EP3107991A1 - Method for preparing organic waste - Google Patents
Method for preparing organic wasteInfo
- Publication number
- EP3107991A1 EP3107991A1 EP15714757.0A EP15714757A EP3107991A1 EP 3107991 A1 EP3107991 A1 EP 3107991A1 EP 15714757 A EP15714757 A EP 15714757A EP 3107991 A1 EP3107991 A1 EP 3107991A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- fermenter
- methane
- anaerobic
- reformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/04—Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
- C02F11/04—Anaerobic treatment; Production of methane by such processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2866—Particular arrangements for anaerobic reactors
- C02F3/2893—Particular arrangements for anaerobic reactors with biogas recycling
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/58—Reaction vessels connected in series or in parallel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/24—Recirculation of gas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M45/00—Means for pre-treatment of biological substances
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/023—Methane
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/10—Treatment of sludge; Devices therefor by pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/22—Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/22—O2
- C02F2209/225—O2 in the gas phase
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/24—CO2
- C02F2209/245—CO2 in the gas phase
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/04—Flow arrangements
- C02F2301/046—Recirculation with an external loop
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/10—Temperature conditions for biological treatment
- C02F2301/103—Psychrophilic treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/10—Temperature conditions for biological treatment
- C02F2301/106—Thermophilic treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2806—Anaerobic processes using solid supports for microorganisms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/20—Sludge processing
Definitions
- the invention relates to a method for the preparation of organic waste, such as biomass or wastewater, for further processing, in particular for gasification or discharge into existing systems.
- EP 1 1 18 671 proposes a three-stage process, wherein in a first process step of the aerobic fermentation organic material is fermented under aerobic conditions by means of fermentation microorganisms, solid and / or liquid residues and C02-containing exhaust gases are formed in one second process step residues from the first process step are strigwelt, wherein a charcoal product and wood gas are formed, and in a third step of the thermophilic methane fermentation wood gas from the second process step under anaerobic conditions by means of thermophilic
- Fermentation microorganisms is fermented to methane-containing biogas.
- the present invention is primarily based on the object of once again improving the methane gas produced, d. H. to create a biogas containing over 90% methane.
- the organic waste is introduced into an aerobic and / or anaerobic fermenter and mixed with an inoculum and / or microorganism, and
- the CO 2 produced in the fermenter is fed to a gas reformer in which a conversion into methane gas takes place.
- a gas reformer in which a conversion into methane gas takes place.
- the gas reformer is designed exclusively to take the C02 from the two fermenters and make it an improved methane gas.
- the aerobic fermenter inoculated with a corresponding aerobic inoculum produces by fermentation, on the one hand, the above-mentioned CO 2 and, on the other hand, a residual biomass which is discharged, pressed, pelleted and e.g. a biomass gasifier can be supplied.
- Still existing process water is introduced into the anaerobic fermenter and further processed there.
- the C02 is transferred to the gas reformer.
- anaerobic fermenter In the anaerobic fermenter is a corresponding anaerobic inoculum.
- the liquid biomasses are processed to CO 2 and methane, whereby ultimately the liquid wastewater is converted into process water by this processing, which can be discharged into the sewer.
- the resulting CO 2 and methane is then fed back to the gas reformer.
- 1 denotes an aerobic fermenter which has an inlet 2 for biomass.
- the mass is introduced to a solids content of 20% in this aerobic fermenter and there inoculated with a corresponding inoculum.
- the mass is due to the high liquid content to a liquid, pulpy mass.
- the process temperature is controlled by an introduced, not shown heating coil at a constant 37 to 38 ° C.
- the heating coil is preferably in communication with a hot water circuit.
- the biomass is additionally circulated.
- the rapidly degradable components of the biomass are reduced to CO 2, CO, H 2 and O 2 under air and / or O 2 feed.
- the gas produced during the air supply has a relatively high O 2 content and must therefore be subjected to an oxygen-simulating process.
- a gas dome is formed in which this gas accumulates.
- this gas is also a constant control of the collecting gas.
- the gas which still contains too much oxygen should be performed in a loop 3 of the gas dome 4 back to an inlet 5 at the bottom 6 of the fermenter 1. This happens until no or little 02 in the Gas dome 4 is present.
- the gas from the gas dome 4, which essentially comprises CO 2 is transferred to a gas reformer 7.
