EP3075212B1 - Led converter for an led module - Google Patents
Led converter for an led module Download PDFInfo
- Publication number
- EP3075212B1 EP3075212B1 EP14830494.2A EP14830494A EP3075212B1 EP 3075212 B1 EP3075212 B1 EP 3075212B1 EP 14830494 A EP14830494 A EP 14830494A EP 3075212 B1 EP3075212 B1 EP 3075212B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- led
- converter
- led module
- circuit
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008859 change Effects 0.000 claims description 79
- 238000012423 maintenance Methods 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 230000032683 aging Effects 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 18
- 230000001419 dependent effect Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000006854 communication Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 230000007175 bidirectional communication Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/175—Controlling the light source by remote control
- H05B47/185—Controlling the light source by remote control via power line carrier transmission
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
- H05B45/14—Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
- H05B45/385—Switched mode power supply [SMPS] using flyback topology
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/50—Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
- H05B45/56—Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving measures to prevent abnormal temperature of the LEDs
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/20—Responsive to malfunctions or to light source life; for protection
- H05B47/24—Circuit arrangements for protecting against overvoltage
Definitions
- One approach known from the prior art is to set the operating parameters to be set for the connected LED module on the LED converter via DIP switches or resistors. However, this requires interaction with the LED converter.
- configuration resistors are used on the LED module to specify the required operating parameters for the LED converter. For this, however, additional connections are required on the one hand, and interaction is required on the other.
- the driver reading out the impedance of a circuit of the LED system by applying an AC voltage.
- the US 2010/0214082 A1 to a system in which a service and data are provided via the same line.
- the power signal can be controlled by means of PWM and the data signal can be controlled by means of frequency modulation.
- the object of the present invention is to improve the known prior art, particularly with regard to the disadvantages mentioned above.
- FIG. 1 shows schematically an LED lamp according to the invention, which consists of an LED module 1 according to the invention and an LED converter 10 according to the invention.
- the LED converter 10 is connected to the LED module 1 via one or more voltage connections 12.
- the LED converter 10 thus supplies the LED module 1 with a supply voltage.
- the LED converter 10 can also be designed to operate a plurality of LED modules 1.
- the supply voltage is preferably a direct voltage, but it can also be a clocked voltage or alternating voltage.
- the LED converter 10 preferably has a high-frequency clocked converter, for example a buck converter, an isolated flyback converter or a resonant half-bridge converter (preferably isolated, for example an LLC converter).
- the LED converter 10 can, for example, output a constant output voltage or a constant output current at its voltage connections 12, the voltage at these connections corresponding to the supply voltage of the LED module 1.
- the supply voltage is applied via one or more connections 2 of the LED module 1 to at least one LED path 3 connected to it (this also includes a single LED).
- the LED segment 3 does not have to be part of the LED module 1 according to the invention, but can be a connectable and exchangeable LED segment 3.
- the LED module 1 therefore only requires connections 2 for at least one LED segment 3.
- the LED segment 3 can, however, also be permanently installed with the LED module 1.
- the LED path 3 can have one or more LEDs, which, for example, as in FIG Figure 1 shown are connected in series. LEDs in an LED segment 3 can all light up in the same color, ie emit light of the same wavelength, or light up in different colors. For example, several LEDs, preferably red, green and blue LEDs, can be combined in order to generate mixed radiation, preferably white light.
- Figure 2 shows an example of a current-voltage characteristic of an LED path 3, in which a current through the LED path in the vertical direction and the voltage at the LED path (ie the supply voltage in Figure 1 ) is applied in the horizontal direction.
- a first voltage range ie a first supply voltage 5a within the readout window
- the voltage at the LED path 3 is not equal to zero, but the current through the LED path 3 is also almost zero because the LED path 3 is not conductive .
- the supply voltage is therefore below the forward voltage.
- the LED path 3 represents an infinite load for the LED converter 10.
- the LED module 1 therefore does not consume any power via the LED path 3.
- a second voltage range ie for a second supply voltage 5b outside the readout window
- the LED path 3 becomes conductive and it flows a current through the LED path 3, which makes it glow.
- the supply voltage is therefore above the forward voltage.
- the circuit 4 on the LED module 1 is designed, for example, in such a way that it is activated when the first supply voltage 5a is applied and thereby represents a load, preferably an active power load, for the LED converter 10.
- the circuit 4 is deactivated and does not represent a load for the LED converter.
- FIG Figure 1 shown schematically by the switch 6, which automatically activates or deactivates the circuit 4 depending on the applied supply voltage.
- the circuit 4 can represent either a current-constant load or a current-variable load for the LED converter 10.
- the circuit 4 causes the LED module 1 to consume power, although an LED path 3 is not yet conductive and does not consume any power. A conventional LED module 1 would not consume any power in the readout window. Additionally or alternatively, the circuit 4 on the LED module 1 can also be designed in such a way that it is only activated in a time-limited start phase of the LED module 1.
- the power consumption of the LED module 1 in the readout window can be constant or variable in current, depending on the type of circuit 4.
- the LED converter 10 can detect the power consumption of the LED module 1 or a change in the power consumption of the LED module 1 and, based on the detected power consumption, deduce the operating and / or maintenance parameters of the LED module 1 to be set.
- the LED converter 10 can use the operating and / or maintenance parameters directly for setting or regulating the LED module 1.
- the LED converter 10 can also store the operating and / or maintenance parameters in a memory assigned to it and, if necessary, use them later, or display the parameters optically and / or acoustically to a user, or to another device, for example a control unit of a lighting system , send.
- various processes can be carried out in a preferably time-limited start phase of the LED lamp.
- the LED converter 10 supplies the LED module 1, for example, with a constant supply voltage, preferably a constant DC voltage.
- a constant supply voltage preferably a constant DC voltage.
- the LED converter 10 can be operated with a reduced switch-on ratio compared to normal operation, as a result of which a lower output voltage is achieved.
- the supply voltage is a first supply voltage 5a, ie it is in the readout window shown in Figure 2 is shown. Since the first supply voltage 5a is not equal to zero, the circuit 4 is activated on the LED module 1 and represents a load for the LED converter 10.
- the load is preferably an active power load and generates a power consumption of the LED module 1.
- the LED converter 10 for example, a discharge current of a capacitor via this load (which is only an example that is not the subject of the invention), an absolute current consumption of the circuit 4 (which is only an example that is not the subject of the invention), a Frequency of a change in the power consumption of the LED module 1 (which is only an example which is not the subject of the invention), or a duty cycle according to the present invention or an amplitude (which is only an example which is not the subject of the invention) a Measure change in power consumption.
- the LED converter 10 can infer operating and / or maintenance parameters. For example, the LED converter 10 can determine a target or forward voltage or a target current of the LED module and apply this to the LED module 1.
- a connected LED path 3 thus becomes conductive and the LED converter 10 operates the LED module 1 in lighting mode.
- the circuit 4 is now preferably deactivated automatically.
- the circuit 4 therefore does not consume any power in the lighting operation of the LED path 3 and therefore does not influence the lighting operation of the LED path 3.
- the LED converter 10 of the LED lamp has thus automatically recognized the LED module 1 and set the appropriate operating parameters .
- the LED converter 10 can also read out the LED module 1 for a limited time, in that the circuit 4 is only active during a start phase on the basis of a predetermined period of time as soon as a supply voltage is applied to the LED module 1.
- this supply voltage can also correspond to the nominal output voltage of the LED converter 10 for normal operation.
- the circuit 4 is activated on the LED module 1 and represents a load for the LED converter 10.
- the load is preferably a repeatedly changing active power load and generates a power consumption of the LED module 1.
- the connected LED path 3 will also become conductive, with which the LED converter 10 operates the LED module 1 in lighting mode.
- the LED converter 10 can, for example, a discharge current of a capacitor (which is only an example, which is not the subject of the invention) via this load, an absolute current consumption of the circuit 4 (which is only an example, which is not the subject of the invention) , a frequency of a change in the power consumption of the LED module 1 (which is only an example which is not the subject of the invention), or a duty cycle according to the present invention or an amplitude of a power consumption change (which is merely an example which is not the subject of the Invention is) measure. Based on the result of the measurement, the LED converter 10 can infer operating and / or maintenance parameters. For example, the LED converter 10 can determine a target or forward voltage or a target current of the LED module and apply this to the LED module 1.
- the circuit 4 is now preferably deactivated automatically after the predetermined time period for the start phase has elapsed.
- the specification of this time period for the start phase can be established, for example, by a time charging circuit, with a timer capacitor being charged and, after the timer capacitor has been charged, the circuit 4 is deactivated.
- the circuit 4 therefore does not consume any power in the continuous lighting operation of the LED segment 3 and therefore does not influence the lighting operation of the LED segment 3.
- Figure 3 shows a circuit which is at least a part of the circuit 4 in order to automatically deactivate it when the supply voltage is im Area of the second supply voltage 5b is, that is, above the Forward voltage of the LED path 3 is.
- the circuit 4 can be deactivated by means of the transistors M4 and M3. As the supply voltage, which is provided by the LED converter 10 and is applied to the circuit 4 on the LED module 1, increases, the voltage across the resistor R8 also increases. When this voltage reaches a threshold voltage of transistor M4, it closes and also deactivates transistor M3 by pulling the gate voltage of transistor M3 to ground.
- the threshold voltage can for example be 1.4 volts (at a voltage of 12.5 volts) of the LED converter 10).
- the resistance values should be high, preferably in the range from 20 to 200 k ⁇ , even more preferably in the range from 40 to 100 k ⁇ . It is also important that the transistor M3 is designed to withstand the maximum supply voltage that the LED converter 10 can apply and that the voltage across the resistor R8 does not exceed the maximum permitted gate voltage of the transistor M4 when the LED is normally lit. - Distance exceeds 3.
- this circuit can be designed, for example by means of an RC element, in such a way that it deactivates itself after a predetermined start time has elapsed (this time corresponding to the start phase) by deactivating the transistor M3 as a function of it, ie opening it.
- a capacitor can be arranged in parallel with the resistor R8.
- This capacitor can be designed so that it is charged by the applied supply voltage after the specified start time has elapsed and thus the voltage at the parallel resistor R8 has also risen so far that this voltage has reached a threshold voltage of the transistor M4, so that it closes and the Transistor M3 deactivates by pulling the gate voltage of transistor M3 to ground.
- Figure 4 shows an example of a circuit TL432, which is at least part of the circuit 4, which is designed to display a current-constant load for the LED converter 10 in the readout window.
- the left side of the Figure 4 shows a circuit diagram of the circuit
- the right-hand side shows a corresponding equivalent circuit diagram for the TL431 or TL432 circuit.
- the constant current is determined by a ratio of the reference voltage of the switching circuit TL431 to the resistance value of the selection resistor R11 (Rcfg).
