EP3118424B1 - Reglages de processus orc par pulverisation d'un fluide non evapore - Google Patents
Reglages de processus orc par pulverisation d'un fluide non evapore Download PDFInfo
- Publication number
- EP3118424B1 EP3118424B1 EP15177121.9A EP15177121A EP3118424B1 EP 3118424 B1 EP3118424 B1 EP 3118424B1 EP 15177121 A EP15177121 A EP 15177121A EP 3118424 B1 EP3118424 B1 EP 3118424B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- expansion
- working medium
- mass flow
- expansion machine
- thermodynamic cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 41
- 238000002347 injection Methods 0.000 title claims description 27
- 239000007924 injection Substances 0.000 title claims description 27
- 230000008569 process Effects 0.000 title claims description 27
- 239000012530 fluid Substances 0.000 title claims description 22
- 238000001704 evaporation Methods 0.000 claims description 18
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000005086 pumping Methods 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 3
- 230000003134 recirculating effect Effects 0.000 claims description 3
- 238000013021 overheating Methods 0.000 description 21
- 230000008020 evaporation Effects 0.000 description 12
- 238000011161 development Methods 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 10
- 230000001105 regulatory effect Effects 0.000 description 10
- 238000004886 process control Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 230000008092 positive effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- FIKFLLIUPUVONI-UHFFFAOYSA-N 8-(2-phenylethyl)-1-oxa-3,8-diazaspiro[4.5]decan-2-one;hydrochloride Chemical compound Cl.O1C(=O)NCC11CCN(CCC=2C=CC=CC=2)CC1 FIKFLLIUPUVONI-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/12—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
- F01K23/14—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/02—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
- F01K7/025—Consecutive expansion in a turbine or a positive displacement engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/02—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
- F01K7/04—Control means specially adapted therefor
Definitions
- thermodynamic cycle device which can in particular be an ORC device, and a preheater for preheating a working medium; an evaporator for evaporating and optionally overheating a first mass flow of the preheated working medium; a volumetric expansion machine for expanding the vaporized and superheated mass flow of the working medium; a condenser for condensing and possibly supercooling the working medium emerging from the outlet; a feed pump for pumping condensed working medium to the preheater; and a first supply device for supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in an expansion chamber of the volumetric expansion machine between a closure and an opening of the expansion chamber.
- the invention relates to a corresponding method for operating a thermodynamic cycle, in particular an ORC process.
- a power-generating process such as the Organic Rankine Cycle (ORC)
- ORC Organic Rankine Cycle
- both the direct integration of the generated energy and mechanical power into the external system e.g. the expansion machine of the power-generating process can drive the third-party process at least in a supportive manner
- auxiliary units for example, the third-party process can drive a pump in the force-generating process
- the saved motors for drive and generators for output also save costs and the compactness can be increased, both of which are critical factors for the integration of a force-generating process in the environment mentioned.
- a gearbox represents an additional cost, which, depending on the application, has a significant impact on economic efficiency. This effect is reinforced by the fact that gearboxes (especially stepless ones) also lead to a loss in efficiency. Gearboxes are also subject to considerable stress and thus add additional maintenance and corresponding costs to the system. Last but not least, a transmission is also comparatively space-intensive, which is contrary to the goal of compactness in many motor integration applications.
- US 6,035,643 A discloses an ORC system wherein the turbine has 21 successive stages in which the organic vapor expands and its pressure and temperature therein are reduced to generate mechanical energy from the thermal energy. On the way through the turbine, additional organic medium is added through valve-controlled injection nozzles on the way through the stages.
- US 5,555,731 A discloses a preheated injection turbine cycle.
- US 3,234,734 A discloses a process for converting heat into work using a working medium which is overheated and then expanded. An additional amount of liquid medium can be injected into a mixing chamber of the turbine, the injected amount mixing with a first expanded amount and expanding together in a second stage.
- the tasks 1 and 2 are solved by a device according to claim 1 and a method according to claim 11.