- the residual biomass is discharged and e.g. Pressed and pelletized fed to a biomass gasifier not shown in detail. There it is mined except for the mineral components.
- the process water is transferred via a line 8 to an anaerobic fermenter 9 and degraded there to service water.
- the aerobic fermenter 1 in addition to a temperature control and a constant pH determination to optimize the process.
- biological waste water can also be introduced through a further inlet, not shown. It is designed in a special way to purify this wastewater. These include, in particular, wastewater from agriculture and food production, for example liquid manure, press water, waste water from slaughterhouses, glue manufacturers, etc. Initial tests have also shown that the reactor can be used to clean landfill leachate.
- a microbial feed takes place after cultivation and propagation of a respective anaerobic inoculum by colonization of the carrier systems located in the reactor.
- microbial settlement cords are stretched in the reactor, which offer a large-area settlement facility.
- These can consist of plastic cords, hemp ropes or sheets of pure carbon fabrics. Above all, the latter material has a very large surface of up to 1800 sqm / g as a carrier for the bacteria.
- the liquid transport in the reactor is also via an external line 10.
- the liquid rises in two outer chambers 1 1 and 12 and then passed through a central tube 13 back down. This cycle is circulated until sufficient degradation and then discharged the remaining mass, pressed or pelletized.
- the liquid can be spent as process water in the sewage system.
- the anaerobic fermenter 9 degrades liquefied biomass or water to a solids content of about 10% in a period of a maximum of 2 to 3 days.
- a gas dome 14 C02 and methane accumulates with a methane content of 60 to 82% is achieved in significant quantities.
- H2S is reduced to less than 0.1 ppm.
- the temperature control of 55 to 56 ° C is preferably carried out by a heating coil, which is also controlled from the outside with hot water.
- a heating coil which is also controlled from the outside with hot water.
- permanent pH measurements and CH4 controls are also carried out.
- Gas reformer 7 is characterized by its unique ability to convert C02 to CH4 in a high temperature methanogenesis process. For this he needs above all the largest possible surface as a carrier substance for the thermophilic microbes.
- the microbial feed is carried out by a methanol crayfish strain and a bacterium thermoautotrophic on a special lignite industrial coke with a large surface area. Within the reformer is about 500 kg.
- Industrial coke One gram of this industrial coke has a surface area of 220 square meters, so that the coke filling thus offers approximately a surface of 1 10 square km or 1 0 000 000 square meters.
- this industrial coke is above a nutrient solution for the microbes and the water that forms in the reaction, separated by a grid.
- a temperature control of 75 to 78 ° C is controlled by a heating coil, which is incorporated in the gas reformer 7, from the outside by hot water.
- a permanent measurement of CO 2, CO and CH 4 is carried out, as well as the PH value is controlled to control the optimal process.
- gas from the gas dome 15 can be recirculated until the desired CH 4 content (e.g., greater than 90% level) is reached.
- This gas reformer 7 is particularly suitable for converting CO 2 exhaust gases into CH 4 to replace a CO 2 emission. This is especially important for wood gasifiers, wood and coal power plants and large engines, which receive their gas from mesophilic methanogenesis processes (low CH4 content). However, with such a gas reformer 7 all conventional sewage treatment plants or biogas plants can be retrofitted.
- the methane gas with a methane content of 80 to 95% methane is supplied from an outlet 16 for further utilization.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Sustainable Development (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biodiversity & Conservation Biology (AREA)
- Clinical Laboratory Science (AREA)
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
Verfahren zur Vorbereitung von organischen Abfällen Process for the preparation of organic waste
Die Erfindung betrifft ein Verfahren zur Vorbereitung von organischen Abfällen, wie Biomasse oder Abwässer, für eine weitere Verarbeitung, insbesondere für eine Vergasung oder Ableitung in bestehende Systeme. The invention relates to a method for the preparation of organic waste, such as biomass or wastewater, for further processing, in particular for gasification or discharge into existing systems.