- a transistor Q1 is preferably controlled such that the voltage across resistor R11 (Rcfg) is always approximately 2.5 volts.
- a minimum current of about 1 mA should flow through the TL431 circuit.
- the in Figure 3 The circuit shown can be used in series with the circuit shown in Figure 4
- the circuit shown can be arranged so that the series circuit of the two is arranged in parallel to the LED path on the LED module 1.
- the virtual ground GNDX of the circuit is the Figure 4 connected to the drain of the transistor M3.
- the LED converter 10 can discharge a capacitor 11, for example, for measuring the constant current.
- the constant current through the circuit 4 (which corresponds to the discharge current of the capacitor 11) can be determined directly or indirectly based on either the discharge duration and / or the discharge rate. Based on the discharge current, the LED converter can draw conclusions about the circuit 4 used and thus about the connected LED module 1. Furthermore, the LED converter 10 can determine operating and / or maintenance parameters of the LED module, for example using stored tables.
- the LED converter 10 can be designed as a buck converter.
- the LED converter 10 is provided with the capacitor 11, which can be connected in parallel to the connections 12 for the supply voltage.
- the voltage at the connections 12 is monitored by the LED converter 10.
- the capacitor 11 discharges via the preferably constant-current load, which is represented by the circuit 4 on the LED module 1.
- the discharge rate ie the change in the voltage of the capacitor which is applied to the connections 12, is preferably measured by the LED converter 10 in order to draw conclusions about the operating and / or maintenance parameters of the LED module 1 as described.
- resistor R11 which is shown in Figure 4 constant current load shown, can be determined when the capacitance of the capacitor 11 is known. This resistance value can then encode the operating and / or maintenance parameter, ie the LED converter 10 can, for example, correlate this resistance value with operating and / or maintenance parameters in stored tables.
- the pulse duty factor can be changed by changing the pulse duration (switch-on time, ON time, T high ) or by changing the pause duration (switch-off time, OFF time, T low ).
- the size of the load is determined by the resistor R5 and the converter voltage V CONV (more precisely the ratio V CONV / R5).
- the circuit 4 can be designed, for example, so that it is only activated during the starting phase of the LED light. This can be achieved, for example, by supplying the circuit TLC555 with the aid of a timing element such as an RC element, for example, this timing element can be designed in such a way that the supply for the circuit TLC555 is only applied for a period of 100 milliseconds, When the capacitor of the RC element is charged via a series resistor (based on the supply voltage of the LED module 1), a predetermined voltage level is reached which leads to the switching off of the supply voltage Vcc for the TLC555 circuit (example not shown).
- a timing element such as an RC element
- the voltage drop across the RC element can be used to control the base of a switch-off transistor (not shown) which pulls the supply Vcc for the circuit TLC555 to ground as soon as the RC element has been charged.
- the charging time of the RC element can be designed so that a time of 100 milliseconds, for example, is reached, this time corresponding to the start phase.
- a start-up of the TLC555 circuit at the beginning of the start phase can take place by means of a high-impedance feed directly from the supply voltage of the LED module 1, whereby this occurs at the end of the start phase by means of the voltage drop across the RC element via the cut-off transistor in a kind of pull-down configuration Mass is pulled.
- the circuit 4 can have a controllable switch which switches the resistor R5 on or off as a function of the output signal OUT of the circuit TLC555 and thus causes the load change.
- the in Figure 3 The circuit shown can be used in series with the circuit shown in Figure 6
- the circuit shown can be arranged so that the series circuit of the two is arranged in parallel to the LED path on the LED module 1.
- the virtual ground GNDX of the circuit is the Figure 6 connected to the drain of the transistor M3.
- a deactivation of the circuit of the Figure 6 can for example be time-controlled.
- a capacitor can be arranged in parallel with the resistor R8.
- an RC element is also formed.
- the charging time of the RC element can be designed so that a time of 100 milliseconds, for example, is reached, this time corresponding to the start phase.
- the voltage at the gate of transistor 4 has reached a threshold voltage of transistor M4, so that it closes and deactivates transistor M3 by connecting the gate voltage of transistor M3 to ground. In this way the circuit of the Figure 6 can only be activated for a specified start phase.
- circuit 4 If the circuit 4 generates and outputs a repetitively changing load change (that is to say a modulated load change), two different items of information can also be transmitted, for example. For example, both the frequency and the duty cycle of the load change can be changed.
- a first piece of information for example the target voltage
- a second piece of information for example the target current
- Another possibility for the combined transmission of at least two pieces of information would be to change the pulse duration (switch-on time, ON time, T high ) and the pause duration (switch-off time, OFF time, T low ) of the load change accordingly.
- the change in the power consumption of the LED module 1 can be determined by the LED converter 10, for example by direct current measurement of the current through the circuit 4.
- the LED converter can take 10 measurements on a buck converter as in Figure 7 perform shown, wherein the buck converter is preferably part of the LED converter 10. So shows for example Figure 8 how the current through the circuit 4 and the current at the Buck converter, which is measured via a shunt, correlates. Figure 8 shows above the current "load current" through circuit 4 and the current "inductor current” through Buck converter plotted against time.
- the buck converter is only an exemplary example of a high-frequency clocked converter, as an alternative, for example, an isolated flyback converter, boost converter (step-up converter) or a resonant half-bridge converter (preferably isolated, for example an LLC converter) can be used to feed the LED -Module 1 can be used.
- the LED converter can be used as in Figure 7 shown have a buck converter.
- the buck converter can be operated as a constant current source, i.e. regulate to a constant output current.
- the output voltage of the buck converter that is to say the voltage that is output at the output of the LED converter 10 and corresponds to the voltage across the LED module 1 can be recorded and evaluated.
- the duration of the switch-on time and the switch-off time of the control of the high-frequency clocked switch of the Buck converter are monitored and evaluated in order to recognize a change in load and thus to read out information from the LED module 1.
- the buck converter can also be operated as a constant voltage source, i.e. regulate to a constant output voltage.
- a change in the load on the LED module 1 will lead to a change in the peak current occurring through the high-frequency clocked switch during the switch-on phase of the high-frequency clocked switch of the buck converter, and this change can be detected.
- the duration of the switch-on time and the duty cycle of the activation of the high-frequency clocked switch of the buck converter can also be monitored and evaluated in order to detect a load change and thus read information from the LED module 1.
- the level of the output current can also be evaluated in order to detect a change in load.
- the buck converter can be operated with a fixed pulse duty factor at a fixed frequency, preferably in continuous conduction mode. In such an operation, the level of the output current and / or the output voltage can be evaluated in order to detect a change in load.
- the buck converter of the LED converter 10 can supply the LED module 1 with a constant supply voltage, for example, in a starting phase, preferably a constant DC voltage.
- the buck converter is operated as a constant voltage source in the start phase.
- the LED converter 10 can be operated with a reduced switch-on ratio compared to normal operation, as a result of which a lower output voltage is achieved.
- the supply voltage can be a first supply voltage 5a, ie it can be in the readout window shown in FIG Figure 2 is shown.
- the buck converter can also supply the LED module 1 with a regulated current, then the buck converter is preferably operated as a constant current source.
- Figure 8 shows an enlarged view of this plot below.
- a peak current can also be measured at the shunt of the buck converter or a change in the pulse duty factor at the buck converter, which is the subject of the invention.
- the change in the load of the circuit 4 or the power consumption of the LED module 1 can be detected directly on the shunt on the low potential switch of the buck converter. Either through a periodic change in the pulse duty factor or a periodic change in the peak current, which correlates with a periodic change in the power consumption of the LED module 1.
- the LED converter 10 can, for example, have an isolated converter with a transformer for high-frequency energy transmission (isolated, preferably an isolated flyback converter) for supplying the LED module 1. If the LED converter 10 is designed to be isolated (for example as an isolated flyback converter), that is to say has a transformer, the load change can also be detected by the LED converter 10 on the primary side of the LED converter 10. For example, when using an isolated flyback converter, the current on the primary side of the LED converter 10, which flows through the primary side of the transformer, can be detected.
- the current through the clock switch which is arranged in series with the primary winding of the transformer, or the current through the primary winding of the transformer, preferably by means of a shunt connected in series (current measuring resistor), can be detected.
- the load or also the Load change of the LED module 1 and thus, for example, a change in the duty cycle on the primary side of the LED converter 10 can be measured.
- the change in the primary-side current can also be recorded over time.
- the power transmitted by the primary side can be detected on the basis of the measurement of the primary-side current and a measurement or at least knowledge of the voltage feeding the converter.
- an active power factor correction circuit such as a step-up converter circuit to be connected upstream of the converter, which provides the input voltage for the high-frequency clocked, isolated converter such as the isolated flyback converter and regulates it to a predetermined value.
- This predetermined value for the input voltage regulated by the active power factor correction circuit for the high-frequency clocked converter is known due to the specification (for example via a voltage divider) and can thus be taken into account when detecting the power transmitted from the primary side.
- the LED converter can have an isolated flyback converter.
- the isolated flyback converter can be operated as a constant current source, i.e. regulate to a constant output current.
- the output voltage of the isolated flyback converter that is to say the voltage that is output at the output of the LED converter 10 and corresponds to the voltage across the LED module 1
- This output voltage can be recorded directly or indirectly, for example by measuring the voltage on a primary-side winding of the transformer of the isolated flyback converter.
- the duration of the switch-off time of the activation of the high-frequency clocked switch of the isolated flyback converter can be monitored and evaluated in order to recognize a load change and thus to read out information from the LED module 1.
- the isolated flyback converter can also be operated as a constant voltage source, i.e. regulate to a constant output voltage.
- a change in the load on the LED module 1 will lead to a change in the output current, and this change can be detected.
- This change in the output current can lead, for example, to a change in the peak current that occurs through the high-frequency clocked switch during the switch-on phase of the high-frequency clocked switch of the isolated flyback converter.
- the monitoring of the primary-side current by the high-frequency clocked switch can thus be used to monitor a change in load in order to read out information from the LED module 1.
- the isolated flyback converter can also be operated with a fixed pulse duty factor at a fixed frequency. In such an operation, the level of the output current and / or the output voltage can be evaluated in order to detect a change in load. If only the LED path of the LED module is active, then the output voltage will take on the value of the forward voltage of the LED path. If there is a load change through the circuit 4, then the output voltage will drop. This change can be recorded as a load change.
- the LED converter can have an isolated resonant half-bridge converter such as, for example, a so-called LLC converter.
- the LLC converter can be operated as a constant current source, i.e. regulate to a constant output current.
- the output voltage of the isolated flyback converter that is to say the voltage that is output at the output of the LED converter 10 and corresponds to the voltage across the LED module 1, can be recorded and evaluated. This output voltage can be recorded directly or indirectly, for example by measuring the voltage on a primary-side winding of the transformer of the LLC converter.