- thermodynamic cycle device which can in particular be an ORC device, comprises a preheater for preheating a working medium; an evaporator for evaporating and overheating a first mass flow of the preheated working medium; an expansion machine for expanding the vaporized and superheated first mass flow of the working medium; a condenser for condensing the working medium emerging from the expansion machine; and a feed pump for pumping condensed working medium to the preheater.
- the thermodynamic cycle device according to the invention is characterized by a first feed device for feeding a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine.
- the device according to the invention can be further developed in such a way that the first feed device can comprise a feed inlet of the expansion machine and a first feed line between the preheater and the feed inlet.
- the feed inlet is arranged in fluid communication with an expansion space of the expansion machine at a predetermined volume range of the expansion space, the expansion space expanding between an inlet and an outlet of the expansion machine.
- the first feed device comprises a first controllable throttle element, in particular a first thermostatic expansion valve, for regulating the second mass flow and / or the first feed device can comprise an injection device on the expansion machine, in particular on the feed inlet.
- thermodynamic cycle device can further comprise a second feed device for feeding a third mass flow of the preheated working medium to the vaporized and overheated first mass flow of the working medium before it expands in the expansion machine.
- a second feed device for feeding a third mass flow of the preheated working medium to the vaporized and overheated first mass flow of the working medium before it expands in the expansion machine.
- the second feed device can comprise a second feed line which is arranged between the preheater or the first feed line on the one hand and the inlet or a third line arranged between the evaporator and the inlet on the other hand.
- the second feed device can comprise a second controllable throttle element, in particular a second thermostatic expansion valve, for regulating the third mass flow.
- the feed pump can be coupled to a drive train operated via the expansion machine; and wherein the cycle process device may further comprise a controllable recirculation device for partially recirculating working medium from a high pressure side of the feed pump to a low pressure side of the feed pump. Fluctuations and instabilities in the evaporation zone can thus be avoided.
- the controllable recirculation device can comprise a line from the high pressure side to the low pressure side of the feed pump, wherein the line can be provided with a third controllable throttle element.
- a rotation of the expansion machine can be coupled to a rotation of an externally running process; in particular, a shaft of the expansion machine can be coupled to an external drive train of an engine, either directly or indirectly via a transmission.
- the object of the invention is further achieved by a method according to claim 11.
- the method according to the invention for operating a thermodynamic cycle, in particular an ORC process comprises the following steps: preheating a working medium by means of a preheater; Evaporating and overheating a first mass flow of the preheated working medium through an evaporator; Expanding the vaporized and superheated first mass flow of the working medium in an expansion machine between an inlet and an outlet of the expansion machine; Condensing the working medium emerging from the outlet through a condenser; and pumping condensed working medium to the preheater with a feed pump; the method being characterized by supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine.
- the following further step can be provided: regulating the second mass flow and / or injecting the second mass flow into an expansion space of the expansion machine.
- the method can further comprise: supplying a third mass flow of the preheated working medium to the vaporized and superheated first mass flow of the working medium before it expands in the expansion machine.
- the third mass flow can be regulated.
- Another development is that the following further step can be provided: coupling a rotation of the expansion machine with a rotation of an externally running process; in particular by coupling a shaft of the expansion machine to an external drive train of an engine, either directly or indirectly via a transmission.
- Fig. 1 shows a first embodiment of the thermodynamic cycle device 100 according to the invention in the form of an ORC device (Organic Rankine Cycle).
- the cycle process device comprises a preheater 10 for preheating a working medium; an evaporator 20 for evaporating and overheating a first mass flow of the preheated working medium; an expansion machine 30 for expanding the vaporized and superheated first mass flow of the working medium; a condenser 60 for condensing the working medium exiting the expansion machine 30; and a feed pump 70 (with motor M) for pumping condensed working medium to the preheater 10.
- a first feed device 40 is provided for supplying a second mass flow of the preheated working medium to the partially expanded first mass flow of the working medium in the expansion machine 30.
- the first feed device 40 comprises a feed inlet 48 of the expansion machine 30 and a first feed line 47 between the preheater 10 and the feed inlet 48.