Stand der Technik State of the art
Bei der Zersetzung organischer Substanzen entsteht Gas, und zwar in wesentlichen Umfang C02 und Methan. Ein wichtiger Bestandteil dieses Biogases ist Methan, welches als Heizgas und für Verbrennungsantriebe sowie als Ausgangsmaterial für synthetische Produkte, bspw. Acetylen, Synthesegase, HCN und Chlorsubstitutionsprodukte, verwendet werden kann. Auf Grund der Bedeutung des Methans gehen die Bestrebungen dahin, bei der Erzeugung von Biogas einen hohen Methananteil zu erzielen. Nach dem Stand der Technik werden hierzu ein- oder zweistufige Fermentationsverfahren eingesetzt, bei den aus organischen Stoffen mittels anaerober Fermentation Biogas gewonnen wird. Ein grosser Bestandteil dieses Gases ist aber auch C02, sowie kleinere Anteile von Stickstoff, Schwefelwasserstoff und anderen Komponenten. Diese bekannten Verfahren sind aber bezüglich der erzielten Qualität des erzeugten Biogases und insbesondere der Methanausbeute nicht befriedigend. Dabei ist insbesondere der hohe Schwefel- bzw. Schwefelwasserstoffanteil von etwa 2% unerwünscht, da sich dieser beim Betrieb von Motoren und dem damit verbundenen Einsatz von Katalysatoren störend auswirkt. The decomposition of organic substances produces gas, and to a considerable extent CO 2 and methane. An important component of this biogas is methane, which can be used as heating gas and for combustion drives as well as starting material for synthetic products, for example acetylene, synthesis gas, HCN and chlorine substitution products. Due to the importance of methane, efforts are being made to achieve a high methane content in the production of biogas. According to the state of the art, one or two-stage fermentation processes are used for this purpose, in which biogas is obtained from organic substances by means of anaerobic fermentation. However, a major component of this gas is C02, as well as smaller amounts of nitrogen, hydrogen sulfide and other components. However, these known methods are unsatisfactory in terms of the quality of the biogas produced and in particular the methane yield. In particular, the high sulfur or hydrogen sulfide content of about 2% is undesirable, since this has a disturbing effect on the operation of engines and the associated use of catalysts.
Aus diesem Grunde schlägt die EP 1 1 18 671 ein dreistufiges Verfahren vor, wobei in einem ersten Verfahrensschritt der aeroben Fermentation organsicher Stoff unter aeroben Bedingungen mittels Fermentationsmikroorganismen fermentiert wird, wobei feste und/oder flüssige Rückstände und C02-haltige Abgase gebildet werden, in einem zweiten Verfahrensschritt Rückstände aus dem ersten Verfahrensschritt verschwelt werden, wobei ein Holzkohlenprodukt und Holzgas gebildet werden, und in einem dritten Verfahrensschritt der thermophilen Methanfermentation Holzgas aus dem zweiten Verfahrensschritt unter anaeroben Bedingungen mittels thermophilerFor this reason, EP 1 1 18 671 proposes a three-stage process, wherein in a first process step of the aerobic fermentation organic material is fermented under aerobic conditions by means of fermentation microorganisms, solid and / or liquid residues and C02-containing exhaust gases are formed in one second process step residues from the first process step are verschwelt, wherein a charcoal product and wood gas are formed, and in a third step of the thermophilic methane fermentation wood gas from the second process step under anaerobic conditions by means of thermophilic
Fermentationsmikroorganismen zu methanhaltigen Biogas fermentiert wird. Fermentation microorganisms is fermented to methane-containing biogas.