- the output voltage will take on the value of the forward voltage of the LED path. If there is a load change through the circuit 4, then the output voltage will drop. This change can be recorded as a load change. Additionally or alternatively, the clock frequency of the LLC converter that is set on the basis of the control loop can also be monitored and evaluated in order to recognize a load change and thus to read out information from the LED module 1. If the control loop of the LLC converter is designed in such a way that, when the load changes by the circuit 4, a frequency limit of the control of the half bridge of the LLC converter is reached, this can also be evaluated in order to read out the information.
- the isolated resonant half-bridge converter such as LLC converter can also be operated as a constant voltage source by operating it at a fixed frequency, the frequency being selected so that the resulting voltage at the output is below the value of the forward voltage of the LED path.
- a change in the load on the LED module 1 will lead to a change in the output current, and this change can be detected.
- This change in the output current can take place, for example, on the secondary side of the LLC converter and be transmitted to the primary side by means of a coupling element such as a current transformer.
- the monitoring of the output current can thus be used to monitor a change in load in order to read out information from the LED module 1.
- the LED converter 10 is operated, for example, in a start phase in a certain mode, for example in a fixed-frequency mode or also operated as a current source or voltage source, in order to recognize a load change and thus information from the circuit 4 read out, which is transmitted, for example, according to at least one protocol.
- the circuit 4 can also have a digital control unit IC1, which is designed to output various types of modulated signals as a preferably modulated load change, for example also a specific pulse sequence as digital coding (sequence of zeros and ones).
- the LED converter 10 can be designed to query different types of information, that is to say different operating parameters and / or maintenance parameters, from the LED module 1 by changing the supply voltage and also to query one of several LED modules selectively.
- the supply voltage can be changed, for example, by means of a low-frequency (in the range from a few Hertz to one kilohertz) or high-frequency modulation (in the tens or hundreds of kilohertz or up to the megahertz range).
- the digital control unit IC1 of the circuit 4 can be designed as an integrated circuit.
- the integrated circuit can be designed as an integrated control circuit with only three or four connections.
- the digital control unit IC1 would have a first connection Vp which is connected to the supply voltage of the LED module 1 ( Fig. 9 ).
- the digital control unit IC1 can detect the supply voltage of the LED module 1 via this first connection Vp by means of the first analog-digital converter A / D1 connected to this connection Vp.
- a second connection Vn is connected to the ground of the LED module 1 and enables an internal ground connection within the digital control unit IC1.
- a third connection Vdd can be connected to a capacitor, the other connection of which is also connected to ground of the LED module 1.
- the second terminal Vp can be internally connected to the first terminal Vp via a diode and a switch Svdd.
- This switch Svdd can be compared by means of a comparator Comp1 as a function of a comparison of the voltage currently present at the connection Vdd with a reference value Ref. Depending on the result of the comparison, the switch Svdd can be switched on by the driver unit VddCtrl when the actual value of the voltage at the terminal Vdd is less than the reference value Ref. A current then flows through the switch Svdd into the capacitor, which is connected to the third terminal Vdd.
- the voltage present at the third terminal Vdd can be used as an internal voltage supply for the digital control unit IC1. In this case, the connection Vdd serves to stabilize the internal voltage supply of the digital control unit IC1.
- the digital control unit IC1 can be programmed in advance, for example during manufacture or assembly of the LED module 1. This programming of the digital control unit IC1 can, for example, specify an operating parameter of the LED module 1 such as the target current or the target voltage.
- a switching element S6 is integrated into the digital control unit IC1, which functions as the switch 6 in the example of FIG Fig. 1 corresponds and is designed to output at least one modulated signal or different types of modulated signals, preferably as a modulated load change.
- the voltage at the first terminal Vp is connected internally by closing the integrated switching element S6 to the second terminal Vn directly or indirectly, for example via an integrated resistor R6, and thus pulls the voltage at the terminal Vp to a lower potential.
- the modulated signal can be a specific pulse sequence and output as digital coding (sequence of zeros and ones).
- the digital control unit IC1 can thus transmit information, for example in a run-up phase (i.e. a time-limited start phase of the LED converter and LED module 1), preferably in accordance with the at least one protocol, which is for example in the LED module 1 and is stored in the LED converter 10.
- the current through the switching element S6 can be monitored by means of the resistor R6, the switching element S6 being able to be opened if the current through the switching element S6 and thus the resistor R6 becomes too great.
- the voltage drop across the resistor R6 and thus the current flowing through it can be detected by means of a second analog-digital converter A / D2.
- the reading out and evaluation of the two analog-digital converters as well as the control of the switching element S6 can be done by a "Config and Com" control block integrated into the digital control unit IC1. All other operations such as signal evaluations and outputs can also be carried out using this control block.
- a sensor system for detecting the temperature can also be integrated into the digital control unit IC1, whereby the digital control unit IC1 can transmit an excess temperature or an operating temperature as a maintenance parameter to the LED converter as information in accordance with the at least one protocol.
- the digital control unit IC1 can, for example, also have a counter for the operating time and the digital control unit IC1 can be designed to output an aging parameter of the LED module or the LED path or an operating time of the LED module as a maintenance parameter.
- the digital control unit IC1 can also detect an overvoltage on the LED module 1 and output a corresponding error message as a maintenance parameter.
- the LED path of the LED module 1 can be bridged by closing the switching element S6 and thus protected from the overvoltage.
- the digital control unit IC1 has a fourth connection Cfg, to which a configuration element such as a resistor Rcfg (selection resistor R11) can be connected.
- a controllable current source Icfg can be connected internally to this fourth connection Cfg.
- the voltage drop across the resistor Rcfg, which results from the current fed in by the controllable current source Icfg and the resistance value of the resistor Rcfg, can be controlled by the "Config and Com" control block of the digital control unit IC1 via a third analog-to-digital converter A / D3 can be detected.
- an NTC can be used as the temperature-dependent resistor, which lowers its resistance when the temperature is too high, as a result of which the voltage at the fourth terminal Cfg increases.
- the controllable current source Icfg can, for example, only be active when the digital control unit IC1 is started in order to read out the value of the resistor R11, while in continuous operation of the LED module 1 only the voltage resulting from the voltage divider from the temperature-dependent resistor and resistor R11 to detect excess temperature is monitored.
- the switch not as an integrated switching element S6 but as a external switch 6 analogous to the example of Fig. 1 executed.
- This switch 6 is controlled by the digital control unit IC1 via a fifth connection Sdrv.
- a resistor R6 is arranged in series with the switch 6. The current through the resistor R6 can be detected and monitored by the digital control unit IC1 on the basis of the voltage drop across the resistor R6 by means of a sixth terminal Imon.
- Fig. 12 shows a further embodiment of the digital control unit IC1.
- This example like the example of the Fig. 10 the connections Vp, Vn and Vdd.
- the fourth connection Cfg is also present, to this in turn a resistor R11 (Riled) is connected as a configuration element.
- the digital control unit IC1 also has two further connections.
- a resistor Rovt which is a temperature-dependent resistor, is connected to a further connection Vovt.
- An excess temperature can be detected by monitoring the resistance value of this resistance Rovt.
- a further controllable current source can be arranged in the digital control unit IC1, which outputs a current at the further connection Vovt, which current flows into the resistor Rovt.
- the digital control unit IC1 can conclude that the LED module 1 is overheating.
- a current can be fed into the temperature-dependent resistor Ritm connected to it via a further controllable current source at the further connection Vitm, and the digital control unit IC1 can use the current resistance value, which is monitored on the basis of the voltage detected at this connection Vitm, to the Close the operating temperature on the LED module 1.
- this can be transmitted to the LED converter as information in exactly the same way as an excess temperature as information in accordance with the at least one protocol.
- the information about the operating temperature can be evaluated by the LED converter, whereby an intelligent regulation of the current can take place through the LED module 1 without an excess temperature having to be reached.
- the switch 6 or the switching element S6 can perform further functions on the LED module 1, which can be controlled by the digital control unit IC1. For example, afterglow protection can be enabled.
- the digital control unit IC1 can, for example, recognize when the LED module 1 is to be switched off or has already been switched off by switching off the supply voltage. In order to avoid voltages coupled in due to parasitic effects or remaining residual charges, the switch 6 or the switching element S6 can be closed in order to prevent the LED from glowing due to the coupled voltages.
- protection of the LED module 1 from overvoltages can also be made possible by at least briefly closing the switch 6 or the switching element S6 in the event of an overvoltage at the supply input of the LED module 1 in order to reduce the overvoltage or to close the LED protect.
- Protection against overvoltages when the LED module 1 is disconnected from the LED converter when the LED module 1 is in operation can thus also be made possible, as so-called "hot-plug" protection.
- Such a disconnection can occur unintentionally as a result of a sudden break in contact in the supply line or as a result of a user error due to an intervention, such as, for example, changing the LED module 1 during operation.
- the LED converter 10 can bring about a change of the LED module to a communication mode by selectively changing the supply voltage for the LED module 1, and then the LED converter 10 can detect the change in the power consumption of the LED module 1 and according to the decode at least one protocol that is stored, for example, in the LED module 1 and in the LED converter 10.
- the LED converter 10 can thus request various information from the LED module 1, it being possible for a specific protocol to be stored for each request. This enables a bidirectional communication path between the LED module and the LED converter without additional lines or pins.
- the change in the power consumption of the LED module 1 can be brought about as a function of a value of the first supply voltage 5a according to one of several predetermined protocols and thus a different load change can be brought about according to one of several predetermined protocols.
- the determination of a current-constant load (which is only an example which is not the subject of the invention), wherein the constant current can be measured, for example, via a discharge rate of a capacitor at the LED converter 10.
- a frequency of the change in the power consumption of the LED module 1 (which is only an example which is not the subject of the invention)
- directly detecting the current on the converter side for example by directly detecting the current on the converter side.
- indirect detection by means of determining a peak current within the LED converter, which is an embodiment of the present invention, which comprises, for example, an isolated flyback converter or buck converter, which is measured via a shunt.
- the peak current follows the change in the power consumption of the LED module 1.
- the present invention proposes to transmit information from an LED module 1 to an LED converter 10 which allows conclusions to be drawn about operating and / or maintenance parameters to be set on the LED module 1.
- the operating parameter to be set can be, for example, the target current or the target voltage.
- a circuit 4 (load modulation circuit) is provided on the LED module, which, for example, in a voltage range of a first supply voltage 5a that is not equal to zero and in which an LED path 3 connected to the LED module 1 is non-conductive, a Represents load for the LED converter, and in a voltage range of a second supply voltage 5b, which is not equal to zero and at which a connected LED path 3 is conductive, does not represent a load for the LED converter 10.
- the circuit 4 can also be activated only temporarily, preferably only during a start phase of the LED_Leuchte.
- the load can be constant or repeatedly variable (modulated), for example according to a predetermined protocol.
- a modulated change in load can take place, for example in accordance with a predetermined protocol.