- the feed inlet 48 is arranged in fluid communication with an expansion space of the expansion machine 30 at a predetermined volume range of the expansion space, the expansion space between one Inlet 32 and an outlet 34 of the expansion machine 30 expanded.
- the first feed device 40 further comprises a first controllable throttle element 45, in particular a first thermostatic expansion valve, for regulating the second mass flow and / or wherein the first feed device 40 comprises an injection device 41 on the expansion machine 30, in particular on the feed inlet 48.
- a first controllable throttle element 45 in particular a first thermostatic expansion valve, for regulating the second mass flow and / or wherein the first feed device 40 comprises an injection device 41 on the expansion machine 30, in particular on the feed inlet 48.
- the regulation can take place on the basis of the measured temperatures T, which are shown as examples.
- the throttle element 45 can be controlled accordingly.
- the rotation of the expansion machine 30 can be coupled to a rotation of an externally running process; in particular, a shaft 31 of the expansion machine 30 can be coupled to an external drive train of a motor 90, either directly or indirectly via a gear 91, which can include a freewheel or shifting options.
- h 1 , h 2 , h 3 and h 4 denote the enthalpies at the respective in Fig. 1 specified positions.
- the branched-off liquid working medium is supplied to the expansion machine via a suitable feed after a certain proportion of the expansion and is injected directly (process control according to Fig. 1 ).
- the injection device In order to achieve thermal equilibrium as quickly as possible during the injection (heat input until there is a uniform temperature in the expansion chamber), the injection device must be designed accordingly and ensure good distribution with high fluid surfaces (e.g. fine atomization).
- a throttle element in particular a controllable or a passive throttle element (for example a thermostatic expansion valve) is used in the feed line.
- an inlet hole For injection into the expander, an inlet hole must be made in a suitable place in the housing. This must be determined depending on the volume ratio of the expansion machine.
- the still high pressure of the chamber has a limiting effect in the direction of the start of expansion, which hinders the entry of liquid fluid.
- overheating can also increase during the course of the expansion, so that more liquid fluid can also be evaporated at a later point in time of the expansion.
- participation in a large expansion share of the overall expansion is positive for the generation of benefits.
- the volume ratio of the expansion ( ⁇ EX ) can be reduced dynamically (see also Fig. 5 ), the following relationship applies to the specific volumes at the time the chamber is closed when entering the expansion machine ( v K, on ) and at the moment of opening the chamber at the outlet of the expansion machine ( v K, off ) with the fixed volume ratio of the expansion machine V i :
- the actual expansion ratio ( ⁇ real ) is determined from the live steam parameters and the evaporation parameters and is determined by pressure and temperature before and after the expansion machine.
- the overheating of the dry fluid which increases during the expansion, is used to evaporate additional preheated AM for the expansion and thus to increase the mass flow of the AM participating in the expansion. Otherwise the energy of the overheating of the exhaust steam would have to be dissipated through the condenser.
- the low-temperature heat source of the preheater is usually not fully utilized and can be better used due to the increased amount of fluid in the preheating.
- Fig. 2 shows a second embodiment of the thermodynamic cycle device 200 according to the invention, the further compared to the first embodiment Features.
- the same reference numerals mean the same elements.
- a second supply device 50 is provided for supplying a third mass flow of the preheated working medium to the evaporated and superheated first mass flow of the working medium before its expansion in the expansion machine 30.
- the second feed device 50 comprises a second feed line 57 which is arranged between the preheater 10 or the first feed line 47 on the one hand and the inlet 32 or a third line 17 arranged between the evaporator 20 and the inlet 32 on the other hand.
- the second feed device 50 comprises a second controllable throttle element 55, in particular a second thermostatic expansion valve, for regulating the third mass flow.
- a direct injection of preheated fluid into the live steam upstream of the expansion machine may be necessary - for example, if the temperature limits before the direct injection into the expansion machine are not otherwise ensured (process control according to Fig. 2 ) or if a reduction in overheating is necessary, but the real expansion ratio (through process control according to Fig. 1 ) should not be (further) lowered.
