EP3077588B1 - Procédé permettant de commander un sèche-linge du type comprenant un système de pompe à chaleur, et sèche-linge correspondant - Google Patents
Procédé permettant de commander un sèche-linge du type comprenant un système de pompe à chaleur, et sèche-linge correspondant Download PDFInfo
- Publication number
- EP3077588B1 EP3077588B1 EP13799334.1A EP13799334A EP3077588B1 EP 3077588 B1 EP3077588 B1 EP 3077588B1 EP 13799334 A EP13799334 A EP 13799334A EP 3077588 B1 EP3077588 B1 EP 3077588B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- time interval
- compressor
- power
- rotation speed
- laundry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F58/00—Domestic laundry dryers
- D06F58/32—Control of operations performed in domestic laundry dryers
- D06F58/34—Control of operations performed in domestic laundry dryers characterised by the purpose or target of the control
- D06F58/36—Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
- D06F58/38—Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/02—Characteristics of laundry or load
- D06F2103/04—Quantity, e.g. weight or variation of weight
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/02—Characteristics of laundry or load
- D06F2103/08—Humidity
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/18—Washing liquid level
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/28—Air properties
- D06F2103/32—Temperature
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/28—Air properties
- D06F2103/34—Humidity
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/28—Air properties
- D06F2103/36—Flow or velocity
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/38—Time, e.g. duration
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/44—Current or voltage
- D06F2103/46—Current or voltage of the motor driving the drum
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/50—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers related to heat pumps, e.g. pressure or flow rate
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2105/00—Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
- D06F2105/16—Air properties
- D06F2105/24—Flow or velocity
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2105/00—Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
- D06F2105/26—Heat pumps
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2105/00—Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
- D06F2105/46—Drum speed; Actuation of motors, e.g. starting or interrupting
- D06F2105/48—Drum speed
Definitions
- the present invention concerns the field of laundry drying techniques.
- the present invention refers to a laundry drying machine equipped with a heat pump system and, more in particular, a method for controlling such a heat pump system.
- Laundry treating machines capable of carrying out a drying process on laundry hereinafter simply indicated as laundry dryers, generally comprise a casing that houses a laundry container, like a rotating drum, where laundry to be treated is received.
- a closed air stream circuit carries out drying operation by circulating hot air through the laundry container containing the wet laundry.
- the heat pump technology is the most efficient way to save energy during drying operation.
- a drying air stream flows in a close loop. The air passes through the laundry drum and removes water from wet clothes. Then the drying air stream is cooled down and dehumidified and then heated up in a heat pump system and finally reinserted again into the laundry drum.
- the drying air stream is typically moved by air conveyance means, usually constituted of a fan arranged along the closed-loop air stream circuit.
- the volume flow of the drying air conveyed into the drum is set according to the fan speed.
- the heat pump system comprises a refrigerant flowing in a closed-loop refrigerant circuit constituted by a compressor, a condenser, an expansion device and an evaporator.
- the condenser heats up the drying air while the evaporator cools and dehumidifies the drying air leaving the drum.
- the refrigerant flows in the refrigerant circuit where it is compressed by the compressor, condensed in the condenser, expanded in the expansion device and then vaporized in the evaporator.
- the temperatures of the drying air stream and the refrigerant are strongly correlated to each other.
- the heat pump system comprises a fixed speed compressor.
- This type of compressor works in an on/off-mode, so that the operating parameters of said compressor and of the heat pump system cannot be properly controlled during the drying cycle.
- the heat pump system comprises a controlled speed motor.
- the compressor motor speed may be determined on the base of the drying cycle selected by the user through a user control interface.
- the user may select an "economic cycle” or a "fast cycle”.
- the compressor motor speed may be maintained substantially constant during the time.
- the compressor motor speed may comprise peaks of high intensity. This reduces the cycle duration, while the power consumption increases.
- the compressor motor speed may be determined on the base of the type of laundry textile to dry (cotton, wool, delicate, etc.), typically selected by the user through the user control interface.
- the drying process in the laundry dryers of the known type above mentioned requires a large amount of energy. Also, it is know that a drying process in laundry dryers of the known type requires a large amount of time. This determines high cost for the user.
- EP 2 284 310 A1 discloses a method for controlling a heat pump system for a tumble dryer. By detecting the time development of temperature at the drum outlet and temperature differences between drum inlet/outlet or drum outlet and evaporator outlet, the beginning of a residual drying phase is determined. At the beginning of a detected residual drying phase compressor speed is reduced. Compressor speed may be reduced continuously or gradually in one or more steps.
- JP 2012-90774 A discloses a laundry machine and a method for operating the laundry machine, wherein the machine comprises a compressor with variable output power.
- the aim of the disclosed method is to reduce generation of wrinkles in laundry by low temperature process air.
- Compressor speed is reduced in case refrigerant temperature exceeds a predetermined temperature or in case air temperature exceeds a predetermined temperature.
- a main object of the present invention is therefore to provide a method for controlling a heat pump system for a laundry dryer which allows an additional saving of energy during the drying cycle.
- Another object of the present invention is to provide a method for drying laundry in a laundry drying machine which allows the reduction of the drying cycle time compared to method of known type.
- the applicant has found that by providing a method for controlling a laundry drying machine with at least one heat pump system comprising an air stream circuit including at least one drum for receiving laundry to be dried, at least one refrigerant circuit including at least one compressor with a variable rotation speed, a first heat exchanger for a thermal coupling between the air stream circuit and the refrigerant circuit and a second heat exchanger for a further thermal coupling between the air stream circuit and the refrigerant circuit, wherein the rotation speed, or the power, of the compressor is repeatedly adjusted on the base of the amount of water removed from the laundry, it is possible to save energy during the drying cycle.
- the present invention relates, therefore, to a method for controlling a drying cycle in a laundry drying machine of the type comprising a heat pump system having a refrigerant circuit for a refrigerant and comprising a drying air circuit for conveying a volume flow of drying air in a laundry drum suitable for receiving laundry to be dried, said refrigerant circuit comprising:
- step b) if the comparison performed in said step b) indicates that:
- step b) if the comparison performed in said step b) indicates that:
- the step c) of adjusting the rotation speed or the power comprises increasing the rotation speed or the power of the compressor in the third time interval if the comparison performed in the step b) indicates that the efficiency parameter determined during the second time interval decreases with respect to the efficiency parameter determined during the first time interval and the rotation speed or the power of the compressor was decreased in the second time interval with respect to the first time interval.
- the step c) of adjusting the rotation speed or the power comprises increasing the rotation speed or the power of the compressor in the third time interval with respect to the second time interval if the comparison performed in the step b) indicates that the efficiency parameter determined during the second time interval decreases with respect to the efficiency parameter determined during the first time interval and the rotation speed or the power of the compressor was decreased in the second time interval with respect to the first time interval.