- the power consumption can be recorded by the LED converter 10, in particular also a change in the power consumption (amplitude, frequency, duty cycle).
- the LED converter 10 can determine the operating and / or maintenance parameters.
- the transmission of this information between the LED module 1 and the LED converter 10 does not require any additional connections (only the connection of the supply voltage).
- no interaction with LED module 1 and / or LED converter 10 is necessary. This improves the disadvantages of the known prior art.
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
Description
Die vorliegende Erfindung betrifft ein LED-Modul, einen LED-Konverter und Verfahren, die es ermöglichen, Betriebsparameter des LED-Moduls an den LED-Konverter ohne eine spezifische Kommunikationsleitung zwischen LED-Modul und LED-Konverter zu übermitteln.The present invention relates to an LED module, an LED converter and a method which make it possible to transmit operating parameters of the LED module to the LED converter without a specific communication line between the LED module and the LED converter.
Aus dem Stand der Technik sind bereits mehrere Ansätze bekannt, um einem LED-Konverter Betriebsparameter für ein angeschlossenes LED-Modul vorzugeben. Dies ist zum Beispiel deshalb notwendig, da für verschiedene LED-Module unterschiedliche Durchlassströme notwendig sind, um die LED-Strecken der LED-Module zum Leuchten zu bringen. Betriebsparameter sind zum Beispiel ein benötigter Durchlassstrom oder eine anzulegende Soll- oder Durchlassspannung.Several approaches are already known from the prior art for specifying operating parameters for a connected LED module to an LED converter. This is necessary, for example, because different forward currents are necessary for different LED modules in order to make the LED sections of the LED modules glow. Operating parameters are, for example, a required forward current or a setpoint or forward voltage to be applied.
Ein aus dem Stand der Technik bekannter Ansatz ist, am LED-Konverter über Dip-Schalter oder Widerstände die einzustellenden Betriebsparameter für das angeschlossene LED-Modul einzustellen. Dafür ist allerdings eine Interaktion mit dem LED-Konverter nötig.One approach known from the prior art is to set the operating parameters to be set for the connected LED module on the LED converter via DIP switches or resistors. However, this requires interaction with the LED converter.
In einem anderen Ansatz werden Konfigurationswiderstände auf dem LED-Modul verwendet, um dem LED-Konverter die benötigten Betriebsparameter vorzugeben. Dazu sind allerdings einerseits zusätzliche Anschlüsse nötig, andererseits ist wiederum eine Interaktion erforderlich.In another approach, configuration resistors are used on the LED module to specify the required operating parameters for the LED converter. For this, however, additional connections are required on the one hand, and interaction is required on the other.
Es ist auch bekannt, dem LED-Konverter über einen separaten digitalen Signalkanal die notwendigen Betriebsparameter zu übermitteln. Allerdings müssen dafür zusätzliche Komponenten verbaut werden und es ist wiederum eine Interaktion nötig.It is also known to transmit the necessary operating parameters to the LED converter via a separate digital signal channel. However, additional components have to be installed for this and an interaction is again necessary.
Schließlich ist es auch bekannt, dem LED-Modul beispielsweise ein EPROM zuzuordnen, aus dem der LED-Konverter Informationen hinsichtlich der am LED-Modul einzustellenden Betriebsparameter ermitteln kann.Finally, it is also known to assign an EPROM, for example, to the LED module, from which the LED converter can determine information regarding the operating parameters to be set on the LED module.
Aus der
Die aus dem Stand der Technik bekannten Ansätze erfordern aber alle entweder eine Interaktion mit dem LED-Konverter oder dem LED-Modul, oder erfordern zusätzliche Anschlüsse oder Komponenten. Dadurch erhöhen sich die Kosten des LED-Moduls und/oder des LED-Konverters. Zudem wird mehr Platz für die Komponenten benötigt, was eine kompaktere Bauweise verhindert.However, the approaches known from the prior art all require either an interaction with the LED converter or the LED module, or require additional connections or components. This increases the costs of the LED module and / or the LED converter. In addition, more space is required for the components, which prevents a more compact design.
Die Aufgabe der vorliegenden Erfindung ist es, den bekannten Stand der Technik zu verbessern, besonders hinsichtlich der oben genannten Nachteile. Insbesondere ist es Aufgabe der vorliegenden Erfindung, einem LED-Konverter Informationen bspw. hinsichtlich Betriebsparameter eines LED-Moduls zu übermitteln (zurückzumelden), ohne dass zusätzliche Bauteile oder Anschlüsse, oder eine Interaktion notwendig sind. Es ist also Aufgabe der vorliegenden Erfindung, ein LED-Modul und einen LED-Konverter kostengünstiger herzustellen und kompakter zu bauen.The object of the present invention is to improve the known prior art, particularly with regard to the disadvantages mentioned above. In particular, it is the object of the present invention to transmit (report back) information to an LED converter, for example with regard to the operating parameters of an LED module, without additional components or connections or interaction being necessary. It is therefore the object of the present invention to produce an LED module and an LED converter more cost-effectively and to build them more compactly.
Die Aufgaben der vorliegenden Erfindung werden von den Merkmalen der unabhängigen Ansprüche 1 und 5 gelöst. Die abhängigen Ansprüche bilden den Kerngedanken der Erfindung vorteilhaft weiter.The objects of the present invention are achieved by the features of
Die vorliegende Erfindung wird nun anhand der beigefügten Figuren genauer beschrieben.
- Fig. 1
- zeigt schematisch das Grundprinzip der vorliegenden Erfindung anhand einer erfindungsgemäßen LED-Leuchte (bestehend aus einem erfindungsgemäßen LED-Modul und einem erfindungsgemäßen LED-Konverters).
- Fig. 2
- zeigt eine Stromspannungskennlinie einer LED-Strecke und das erfindungsgemäße Auslesefenster.
- Fig. 3
- zeigt einen Schaltkreis, der eine automatische Deaktivierung der Schaltung auf dem erfindungsgemäßen LED-Modul ermöglicht.
- Fig. 4
- zeigt ein Beispiel der Schaltung auf dem erfindungsgemäßen LED-Modul, die eine stromkonstante Last darstellt.
- Fig. 5
- zeigt schematisch die Erfassung einer stromkonstanten Last auf dem erfindungsgemäßen LED-Modul durch den erfindungsgemäßen LED-Konverter.
- Fig. 6
- zeigt eine Schaltung auf dem erfindungsgemäßen LED-Modul, die eine stromveränderliche Last darstellt und insbesondere eine Frequenz der Änderung der Leistungsaufnahme des erfindungsgemäßen LED-Moduls einstellt.
- Fig. 7
- zeigt wie eine Änderung der Leistungsaufnahme des erfindungsgemäßen LED-Moduls an einem Buck-Konverter als Beispiel eines erfindungsgemäßen LED-Konverters gemessen werden kann.
- Fig. 8
- zeigt wie eine Änderung des Stroms durch die Schaltung auf dem erfindungsgemäßen LED-Modul mit dem Strom in einem Buck-Konverter des erfindungsgemäßen LED-Konverters korreliert
- Fig. 9
- zeigt ein weiteres Beispiel der Schaltung auf dem erfindungsgemäßen LED-Modul
- Fig. 10
- zeigt ein weiteres Beispiel der Schaltung auf dem erfindungsgemäßen LED-Modul
- Fig. 11
- zeigt ein weiteres Beispiel der Schaltung auf dem erfindungsgemäßen LED-Modul
- Fig. 12
- zeigt ein weiteres Beispiel der Schaltung auf dem erfindungsgemäßen LED-Modul.
- Fig. 1
- shows schematically the basic principle of the present invention using an LED lamp according to the invention (consisting of an LED module according to the invention and an LED converter according to the invention).
- Fig. 2
- shows a current-voltage characteristic of an LED path and the readout window according to the invention.
- Fig. 3
- shows a circuit which enables automatic deactivation of the circuit on the LED module according to the invention.
- Fig. 4
- shows an example of the circuit on the LED module according to the invention, which represents a current-constant load.
- Fig. 5
- shows schematically the detection of a constant current load on the LED module according to the invention by the LED converter according to the invention.
- Fig. 6
- shows a circuit on the LED module according to the invention, which represents a current-variable load and in particular sets a frequency of the change in the power consumption of the LED module according to the invention.
- Fig. 7
- shows how a change in the power consumption of the LED module according to the invention can be measured on a buck converter as an example of an LED converter according to the invention.
- Fig. 8
- shows how a change in the current through the circuit on the LED module according to the invention correlates with the current in a buck converter of the LED converter according to the invention
- Fig. 9
- shows another example of the circuit on the LED module according to the invention
- Fig. 10
- shows another example of the circuit on the LED module according to the invention
- Fig. 11
- shows another example of the circuit on the LED module according to the invention
- Fig. 12
- shows another example of the circuit on the LED module according to the invention.
Die Versorgungsspannung wird über einen oder mehrere Anschlüsse 2 des LED-Moduls 1 an wenigstens eine daran angeschlossene LED-Strecke 3 (diese umfasst auch eine einzelne LED) angelegt. Die LED-Strecke 3 muss nicht Teil des erfindungsgemäßen LED-Moduls 1 sein, sondern kann eine anschließbare und austauschbare LED-Strecke 3 sein.The supply voltage is applied via one or
Das erfindungsgemäße LED-Modul 1 benötigt also lediglich Anschlüsse 2 für wenigstens eine LED-Strecke 3. Die LED-Strecke 3 kann aber auch fest mit dem LED-Modul 1 verbaut sein. Die LED-Strecke 3 kann eine oder mehrere LEDs aufweisen, die beispielsweise wie in
Die LED-Strecke 3 ist wenn sie an die Anschlüsse 2 angeschlossen ist, parallel bezüglich der Versorgungsspannung mit einer Schaltung 4 verschaltet. Die Schaltung 4 ist beispielsweise derart ausgebildet, dass sie für den LED-Konverter 10 eine Last, vorzugsweise eine Wirkleistungslast, darstellt, wenn die vom LED-Konverter 10 an die Anschlüsse 12 angelegte Versorgungsspannung ungleich Null ist, aber noch so niedrig ist, dass die an die Anschlüsse 2 angeschlossene LED-Strecke 3 noch nicht leitend ist. Die Schaltung 4 kann daher auch als Lastschaltung oder Lastmodulationsschaltung bezeichnet werden.When it is connected to the
Die Schaltung 4 auf dem LED-Modul 1 ist beispielsweise so ausgebildet, dass sie aktiviert ist, wenn die erste Versorgungsspannung 5a anliegt, und dadurch eine Last, vorzugsweise eine Wirkungsleistungslast, für den LED-Konverter 10 darstellt. Für die zweite Versorgungsspannung 5b, also im Leuchtbetrieb der LED-Strecke 3, ist die Schaltung 4 deaktiviert und stellt keine Last für den LED-Konverter dar. Dies ist in
Die Leistungsaufnahme des LED-Moduls 1 im Auslesefenster kann je nach Art der Schaltung 4 stromkonstant oder stromveränderlich sein. Der LED-Konverter 10 kann die Leistungsaufnahme des LED-Moduls 1 bzw. eine Änderung der Leistungsaufnahme des LED-Moduls 1 erfassen und basierend auf der erfassten Leistungsaufnahme auf einzustellende Betriebs- und/oder Wartungsparameter des LED-Moduls 1 schließen. Der LED-Konverter 10 kann die Betriebs- und/oder Wartungsparameter direkt zur Einstellung oder Regelung des LED-Moduls 1 verwenden. Der LED-Konverter 10 kann die Betriebs- und/oder Wartungsparameter aber auch in einem ihm zugeordneten Speicher ablegen und gegebenenfalls später verwenden, oder die Parameter optisch und/oder akustisch einem Benutzer anzeigen, oder sie an eine weitere Einrichtung, beispielsweise eine Steuereinheit eines Beleuchtungssystems, senden.The power consumption of the
Das Senden kann entweder drahtlos oder drahtgebunden geschehen und kann entweder automatisch oder nur auf Abfrage von der weiteren Einrichtung durchgeführt werden.The transmission can be done either wirelessly or wired and can be carried out either automatically or only on request from the further device.