- Fig. 3 shows a third embodiment of the cycle device 300 according to the invention.
- the feed pump 70 is coupled to a drive train operated via the expansion machine 30, namely to the external motor 90; wherein the cycle process device further comprises a controllable recirculation device 80 for partially recirculating working medium from a high pressure side of the feed pump 70 to a low pressure side of the feed pump 70.
- the controllable recirculation device 80 comprises a line 81 from the high pressure side to the low pressure side of the feed pump 70, the line 81 being provided with a third controllable throttle element 82.
- the pump In the event that the pump is also permanently linked to the process, the pump must be designed with a recirculation circuit (process control according to Fig. 3 ).
- the pump must be dimensioned so that the lowest possible losses occur in the case of full load and sufficient control power is available at part load. Control power is necessary both for increasing the mass flow through the ORC circuit (e.g. in the event of excessive overheating) and for lowering the mass flow (e.g. available heat quantity is smaller than the heat quantity dissipated by AM or the fresh steam pressure that is set is above the evaporation pressure at the available one Temperature level).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Turbines (AREA)
Claims (15)
- Dispositif à cycle thermodynamique (100, 200, 300), en particulier dispositif à cycle organique de Rankine (ORC), comprenant :un préchauffeur (10) pour préchauffer un fluide de travail ;un évaporateur (20) pour évaporer et surchauffer un premier débit massique du fluide de travail préchauffé ; etune machine d'expansion volumétrique (30) pour dilater le premier débit massique évaporé et surchauffé du fluide de travail ;un condenseur (60) pour condenser le fluide de travail sortant de la machine d'expansion (30) ;une pompe d'alimentation (70) pour pomper le fluide de travail condensé vers le préchauffeur (10) ;caractérisé parun premier moyen d'alimentation (40) pour amener un deuxième débit massique du fluide de travail préchauffé au premier débit massique partiellement dilaté du fluide de travail dans une chambre d'expansion de la machine d'expansion volumétrique (30) entre une fermeture et une ouverture de la chambre d'expansion.
- Dispositif à cycle thermodynamique selon la revendication 1, où le premier dispositif d'alimentation (40) comprend une entrée d'alimentation (48) de la machine d'expansion (30) et une première conduite d'alimentation (47) entre le préchauffeur (10) et l'entrée d'alimentation (48).
- Dispositif à cycle thermodynamique selon la revendication 2, où l'entrée d'alimentation (48) est disposée en communication fluidique avec un espace d'expansion de la machine d'expansion (30) dans une plage de volume prédéterminée de l'espace d'expansion, et où, lors du fonctionnement du dispositif à cycle thermodynamique, le fluide de travail dans l'espace d'expansion se dilate entre une entrée (32) et une sortie (34) de la machine d'expansion (30).
- Dispositif à cycle thermodynamique selon l'une des revendications 1 à 3, où le premier dispositif d'alimentation (40) comprend un premier élément d'étranglement (45), en particulier une première vanne d'expansion thermostatique, pour régler le deuxième débit massique et/ou où le premier dispositif d'alimentation (40) comprend un dispositif d'injection (41) sur la machine d'expansion (30), en particulier à l'entrée d'alimentation (48).
- Dispositif à cycle thermodynamique selon l'une quelconque des revendications 1 à 4, comprenant en outre :
un deuxième moyen d'alimentation (50) pour amener un troisième débit massique du fluide de travail préchauffé au premier débit massique évaporé et surchauffé du fluide de travail avant son expansion dans la machine d'expansion (30). - Dispositif à cycle thermodynamique selon la revendication 5, où le deuxième dispositif d'alimentation (50) comprend une deuxième conduite d'alimentation (57) disposée entre le préchauffeur (10) ou la première conduite d'alimentation (47) d'une part et l'entrée (32) ou une troisième conduite (17) disposée entre l'évaporateur (20) et l'entrée (32) d'autre part.