- the step c) of adjusting the rotation speed or the power comprises decreasing the rotation speed or the power of the compressor in the third time interval if the comparison performed in the step b) indicates that the efficiency parameter determined during the second time interval decreases with respect to the efficiency parameter determined during the first time interval and the rotation speed or the power of the compressor was increased in the second time interval with respect to the first time interval.
- the step c) of adjusting the rotation speed or the power comprises decreasing the rotation speed or the power of the compressor in the third time interval with respect to the second time interval if the comparison performed in the step b) indicates that the efficiency parameter determined during the second time interval decreases with respect to the efficiency parameter determined during the first time interval and the rotation speed or the power of the compressor was increased in the second time interval with respect to the first time interval.
- the step a1) takes place at the end of the first time interval.
- the step a2) takes place at the end of the second time interval.
- the step c) takes place at the beginning of the third time interval.
- the efficiency parameter is calculated by:
- the step b3) comprises the step of calculating the ratio between said first parameter and said power consumption of said compressor.
- the efficiency parameter is calculated by:
- the step b5) comprises the step of calculating the ratio between said first parameter and said sum of power consumptions.
- the method further comprises a step d) of adjusting the rotation speed or the power of said at least one other electric component in said third time interval according to the result of said comparison performed in said step b), wherein said at least one other electric component is an electric motor.
- said step d) of adjusting the rotation speed or the power of said at least one other electric component in said third time interval according to the result of said comparison performed in said step b) comprises increasing or decreasing the rotation speed or the power of said at least one other electric component in said third time interval according to the result of said comparison in the step b) and according to an increasing or a decreasing of the rotation speed or the power of said at least one other electric component in said second time interval with respect to said first time interval.
- said at least one other electric component is a fan motor or a drum motor.
- the method further comprises a step d) of increasing or decreasing the rotation speed or the power of the fan motor in said third time interval according to the result of said comparison in said step b) and according to an increasing or a decreasing of the rotation speed or the power of said fan motor in said second time interval with respect to said first time interval.
- the step b4) of determining the sum of the power consumption of said compressor and the power consumption of at least one other component is carried out using a weighted sum.
- said first parameter is obtained according to one of the following criteria: estimation by a direct measure of the condensed water generated at said second heat exchanger; estimation by considering the trend of the power consumption of a drum motor; estimation by considering the trend of the electrical current and/or of the torque of the drum motor; estimation by measuring the weight variations of the laundry in said laundry drum; estimation by considering the number of switch on/off of a draining pump of a draining pump associated to the condensed water generated at the second heat exchanger; estimation by detecting the signal of a water level or flow sensor associated to a water collecting container; estimation by considering the trend of the temperature and/or the humidity level of the moist air leaving the laundry drum; estimation by considering the trend of the temperature and/or the pressure level of said refrigerant in said refrigerant circuit; estimation by the difference of the drying air temperature at the second heat exchanger outlet and the drying air temperature at the second heat exchanger inlet; estimation by the difference between two refrigerant temperature levels at the second heat exchanger; estimation by the difference between the drying air humidity
- the first parameter is obtained according to one of the following criteria: estimation by considering the difference between the relative humidity of the drying air at the drum inlet and outlet; estimation by considering the difference of the absolute humidity of the drying air at the drum inlet and outlet; estimation by considering the difference of the temperature of the drying air at the drum inlet and outlet.
- the optimization procedure is performed after an initial transitional phase of the drying cycle.
- the optimization procedure is performed after a prefixed period of time from the beginning of the drying cycle.
- the optimization procedure is performed when the drying cycle reaches a steady-state condition.
- the steady-state condition occurs, preferably, after an initial transitional phase and when the condensation temperature and the evaporation temperature of the refrigerant in the first heat exchanger and in the second heat exchanger remain within a respective prefixed temperature range.
- the optimization procedure is carried out in the laundry drying machine by means of a central processing unit.
- the present invention relates to a laundry drying machine suited to implement the method above described.
- the present invention has proved to be particularly successful when applied to a front-loading laundry drying machine with a rotatable laundry container; however it is clear that the present invention can be applied as well to a top-loading laundry drying machine and also to laundry drying machines of cabinet type, i.e. laundry drying machines where the laundry container does not rotate. Furthermore, the present invention can be usefully applied to all the machines requiring a drying phase for wetted clothes, as for example a combined laundry washing and drying machine.
- laundry drying machine will refer to both simple laundry drying machines and laundry washing-drying machines.
- FIGS 1 and 2 illustrate a laundry drying machine 1, or laundry dryer, with a heat pump system 20 according to a preferred embodiment of the present invention.
- the laundry dryer 1 preferably comprises, though not necessarily, a substantially parallelepiped-shaped outer boxlike casing 2 which is preferably structured for resting on the floor.
- a laundry container comprising a rotatably drum 9 is provided within the casing 2.
- a front door 8 pivotally coupled to the front upright side wall 2a, is provided for allowing access to the drum interior region to place laundry to be dried therein.
- the drum 9 is advantageously rotated by a drum motor 27, preferably an electric motor, which preferably transmits the rotating motion to the shaft of the drum 9, advantageously by means of a belt/pulley system.
- the drum motor can be directly associated with the shaft of the drum 9.
- a drum motor control unit 28 is also provided for controlling the drum motor 27.
- the drum motor control unit 28 controls the speed Ds of the drum motor 27.
- the drum motor control unit 28 for controlling the rotation speed Ds of the drum motor 27 can be part of a central processing unit, not illustrated.
- the laundry dryer 1 is provided with a drying air circuit 10, as illustrated in Figure 2 , which is structured to circulate inside the drum 9 a volume flow of drying air A.
- the drying air A circulates over and through the laundry located inside the drum 9 to dry the laundry.
- the drum 9 itself is therefore part of the drying air circuit 10.
- the drying air circuit 10 is also structured for drawing moist air from the drum 9 and cooling down the moist air leaving the drum 9 so to extract and retain the surplus moisture.
- the dehumidified air is then heated up to a predetermined temperature preferably higher than that of the moist air arriving from the drum 9. Finally the heated, dehumidified air is conveyed again into the drum 9, where it flows over and through the laundry stored inside the rotatable drum 9 to rapidly dry the laundry, as said above.
- the drying air circuit 10 forms, therefore, a closed-loop for the drying air A, as schematically illustrated with dashed line in Figure 2 .
- An air conveyance device 12 is preferably arranged along the drying air circuit 10 for generating the volume flow of drying air A.
- the air conveyance device 12 preferably comprises a fan.
- a fan control unit 46 is also provided for controlling the fan 12.
- the fan control unit 46 is provided for controlling the fan speed Fs of the fan 12.