Zum Betreiben eines LED-Moduls 1 durch den LED-Konverter 1 der vorliegenden Erfindung können in einer vorzugsweise zeitlich begrenzten Startphase der LED-Leuchte verschiedene Vorgänge ausgeführt werden.To operate an
Zunächst versorgt der LED-Konverter 10 das LED-Modul 1 beispielsweise mit einer konstanten Versorgungsspannung, vorzugsweise einer konstanten DC-Spannung. Beispielsweise kann der LED-Konverter 10 mit im Vergleich zum Normalbetrieb verringertem Einschaltverhältnis betrieben werden, wodurch eine geringere Ausgangsspannung erreicht wird. Die Versorgungsspannung ist dabei eine erste Versorgungsspannung 5a, d.h. sie liegt im Auslesefenster, das in
Alternativ oder zusätzlich kann auch ein Auslesen des LED-Moduls 1 durch den LED-Konverter 10 zeitlich begrenzt erfolgen, indem die Schaltung 4 nur während einer Startphase aufgrund einer vorgegebenen Zeitspanne aktiv ist, sobald eine Versorgungsspannung an das LED-Modul 1 angelegt wird. Diese Versorgungsspannung kann in diesem Fall auch der nominellen Ausgangsspannung des LED-Konverters 10 für den Normalbetrieb entsprechen. Nach dem Anlegen der Versorgungsspannung wird die Schaltung 4 auf dem LED-Modul 1 aktiviert und stellt eine Last für den LED-Konverter 10 dar. Die Last ist vorzugsweise eine sich wiederholt ändernde Wirkleistungslast und erzeugt eine Leistungsaufnahme des LED-Moduls 1. Zusätzlich kann in diesem Fall auch die angeschlossene LED-Strecke 3 leitend werden womit der LED-Konverter 10 das LED-Modul 1 im Leuchtbetrieb betreibt. Nun kann der LED-Konverter 10 beispielsweise einen Entladestrom eines Kondensators (was lediglich ein Beispiel ist, welches nicht Gegenstand der Erfindung ist) über diese Last, eine absolute Stromaufnahme der Schaltung 4 (was lediglich ein Beispiel ist, welches nicht Gegenstand der Erfindung ist), eine Frequenz einer Änderung der Leistungsaufnahme des LED-Moduls 1 (was lediglich ein Beispiel ist, welches nicht Gegenstand der Erfindung ist), oder ein Tastverhältnis gemäß der vorliegenden Erfindung oder eine Amplitude einer Leistungsaufnahmeänderung (was lediglich ein Beispiel ist, welches nicht Gegenstand der Erfindung ist) messen. Basierend auf dem Resultat der Messung kann der LED-Konverter 10 auf Betriebs- und/oder Wartungsparameter schließen. Beispielweise kann der LED-Konverter 10 eine Soll- oder Durchlassspannung oder einen Sollstrom des LED-Moduls bestimmen und diese an das LED-Modul 1 anlegen. Vorzugsweise wird nun automatisch nach Ablauf der vorgegebenen Zeitspanne für die Startphase die Schaltung 4 deaktiviert. Die Vorgabe dieser Zeitspanne für die Startphase kann beispielsweise durch eine Zeitladeschaltung festgelegt sein, wobei ein Zeitgeber-Kondensator aufgeladen wird und nach erfolgtem Aufladen des Zeitgeber-Kondensators die Schaltung 4 deaktiviert wird. Die Schaltung 4 nimmt dadurch keine Leistung im dauernden Leuchtbetrieb der LED-Strecke 3 auf und beeinflusst deshalb nicht den Leuchtbetrieb der LED-Strecke 3.Alternatively or additionally, the
Die linke Seite der
Über eine stromkonstante Last wie beispielweise in
Das Konzept der Ermittlung des konstanten Stroms durch die Schaltung 4 ist schematisch in
Wenn die Versorgungsspannung durch Öffnen des Schalters 13, welcher in dem LED-Konverter 10 angeordnet ist und vorzugsweise beim Betrieb des LED-Konverters hochfrequent getaktet wird, vom LED-Modul 1 getrennt wird, entlädt sich der Kondensator 11 über die vorzugsweise stromkonstante Last, die durch die Schaltung 4 auf dem LED-Modul 1 dargestellt wird. Die Entladerate, d.h. die Änderung der Spannung des Kondensators, die an den Anschlüssen 12 anliegt, wird vom LED-Konverter 10 vorzugsweise gemessen, um wie beschrieben auf die Betriebs- und/oder Wartungsparameter des LED-Moduls 1 zu schließen. Beispielweise kann der Widerstand R11, der in
Die Frequenz f der Änderung ist dabei definiert als
Das Tastverhältnis (Taktverhältnis) ist durch die AN-Zeit (Thigh) und die AUS-Zeit (Tlow) definiert, wobei
Eine Änderung des Tastverhältnisses ist sowohl durch eine Änderung der Pulsdauer (Einschaltzeitdauer, AN-Zeit, Thigh) als auch durch eine Änderung der Pausendauer (Ausschaltzeitdauer, AUS-Zeit, Tlow) möglich.The pulse duty factor can be changed by changing the pulse duration (switch-on time, ON time, T high ) or by changing the pause duration (switch-off time, OFF time, T low ).
Die Größe der Last ist durch den Widerstand R5 und der Konverterspannung VCONV (genauer gesagt das Verhältnis VCONV/R5) bestimmt.The size of the load is determined by the resistor R5 and the converter voltage V CONV (more precisely the ratio V CONV / R5).
Die Schaltung 4 kann beispielsweise so ausgelegt sein, dass sie nur während der Startphase der LED-Leuchte aktiviert ist. Dies kann beispielsweise dadurch erreicht werden, dass die Versorgung des Schaltkreises TLC555 mit Hilfe eines Zeitgliedes wie beispielsweise eines RC-Gliedes kann beispielsweise dieses Zeitglied derart ausgelegt sein, dass nur für eine Zeit von beispielsweise 100 Millisekunden die Versorgung für den Schaltkreis TLC555 anliegt und danach aufgrund einer Aufladung des Kondensators des RC-Gliedes über einen Vorwiderstand (ausgehend von der Versorgungsspannung des LED-Modules 1) ein vorgegebener Spannungspegel erreicht wird, der zum Abschalten der Versorgungsspannung Vcc für den Schaltkreis TLC555 führt (Beispiel nicht dargestellt). Beispielsweise kann über die an dem RC-Glied abfallende Spannung die Basis eines Abschalttransistors (nicht dargestellt) angesteuert werden, der die Versorgung Vcc für den Schaltkreis TLC555 auf Masse zieht, sobald das RC-Glied aufgeladen worden ist. Die Ladezeit des RC-Gliedes kann dabei so ausgelegt werden, dass eine Zeit von beispielsweise 100 Millisekunden erreicht wird, wobei diese Zeit der Startphase entspricht.The
Ein Anlauf des Schaltkreis TLC555 zu Beginn der Startphase kann durch eine hochohmige Speisung direkt von der Versorgungsspannung des LED-Modules 1 erfolgen, wobei diese am Ende der Startphase mittels der am RC-Glied abfallenden Spannung über den Abschalttransistors in einer Art Pull-Down Konfiguration auf Masse gezogen wird. Die Schaltung 4 kann einen steuerbaren Schalter aufweisen, der den Widerstand R5 abhängig vom Ausgangssignal OUT des Schaltkreis TLC555 zu- oder wegschaltet und somit die Laständerung bewirkt.A start-up of the TLC555 circuit at the beginning of the start phase can take place by means of a high-impedance feed directly from the supply voltage of the
Der in
Wird durch die Schaltung 4 eine sich wiederholend ändernde Laständerung (also eine modulierte Laständerung) erzeugt und ausgegeben, können beispielsweise auch zwei verschiedene Informationen übertragen werden. Beispielsweise kann sowohl die Frequenz als auch das Tastverhältnis der Laständerung geändert werden.If the
In diesem Fall könnte eine erste Information (beispielsweise die Sollspannung) mittels der Frequenz kodiert übertragen werden, während eine zweite Information (beispielsweise der Sollstrom) über das Tastverhältnis kodiert übertragen werden kann. Eine weitere Möglichkeit zur kombinierten Übertragung von zumindest zwei Informationen wäre die entsprechende Änderung der Pulsdauer (Einschaltzeitdauer, AN-Zeit, Thigh) und der Pausendauer (Ausschaltzeitdauer, AUS-Zeit, Tlow) der Laständerung.In this case, a first piece of information (for example the target voltage) could be transmitted in coded form by means of the frequency, while a second piece of information (for example the target current) could be transmitted in a coded manner using the pulse duty factor. Another possibility for the combined transmission of at least two pieces of information would be to change the pulse duration (switch-on time, ON time, T high ) and the pause duration (switch-off time, OFF time, T low ) of the load change accordingly.