- Dispositif à cycle thermodynamique selon la revendication 5 ou 6, où le deuxième dispositif d'alimentation (50) comprend un deuxième élément d'étranglement (55), en particulier une deuxième vanne d'expansion thermostatique, pour régler le troisième débit massique.
- Dispositif à cycle thermodynamique selon l'une des revendications 1 à 7, où la pompe d'alimentation (70) est couplée à une chaîne cinématique entraînée par la machine d'expansion (30) ; et où le dispositif à cycle thermodynamique comprend en outre :
un dispositif de recirculation réglable (80) pour la recirculation partielle du fluide de travail d'un côté haute pression de la pompe d'alimentation (70) à un côté basse pression de la pompe d'alimentation (70). - Dispositif à cycle thermodynamique selon la revendication 8, où le dispositif de recirculation réglable (80) comprend un conduit (81) allant du côté haute pression au côté basse pression de la pompe d'alimentation (70), et où le conduit (81) est muni d'un troisième élément d'étranglement (82).
- Dispositif à cycle thermodynamique selon l'une des revendications 1 à 9, où une rotation de la machine d'expansion (30) peut être couplée à une rotation d'un processus se déroulant à l'extérieur ; où en particulier un arbre (31) de la machine d'expansion (30) peut être couplé à une chaîne cinématique externe d'un moteur, soit directement soit indirectement par l'intermédiaire d'une transmission qui peut avoir une roue libre ou des capacités de changement de vitesse.
- Procédé pour faire fonctionner un cycle thermodynamique, en particulier un cycle ORC, le procédé comprenant les étapes suivantes :préchauffage d'un fluide de travail par un préchauffeur (10) ;évaporation et surchauffe d'un premier débit massique du fluide de travail préchauffé au moyen d'un évaporateur (20) ;dilatation du premier débit massique évaporé et surchauffé du fluide de travail dans une machine à expansion volumétrique (30) ;condensation du fluide de travail sortant de la sortie (34) par un condenseur (60) ; etpompage du fluide de travail condensé vers le préchauffeur (10) avec une pompe d'alimentation (70) ;caractérisé parl'acheminement d'un deuxième débit massique du fluide de travail préchauffé au premier débit massique partiellement dilaté du fluide de travail dans une chambre d'expansion de la machine à expansion volumétrique (30) entre une fermeture et une ouverture de la chambre d'expansion.
- Procédé selon la revendication 11, avec en outre l'étape consistant à :
régler le second débit massique et/ou injecter le second débit massique dans un espace d'expansion de la machine d'expansion (30) entre une entrée (32) et une sortie (34) de la machine d'expansion (30). - Procédé selon la revendication 11 ou 12, comprenant en outre :
l'acheminement d'un troisième débit massique du fluide de travail préchauffé au premier débit massique évaporé et surchauffé du fluide de travail avant sa dilatation dans la machine d'expansion (30) ; optionnellement avec l'étape supplémentaire consistant à régler le troisième débit massique. - Procédé selon l'une des revendications 11 à 13, avec en outre l'étape consistant à :
réduire un rapport volumique de la dilatation du fluide de travail dilaté dans la chambre d'expansion en introduisant le deuxième débit massique du fluide de travail préchauffé dans la chambre de dilatation. - Procédé selon l'une des revendications 11 à 14, comprenant :
le couplage d'une rotation de la machine d'expansion (30) avec une rotation d'un processus se déroulant à l'extérieur ; en particulier par le couplage d'un arbre (31) de la machine d'expansion (30) avec une chaîne cinématique externe d'un moteur, soit directement, soit indirectement par l'intermédiaire d'une transmission.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15177121.9A EP3118424B1 (fr) | 2015-07-16 | 2015-07-16 | Reglages de processus orc par pulverisation d'un fluide non evapore |
US15/745,420 US10669898B2 (en) | 2015-07-16 | 2016-06-13 | Control of ORC processes by injecting unevaporated fluid |