- the fan control unit 46 for controlling the rotation speed Fs of the fan 12 can be part of a central processing unit, not illustrated.
- the fan 12 comprises an electric motor 45 and the control unit 46 comprises an inverter.
- the fan 12 and the drum 9 may be preferably driven by the same electric motor. This may advantageously reduce the cost and/or the size of the laundry dryer.
- two electric motors 27, 45, as described above, may be advantageously driven and controlled independently so that the fan 12 and the drum 9 may be controlled independently.
- the air conveyance device 12 is preferably arranged upstream of the drum 9. In different embodiments, nevertheless, the air conveyance device 12 may be arranged in any place along the drying air circuit 10.
- the drying air circuit 10 then comprises a dehumidifying unit 23 arranged downstream of the drum 9 and a heater unit 21 arranged downstream of the dehumidifying unit 23 and upstream of the drum 9.
- the terms "upstream” and “downstream” are referred to the flowing direction of the air, heated air and/or moist air, during the standard functioning of the laundry dryer; for example saying that the fan is arranged upstream of the drum means that in the standard functioning of the laundry dryer the air firstly passes through the fan and then flows into the drum; saying that the dehumidifying unit is arranged downstream of the drum means that in the standard functioning of the laundry dryer the air firstly circulates inside the drum and then passes through the dehumidifying unit.
- the moist air leaving the drum 9 condenses and cools down and the water generated therein is preferably collected in a removable water container 14, visible in Figure 1 , arranged below the dehumidifying unit 23.
- the dehumidifying unit 23 is the evaporator of the heat pump system 20 and the heating unit 21 is the condenser of said heat pump system 20.
- the evaporator 23 cools down and dehumidifies the moist air coming from the drum 9 and then the condenser 21 heats up the dehumidified air coming from the evaporator 23. The heated air is then conveyed again into the drum 9.
- the drying air circuit may not form a closed-loop.
- the drying air may be conveyed to a condenser from outside, then conveyed into the drum, from the drum conveyed to the evaporator and finally expelled to the outside.
- the drying air circuit 10 and the heat pump system 20 are thermally coupled by the condenser 21 and the evaporator 23.
- the heat pump system 20 advantageously comprises a refrigerant circuit 30 forming a closed-loop circuit where a refrigerant flows.
- the refrigerant circuit 30 comprises a compressor 24, a first heat exchanger 21, i.e. the condenser 21 in the preferred embodiment here described, an expansion device 22 and a second heat exchanger 23, i.e. the evaporator 23 in the preferred embodiment here described.
- the compressor 24, the condenser 21, the expansion device 22 and the evaporator 23 are connected in series to form said closed-loop circuit.
- the refrigerant flows in the refrigerant circuit 30 wherein is compressed by the compressor 24, condensed in the condenser 21, expanded in the expansion device 22 and then vaporized in the evaporator 23.
- the first heat exchanger may comprise a gas cooler (instead of the condenser) and the second heat exchanger may comprise a gas heater (instead of the evaporator).
- the refrigerant is advantageously a gas, such as CO 2 , which maintains its gaseous state along all the closed-loop circuit, and in particular in the gas cooler and in the gas heater.
- the gas temperature changes while passing through the gas cooler and the gas heater.
- the first heat exchanger 21 defines a thermal coupling between the drying air circuit 10 and the refrigerant circuit 30 wherein the temperature of the drying air A increases and the temperature of the refrigerant decreases.
- the second heat exchanger 23 defines a further thermal coupling between the drying air circuit 10 and the refrigerant circuit 30 wherein the temperature of the drying air A decreases and the temperature of the refrigerant increases.
- a compressor control unit 26 is also provided for controlling the compressor 24.
- the compressor control unit 26 is provided for controlling the rotation speed Cs of the compressor 24.
- the compressor control unit 26 for controlling the rotation speed Cs of the compressor 24 can be part of a central processing unit, not illustrated.
- rotation speed Cs of the compressor 24 it is meant the rotation speed of a driving motor which is part of the compressor 24.
- the compressor 24 comprises an electric motor and the compressor control unit 26 comprises an inverter.
- the compressor control unit 26, the fan control unit 46 and the drum motor control unit 28 communicate one to the other. More preferably, the compressor control unit 26, the fan control unit 46 and the drum motor control unit 28 are part of said central processing unit.
- the central processing unit advantageously manages and controls data from/for said units.
- An interface unit 15 is preferably arranged on the top of the casing 2.
- the interface unit 15 is preferably accessible to the user for the selection of the drying cycle and insertion of other parameters, for example the type of fabric of the load, the degree of dryness, etc..
- the interface unit 15 preferably displays machine working conditions, such as the remaining cycle time, alarm signals, etc.
- the interface unit 15 preferably comprises a display 13.
- the user may selects and inserts other types of parameters, for example the washing temperature, the spinning speed, etc..
- the interface unit may be differently realized, for example remotely arranged in case of a remote-control system.
- the laundry dryer 1 may comprise several kinds of sensor elements, which are not shown in the figures.
- the sensor elements may be provided for detecting the temperature, the relative humidity of the drying air A and/or the electrical impedance at suitable positions of the laundry dryer 1, the pressure and/or the temperature of the refrigerant, etc..
- the central processing unit above mentioned is advantageously connected to the various parts of the laundry dryer 1, or peripheral units or sensor elements, in order to ensure its operation.
- the laundry to be dried is first placed inside the drum 9.
- the user selects the desired drying cycle depending, for example, on the type of laundry textile to dry or on the dryness degree of the laundry which is expected at the end of the drying cycle, for example totally dry or with residual moisture for a best ironing.
- the central processing unit sets the laundry drying machine 1 so that the drying cycle may start.
- the selection of the desired drying cycle may be performed before placing the laundry into the drum 9.
- the drying cycle is preferably defined by controlling many parameters which allows the laundry to be dried according to the user selection.
- Parameters which typically affect a drying cycle are: the drum rotation speed Ds and its rotational direction of rotation; the performance of the heat pump system 20, in particular the rotation speed Cs or the power Cp of the compressor 24; the volume flow of the drying air A in the drying air circuit 10.
- the heat pump system 20 strongly affects the efficiency of the drying process.
- mass flow rate we mean the rate of water extracted by evaporation from laundry placed in the drum 9.
- the mass flow rate is advantageously expressed as weight over the time (typically gr/min).
- the parameter ⁇ (t) eventually used in said formula is ⁇ Condense (t), where ⁇ Condense (t) is the water mass flow rate of the water which condenses on the dehumidifying unit 23 (evaporator).
- a value for the mass flow rate ⁇ Condense (t) can be estimated in different ways.
- ⁇ Condense (t) may be preferably estimated by a direct measure of the condensed water.