Die Änderung der Leistungsaufnahme des LED-Moduls 1 kann durch den LED-Konverter 10 beispielsweise durch direkte Strommessung des Stroms durch die Schaltung 4 bestimmt werden. Alternativ kann der LED-Konverter 10 Messungen an einem Buck-Konverter wie in
Der LED-Konverter kann wie in
Der Buck-Konverter kann auch als Konstantspannungsquelle betrieben werden, also auf eine konstante Ausgangspannung regeln. In diesem Fall wird eine Laständerung an dem LED-Modul 1 zu einer Änderung des sich einstellenden Spitzenstroms durch den hochfrequent getakteten Schalter während der Einschaltphase des hochfrequent getakteten Schalters des Buck-Konverters führen, wobei diese Änderung erfasst werden kann. Zusätzlich oder alternativ kann auch die Dauer der Einschaltzeit und des Tastverhältnisses der Ansteuerung des hochfrequent getakteten Schalters des Buck-Konverters überwacht und ausgewertet werden, um eine Laständerung zu erkennen und somit eine Information von dem LED-Modul 1 auszulesen. Alternativ kann bei einem Betrieb als Konstantspannungsquelle auch die Höhe des Ausgangsstromes ausgewertet werden, um eine Laständerung zu erkennen.The buck converter can also be operated as a constant voltage source, i.e. regulate to a constant output voltage. In this case, a change in the load on the
Der Buck-Konverter kann mit fixem Tastverhältnis bei fixer Frequenz betrieben werden, vorzugsweise in einem nichtlückendem Strombetrieb (continuous conduction mode). Bei einem derartigen Betrieb können die Höhe des Ausgangsstromes und / oder der Ausgangsspannung ausgewertet werden, um eine Laständerung zu erkennen.The buck converter can be operated with a fixed pulse duty factor at a fixed frequency, preferably in continuous conduction mode. In such an operation, the level of the output current and / or the output voltage can be evaluated in order to detect a change in load.
Der Buck-Konverter des LED-Konverters 10 kann das LED-Modul 1 beispielsweise in einer Startphase mit einer konstanten Versorgungsspannung versorgen, vorzugsweise einer konstanten DC-Spannung. In diesem Fall wird der Buck-Konverter in der Startphase als Konstantspannungsquelle betrieben. Beispielsweise kann der LED-Konverter 10 mit im Vergleich zum Normalbetrieb verringertem Einschaltverhältnis betrieben werden, wodurch eine geringere Ausgangsspannung erreicht wird. Die Versorgungsspannung kann dabei eine erste Versorgungsspannung 5a sein, d.h. sie kann im Auslesefenster liegen, das in
Der Buck-Konverter kann in einer Startphase auch das LED-Modul 1 mit einem geregelten Strom versorgen, dann wird der Buck-Konverter vorzugsweise als Konstantstromquelle betrieben.In a starting phase, the buck converter can also supply the
Wie bereits erwähnt kann der LED-Konverter 10 beispielsweise einen isolierten Wandler mit einem Transformator zur hochfrequenten Energieübertragung (isoliert, vorzugsweise ein isolierter Sperrwandler) zur Versorgung des LED-Moduls 1 aufweisen. Wenn der LED-Konverter 10 isoliert ausgeführt ist (beispielsweise als isolierter Sperrwandler), also einen Transformator aufweist, kann die Erfassung der Laständerung durch den LED-Konverter 10 auch auf der Primärseite des LED-Konverters 10 erfolgen. Beispielsweise kann bei Anwendung eines isolierten Sperrwandlers der Strom auf der Primärseite des LED-Konverters 10, welcher durch die Primärseite des Transformators fließt, erfasst werden. Dabei kann beispielsweise der Strom durch den Taktschalter, welcher in Serie zu der Primärwicklung des Trasnformators angeordnet ist, oder aber der Strom durch die Primärwicklung des Transformators vorzugsweise mittels eines in Serie dazu geschalteten Shunts (Strommeßwiderstandes) erfasst werden. Beispielsweise kann anhand des Peak-Stromes an dem Shunt die anliegende Last oder auch die Laständerung des LED-Moduls 1 und somit beispielsweise eine Änderung des Tastverhältnisses an der Primärseite des LED-Konverters 10 gemessen werden. Beispielsweise kann auch die Änderung des primärseitigen Stromes über die Zeit erfasst werden. Beispielsweise kann eine Erfassung der von der Primärseite übertragenen Leistung anhand der Messung des primärseitigen Stromes sowie einer Messung oder zumindest der Kenntnis der den Konverter speisenden Spannung erfolgen. Es wäre beispielsweise möglich, dass dem Konverter eine aktive Leistungsfaktorkorrekturschaltung wie beispielsweise eine Hochsetzstellerschaltung vorgeschaltet ist, die die Eingangsspannung für den hochfrequent getakteten, isolierten Wandler wie beispielsweise den isolierten Sperrwandlers bereitstellt und auf einen vorgegebenen Wert regelt. Dieser vorgegebene Wert für die von der aktiven Leistungsfaktorkorrekturschaltung geregelte Eingangsspannung für den hochfrequent getakteten Wandler ist aufgrund der Vorgabe (beispielsweise über einen Spannungsteiler) bekannt und kann somit bei der Erfassung der von der Primärseite übertragenen Leistung berücksichtigt werden.As already mentioned, the
Der LED-Konverter kann wie bereits erwähnt einen isolierten Sperrwandler (Flyback-Konverter) aufweisen. Der isolierte Sperrwandler kann als Konstantstromquelle betrieben werden, also auf einen konstanten Ausgangsstrom regeln. In diesem Fall kann beispielsweise die Ausgangsspannung des isolierten Sperrwandler, also die Spannung, die am Ausgang des LED-Konverters 10 ausgegeben wird und der Spannung über dem LED-Modul 1 entspricht, erfasst und ausgewertet werden. Diese Ausgangsspannung kann direkt oder auch indirekt, beispielsweise mittels einer Messung der Spannung an einer primärseitigen Wicklung des Transformators des isolierten Sperrwandlers, erfasst werden. Zusätzlich oder alternativ kann auch die Dauer der der Ausschaltzeit der Ansteuerung des hochfrequent getakteten Schalters des isolierten Sperrwandlers überwacht und ausgewertet werden, um eine Laständerung zu erkennen und somit eine Information von dem LED-Modul 1 auszulesen.As already mentioned, the LED converter can have an isolated flyback converter. The isolated flyback converter can be operated as a constant current source, i.e. regulate to a constant output current. In this case, for example, the output voltage of the isolated flyback converter, that is to say the voltage that is output at the output of the
Der isolierte Sperrwandler kann auch als Konstantspannungsquelle betrieben werden, also auf eine konstante Ausgangspannung regeln. In diesem Fall wird eine Laständerung an dem LED-Modul 1 zu einer Änderung des Ausgangsstromes führen, wobei diese Änderung erfasst werden kann. Diese Änderung des Ausgangsstromes kann beispielsweise an einer Änderung des sich einstellenden Spitzenstroms durch den hochfrequent getakteten Schalters während der Einschaltphase des hochfrequent getakteten Schalters des isolierten Speerwandlers führen. Die Überwachung des primärseitigen Stromes durch den hochfrequent getakteten Schalters kann somit zur Überwachung einer Laständerung genutzt werden, um somit eine Information von dem LED-Modul 1 auszulesen.The isolated flyback converter can also be operated as a constant voltage source, i.e. regulate to a constant output voltage. In this case, a change in the load on the
Der isolierte Sperrwandler kann auch mit fixem Tastverhältnis bei fixer Frequenz betrieben werden. Bei einem derartigen Betrieb können die Höhe des Ausgangsstromes und / oder der Ausgangsspannung ausgewertet werden, um eine Laständerung zu erkennen. Wenn nur die LED-Strecke des LED-Moduls aktiv ist, dann wird die Ausgangsspannung den Wert der Durchflußspannung der LED-Strecke annehmen. Wenn eine Laständerung durch die Schaltung 4 erfolgt, dann wird die Ausgangsspannung abfallen. Diese Änderung kann als Laständerung erfasst werden.The isolated flyback converter can also be operated with a fixed pulse duty factor at a fixed frequency. In such an operation, the level of the output current and / or the output voltage can be evaluated in order to detect a change in load. If only the LED path of the LED module is active, then the output voltage will take on the value of the forward voltage of the LED path. If there is a load change through the
Der LED-Konverter kann wie bereits erwähnt einen isolierten resonanten Halbbrückenwandler wie beispielsweise einen sogenannten LLC-Konverter aufweisen. Der LLC-Konverter kann als Konstantstromquelle betrieben werden, also auf einen konstanten Ausgangsstrom regeln. In diesem Fall kann beispielsweise die Ausgangsspannung des isolierten Sperrwandler, also die Spannung, die am Ausgang des LED-Konverters 10 ausgegeben wird und der Spannung über dem LED-Modul 1 entspricht, erfasst und ausgewertet werden. Diese Ausgangsspannung kann direkt oder auch indirekt, beispielsweise mittels einer Messung der Spannung an einer primärseitigen Wicklung des Transformators des LLC-Konverters, erfasst werden.As already mentioned, the LED converter can have an isolated resonant half-bridge converter such as, for example, a so-called LLC converter. The LLC converter can be operated as a constant current source, i.e. regulate to a constant output current. In this case, for example, the output voltage of the isolated flyback converter, that is to say the voltage that is output at the output of the
Wenn nur die LED-Strecke des LED-Moduls aktiv ist, dann wird die Ausgangsspannung den Wert der Durchflußspannung der LED-Strecke annehmen. Wenn eine Laständerung durch die Schaltung 4 erfolgt, dann wird die Ausgangsspannung abfallen. Diese Änderung kann als Laständerung erfasst werden. Zusätzlich oder alternativ kann auch die sich aufgrund der Regelschleife einstellende Taktfrequenz des LLC-Konverters überwacht und ausgewertet werden, um eine Laständerung zu erkennen und somit eine Information von dem LED-Modul 1 auszulesen. Wenn die Regelschleife des LLC-Konverters so ausgelegt ist, dass bei der Laständerung durch die Schaltung 4 ein Frequenzanschlag der Ansteuerung der Halbbrücke des LLC-Konverters erreicht wird, kann auch dies ausgewertet werden, um die Information auszulesen.If only the LED path of the LED module is active, then the output voltage will take on the value of the forward voltage of the LED path. If there is a load change through the
Der isolierte resonante Halbbrückenwandler wie beispielsweise LLC-Konverter kann auch als Konstantspannungsquelle betrieben werden, indem er bei fixer Frequenz betrieben wird, wobei die Frequenz so gewählt ist, dass die sich ergebende Spannung am Ausgang unterhalb des Wertes der Durchflußspannung der LED-Strecke befindet. In diesem Fall wird eine Laständerung an dem LED-Modul 1 zu einer Änderung des Ausgangsstromes führen, wobei diese Änderung erfasst werden kann. Diese Änderung des Ausgangsstromes kann beispielsweise an der Sekundärseite des LLC-Konverters erfolgen und mittels eines Koppelelements wie beispielsweise eines Stromtransformators auf die Primärseite übertragen werden. Die Überwachung des Ausgangsstromes kann somit zur Überwachung einer Laständerung genutzt werden, um somit eine Information von dem LED-Modul 1 auszulesen.The isolated resonant half-bridge converter such as LLC converter can also be operated as a constant voltage source by operating it at a fixed frequency, the frequency being selected so that the resulting voltage at the output is below the value of the forward voltage of the LED path. In this case, a change in the load on the