PCT/EP2016/063449 WO2017008972A1 (fr) | 2015-07-16 | 2016-06-13 | Régulation de processus orc par injection d'un fluide non vaporisé |
CN201680041482.2A CN107849943B (zh) | 2015-07-16 | 2016-06-13 | 通过喷射未蒸发流体控制orc过程 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15177121.9A EP3118424B1 (fr) | 2015-07-16 | 2015-07-16 | Reglages de processus orc par pulverisation d'un fluide non evapore |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3118424A1 EP3118424A1 (fr) | 2017-01-18 |
EP3118424B1 true EP3118424B1 (fr) | 2020-05-20 |
Family
ID=53785439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15177121.9A Active EP3118424B1 (fr) | 2015-07-16 | 2015-07-16 | Reglages de processus orc par pulverisation d'un fluide non evapore |
Country Status (4)
Country | Link |
---|---|
US (1) | US10669898B2 (fr) |
EP (1) | EP3118424B1 (fr) |
CN (1) | CN107849943B (fr) |
WO (1) | WO2017008972A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6769888B2 (ja) | 2017-02-09 | 2020-10-14 | 株式会社神戸製鋼所 | 熱エネルギー回収装置 |
EP3375990B1 (fr) * | 2017-03-17 | 2019-12-25 | Orcan Energy AG | Surveillance sur la base de modèle de l'état de fonctionnement d'une machine à détente |
AT521050B1 (de) | 2018-05-29 | 2019-10-15 | Fachhochschule Burgenland Gmbh | Verfahren zur Steigerung der Energieeffizienz in Clausius-Rankine-Kreisprozessen |
CN110739805A (zh) * | 2019-10-27 | 2020-01-31 | 北京工业大学 | 一种用于有机朗肯循环的封闭式膨胀机组发电机喷雾冷却系统 |
CN111636937B (zh) * | 2020-06-22 | 2024-07-16 | 中国长江动力集团有限公司 | 液位自动调节的orc发电装置及其调节方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3234734A (en) * | 1962-06-25 | 1966-02-15 | Monsanto Co | Power generation |
US5555731A (en) * | 1995-02-28 | 1996-09-17 | Rosenblatt; Joel H. | Preheated injection turbine system |
US6035643A (en) * | 1998-12-03 | 2000-03-14 | Rosenblatt; Joel H. | Ambient temperature sensitive heat engine cycle |
US6393840B1 (en) * | 2000-03-01 | 2002-05-28 | Ter Thermal Retrieval Systems Ltd. | Thermal energy retrieval system for internal combustion engines |
JP5278496B2 (ja) * | 2011-03-25 | 2013-09-04 | 株式会社豊田自動織機 | 車両用排熱回収装置 |
US8653686B2 (en) * | 2011-12-06 | 2014-02-18 | Donald E Hinks | System for generating electric and mechanical power utilizing a thermal gradient |
EP2948647B1 (fr) * | 2013-01-28 | 2016-11-16 | Eaton Corporation | Système volumétrique de récupération d'énergie par détente à trois étages |
US20160061055A1 (en) * | 2013-03-13 | 2016-03-03 | Echogen Power Systems, L.L.C. | Control system for a heat engine system utilizing supercritical working fluid |
-
2015
- 2015-07-16 EP EP15177121.9A patent/EP3118424B1/fr active Active
-
2016
- 2016-06-13 CN CN201680041482.2A patent/CN107849943B/zh active Active
- 2016-06-13 US US15/745,420 patent/US10669898B2/en active Active
- 2016-06-13 WO PCT/EP2016/063449 patent/WO2017008972A1/fr active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN107849943A (zh) | 2018-03-27 |
US10669898B2 (en) | 2020-06-02 |
US20180209307A1 (en) | 2018-07-26 |
EP3118424A1 (fr) | 2017-01-18 |
CN107849943B (zh) | 2020-07-28 |
WO2017008972A1 (fr) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3118424B1 (fr) | Reglages de processus orc par pulverisation d'un fluide non evapore | |
EP2686526B1 (fr) | Procédé pour faire fonctionner un processus à circuit de vapeur | |
EP2567074B1 (fr) | Régulation d'un processus cyclique thermique | |
EP2808500A1 (fr) | Pompe à chaleur dotée d'une première machine thermique à énergie fluidique et d'une seconde machine thermique à énergie fluidique | |
WO2012048959A1 (fr) | Dispositif et procédé pour utiliser la chaleur dissipée par un moteur à combustion interne | |
DE102010001118A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine mit einer Dampfkraftanlage | |
EP2732140B1 (fr) | Procédé de régulation d'un dispositif de récupération de chaleur pour un moteur à combustion interne | |
DE112016001877T5 (de) | Kompressorangetriebene ORC-Abwärmerückgewinnungseinheit und Steuerungsverfahren | |
DE19902437A1 (de) | Verfahren und Vorrichtung zum schnellen Anfahren und zur schnellen Leistungssteigerung einer Gasturbinenanlage | |