- the measure of the condensed water may be preferably carried out, for example, using a flow meter or a scale arranged in correspondence of the removable container 14 which collects the condensed water generated in the evaporator 23.
- ⁇ Condense (t) may be preferably estimated in different ways: by considering the trend of the power consumption of the drum motor 27; by considering the trend of the electrical current and/or of the torque of the drum motor 27; by measuring the weight of the clothes in the drum 9 during the cycle; by considering the number of switch on/off of a draining pump in case a draining pump for the condensed water is provided; by detecting the signal of a water level or flow sensor associated to the water collecting container 14; by considering the trend of the temperature and/or the humidity level (relative humidity or absolute humidity) of the moist air leaving the drum 9; by considering the trend of the temperature and/or the pressure level of the refrigerant in the refrigerant circuit 30; by considering the difference of the drying air temperature at the second heat exchanger outlet and the drying air temperature at the second heat exchanger inlet; by considering the difference between two refrigerant temperature levels at the second heat exchanger; by considering the difference between the drying air humidity at the second heat exchanger outlet and the drying air humidity at the
- the laundry dryer may be equipped with a draining pump for the condensed water, as cited above.
- the condensed water drained by the draining pump is conveyed to a water tank preferably arranged on the top of the laundry dryer, which may be easily and periodically emptied by the user.
- ⁇ Condense (t) may be preferably estimated by detecting the signal of a water level sensor associated to the water tank.
- the condensed water drained by the draining pump may be conveyed directly to the outside, preferably by means of a dedicated discharge pipe connected to the draining pump.
- ⁇ Condense (t) may be preferably estimated by detecting the signal of a water flow sensor associated to the discharge pipe.
- the parameter ⁇ (t) eventually used in said formula is ⁇ evaporated (t), where ⁇ evaporated (t) is the mass flow rate of the water extracted by evaporation from laundry in the drum 9.
- ⁇ evaporated (t) A value for the mass flow rate ⁇ evaporated (t) can be assessed in different ways.
- ⁇ evaporated (t) may be preferably estimated by: considering the difference between the relative humidity of the drying air A at the drum inlet and outlet, considering the difference of the absolute humidity of the drying air A at the drum inlet and outlet, considering the difference of the temperature of the drying air A at the drum inlet and outlet.
- the method of the present invention maximizes said function F(t) by properly controlling the compressor 24 during the time.
- the central processing unit sets the course of the compressor speed Cs over the time until the drying cycle ends.
- the central processing unit sets the course of the compressor power Cp over the time until the drying cycle ends, instead of the compressor speed Cs.
- course it is meant a trend over the time.
- the compressor speed Cs, or the compressor power Cp is adjusted during the time according to the evolution of the cycle. Preferred criteria for determining the courses of the compressor speed Cs or of the compressor power Cp in a drying cycle will be better described later.
- the compressor speed Cs or the compressor power Cp is controlled on the base of the performance of the heat pump system 20 in terms of quantity of water removed from the laundry during the time.
- the compressor speed Cs or the compressor power Cp is adjusted during the time according to the variation of the parameter related to the mass flow rate ⁇ (t) of the water removed from the laundry, more particularly by checking and maximizing the efficiency function F(t) as defined above.
- the method of the invention performs, therefore, an optimization procedure for the efficiency function F(t) by adjusting the compressor speed Cs or the compressor power Cp.
- Adjustment of the compressor speed Cs, or of the compressor power Cp means increasing or decreasing the value of the compressor speed Cs, or of the compressor power Cp, of a preferred value ⁇ , or ⁇ p.
- the compressor speed Cs (or the compressor power Cp) is adjusted in the same direction (step 102) of a previous adjustment action if the efficiency function F(t) in the meantime has increased (output "Yes” of block 101) or the compressor speed Cs (or the compressor power Cp) is adjusted in the opposite direction (step 103) of a previous adjustment action if the efficiency function F(t) in the meantime has decreased (output "No" of block 101).
- FIG. 4 A course of the compressor speed Cs on the base of the efficiency function F(t) in a drying cycle according to a first preferred embodiment of the invention is illustrated in Figure 4 .
- the time intervals may be different one to the other.
- the efficiency function F(t n ) is calculated, advantageously by means of the central processing unit.
- the calculated value of the efficiency function F(t n ) is compared to the efficiency function F(t n-1 ) calculated at the end of the previous time interval ⁇ t n-2 . According to this comparison, the compressor speed Cs is adjusted by increasing or decreasing its speed of a respective value ⁇ n .
- the adjusting values may be different one to the other.
- the compressor speed Cs is increased of a respective value ⁇ n if the compressor speed Cs was increased of a respective value ⁇ n-1 at the end of the preceding time interval ⁇ t n-2 .
- the compressor speed Cs is decreased of a respective value ⁇ n if the compressor speed Cs was decreased of a respective value ⁇ n-1 at the end of the preceding time interval ⁇ t n-2 (which is the case shown in Figure 4 at time t n ).
- the compressor speed Cs is increased of a respective value ⁇ n if the compressor speed Cs was decreased of a respective value ⁇ n-1 at the end of the preceding time interval ⁇ t n-2 .
- the compressor speed Cs is decreased of a respective value ⁇ n if the compressor speed Cs was increased of a respective value ⁇ n-1 at the end of the preceding time interval ⁇ t n-2 .
- the optimization procedure according to the invention starts at a particular time, or starting time, which corresponds to the above mentioned time to.
- the starting time to may be defined according to different criteria.
- the starting time to is preferably set as a prefixed time after the beginning of the drying cycle, i.e. after an initial transitional phase.
- the starting time to is a time comprised between 5 and 40 minutes.
- the choice of the starting time to in this range may depends on the type of heat pump system 20 and/or the type of laundry dryer 1 used, for example depends on size of the heat pump system, the type or of the heat exchangers, the type of refrigerant used, etc..
- the starting time to is preferably comprised between 30 and 60 minutes.
- the optimization procedure will start after an initial transitional phase, which may typically last from 30 to 60 minutes, during which the heat pump system 20 from its switch-off condition reaches a substantially stable working condition.
- the steady-state condition may be considered the period of time following an initial transitional phase during which both the condensation temperature CC and the evaporation temperature EC of the refrigerant in the condenser 21 and in the evaporator 23 remain within a respective prefixed temperature range DC and DE, as illustrated in figure 5 wherein CC represents the condensation temperature of the refrigerant at the condenser 21 as a function of the time and EC represents the evaporation temperature of the refrigerant at the evaporator 23 as a function of the time.
- said temperatures are kept in the respective prefixed temperature range DC and DE by properly controlling specific parameters of the heat pump system 20.