Aufgabe der Erfindung Object of the invention
Der vorliegenden Erfindung liegt vor allem die Aufgabe zugrunde, nochmals das erzeugte Methangas zu verbessern, d. h. ein Biogas zu schaffen, welches über 90% Methan beinhaltet. Lösung der Aufgabe The present invention is primarily based on the object of once again improving the methane gas produced, d. H. to create a biogas containing over 90% methane. Solution of the task
Zur Lösung der Aufgabe führt, dass - in einer ersten Verfahrensstufe die organischen Abfällen in einen aeroben und/oder anaeroben Fermenter eingegeben und mit einem Inoculum und/oder Mikroorganismus versetzt werden und To solve the task leads that - In a first stage of the process, the organic waste is introduced into an aerobic and / or anaerobic fermenter and mixed with an inoculum and / or microorganism, and
- in einer zweiten Verfahrensstufe das in dem Fermenter entstehende C02 einem Gasreformer zugeführt wird, in welchem eine Umwandlung in Methangas erfolgt. Das bedeutet, dass eine klare Trennung zwischen dem aeroben und dem anaeroben Fermenter und dem Gasreformer durchgeführt wird. Der Gasreformer ist ausschliesslich dazu da, das C02 aus den beiden Fermentern zu übernehmen und daraus ein verbessertes Methangas zu machen. Der aerobe Fermenter, der mit einem entsprechenden aeroben Inoculum geimpft ist, erzeugt durch die Fermentierung zum einen das oben erwähnte C02 und zum anderen eine Restbiomasse, die ausgetragen, gepresst, pelletiert und z.B. einem Biomassevergaser zugeführt werden kann. Noch vorhandenes Prozesswasser wird in den anaeroben Fermenter eingeführt und dort weiter verarbeitet. Das C02 wird an dem Gasreformer übergeführt. in a second process stage, the CO 2 produced in the fermenter is fed to a gas reformer in which a conversion into methane gas takes place. This means that a clear separation between the aerobic and the anaerobic fermenter and the gas reformer is performed. The gas reformer is designed exclusively to take the C02 from the two fermenters and make it an improved methane gas. The aerobic fermenter inoculated with a corresponding aerobic inoculum produces by fermentation, on the one hand, the above-mentioned CO 2 and, on the other hand, a residual biomass which is discharged, pressed, pelleted and e.g. a biomass gasifier can be supplied. Still existing process water is introduced into the anaerobic fermenter and further processed there. The C02 is transferred to the gas reformer.
In dem anaeroben Fermenter befindet sich ein entsprechendes anaerobes Inoculum. In dem anaeroben Fermenter werden vor allem die flüssigen Biomassen zu C02 und Methan verarbeitet, wobei letztendlich durch diese Verarbeitung die flüssigen Abwässer in Brauchwasser umgewandelt werden, das in die Kanalisation abgeleitet werden kann. Das entstehende C02 und Methan wird dann wiederum dem Gasreformer zugeführt. In the anaerobic fermenter is a corresponding anaerobic inoculum. In the anaerobic fermenter, especially the liquid biomasses are processed to CO 2 and methane, whereby ultimately the liquid wastewater is converted into process water by this processing, which can be discharged into the sewer. The resulting CO 2 and methane is then fed back to the gas reformer.
Durch spezielle mikrobielle Beschickung auf einer sehr grossen Oberfläche erfolgt dann in dem Gasreformer die Aufarbeitung von C02 zu einem Methan, wobei ein Methan von über 90% erreicht werden kann. Figurenbeschreibung By special microbial loading on a very large surface then takes place in the gas reformer, the processing of CO 2 to a methane, with a methane of over 90% can be achieved. figure description
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in ihrer einzigen Figur eine schematische Darstellung einer Anlage zur Ausführung des erfindungsgemässen Verfahrens zur Vorbereitung von organischen Abfällen für eine weitere Verarbeitung. Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawing; This shows in its single figure a schematic representation of a plant for carrying out the inventive method for the preparation of organic waste for further processing.
Dabei ist mit 1 ein aerober Fermenter bezeichnet, der einen Einlass 2 für Biomasse aufweist. Bevorzugt wird die Masse bis zu einem Feststoffgehalt von 20% in diesen aeroben Fermenter eingebracht und dort mit einem entsprechenden Inoculum beimpft. Bei der Masse handelt es sich infolge des hohen Flüssiganteils um eine flüssige, breiige Masse. Die Prozesstemperatur wird durch eine eingebrachte, nicht näher gezeigte Heizschlange bei konstant 37 bis 38 °C eingeregelt. Die Heizschlange steht bevorzugt mit einem Warmwasserkreislauf in Verbindung. In this case, 1 denotes an aerobic fermenter which has an inlet 2 for biomass. Preferably, the mass is introduced to a solids content of 20% in this aerobic fermenter and there inoculated with a corresponding inoculum. The mass is due to the high liquid content to a liquid, pulpy mass. The process temperature is controlled by an introduced, not shown heating coil at a constant 37 to 38 ° C. The heating coil is preferably in communication with a hot water circuit.
Mit Hilfe von Luft bzw. Sauerstoffdüsen wird die Biomasse zusätzlich umgewälzt. With the help of air or oxygen nozzles, the biomass is additionally circulated.