Der LED-Konverter 10 wird beispielsweise in einer Startphase in einem bestimmten Modus betrieben, beispielsweise in einem fix-frequenten Modus oder aber auch als Stromquelle oder Spannungsquelle betrieben werden, um eine Laständerung zu erkennen und somit eine Information der Schaltung 4 auszulesen, die beispielsweise gemäß zumindest einem Protokoll übertragen wird.The
Die Schaltung 4 kann auch eine digitale Steuereinheit IC1 aufweisen, die dazu ausgelegt ist, als vorzugsweise modulierte Laständerung verschiedene Arten von modulierten Signalen auszugeben, beispielsweise auch eine bestimmte Pulsfolge als digitale Kodierung (Folge von Nullen und Einsen). Der LED-Konverter 10 kann dazu ausgelegt sein, durch eine Änderung der Versorgungsspannung verschiedene Arten von Informationen, also verschiedene Betriebsparameter und / oder Wartungsparameter von dem LED-Modul 1 abzufragen und auch selektiv eines von mehreren LED-Modulen abzufragen. Die Änderung der Versorgungsspannung kann beispielsweise mittels einer niederfrequenten (im Bereich von wenigen Hertz bis zu einem Kilohertz) oder hochfrequenten Modulation (im mehrerer zehn oder hundert Kilohertz oder bis zum Megahertzbereich) erfolgen.The
Die digitale Steuereinheit IC1 der Schaltung 4 kann als integrierte Schaltung ausgeführt sein. Beispielsweise kann die integrierte Schaltung als integrierter Steuerschaltkreis mit nur drei oder vier Anschlüssen ausgeführt sein.The digital control unit IC1 of the
In einer Ausführungsform mit drei Anschlüssen hätte die digitale Steuereinheit IC1 einen ersten Anschluß Vp, der mit der Versorgungsspannung des LED-Moduls 1 verbunden ist (
Dieser Schalter Svdd kann abhängig von einem Vergleicht der aktuell an dem Anschluß Vdd anliegenden Spannung mit einem Referenzwert Ref mittels eines Komperators Comp1 verglichen werden. Abhängig von dem Vergleichsergebnis kann der Schalter Svdd durch die Treibereinheit VddCtrl eingeschaltet werden, wenn der Istwert der Spannung an dem an dem Anschluß Vdd kleiner als der Referenzwert Ref ist. Dann fließt über den Schalter Svdd ein Strom in den Kondensator, der mit dem dritten Anschluß Vdd verbunden ist. Die an dem dritten Anschluß Vdd anliegende Spannung kann als interne Spannungsversorgung für die digitale Steuereinheit IC1 verwendet werden. Der Anschluß Vdd dient in diesem Fall zur Stabilisierung der internen Spannungsversorgung der digitale Steuereinheit IC1.This switch Svdd can be compared by means of a comparator Comp1 as a function of a comparison of the voltage currently present at the connection Vdd with a reference value Ref. Depending on the result of the comparison, the switch Svdd can be switched on by the driver unit VddCtrl when the actual value of the voltage at the terminal Vdd is less than the reference value Ref. A current then flows through the switch Svdd into the capacitor, which is connected to the third terminal Vdd. The voltage present at the third terminal Vdd can be used as an internal voltage supply for the digital control unit IC1. In this case, the connection Vdd serves to stabilize the internal voltage supply of the digital control unit IC1.
Die digitale Steuereinheit IC1 kann gemäß diesem Beispiel vorab, beispielsweise während der Fertigung oder Bestückung des LED-Moduls 1, programmiert werden. Diese Programmierung der digitale Steuereinheit IC1 kann beispielsweise einen Betriebsparameter des LED-Moduls 1 wie beispielsweise den Sollstrom oder die Sollspannung vorgeben.According to this example, the digital control unit IC1 can be programmed in advance, for example during manufacture or assembly of the
In die digitale Steuereinheit IC1 ist ein Schaltelement S6 integriert, welches in der Funktion dem Schalter 6 des Beispiels der
Mittels des Schaltelements S6 kann die digitale Steuereinheit IC1 somit beispielsweise in einer Hochlaufphase (also einer zeitlich begrenzten Startphase des LED-Konverters und LED-Moduls 1) eine Information übermitteln, vorzugsweise gemäß dem wenigstens einen Protokoll, das beispielsweise in dem LED-Modul 1 und im LED-Konverter 10 abgelegt ist. Der Strom durch das Schaltelement S6 kann mittels des Widerstandes R6 überwacht werden, wobei das Schaltelement S6 geöffnet werden kann, wenn der Strom durch das Schaltelement S6 und somit den Widerstand R6 zu groß wird. Die Erfassung der über dem Widerstand R6 abfallenden Spannung und somit des dadurch fließenden Stromes kann mittels eines zweiten Analog-Digital-Wandlers A/D2 erfolgen. Das Auslesen und Auswerten der beiden Analog-Digital-Wandler sowie die Ansteuerung des Schaltelements S6 kann durch einen in die digitale Steuereinheit IC1 integrierten Steuerblock "Config and Com" erfolgen. Auch alle weiteren Operationen wie Signalauswertungen und Ausgaben können durch diesen Steuerblock ausgeführt werden.By means of the switching element S6, the digital control unit IC1 can thus transmit information, for example in a run-up phase (i.e. a time-limited start phase of the LED converter and LED module 1), preferably in accordance with the at least one protocol, which is for example in the
In die digitale Steuereinheit IC1 kann beispielsweise auch eine Sensorik zur Erfassung der Temperatur integriert sein, wodurch die digitale Steuereinheit IC1 als Wartungsparameter eine Übertemperatur oder eine Betriebstemperatur als Information gemäß dem wenigstens einem Protokoll an den LED-Konverter übermitteln kann. Als Wartungsparameter kann die digitale Steuereinheit IC1 beispielsweise auch einen Zähler für die Betriebszeit aufweisen und die digitale Steuereinheit IC1 kann dazu ausgelegt sein, einen Alterungsparameter des LED-Moduls bzw. der LED-Strecke oder eine Betriebszeitdauer des LED-Moduls als Wartungsparameter auszugeben. Die digitale Steuereinheit IC1 kann auch eine Überspannung an dem LED-Modul 1 erfassen und eine entsprechende Fehlermeldung als Wartungsparameter ausgeben. Optional oder alternativ kann durch Schließen des Schaltelements S6 die LED-Strecke des LED-Moduls 1 überbrückt und somit vor der Überspannung geschützt werden.For example, a sensor system for detecting the temperature can also be integrated into the digital control unit IC1, whereby the digital control unit IC1 can transmit an excess temperature or an operating temperature as a maintenance parameter to the LED converter as information in accordance with the at least one protocol. As a maintenance parameter, the digital control unit IC1 can, for example, also have a counter for the operating time and the digital control unit IC1 can be designed to output an aging parameter of the LED module or the LED path or an operating time of the LED module as a maintenance parameter. The digital control unit IC1 can also detect an overvoltage on the
In der
Im Unterschied zu den Beispielen der
Das Beispiel der
Die Information über die Betriebstemperatur kann durch den LED-Konverter ausgewertet werden, wobei eine intelligente Rückregelung des Stromes durch das LED-Modul 1 erfolgen kann, ohne dass eine Übertemperatur erreicht werden muß.The information about the operating temperature can be evaluated by the LED converter, whereby an intelligent regulation of the current can take place through the
Der Schalter 6 bzw. das Schaltelement S6 kann weitere Funktionen auf dem LED-Modul 1 ausführen, welche durch die digitale Steuereinheit IC1 gesteuert werden können. So kann beispielsweise ein Nachglimm-Schutz ermöglicht werden. Die digitale Steuereinheit IC1 kann beispielsweise erkennen, wann das LED-Modul 1 abgeschaltet werden soll oder bereits durch Wegschalten der Versorgungsspannung abgeschaltet worden ist. Um durch parasitäre Effekte oder verbliebene Restladungen eingekoppelte Spannungen zu vermeiden, kann der Schalter 6 bzw. das Schaltelement S6 geschlossen werden, um ein Glimmen der LED aufgrund der eingekoppelten Spannungen zu vermeiden. Alternativ oder zusätzlich kann auch ein Schutz des LED-Moduls 1 vor Überspannungen ermöglicht werden, indem bei Überspannung an dem Versorgungseingang des LED-Moduls 1 der Schalter 6 bzw. das Schaltelement S6 zumindest kurzzeitig geschlossen wird, um die Überspannung abzubauen bzw. die LED zu schützen. Somit kann auch ein Schutz vor Überspannungen beim Trennen des LED-Moduls 1 von dem LED-Konverter im Betrieb des LED-Moduls 1 ermöglicht werden, als ein sogenannter "Hot-Plug" Schutz. Ein derartiges Abtrennen kann sowohl ungewollt durch einen plötzlichen Kontaktunterbruch in der Versorgungsleitung oder auch durch einen Nutzerfehler durch einen Eingriff, wie beispielsweise einen Wechsel des LED-Moduls 1 während des Betriebs, auftreten.The
Der LED-Konverter 10 kann durch eine selektive Änderung der Versorgungsspannung für das LED-Modul 1 einen Wechsel des LED-Moduls in einen Kommunikationsmodus bewirken, und dann kann der LED-Konverter 10 die Änderung der Leistungsaufnahme des LED-Moduls 1 erfassen und gemäß dem wenigstens einen Protokoll, das beispielsweise in dem LED-Modul 1 und im LED-Konverter 10 abgelegt ist, dekodieren.The
Beispielsweise kann somit der LED-Konverter 10 verschiedene Informationen von dem LED-Modul 1 abfragen, wobei für jede Abfrage ein spezifisches Protokoll hinterlegt sein kann. Somit wird ohne zusätzliche Leitungen oder Pins einen bidirektionaler Kommunikationspfad zwischen dem LED-Modul und dem LED-Konverter ermöglicht.For example, the
Die Änderung der Leistungsaufnahme des LED-Moduls 1 kann abhängig von einem Wert der ersten Versorgungsspannung 5a gemäß einem von mehreren vorgegebenen Protokollen bewirkt werden und somit eine unterschiedliche Laständerung gemäß einem von mehreren vorgegebenen Protokollen bewirkt werden.The change in the power consumption of the
Zur Erfassung der Änderung der Leistungsaufnahme des LED-Moduls 1 durch den LED-Konverter 10 können, unter anderem, drei Konzepte verwendet werden. Zum einen das Bestimmen einer stromkonstanten Last (was lediglich ein Beispiel ist, welches nicht Gegenstand der Erfindung ist), wobei der konstante Strom beispielweise über eine Entladerate eines Kondensators am LED-Konverter 10 gemessen werden kann. Zum anderen durch Bestimmen einer Frequenz der Änderung der Leistungsaufnahme des LED-Moduls 1 (was lediglich ein Beispiel ist, welches nicht Gegenstand der Erfindung ist), beispielweise durch direktes Erfassen des Stroms auf der Konverterseite. Und schließlich durch indirektes Erfassen mittels Bestimmen eines Peak-Stroms innerhalb des LED-Konverters, was eine Ausführungsform der vorliegenden Erfindung ist, der beispielsweise einen isolierten Sperrwandler oder Buck-Konverter aufweist, der über einen Shunt gemessen wird. Der Peak-Strom folgt der Änderung der Leistungsaufnahme des LED-Moduls 1.To detect the change in the power consumption of the
Zusammenfassend schlägt die vorliegende Erfindung vor, Informationen von einem LED-Modul 1 an einem LED-Konverter 10 zu übermitteln, die auf an dem LED-Modul 1 einzustellende Betriebs- und/oder Wartungsparameter schließen lassen. Der einzustellende Betriebsparameter kann beispielsweise der Sollstrom oder die Sollspannung sein.In summary, the present invention proposes to transmit information from an
Dazu ist erfindungsgemäß auf dem LED-Modul eine Schaltung 4 (Lastmodulationsschaltung) vorgesehen, die beispielsweise in einem Spannungsbereich einer ersten Versorgungsspannung 5a, die ungleich Null ist und bei der eine an das LED-Modul 1 angeschlossene LED-Strecke 3 nicht leitend ist, eine Last für den LED-Konverter darstellt, und in einem Spannungsbereich einer zweiten Versorgungsspannung 5b, die ungleich Null ist und bei der eine angeschlossene LED-Strecke 3 leitend ist, keine Last für den LED-Konverter 10 darstellt. Die Schaltung 4 kann auch nur zeitweise aktiviert sein, vorzugsweise nur während einer Startphase der LED_Leuchte. Die Last kann konstant oder wiederholt veränderlich (moduliert) sein, beispielsweise gemäß einem vorgegebenen Protokoll. Es kann beispielsweise eine modulierte Laständerung erfolgen, beispielsweise gemäß einem vorgegebenen Protokoll. Die Leistungsaufnahme kann von dem LED-Konverter 10 erfasst werden, insbesondere auch eine Änderung der Leistungsaufnahme (Amplitude, Frequenz, Tastverhältnis). Dadurch kann der LED-Konverter 10 die Betriebs- und/oder Wartungsparameter bestimmen. Die Übermittlung dieser Informationen zwischen dem LED-Modul 1 und dem LED-Konverter 10 bedarf keiner zusätzlichen Anschlüsse (nur den Anschluss der Versorgungsspannung). Außerdem ist keine Interaktion mit LED-Modul 1 und/oder LED-Konverter 10 nötig. Dadurch werden die Nachteile des bekannten Stands der Technik verbessert.For this purpose, according to the invention, a circuit 4 (load modulation circuit) is provided on the LED module, which, for example, in a voltage range of a
Claims (5)
- LED converter (10) for an LED module (1),• the LED module (1) comprising:∘ ports (2) for an LED series (3);∘ ports (12) for the LED converter (10);∘ a circuit (4) designed to constitute a load, preferably an active power load, when a first supply voltage (5a) is applied to the LED module (1) in a starting phase and is designed not to constitute a load when the starting phase has elapsed,
the circuit (4) being designed during the starting phase to encode at least one operating and/or maintenance parameter of the LED module (1) by a change in a power consumption according to a predetermined protocol,
the circuit (4) being in addition designed to constitute a variable-current load which causes the change in the power consumption of the LED module (1) according to the predetermined protocol,• wherein the LED converter (10) has ports (12) for the LED module (1) and in addition has a high-frequency clocked converter, preferably an isolated flyback converter, and the high-frequency clocked converter has a transformer,
wherein, by setting the first supply voltage (5a) or a second supply voltage (5b) for the LED module (1), the high-frequency clocked converter is designed to switch selectively between a mode for detecting the power consumption of the LED module (1) when the first supply voltage (5a) is applied and a mode for lighting operation of the LED series (3) when the second supply voltage (5b) is applied; to indirectly detect the power consumption of the LED module (1) on a primary side of the transformer of the high-frequency clocked converter during the starting phase; and to decode the at least one operating and/or maintenance parameter of the LED module (1) on the basis of the indirectly detected power consumption and by means of the predetermined protocol,• characterized in that
for indirect detection, the LED converter is designed to detect a change in the power consumption of the LED module (1) during the starting phase by detecting a change in a duty cycle, the duty cycle corresponding to a timing of the LED converter (10). - LED converter (10) according to Claim 1, the at least one operating and/or maintenance parameter being a setpoint current through the LED series (3) connected to the LED module (1), an aging parameter, an operating time, and/or a spectrum of a light emitted by the LED series (3).
- LED converter (10) according to either of Claims 1 to 2, designed to identify the LED module (1) on the basis of the at least one determined operating and/or maintenance parameter.
- LED light comprising an LED module (1) according to Claim 1 and an LED converter (10) according to any one of Claims 1 to 3.
- Method for determining information relating to an LED module (1) according to Claim 1 and at an LED converter (10) according to any one of Claims 1 to 3, wherein the following method steps are carried out by the LED converter (10):• indirectly detecting a power consumption of the LED module (1) by the high-frequency clocked converter during a starting phase, wherein the circuit (4) causes a modulated load change on the LED module (1) during the starting phase, wherein for the indirect detection of the power consumption of the LED module (1) a change in a duty cycle is detected, the duty cycle corresponding to a cycle rate of the LED converter (10);• determining at least one operating and/or maintenance parameter of the LED module (1) by means of a decoding of the indirectly detected power consumption with the aid of a predetermined protocol.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT4002013 | 2013-11-28 | ||
ATGM447/2013U AT15039U1 (en) | 2013-11-28 | 2013-12-16 | Detection of an LED module |
PCT/AT2014/050282 WO2015077811A1 (en) | 2013-11-28 | 2014-11-26 | Led module |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3075212A1 EP3075212A1 (en) | 2016-10-05 |
EP3075212B1 true EP3075212B1 (en) | 2021-03-17 |
Family
ID=53198088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14830494.2A Active EP3075212B1 (en) | 2013-11-28 | 2014-11-26 | Led converter for an led module |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3075212B1 (en) |
WO (1) | WO2015077811A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3113577A1 (en) * | 2015-06-30 | 2017-01-04 | Helvar Oy Ab | A method for adjusting operating current, a current setting element and a led module |
DE202019101664U1 (en) | 2019-03-25 | 2020-06-26 | Tridonic Gmbh & Co Kg | Determining operating parameters of a lamp by the operating device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100214082A1 (en) * | 2009-02-20 | 2010-08-26 | Redwood Systems, Inc. | Transmission of power and data with frequency modulation |
US20100213759A1 (en) * | 2009-02-20 | 2010-08-26 | Redwood Systems, Inc. | Digital switch communication |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10114124A1 (en) * | 2001-03-22 | 2002-09-26 | Hella Kg Hueck & Co | circuitry |
DE10230154A1 (en) * | 2002-07-04 | 2004-01-15 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | supply unit |
JP2005093196A (en) * | 2003-09-17 | 2005-04-07 | Moritex Corp | Illumination method, illumination device and parts thereof |
DE102008039530A1 (en) * | 2008-08-23 | 2010-02-25 | Hella Kgaa Hueck & Co. | Diode assembly i.e. LED, temperature detecting device, has measuring device connected with connecting terminals, where measuring device has resistor with temperature dependent resistance value indicating temperature of diode assembly |
KR101679057B1 (en) * | 2009-02-12 | 2016-11-24 | 코닌클리케 필립스 엔.브이. | Light emitting device system and driver |
DE102012008499A1 (en) * | 2012-04-26 | 2013-10-31 | Tridonic Gmbh & Co. Kg | Device and method for supplying energy to a light source |
-
2014
- 2014-11-26 EP EP14830494.2A patent/EP3075212B1/en active Active
- 2014-11-26 WO PCT/AT2014/050282 patent/WO2015077811A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100214082A1 (en) * | 2009-02-20 | 2010-08-26 | Redwood Systems, Inc. | Transmission of power and data with frequency modulation |
US20100213759A1 (en) * | 2009-02-20 | 2010-08-26 | Redwood Systems, Inc. | Digital switch communication |
Also Published As
Publication number | Publication date |
---|---|
WO2015077811A1 (en) | 2015-06-04 |
EP3075212A1 (en) | 2016-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2936936B1 (en) | Detection of an led module | |
EP2011213B1 (en) | Led driver circuit | |
DE102012100360A1 (en) | Light source equipment and luminaire | |
EP3085202B1 (en) | Led driver for reading information from a led module | |
DE102013226120A1 (en) | METHOD AND CIRCUIT FOR A LED DRIVER LIGHT LEVERAGE CONTROL | |
EP3075213B1 (en) | Led module | |
DE102012215481A1 (en) | Operating device for driving an LED track with secondary-side control unit | |
EP3075212B1 (en) | Led converter for an led module | |
EP2512207A1 (en) | Driver circuit and method for powering an LED and illuminant | |
AT14906U1 (en) | LED module | |
EP3075211B1 (en) | Method and apparatus for detecting led modules | |
AT15045U1 (en) | Acquisition of operating parameters of an LED module | |
AT16340U1 (en) | Clocked converter for dimmable bulbs with dynamically adjustable filter | |
EP3100591B1 (en) | Recognition of a led modul | |
AT15039U1 (en) | Detection of an LED module | |
AT15046U1 (en) | Capture of an LED module | |
AT15988U1 (en) | Operating circuit for supplying a light source, LED converter, system and method for operating an operating circuit | |
EP3222119B1 (en) | Operating circuit for energizing a light-emitting element, led converter, system and method for operating an operating circuit | |
EP2667687B1 (en) | Operation control device and method for operating a lighting assembly | |
DE102018007411A1 (en) | LED dimming | |
EP3231253B1 (en) | Driver circuit with llc start-up control | |
DE102013107770A1 (en) | Power converter with digital controller | |
WO2015113090A1 (en) | Registering an led module | |
AT15120U1 (en) | LED driver for reading information from an LED module | |
DE212014000115U1 (en) | Operating circuit for light-emitting diodes with filter element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160513 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170127 |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502014015395 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H05B0033080000 Ipc: H05B0047185000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H05B 47/185 20200101AFI20200813BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201030 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014015395 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1373510 Country of ref document: AT Kind code of ref document: T Effective date: 20210415 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210618 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210719 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210717 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014015395 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
26N | No opposition filed |
Effective date: 20211220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211126 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211126 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1373510 Country of ref document: AT Kind code of ref document: T Effective date: 20211126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20221122 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220701 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502014015395 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241128 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241126 Year of fee payment: 11 |