- the laundry dryer also comprises a cooling fan for the compressor 24. During the steady-state, the cooling fan is opportunely activated and de-activated to cool down the compressor 24 thus avoiding superheating of the refrigerant and aiming to maintain its temperatures in the respective prefixed temperature range DC and DE.
- the starting time to may be preferably set according to other preferred criteria, for example when the condensation temperature CC or the evaporation temperature EC reaches a prefixed threshold temperature, or when the condensed water reaches a prefixed threshold value or other particular conditions of the laundry dryer and/or of the heat pump system.
- the compressor speed Cs is preferably set to a reference value Cs 0 (2400 rpm in the graph of Figure 4 ).
- the reference value Cs 0 may depend on different factors.
- the reference value Cs 0 may be a fixed estimated value.
- the reference value Cs 0 may be a substantially constant compressor speed value.
- the efficiency function F(t 1 ) is calculated and the compressor speed Cs is increased of a respective value ⁇ 1 .
- the compressor speed Cs at the control time to may be decreased of a respective value ⁇ 1 (instead of being increased).
- P compressor (t n ) is the electrical power consumption of the compressor 24 during the respective time interval ⁇ t n-1 .
- P compressor ( t n ) may be preferably measured directly or, in different embodiments, may be measured indirectly, for example evaluating the motor compressor torque or the rotational speed of the compressor motor.
- the compressor speed Cs is adequately monitored so that safe and suitable working conditions are ensured.
- the compressor 24 is made working at compressor speed Cs comprised between a minimum value and a maximum value.
- a maximum speed value for the compressor 24 is set in order to avoid over heating of the compressor 24 itself.
- a minimum speed value for the compressor 24 is set in order to avoid low performances of the heat pump system 20 which would lead to too long duration of the drying cycle.
- the optimization procedure may start from the beginning of the drying cycle.
- the optimization procedure is terminated. This may happen, in particular, when the drying cycle is about to terminate, the laundry is dry (or almost dry) and the water removed therefrom is low (lower than 15 gr/min). Eventually, the control of the parameter ⁇ (t) is used in this case to terminate the optimization procedure.
- the compressor speed Cs is preferably keep working at a fixed value until the drying cycle ends.
- the fixed value is preferably set as the last value of the compressor speed Cs in the optimization procedure.
- the compressor speed may follow a predetermined speed curve until the drying cycle ends.
- termination of the drying cycle and of the optimization procedure may coincide.
- the optimization procedure and/or the drying cycle terminates when the calculated ⁇ (t) falls below a prefixed minimum value or when the machine has detected that the drying load has achieved the required level of dryness and therefore stops its functioning.
- the proper control of the compressor parameters namely the motor speed Cs or the motor power Cp, leads to a significant energy savings and reducing of the drying time with respect to laundry dryers of known type.
- FIG. 6 briefly illustrates a further embodiment of the method of the invention. This embodiment differs from the embodiment previously described with reference to figures 1 to 4 for the fact that the controlled parameters refer not only to the compressor 24, but also to other components of the laundry dryer 1.
- the other components comprise the fan motor 45 and the drum motor 27.
- the method performs the optimization of the efficiency function F'(t) by adjusting not only the compressor speed Cs (or the compressor power Cp) but adjusting also the fan motor speed Fs (or the fan motor power Fp) and/or adjusting the drum motor speed Ds (or the drum motor power Dp).
- the method first optimizes the efficiency function F'(t) acting on the compressor speed Cs (or the compressor power Cp) in a first period of time T1, then optimizes the efficiency function F'(t) acting on the fan motor speed Fs (or the fan motor power Fp) in a second period of time T2 and finally optimizes the efficiency function F'(t) acting on the drum motor speed Ds (or the drum motor power Dp) in a third period of time T3.
- the compressor speed Cs (or the compressor power Cp) is adjusted in the same direction (step 202 in Figure 6 ) of a previous adjustment action if the efficiency function F'(t) in the meantime has increased (output "Yes” of block 201) or the compressor speed Cs (or the compressor power Cp) is adjusted in the opposite direction (step 203) of a previous adjustment action if the efficiency function F'(t) in the meantime has decreased (output "No" of block 201).
- the fan motor speed Fs (or the fan motor power Fp) is adjusted in the same direction (step 202 in Figure 5 ) of a previous adjustment action if the efficiency function F'(t) in the meantime has increased (output "Yes” of block 201) or the fan motor speed Fs (or the fan motor power Fp) is adjusted in the opposite direction (step 203) of a previous adjustment action if the efficiency function F'(t) in the meantime has decreased (output "No" of block 201).
- the drum motor speed Ds (or the drum motor power Dp) is adjusted in the same direction (step 202) of a previous adjustment action if the efficiency function F'(t) in the meantime has increased (output "Yes” of block 201) or the on the drum motor speed Ds (or the drum motor power Dp) is adjusted in the opposite direction (step 203) of a previous adjustment action if the efficiency function F'(t) in the meantime has decreased (output "No" of block 201).
- the priority among the components may be different and the method may provide for any other combination regarding the order during which the components parameters are controlled.
- control may be directed only to the compressor 24 and the fan motor 45.
- control may be directed only to the compressor 24 and the drum motor 27.
- the weights can be time-independent, i.e. constant during the whole drying cycle.
- the efficiency function F*(t) takes into account the fact that the compressor 24 is the component that has the highest impact on the efficiency function F*(t) during the whole drying cycle.
- said weights may vary according to the drying cycle phase.
- the efficiency function F*(t) takes into account the fact that the compressor 24 has a lower impact on the efficiency function F*(t) during in the initial transitional phase than in the steady-state phase.
- the optimization procedure starts at the beginning of the drying cycle, i.e. also during the initial transitional phase.
- weights A(t), B(t), C(t) may assume more complex trends over the time.
- the present invention allows the set object to be achieved.