Die schnell abbaubaren Anteile der Biomasse (Zucker, Fette, Eiweisse) werden unter Luft und/oder 02-Zufuhr zu C02, CO, H2 und 02 reduziert. Das bei Luftzufuhr dabei entstehende Gas hat einen relativ hohen 02-Gehalt und muss daher einem Sauerstofflimitationsprozess unterzogen werden. The rapidly degradable components of the biomass (sugars, fats, proteins) are reduced to CO 2, CO, H 2 and O 2 under air and / or O 2 feed. The gas produced during the air supply has a relatively high O 2 content and must therefore be subjected to an oxygen-simulating process.
Im oberen Bereich des Fermenters 1 bildet sich ein Gasdom, in dem sich dieses Gas ansammelt. Hier erfolgt auch eine ständige Kontrolle des sich sammelnden Gases. Insbesondere bei der Applikation von reinem Sauerstoff sollte das Gas, das noch zuviel Sauerstoff enthält, in einer Schleife 3 von dem Gasdom 4 wieder zurück zu einem Einlass 5 am Boden 6 des Fermenters 1 geführt werden. Dies geschieht solange, bis kein oder nur wenig 02 im Gasdom 4 vorhanden ist. Dann wird das Gas aus dem Gasdom 4, welches im Wesentlichen C02 beinhaltet, an einem Gasreformer 7 übergeführt. In the upper part of the fermenter 1, a gas dome is formed in which this gas accumulates. Here is also a constant control of the collecting gas. In particular, in the application of pure oxygen, the gas, which still contains too much oxygen should be performed in a loop 3 of the gas dome 4 back to an inlet 5 at the bottom 6 of the fermenter 1. This happens until no or little 02 in the Gas dome 4 is present. Then, the gas from the gas dome 4, which essentially comprises CO 2, is transferred to a gas reformer 7.
Nach ca. einem Tag wird die Restbiomasse ausgetragen und z.B. gepresst und pelletiert einem nicht näher gezeigten Biomassevergaser zugeführt. Dort wird es bis auf die mineralischen Bestandteile abgebaut. Das Prozesswasser wird über eine Leitung 8 an einen anaeroben Fermenter 9 übergeführt und dort bis zu Brauchwasser abgebaut. Bei dem aeroben Fermenter 1 erfolgt neben einer Temperaturkontrolle auch eine ständige pH-Wert-Bestimmung zur Optimierung des Prozesses. After about one day, the residual biomass is discharged and e.g. Pressed and pelletized fed to a biomass gasifier not shown in detail. There it is mined except for the mineral components. The process water is transferred via a line 8 to an anaerobic fermenter 9 and degraded there to service water. In the aerobic fermenter 1 in addition to a temperature control and a constant pH determination to optimize the process.
In den anaeroben Fermenter 9 können neben dem Prozesswasser aus dem aeroben Fermenter 1 auch durch einen weiteren, nicht gezeigten Einlass biologische Abwässer eingeführt werden. Er ist in besonderer Weise dazu bestimmt, diese Abwässer zu reinigen. Hierzu zählen vor allem Abwässer aus der Landwirtschaft und Lebensmittelproduktion, z.B Gülle, Presswasser, Abwasser von Schlachthöfen, Leimhersteller usw.. Erste Versuche haben auch gezeigt, dass der Reaktor zur Reinigung von Deponie-Sickerwässer eingesetzt werden kann. In the anaerobic fermenter 9, in addition to the process water from the aerobic fermenter 1, biological waste water can also be introduced through a further inlet, not shown. It is designed in a special way to purify this wastewater. These include, in particular, wastewater from agriculture and food production, for example liquid manure, press water, waste water from slaughterhouses, glue manufacturers, etc. Initial tests have also shown that the reactor can be used to clean landfill leachate.
Eine mikrobielle Beschickung geschieht nach Anzüchtung und Vermehrung eines jeweiligen anaeroben Inoculums durch Besiedlung der im Reaktor befindlichen Trägersysteme. Hierbei werden in unterschiedlicher Dichte ikrobenbesiedlungsschnüre in dem Reaktor gespannt, die eine grossflächige Ansiedungsmöglichkeit bieten. Diese können aus Plastikschnüren, Hanfseilen oder aus Bahnen von reinen Kohlenstoffgeweben bestehen. Vor allem das letztere Material hat eine sehr grosse Oberfläche von bis zum 1800 qm/g als Träger für die Bakterien. A microbial feed takes place after cultivation and propagation of a respective anaerobic inoculum by colonization of the carrier systems located in the reactor. In this case, in different densities, microbial settlement cords are stretched in the reactor, which offer a large-area settlement facility. These can consist of plastic cords, hemp ropes or sheets of pure carbon fabrics. Above all, the latter material has a very large surface of up to 1800 sqm / g as a carrier for the bacteria.