EP2933443A1 (fr) | Dispositif de refroidissement pour un condensateur d'un système pour un cycle thermodynamique, système pour un cycle thermodynamique, agencement doté d'un moteur à combustion interne et d'un système, véhicule, et procédé d'exécution d'un cycle thermodynamique | |
DE632316C (de) | Gasturbinenanlage mit Gleichdruckverbrennung | |
WO2015149916A1 (fr) | Procédé permettant de faire fonctionner un système pour un circuit fermé thermodynamique, dispositif de commande pour un système d'un circuit fermé thermodynamique, système, et ensemble composé d'un moteur à combustion interne et d'un système | |
DE102012222082B4 (de) | Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine | |
EP2425101A2 (fr) | Dispositif d'exploitation de chaleur et procédé de fonctionnement | |
EP2432973A2 (fr) | Dispositif à cycle à vapeur et procédé de commande de ce dispositif | |
EP3375990A1 (fr) | Surveillance sur la base de modèle de l'état de fonctionnement d'une machine à détente | |
EP2937630B1 (fr) | Procédé de fonctionnement d'un système pour un cycle fermé thermodynamique doté d'un évaporateur à plusieurs flux, dispositif de commande pour un système, système pour un cycle fermé thermodynamique doté d'un évaporateur à plusieurs flux et agencement d'un moteur à combustion interne et d'un système | |
WO2012152602A1 (fr) | Circuit de conduite et procédé permettant de faire fonctionner un circuit de conduite destiné à récupérer la chaleur dissipée d'un moteur à combustion interne | |
DE102010010614B4 (de) | Verfahren und Vorrichtung zur Energieerzeugung in einer ORC-Anlage | |
WO2014023295A2 (fr) | Dispositif pour l'utilisation d'un processus de clausius-rankine | |
EP1375867A2 (fr) | Procédé de refroidissement intermédiaire et turbine à gaz avec refroidissement intermédiaire | |
DE102011003068B4 (de) | Vorrichtung und Verfahren zur Abwärmenutzung einer Brennkraftmaschine | |
WO2018145884A1 (fr) | Procédé permettant de faire fonctionner une installation de pompes à chaleur, installation de pompes à chaleur et centrale électrique comprenant une installation de pompes à chaleur | |
WO2023139167A1 (fr) | Pompe à chaleur pour générer de la chaleur de traitement | |
DE640927C (de) | Gasturbinenanlage mit Gleichdruckverbrennung des Treibmittels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170714 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180613 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191205 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHUSTER, ANDREAS Inventor name: AUMANN, RICHARD Inventor name: LANGER, ROY Inventor name: WEIGAND, FABIAN |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHUSTER, ANDREAS Inventor name: LANGER, ROY Inventor name: AUMANN, RICHARD Inventor name: WEIGAND, FABIAN |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015012611 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1272734 Country of ref document: AT Kind code of ref document: T Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200921 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200920 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200821 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200820 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200820 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015012611 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200716 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200716 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1272734 Country of ref document: AT Kind code of ref document: T Effective date: 20200716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240726 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240729 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240724 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240724 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240715 Year of fee payment: 10 Ref country code: IT Payment date: 20240729 Year of fee payment: 10 Ref country code: SE Payment date: 20240724 Year of fee payment: 10 |