- it makes it possible to obtain a drying cycle which allow an additional saving of energy compared to machines of known type.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Control Of Washing Machine And Dryer (AREA)
Claims (14)
- Procédé pour commander un cycle de séchage dans une machine de séchage de linge (1) du type comprenant un système de pompe à chaleur (20) ayant un circuit de réfrigérant (30) pour un réfrigérant et comprenant un circuit d'air de séchage (10) pour transporter un écoulement volumique d'air de séchage (A) dans un tambour à linge (9) approprié pour recevoir du linge destiné à être séché, ledit circuit de réfrigérant (30) comprenant :- un compresseur (24) avec une vitesse de rotation variable (Cs) ;- un premier échangeur de chaleur (21) pour un couplage thermique entre ledit circuit d'air de séchage (10) et ledit circuit de réfrigérant (30) dans lequel la température dudit air de séchage (A) augmente et la température dudit réfrigérant diminue ; et- un second échangeur de chaleur (23) pour un couplage thermique supplémentaire entre ledit circuit d'air de séchage (10) et ledit circuit de réfrigérant (30) dans lequel la température dudit air de séchage (A) diminue et la température dudit réfrigérant augmente ;
caractérisé en ce que
ledit procédé comprend une procédure d'optimisation comprenant l'étape de la commande de la vitesse de rotation (Cs) ou de la puissance (Cp) dudit compresseur (24) durant une pluralité d'intervalles de temps subséquents (Δtn-2 ; Δtn-1 ; Δtn) dudit cycle de séchage, dans lequel la procédure d'optimisation comprend les étapes de :a1) la détermination d'un paramètre de rendement (F (tn-1)) connexe à la quantité d'eau retirée dudit linge durant un premier intervalle de temps (Δtn-2) ;a2) la détermination d'un paramètre de rendement (F(tn)) connexe à la quantité d'eau retirée dudit linge durant un deuxième intervalle de temps (Δtn-1) ;b) la comparaison du paramètre de rendement (F(tn) déterminé durant ledit deuxième intervalle de temps (Δtn-1) au paramètre de rendement (F(tn-1)) déterminé durant ledit premier intervalle de temps (Δtn-2) ;c) l'ajustement de la vitesse de rotation (Cs) ou de la puissance (Cp) dudit compresseur (24) dans un troisième intervalle de temps (Δtn) selon le résultat de ladite comparaison réalisée dans ladite étape b) ;dans lequel ledit deuxième intervalle de temps (Δtn-1) est subséquent audit premier intervalle de temps (Δtn-2) et audit troisième intervalle de temps (Δtn) est subséquent audit deuxième intervalle de temps (Δtn-1),
dans lequel ladite étape de la commande de la vitesse de rotation (Cs) ou de la puissance (Cp) dudit compresseur (24) comprend l'augmentation ou la réduction de la vitesse de rotation (Cs) ou de la puissance (Cp) dudit compresseur (24) durant ladite pluralité d'intervalles de temps (Δtn-2 ; Δtn-1 ; Δtn), et
dans lequel, si la comparaison réalisée dans ladite étape b) indique que :i) le paramètre de rendement (F(tn)) déterminé durant ledit deuxième intervalle de temps (Δtn-1) augmente par rapport au paramètre de rendement (F(tn-1)) déterminé durant ledit premier intervalle de temps (Δtn-2), etii) la vitesse de rotation (Cs) ou la puissance (Cp) dudit compresseur (24) a été augmentée dans ledit deuxième intervalle de temps (Δtn-1) par rapport audit premier intervalle de temps (Δtn-2), ladite étape c) de l'ajustement de la vitesse de rotation (Cs) ou de la puissance (Cp) comprend l'augmentation de la vitesse de rotation (Cs) ou de la puissance (Cp) dudit compresseur (24) dans ledit troisième intervalle de temps (Δtn). - Procédé selon une quelconque revendication précédente, caractérisé en ce que, si la comparaison réalisée dans ladite étape b) indique que :i) le paramètre de rendement (F(tn)) déterminé durant ledit deuxième intervalle de temps (Δtn-1) augmente par rapport au paramètre de rendement (F (tn-1)) déterminé durant ledit premier intervalle de temps (Δtn-2), etii) la vitesse de rotation (Cs) ou la puissance (Cp) dudit compresseur (24) a été réduite dans ledit deuxième intervalle de temps (Δtn-1) par rapport audit premier intervalle de temps (Δtn-2),
ladite étape c) de l'ajustement de la vitesse de rotation (Cs) ou de la puissance (Cp) comprend la réduction de la vitesse de rotation (Cs) ou de la puissance (Cp) dudit compresseur (24) dans ledit troisième intervalle de temps (Δtn). - Procédé selon une quelconque revendication précédente, caractérisé en ce que, si la comparaison réalisée dans ladite étape b) indique que :i) le paramètre de rendement (F(tn)) déterminé durant ledit deuxième intervalle de temps (Δtn-1) diminue par rapport au paramètre de rendement (F (tn-1)) déterminé durant ledit premier intervalle de temps (Δtn-2), etii) la vitesse de rotation (Cs) ou la puissance (Cp) dudit compresseur (24) a été réduite dans ledit deuxième intervalle de temps (Δtn-1) par rapport audit premier intervalle de temps (Δtn-2),
ladite étape c) de l'ajustement de la vitesse de rotation (Cs) ou de la puissance (Cp) comprend l'augmentation de la vitesse de rotation (Cs) ou de la puissance (Cp) dudit compresseur (24) dans ledit troisième intervalle de temps (Δtn). - Procédé selon une quelconque revendication précédente, caractérisé en ce que, si la comparaison réalisée dans ladite étape b) indique que :i) le paramètre de rendement (F(tn)) déterminé durant ledit deuxième intervalle de temps (Δtn-1) diminue par rapport au paramètre de rendement (F(tn-1)) déterminé durant ledit premier intervalle de temps (Δtn-2), etii) la vitesse de rotation (Cs) ou la puissance (Cp) dudit compresseur (24) a été augmentée dans ledit deuxième intervalle de temps (Δtn-1) par rapport audit premier intervalle de temps (Δtn-2),
ladite étape c) de l'ajustement de la vitesse de rotation (Cs) ou de la puissance (Cp) comprend la réduction de la vitesse de rotation (Cs) ou de la puissance (Cp) dudit compresseur (24) dans ledit troisième intervalle de temps (Δtn). - Procédé selon une quelconque revendication précédente, caractérisé en ce que ledit paramètre de rendement (F(tn)) est calculé par l'intermédiaire de :b1) la détermination d'un premier paramètre (ṁ(tn)) connexe à la quantité d'eau retirée dudit linge durant ledit intervalle de temps (Δtn-1) ;b2) la détermination de la consommation de puissance (Pcompressor(tn)) dudit compresseur (24) durant ledit intervalle de temps (Δtn-1) ;b3) la détermination d'une relation entre ledit premier paramètre (ṁ(tn)) et ladite consommation de puissance (Pcompressor (tn)) dudit compresseur (24).
- Procédé selon la revendication 5, caractérisé en ce que ladite étape b3) comprend l'étape du calcul du rapport entre ledit premier paramètre (ṁ(tn)) et ladite consommation de puissance (Pcompressor(tn)) dudit compresseur (24).