Der Flüssigkeitstransport im Reaktor erfolgt auch über eine Aussenleitung 10. Die Flüssigkeit steigt in zwei äusseren Kammern 1 1 und 12 auf und wird dann durch ein Zentralrohr 13 wieder nach unten geführt. Dieser Kreislauf wird bis zu einem ausreichenden Abbau zirkulär geführt und danach die Restmasse ausgetragen, gepresst bzw. pelletiert. Die Flüssigkeit kann als Brauchwasser in die Kanalisation verbracht werden. The liquid transport in the reactor is also via an external line 10. The liquid rises in two outer chambers 1 1 and 12 and then passed through a central tube 13 back down. This cycle is circulated until sufficient degradation and then discharged the remaining mass, pressed or pelletized. The liquid can be spent as process water in the sewage system.
Der anaeroben Fermenter 9 baut verflüssigte Biomasse bzw. Wasser bis zu einem Feststoffanteil von ca. 10% in einem Zeitraum von maximal 2 bis 3 Tagen ab. In einem Gasdom 14 sammelt sich C02 und Methan an, wobei ein Methangehalt von 60 bis 82% in nicht unerheblicher Menge erreicht wird. H2S wird dagegen auf unter 0,1 ppm reduziert. The anaerobic fermenter 9 degrades liquefied biomass or water to a solids content of about 10% in a period of a maximum of 2 to 3 days. In a gas dome 14 C02 and methane accumulates, with a methane content of 60 to 82% is achieved in significant quantities. H2S is reduced to less than 0.1 ppm.
Die Temperatursteuerung von 55 bis 56 °C erfolgt bevorzugt durch eine Heizspirale, die ebenfalls von aussen mit heissem Wasser gesteuert wird. Neben einer ständigen Temperaturkontrolle werden auch permanente pH- Messungen und CH4-Kontrollen durchgeführt. The temperature control of 55 to 56 ° C is preferably carried out by a heating coil, which is also controlled from the outside with hot water. In addition to constant temperature control, permanent pH measurements and CH4 controls are also carried out.
Der Gasreformer 7 zeichnet sich durch seine besondere Fähigkeit aus, C02 in einem Hochtemperatur-Methanogenese-Prozess in CH4 umzubauen. Dazu benötigt er vor allem eine möglichst grosse Oberfläche als Trägersubstanz für die thermophilen Mikroben. Die mikrobielle Beschickung erfolgt durch einen Methanolsarcinastamm und einem Bakterium Thermoautotrophikum auf einem speziellen Braunkohle-Industriekoks mit grosser Oberfläche. Innerhalb des Reformers befindet sich ca. 500 kg. Industriekoks. Ein Gramm von diesem Industriekoks hat eine Oberfläche von 220 qm, so dass die Koksfüllung somit ungefähr einer Oberfläche von 1 10 qkm bzw. 1 0.000.000 qm bietet. Gas reformer 7 is characterized by its unique ability to convert C02 to CH4 in a high temperature methanogenesis process. For this he needs above all the largest possible surface as a carrier substance for the thermophilic microbes. The microbial feed is carried out by a methanol crayfish strain and a bacterium thermoautotrophic on a special lignite industrial coke with a large surface area. Within the reformer is about 500 kg. Industrial coke. One gram of this industrial coke has a surface area of 220 square meters, so that the coke filling thus offers approximately a surface of 1 10 square km or 1 0 000 000 square meters.
Im Reaktor befindet sich dieser Industriekoks oberhalb einer Nährlösung für die Mikroben und dem Wasser, das sich bei der Reaktion bildet, getrennt durch einen Gitterrost. Eine Temperatursteuerung von 75 bis 78 °C wird durch eine Heizspirale, die in dem Gasreformer 7 eingebracht ist, von aussen durch Heisswasser gesteuert. Neben der mehrfachen Temperaturkontrolle wird eine permanente Messung von C02, CO sowie CH4 durchgeführt, ebenso wird der PH-Wert zur Steuerung des optimalen Prozesses kontrolliert. In the reactor, this industrial coke is above a nutrient solution for the microbes and the water that forms in the reaction, separated by a grid. A temperature control of 75 to 78 ° C is controlled by a heating coil, which is incorporated in the gas reformer 7, from the outside by hot water. In addition to the multiple temperature control, a permanent measurement of CO 2, CO and CH 4 is carried out, as well as the PH value is controlled to control the optimal process.
