (en) * | 2008-03-27 | 2013-01-01 | Orion Energy Systems, Inc. | System and method for controlling lighting |
WO2008148022A2 (en) * | 2007-05-24 | 2008-12-04 | Federal Law Enforcement Development Services, Inc. | Building illumination apparatus with integrated communications, security and energy management |
US9575478B2 (en) * | 2009-09-05 | 2017-02-21 | Enlighted, Inc. | Configuring a set of devices of a structure |
WO2011091087A1 (en) * | 2010-01-20 | 2011-07-28 | Airpatrol Corporation | Multi-band radio frequency detection and location system |
US8706271B2 (en) * | 2010-02-18 | 2014-04-22 | Redwood Systems, Inc. | Integration of computing device and lighting system |
US8994799B2 (en) * | 2011-07-26 | 2015-03-31 | ByteLight, Inc. | Method and system for determining the position of a device in a light based positioning system using locally stored maps |
-
2015
- 2015-04-03 WO PCT/US2015/024283 patent/WO2015153992A1/en active Application Filing
- 2015-04-03 CN CN201580018103.3A patent/CN106465513A/en active Pending
- 2015-04-03 EP EP15773366.8A patent/EP3130203B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106465513A (en) | 2017-02-22 |
EP3130203A4 (en) | 2017-11-22 |
EP3130203A1 (en) | 2017-02-15 |
WO2015153992A1 (en) | 2015-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9618915B2 (en) | Configuring a plurality of sensor devices of a structure | |
US9575478B2 (en) | Configuring a set of devices of a structure | |
US9872271B2 (en) | Tracking locations of a computing device and recording locations of sensor units | |
US9730302B2 (en) | System and method for control of an illumination device | |
US9526147B2 (en) | User control of an environmental parameter of a structure | |
US9246757B2 (en) | Commissioning devices for automation systems | |
US9439068B2 (en) | Dynamic configuration for a wireless peripheral device | |
US20170006694A1 (en) | Wireless and Power Line Light Pairing, Dimming and Control | |
EP3130203B1 (en) | Configuring a plurality of sensor devices of a structure | |
KR20110096572A (en) | System and method for copying settings of one device to another device, in particular for copying settings between lamps | |
JP2020519110A5 (en) | ||
EP3272104B1 (en) | A distributed network of a structure that provides location-based human interaction and intelligence | |
EP3622785B1 (en) | Forming groups of devices by analyzing device control information | |
US20180278327A1 (en) | A commissioning device for commissioning a new device into a system and a method thereof | |
US20190053356A1 (en) | Lighting system, wireless controller, and control method | |
US10537003B2 (en) | Methods of operation of smart lighting systems | |
US9848481B2 (en) | Radio-controlled lighting system, radio device, and registration method | |
JP6830208B2 (en) | Lighting systems, luminaires, and how to pair lighting systems | |
WO2014151662A1 (en) | Configuring a set of devices of a structure | |
TW202002540A (en) | Lighting apparatus, terminal, lighting system, information terminal, paring method of lighting apparatus and program capable of easily performing paring | |
US10080179B2 (en) | Method for verifying operation in wireless control system | |
KR102537240B1 (en) | Smart lighting control system and method | |
US11159602B2 (en) | Updating electrical devices with limited communication capability in integrated networks | |
JP7629010B2 (en) | Trigger-based commissioning system | |
JP2014110475A (en) | Radio communication device and program therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161104 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20171025 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21V 23/04 20060101ALI20171019BHEP Ipc: H05B 37/02 20060101AFI20171019BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180625 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602015073121 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H05B0037020000 Ipc: H05B0031500000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H05B 47/13 20200101ALN20210415BHEP Ipc: F21V 23/04 20060101ALI20210415BHEP Ipc: H05B 47/19 20200101ALI20210415BHEP Ipc: H05B 47/105 20200101ALI20210415BHEP Ipc: H05B 31/50 20060101AFI20210415BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H05B 47/13 20200101ALN20210419BHEP Ipc: F21V 23/04 20060101ALI20210419BHEP Ipc: H05B 47/19 20200101ALI20210419BHEP Ipc: H05B 47/105 20200101ALI20210419BHEP Ipc: H05B 31/50 20060101AFI20210419BHEP |
|
INTG | Intention to grant announced |
Effective date: 20210506 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1429756 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015073121 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BUILDING ROBOTICS, INC. |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210908 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602015073121 Country of ref document: DE Owner name: BUILDING ROBOTICS, INC., OAKLAND, US Free format text: FORMER OWNER: ENLIGHTED INC., SUNNYVALE, CA, US |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211208 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211208 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1429756 Country of ref document: AT Kind code of ref document: T Effective date: 20210908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220108 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220110 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015073121 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 |
|
26N | No opposition filed |
Effective date: 20220609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220403 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220403 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230510 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230720 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240507 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240415 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210908 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240703 Year of fee payment: 10 |