- Procédé selon l'une quelconque des revendications précédentes 1 à 4, caractérisé en ce que ledit paramètre de rendement (F(tn)) est calculé par l'intermédiaire de :b1) la détermination d'un premier paramètre (ṁ(tn)) connexe à la quantité d'eau retirée dudit linge durant ledit intervalle de temps (Δtn-1) ;b4) la détermination de la somme de la consommation de puissance (Pcompressor(tn)) dudit compresseur (24) et la consommation de puissance (Pfan(tn) ; Pdrum(tn)) d'au moins un autre composant électrique (45 ; 27) de ladite machine de séchage de linge (1) durant ledit intervalle de temps (Δtn-1) ;b5) la détermination d'une relation entre ledit premier paramètre (ṁ(tn)) et ladite somme de consommations de puissance (Pcompressor(tn) ; Pfan(tn) ; Pdrum(tn)).
- Procédé selon la revendication 7, caractérisé en ce que ladite étape b5) comprend l'étape du calcul du rapport entre ledit premier paramètre (ṁ(tn)) et ladite somme de consommations de puissance (Pcompressor(tn) ; P fan(tn) ; P drum (tn)).
- Procédé selon la revendication 7 ou 8, caractérisé en ce qu'il comprend en outre une étape d) de l'ajustement de la vitesse de rotation (Fs ; Ds) ou de la puissance (Fp ; Dp) dudit au moins un autre composant électrique (45 ; 27) dans ledit troisième intervalle de temps (Δtn) selon le résultat de ladite comparaison réalisée dans ladite étape b), dans lequel ledit au moins un autre composant électrique (45 ; 27) est un moteur électrique (45 ; 27) .
- Procédé selon la revendication 9, caractérisé en ce que ladite étape d) de l'ajustement de la vitesse de rotation (Fs ; Ds) ou de la puissance (Fp ; Dp) dudit au moins un autre composant électrique (45 ; 27) dans ledit troisième intervalle de temps (Δtn) selon le résultat de ladite comparaison réalisée dans ladite étape b), comprend l'augmentation ou la réduction de la vitesse de rotation (Fs ; Ds) ou de la puissance (Fp ; Dp) dudit au moins un autre composant électrique (45 ; 27) dans ledit troisième intervalle de temps (Δtn) selon le résultat de ladite comparaison dans ladite étape b) et selon une augmentation ou une réduction de la vitesse de rotation (Fs ; Ds) ou de la puissance (Fp ; Dp) dudit au moins un autre composant électrique (45 ; 27) dans ledit deuxième intervalle de temps (Δtn-1) par rapport audit premier intervalle de temps (Δtn-2).
- Procédé selon l'une quelconque des revendications précédentes 7 à 10, caractérisé en ce que ledit au moins un autre composant électrique est un moteur de ventilateur (45) ou un moteur de tambour (27).
- Procédé selon la revendication 7 ou 8, caractérisé en ce que ledit au moins un autre composant électrique est un moteur de ventilateur (45) et comprenant en outre une étape d) de l'augmentation ou de la réduction de la vitesse de rotation (Fs) ou de la puissance (Fp) du moteur de ventilateur (45) dans ledit troisième intervalle de temps (Δtn) selon le résultat de ladite comparaison dans ladite étape b) et selon une augmentation ou une réduction de la vitesse de rotation (Fs) ou de la puissance (Fp) dudit moteur de ventilateur (45) dans ledit deuxième intervalle de temps (Δtn-1) par rapport audit premier intervalle de temps (Δtn-2) .
- Procédé selon l'une quelconque des revendications précédentes 7 à 12, caractérisé en ce que ladite étape b4) de la détermination de la somme de la consommation de puissance (Cp) dudit compresseur (24) et de la consommation de puissance (Pcompressor (tn) ; P fan (tn) ; P drum (tn)) d'au moins un autre composant est réalisée en utilisant une somme pondérée.
- Procédé selon l'une quelconque des revendications précédentes 5 à 13, caractérisé en ce que ledit premier paramètre (ṁ(tn)) est obtenu selon un des critères suivants : estimation par une mesure directe de l'eau condensée, générée audit second échangeur de chaleur (23) ; estimation en considérant la tendance de la consommation de puissance (Dp) d'un moteur de tambour (27) ; estimation en considérant la tendance du courant électrique et/ou du couple du moteur de tambour (27) ; estimation en mesurant les variations de poids du linge dans ledit tambour à linge (9) ; estimation en considérant le nombre d'allumage/arrêt d'une pompe de drainage d'une pompe de drainage associée à l'eau condensée, générée audit second échangeur de chaleur (23) ; estimation en détectant le signal d'un niveau d'eau ou capteur d'écoulement associé à un contenant de collecte d'eau (14) ; estimation en considérant la tendance de la température et/ou du niveau d'humidité de l'air humide quittant ledit tambour à linge (9) ; estimation en considérant la tendance de la température et/ou du niveau de pression dudit réfrigérant dans ledit circuit de réfrigérant (30) ; estimation par la différence de la température d'air de séchage à la sortie de second échangeur de chaleur et de la température d'air de séchage à l'entrée de second échangeur de chaleur ; estimation par la différence entre deux niveaux de température de réfrigérant au second échangeur de chaleur ; estimation par la différence entre l'humidité d'air de séchage à la sortie de second échangeur de chaleur et l'humidité d'air de séchage à l'entrée de second échangeur de chaleur.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL13799334T PL3077588T3 (pl) | 2013-12-05 | 2013-12-05 | Sposób sterowania suszarką pralniczą typu zawierającego układ pompy ciepła oraz odpowiadająca suszarka pralnicza |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2013/075722 WO2015082011A1 (fr) | 2013-12-05 | 2013-12-05 | Procédé permettant de commander un sèche-linge du type comprenant un système de pompe à chaleur, et sèche-linge correspondant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3077588A1 EP3077588A1 (fr) | 2016-10-12 |
EP3077588B1 true EP3077588B1 (fr) | 2021-07-21 |
Family
ID=49709703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13799334.1A Active EP3077588B1 (fr) | 2013-12-05 | 2013-12-05 | Procédé permettant de commander un sèche-linge du type comprenant un système de pompe à chaleur, et sèche-linge correspondant |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3077588B1 (fr) |
PL (1) | PL3077588T3 (fr) |
WO (1) | WO2015082011A1 (fr) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9562707B2 (en) | 2013-03-14 | 2017-02-07 | Whirlpool Corporation | Refrigerator cooling system having a secondary cooling loop |
DE102016202114A1 (de) * | 2016-02-12 | 2017-08-17 | BSH Hausgeräte GmbH | Haushaltsgerät und Verfahren zum Betreiben eines Haushaltsgeräts |
CN107513852B (zh) * | 2016-06-15 | 2019-10-01 | 松下家电研究开发(杭州)有限公司 | 一种衣物烘干装置的烘干控制方法及衣物烘干装置 |