Bei höheren C02 Anteilen kann das Gas aus dem Gasdom 15 im Kreislauf zurückgeführt werden, bis der gewünschte CH4 Gehalt (z.B. Gehalt von über 90%) erreicht ist. At higher CO 2 levels, gas from the gas dome 15 can be recirculated until the desired CH 4 content (e.g., greater than 90% level) is reached.
Dieser Gasreformer 7 ist in besonderer Weise dazu geeignet, C02-Abgase in CH4 umzuwandeln, um eine C02-Emmision zu ersetzen. Das ist in besonderer Weise wichtig unter anderem für Holzvergaser, Holz- und Kohlekraftwerke und Grossmotoren, die ihr Gas aus mesophilen Methanogeneseprozessen (niedriger CH4-Gehalt) erhalten. Jedoch können mit einem solchem Gasreformer 7 auch alle herkömmlichen Kläranlagen bzw. Biogasanlagen nachgerüstet werden. This gas reformer 7 is particularly suitable for converting CO 2 exhaust gases into CH 4 to replace a CO 2 emission. This is especially important for wood gasifiers, wood and coal power plants and large engines, which receive their gas from mesophilic methanogenesis processes (low CH4 content). However, with such a gas reformer 7 all conventional sewage treatment plants or biogas plants can be retrofitted.
Das Methangas mit einem Methangehalt von 80 bis 95% Methan wird aus einem Auslass 16 einer weiteren Verwertung zugeführt. The methane gas with a methane content of 80 to 95% methane is supplied from an outlet 16 for further utilization.
Dres. WEISS & ARAT Dres. WEISS & ARAT
Patentanwälte und Rechtsanwalt Patent attorneys and lawyer
European Patent Attorney European Patent Attorney
Aktenzeichen: P 4641/DE-II Datum: 03.02.14 W/ST Reference: P 4641 / DE-II Date: 03.02.14 W / ST
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1 aerober Fermenter 34 67 1 aerobic fermenter 34 67
2 Einlass 35 682 inlet 35 68
3 Schleife 36 693 loop 36 69
4 Gasdom 37 704 gas dome 37 70
5 Einlass 38 715 inlet 38 71
6 Boden 39 726 floor 39 72
7 Gasreformer 40 737 gas reformer 40 73
8 Leitung 41 748 line 41 74
9 Anaerober Fermenter 42 759 anaerobic fermenter 42 75
10 Aussenleitung 43 7610 outside line 43 76
1 1 Aussenkammer 44 771 1 outer chamber 44 77
12 Aussenkammer 45 7812 outer chamber 45 78
13 Zentralrohr 46 7913 central tube 46 79
14 Gasdom 47 14 gas dom 47
15 Gasdom 48 15 gas dome 48
16 Auslass 49 16 outlet 49
17 50 17 50
18 51 18 51
19 52 19 52
20 53 20 53
21 54 21 54
22 55 22 55
23 56 23 56
24 57 24 57
25 58 25 58
26 59 26 59
27 60 27 60
28 61 28 61
29 62 29 62
30 63 30 63
31 64 31 64
32 65 32 65
33 66 33 66
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014102187.8A DE102014102187A1 (en) | 2014-02-20 | 2014-02-20 | Process for the preparation of organic waste |
PCT/DE2015/000071 WO2015124136A1 (en) | 2014-02-20 | 2015-02-13 | Method for preparing organic waste |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3107991A1 true EP3107991A1 (en) | 2016-12-28 |
EP3107991B1 EP3107991B1 (en) | 2020-09-02 |
Family
ID=52814757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15714757.0A Active EP3107991B1 (en) | 2014-02-20 | 2015-02-13 | Method for preparing organic waste |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3107991B1 (en) |
DE (1) | DE102014102187A1 (en) |
ES (1) | ES2834609T3 (en) |
WO (1) | WO2015124136A1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3428556A1 (en) * | 1984-08-02 | 1986-02-13 | Linde Ag, 6200 Wiesbaden | Process and apparatus for the biological treatment of waste water |
DE4415017C2 (en) * | 1994-04-29 | 1996-02-15 | Bernstein Gmbh Ingenieurbuero | Two-stage combi-biogas reactor for the treatment of plant and animal biomass, especially liquid manure |
EP1118671A1 (en) | 2000-01-18 | 2001-07-25 | Rebholz, Erich, Dr. med. | Process and apparatus for the production of methane containing biogas out of organic material |
DE102006032039A1 (en) * | 2006-07-10 | 2008-01-17 | Rebholz, Erich, Dr. | Process for the production of methane gas and reactor for its implementation |
-
2014
- 2014-02-20 DE DE102014102187.8A patent/DE102014102187A1/en not_active Withdrawn
-
2015
- 2015-02-13 ES ES15714757T patent/ES2834609T3/en active Active
- 2015-02-13 WO PCT/DE2015/000071 patent/WO2015124136A1/en active Application Filing
- 2015-02-13 EP EP15714757.0A patent/EP3107991B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3107991B1 (en) | 2020-09-02 |