US10633785B2 (en) | 2016-08-10 | 2020-04-28 | Whirlpool Corporation | Maintenance free dryer having multiple self-cleaning lint filters |
DE102016119225A1 (de) * | 2016-10-10 | 2018-04-12 | Miele & Cie. Kg | Verfahren und Informationssystem zum Betreiben eines Haushaltgeräts und Haushaltgerät |
US10738411B2 (en) | 2016-10-14 | 2020-08-11 | Whirlpool Corporation | Filterless air-handling system for a heat pump laundry appliance |
US10519591B2 (en) | 2016-10-14 | 2019-12-31 | Whirlpool Corporation | Combination washing/drying laundry appliance having a heat pump system with reversible condensing and evaporating heat exchangers |
US10502478B2 (en) | 2016-12-20 | 2019-12-10 | Whirlpool Corporation | Heat rejection system for a condenser of a refrigerant loop within an appliance |
US10514194B2 (en) | 2017-06-01 | 2019-12-24 | Whirlpool Corporation | Multi-evaporator appliance having a multi-directional valve for delivering refrigerant to the evaporators |
EP3425109B1 (fr) * | 2017-07-07 | 2022-05-04 | Electrolux Appliances Aktiebolag | Procédé d'utilisation d'un sèche-linge avec pompe à chaleur ou d'une machine à laver comportant une pompe à chaleur ayant une fonction de séchage |
US10718082B2 (en) | 2017-08-11 | 2020-07-21 | Whirlpool Corporation | Acoustic heat exchanger treatment for a laundry appliance having a heat pump system |
CN110887285B (zh) * | 2019-11-01 | 2021-09-24 | 合肥华凌股份有限公司 | 一种冰箱的控制方法、冰箱、电子设备及介质 |
CN112842218B (zh) * | 2021-01-20 | 2022-09-30 | 宁波方太厨具有限公司 | 一种清洗机烘干方法及应用该方法的清洗机 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004358028A (ja) * | 2003-06-06 | 2004-12-24 | Matsushita Electric Ind Co Ltd | 衣類乾燥装置 |
DE102005041145A1 (de) * | 2005-08-29 | 2007-03-01 | Alpha-Innotec Gmbh | Wäschetrockner |
EP2284310B1 (fr) * | 2009-08-12 | 2014-07-09 | Electrolux Home Products Corporation N.V. | Sèche-linge à tambour avec pompe à chaleur et procédé pour faire fonctionner une pompe à chaleur pour un sèche-linge |
JP2012090774A (ja) * | 2010-10-27 | 2012-05-17 | Toshiba Corp | ランドリー機器 |
-
2013
- 2013-12-05 EP EP13799334.1A patent/EP3077588B1/fr active Active
- 2013-12-05 WO PCT/EP2013/075722 patent/WO2015082011A1/fr active Application Filing
- 2013-12-05 PL PL13799334T patent/PL3077588T3/pl unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
PL3077588T3 (pl) | 2021-12-20 |
EP3077588A1 (fr) | 2016-10-12 |
WO2015082011A1 (fr) | 2015-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3077588B1 (fr) | Procédé permettant de commander un sèche-linge du type comprenant un système de pompe à chaleur, et sèche-linge correspondant | |
EP2935687B1 (fr) | Procédé pour commander un sèche-linge et sèche-linge correspondant | |
EP2935686B1 (fr) | Procédé pour commander un système de pompe à chaleur pour un sèche-linge et sèche-linge correspondant | |
EP2640885B1 (fr) | Machine comprenant une pompe à chaleur et ensemble associé de procédés | |
EP2832918B1 (fr) | Appareil de traitement du linge et procédé pour faire fonctionner un tel appareil | |
EP2495362B1 (fr) | Sèche-linge et machine à laver/sèche-linge | |
JP4858321B2 (ja) | 衣類乾燥機 | |
CN104870710A (zh) | 操作热泵衣物烘干机的方法以及具有烘干功能的热泵衣物烘干机或热泵洗衣机 | |
CN101410565A (zh) | 滚筒式洗衣机及其烘干方法 | |
WO2014076093A1 (fr) | Procédé de fonctionnement d'un sèche-linge à pompe à chaleur et sèche-linge à pompe à chaleur ou machine à laver à pompe à chaleur présentant une fonction de séchage | |
KR20200087032A (ko) | 인덕션 히터를 갖는 세탁장치 및 이의 제어방법 | |
US11060236B2 (en) | Dryer appliance and method of operating the same based on the relative humidity of drum exit air | |
CN107489008A (zh) | 用于求取冷凝干燥机中最终剩余湿度的方法以及适用该方法的冷凝干燥机 | |
EP2927365A1 (fr) | Appareil de séchage de linge utilisant des informations de température dans une opération de séchage | |
EP3059342B1 (fr) | Procédé d'exploitation d'un appareil de traitement de blanchisserie utilisant des informations d'état de fonctionnement | |
US11142863B2 (en) | Controlling refrigerant and air mass flow rate based on moisture extraction rate in a dryer appliance | |
JP2004344336A (ja) | 衣類乾燥機 | |
JP5397155B2 (ja) | 衣類乾燥機 | |
US11846064B2 (en) | Lint filter clogging detection in a dryer appliance using compressor temperature and referigerant mass flow | |
JP6466093B2 (ja) | 衣類乾燥機 | |
US11421375B2 (en) | Detecting degree of dryness in a heat pump laundry appliance | |
EP2610401B1 (fr) | Système et procédé pour estimer la charge de linge dans un sèche-linge à tambour rotatif | |
US20240271355A1 (en) | Laundry treatment appliance including a variable speed blower fan and method of operating the same | |
JP4194411B2 (ja) | 乾燥装置 | |
EP2604751A1 (fr) | Machine de séchage du linge et procédé de commande correspondant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160705 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200907 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013078447 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: D06F0058280000 Ipc: D06F0058300000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D06F 105/24 20200101ALI20210127BHEP Ipc: D06F 103/08 20200101ALI20210127BHEP Ipc: D06F 105/26 20200101ALI20210127BHEP Ipc: D06F 103/36 20200101ALI20210127BHEP Ipc: D06F 103/50 20200101ALI20210127BHEP Ipc: D06F 58/30 20200101AFI20210127BHEP Ipc: D06F 103/38 20200101ALI20210127BHEP Ipc: D06F 103/00 20200101ALI20210127BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210309 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ROSSI, GIUSEPPE Inventor name: PASQUOTTI, MAURA Inventor name: DALLA ROSA, ALESSANDRO Inventor name: CAVARRETTA, FRANCESCO |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013078447 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1412718 Country of ref document: AT Kind code of ref document: T Effective date: 20210815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210721 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1412718 Country of ref document: AT Kind code of ref document: T Effective date: 20210721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211021 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211122 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211021 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211022 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013078447 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 |
|
26N | No opposition filed |
Effective date: 20220422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211205 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20221222 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231227 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20241126 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241217 Year of fee payment: 12 |