WO2015124136A1 (en) | 2015-08-27 |
DE102014102187A1 (en) | 2015-08-20 |
ES2834609T3 (en) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Acidogenic and methanogenic properties of corn straw silage: regulation and microbial analysis of two-phase anaerobic digestion | |
Wang et al. | Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges | |
DE102010043630A1 (en) | Method for increasing concentration of methane biogas, comprises supplying hydrogen and a liquid hydrolyzate in a methane level to a two-stage biogas process or supplying the hydrogen to a methane reactor above the hydrolyzate | |
EP2707491A2 (en) | Process for producing biogas from predominantly animal excrements | |
DE102008032409A1 (en) | Process for the production of methane from process waters and biogenic material | |
DE102014111287A1 (en) | Process for the production of methane | |
EP3830227B1 (en) | Process for the production of bio-oil and biogas from biomass | |
EP2586868B1 (en) | Method and biogas system for the generation of biogas | |
DE102007063090A1 (en) | Method and device for fermenting fluid plant raw materials as substrate for the production of hydrogen-containing biogas in special hydrogen fermenter, comprise controlling the fermenter over measuring variables of pH value and temperature | |
EP2982740A1 (en) | Method for generating methane | |
DE10316680B4 (en) | Method for producing biogas | |
DE3427976C2 (en) | ||
DE102014111298A1 (en) | Process for the production of methane | |
DE102005012367A1 (en) | Two-stage fermentation process and assembly to generate hydrogen and methane from biological residues | |
DE3018018A1 (en) | Bio:reactor for methane gas prodn. from organic substances - pretreated with amylase, lipase and protease, comprising separate fermentation chambers with circulation of biomass under gas pressure | |
EP3107991B1 (en) | Method for preparing organic waste | |
DE102006035213B4 (en) | Apparatus and method for the combined production of hydrogen and methane by fermentation of biological input materials | |
DE102013006935A1 (en) | Process and plant for producing methane-rich biogases | |
DE102014011479A1 (en) | New process for the fermentation of biogenic energy sources | |
Abebe | Characterisation of fruit and vegetable waste with cow dung for maximizing the biogas yield | |
WO2015124133A1 (en) | Method for preparing organic waste | |
DE102011054298A1 (en) | Methane production unit comprises fermenter with enclosed inner volume having surface for immobilized microorganisms, where inner volume is connected with environment by e.g. substrate gas inlet, synthesis gas outlet and supply line | |
WO2015124131A1 (en) | Method for preparing organic waste | |
DE10043468A1 (en) | Hydrogen production by biological fermentation involves drawing-off the hydrogen from a process in which a preferably aerobically-treated biomass, e.g. domestic waste or a genetically-modified biomass, is fermented | |
WO2015067813A1 (en) | Method for producing biogas containing a reduced concentration of ammonium using anammox |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20160919 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191122 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200515 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1308821 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015013376 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201203 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210104 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015013376 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2834609 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150213 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240319 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240216 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240212 Year of fee payment: 10 Ref country code: GB Payment date: 20240222 Year of fee payment: 10 Ref country code: CH Payment date: 20240301 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240229 Year of fee payment: 10 Ref country code: FR Payment date: 20240221 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |