[go: up one dir, main page]

EP3074263A1 - Systeme de controle de motricite pour vehicule automobile utilisant un signal de correction en rampe extrait d'une cartographie et procede de controle correspondant - Google Patents

Systeme de controle de motricite pour vehicule automobile utilisant un signal de correction en rampe extrait d'une cartographie et procede de controle correspondant

Info

Publication number
EP3074263A1
EP3074263A1 EP14805260.8A EP14805260A EP3074263A1 EP 3074263 A1 EP3074263 A1 EP 3074263A1 EP 14805260 A EP14805260 A EP 14805260A EP 3074263 A1 EP3074263 A1 EP 3074263A1
Authority
EP
European Patent Office
Prior art keywords
torque
wheel
correction signal
transmitted
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14805260.8A
Other languages
German (de)
English (en)
Inventor
Gil GONCALVES
Thierry Philippe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3074263A1 publication Critical patent/EP3074263A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/16Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, spinning or skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/30Wheel torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque

Definitions

  • the invention relates generally to the control of the behavior of a motor vehicle and relates more particularly to the control of the motricity of a motor vehicle.
  • Motor control of a motor vehicle is essential to maintain vehicle stability and improve safety.
  • the effectiveness of a motor vehicle traction control system involves limiting the runaway of at least one of the wheels of the vehicle to maintain stability and to reduce and limit jolts that may be perceived by the driver. to maintain the driving comfort of the vehicle and improve safety.
  • the conventional traction control systems implement a measurement of the sliding of at least one of the wheels of the vehicle relative to the ground, calculations capable of transmitting a correction signal of a torque to be transmitted on at least one of the wheels of the vehicle. one of the wheels of the vehicle and means for correcting the torque to be transmitted on said wheel as a function of said correction signal.
  • a known solution of the state of the art consists in generating a ramp correction signal, the purpose of which is to progressively transmit the corrected torque to the wheel.
  • a torque correction signal having a ramp shape is advantageous in that it avoids jolts and decreases the repacking speed of the wheel.
  • a ramp correction signal induces a delay and / or a lack of responsiveness in the motor control.
  • the object of the invention is to further improve the response of the traction control system by taking into account the adhesion of the wheel relative to the ground.
  • a motor vehicle traction control system comprising:
  • calculating means comprising a corrector adapted to transmit a ramp correction signal of the torque to be transmitted on at least one of the wheels of the vehicle and,
  • the corrector comprises a map in which slope values of torque correction signals are stored as a function of the sliding of the wheel.
  • the system includes slope limiting means for limiting the slope resulting from the mapping.
  • the slope limiting means ensure an increase in negative slopes and a decrease in positive slopes.
  • the invention also relates, in another aspect, to a traction control method for a motor vehicle, in which the sliding of at least one of the wheels of the vehicle is measured, a correction ramp signal is issued. a torque to be transmitted on at least one of the wheels of the vehicle and the torque to be corrected on said wheel is corrected according to said correction signal.
  • a slope value of the ramp of the correction signal is extracted from a map in which slope values of torque correction ramp signals are stored as a function of the slippage of the wheel.
  • the slope resulting from the mapping is limited.
  • Figure 1 is a block diagram of a traction control device according to one embodiment of the invention.
  • FIG. 2 illustrates the means for calculating the slip error of the device of FIG. 1;
  • FIG. 3 illustrates the calculation of the torque correction signal implemented in the device of FIG.
  • FIG. 4 is a graph of the longitudinal modeling of Pacejka
  • FIG. 5 represents an example of a motor control method by means of the device of FIG. 1.
  • FIG. 1 represents an example of a traction control device according to one embodiment of the invention, designated by the general reference numeral 1.
  • control device illustrated in FIG. 1 is part of an anti-skid device, which is known to those skilled in the art by the term ASR.
  • This device is intended to correct the torque commanded by the driver to allow the vehicle to have a better handling. It transmits in this respect a correction signal used to correct the torque transmitted to a driving wheel of the vehicle, from data concerning the sliding of this wheel.
  • the input parameters of the control device 1 include the speed of rotation of the wheels V ROT and the reference speed of the vehicle with respect to the ground V REF -
  • a corrected signal value is calculated.
  • the control device thus comprises a first calculation module 2 intended to calculate the slip error E AS RI of the wheel, which is the first intermediate variable necessary for generating the correction signal.
  • the error E AS RI is calculated from the speed of rotation V R O T of the wheel and the reference speed V REF of the vehicle.
  • the calculation module 2 will be detailed with reference to FIG.
  • the control device also comprises a second calculation module 8, which will be described with reference to FIG. 3, which calculates the signal G AS RI of correction of the torque transmitted to the wheel from the slip error of the wheel E AS RI from module 2.
  • a second calculation module 8 which will be described with reference to FIG. 3, which calculates the signal G AS RI of correction of the torque transmitted to the wheel from the slip error of the wheel E AS RI from module 2.
  • This first calculation module 2 comprises a comparator 3 connected to two input blocks 4 and 5 connected to a first means 6 for measuring the reference speed V REF of the vehicle relative to the ground and to a second means 7 for measuring the the speed V ROT of rotation of the wheel.
  • the first input block 4 makes it possible to manipulate the reference speed V REF according to a transfer function, for example a constant, affine, polynomial function, depending on the desired behavior.
  • a transfer function for example a constant, affine, polynomial function, depending on the desired behavior.
  • the second input block 5 implements a transfer function which makes it possible to obtain, from the speed of rotation V ROT of the wheel, the tangential velocity V T of the wheel relative to the ground, calculated at the point of calculation of the reference speed V REF -
  • the comparator 3 makes it possible to subtract from the reference speed signal V REF , possibly manipulated, the tangential speed signal V T so as to obtain the EAS RI slip error signal from the wheel .
  • the second calculation module 8 receives as input the slip error signal E AS RI delivered at the output of the first calculation module 2. It comprises a transfer block 1 1 which delivers the signal G AS RI torque correction transmitted to the wheel. This correction signal is intended to cause a correction of the torque to be transmitted so that the torque transmitted to the wheel is adapted to the grip of the wheel relative to the ground, and jolts are avoided, while maintaining the speed su system.
  • the transfer block 11 comprises a controller 12 for correcting the slip error.
  • This controller is associated with two maps 13 and 14 in which slope values, respectively positive and negative, of torque correction ramp signals are stored as a function of the slippage of the wheel and, more particularly, as a function of the error. slip of the wheel. In other words, it is to deliver a torque reduction value motor applied to the wheel depending on the slip level of the wheel.
  • a torque correction signal is emitted with a ramp value better adapted to non-linear behavior than with a conventional corrector, for example a corrector of Proportional-Integral-PID derivative type.
  • a ramp limiter 15 is placed downstream of the controller 12. It also processes the slope values from the maps 13 and 14.
  • the ramp limiter 15 combines the signals from the controller and the maps so as to emit an output signal. ramp whose slope depends on the slip error EAS RI, taking into account the non - linear behavior of the tire.
  • the response is finally regulated by means of an additional stage 16 able to limit the output between a minimum and a maximum.
  • the response signal allows a torque variation better adapted to the non-linear behavior of the tire.
  • the cartography is indeed less sensitive to the noise of the input data than a conventional corrector, even compatible with the nonlinear behavior of the tire, for example a PID type corrector.
  • the ramp response to different parameters such as grip, in order to maintain responsiveness and driving comfort.
  • the jolts are generally more strongly perceptible by the driver and the responsiveness of the traction control system is less important than in a situation of low grip.
  • the torque transmitted to the wheel is thus modified according to the function range of the tire.
  • Figure 4 shows the curve of Pacejka's modeling of a tire in longitudinal force. This curve represents the longitudinal force transmitted to the ground by the tire of a wheel as a function of the longitudinal sliding of the tire. It appears that the behavior of the tire is not linear. There are three areas of operation of the tire on this curve.
  • a correction signal causing a high torque variation will therefore not have the same impact on the handling and comfort according to the longitudinal sliding speed to which the tire is subjected.
  • the speed of development of the correction signal depends on the construction of the cartography, whereas that of a PID corrector depends on the proportional and derivative terms. On the contrary, according to the level of construction of the cartography, it is possible to obtain a more responsive controller and mapping than a PID corrector.
  • FIG. 5 shows an exemplary motor control method implementing the device that has just been described.
  • a first step E01 the input data which will be processed during the following steps are determined.
  • This first phase includes measuring the reference speed of the vehicle V REF and measuring the speed of rotation of the wheels VROT-
  • the slip error E AS RI is calculated from the tangential velocity of the wheel relative to the ground and the activation threshold of the traction control. These two data are respectively obtained from the speed of rotation of the wheel and the reference speed of the vehicle relative to the ground.
  • a ramp correction signal is produced whose slope is extracted from a map according to the slip and the non-linear behavior of the tire.
  • a fourth step E04 the torque to be transmitted to the wheel is corrected from the correction signal produced during step E03.
  • Correction means for example a brake pressure applied to the wheel, make it possible to implement the correction developed during the process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Ce système de contrôle de motricité pour véhicule automobile, comprend : - des moyens pour déterminer le glissement d' au moins l' une des roues du véhicule par rapport au sol, - des moyens de calcul (8), comprenant un correcteur ( 12, 13, 14) apte à émettre un signal en rampe de correction du couple à transmettre sur au moins l' une des roues du véhicule, et - des moyens pour corriger le couple à transmettre sur ladite roue, en fonction du signal de correction émis par le correcteur. Le correcteur comprend une cartographie ( 13, 14) dans laquelle sont stockées des valeurs de pente de signaux de correction de couple en fonction du glissement de la roue.

Description

Système de contrôle de motricité pour véhicule automobile utilisant un signal de correction en rampe extrait d'une cartographie et procédé de contrôle correspondant
L' invention concerne de manière générale le contrôle du comportement d' un véhicule automobile et se rapporte plus particulièrement au contrôle de la motricité d' un véhicule automobile.
Le contrôle de la motricité d' un véhicule automobile est essentiel pour préserver la stabilité du véhicule et améliorer la sécurité.
L' efficacité d' un système de contrôle de motricité pour véhicule automobile implique de limiter les emballements d' au moins l' une des roues du véhicule pour préserver la stabilité et de réduire et limiter les à-coups qui peuvent être perçus par le conducteur pour conserver un confort de conduite du véhicule et améliorer la sécurité.
Les systèmes de contrôle de motricité conventionnels mettent en œuvre une mesure du glissement d' au moins l' une des roues du véhicule par rapport au sol, des calculs aptes à émettre un signal de correction d'un couple à transmettre sur au moins l' une des roues du véhicule et des moyens pour corriger le couple à transmettre sur ladite roue en fonction dudit signal de correction.
On pourra à cet égard se référer au document US 5 ,443 ,307 qui décrit un système de contrôle du glissement des roues motrices d'un véhicule automobile dans lequel le différentiel peut être bloqué par une action sur les freins. Par calcul de la différence entre la vitesse de rotation des roues motrices et de la vitesse de rotation du moteur, un correcteur de type proportionnel intégral dérivé (PID) combiné à un asservissement génère un signal de correction pour appliquer un moment de freinage sur l' une des roues motrices. Ces systèmes présentent l' inconvénient de parfois corriger de façon brutale une erreur de glissement alors que ce n' est pas nécessaire. Ces corrections occasionnent une détérioration du confort de conduite et de la sécurité.
Une solution connue de l' état de la technique consiste à générer un signal de correction en rampe, dont le but est de transmettre progressivement à la roue le couple corrigé.
L' élaboration d'un signal de correction de couple ayant une forme de rampe est avantageuse dans la mesure où elle évite les à- coups et diminue la vitesse de réemballement de la roue. Il a toutefois été constaté que l' utilisation d' un signal de correction en rampe induit un retard et/ou un manque de réactivité dans le contrôle de motricité.
Au vu de ce qui précède, le but de l' invention est d' améliorer encore la réponse du système de contrôle de motricité en prenant en compte l' adhérence de la roue par rapport au sol.
L' invention a donc pour objet, selon un premier aspect, un système de contrôle de motricité pour véhicule automobile comprenant :
- des moyens pour déterminer le glissement d' au moins l' une des roues du véhicule par rapport au sol,
- des moyens de calcul comprenant un correcteur apte à émettre un signal en rampe de correction du couple à transmettre sur au moins l' une des roues du véhicule et,
- des moyens pour corriger le couple à transmettre sur ladite roue, en fonction du signal de correction émis par le correcteur.
Selon une caractéristique générale de ce système de contrôle, le correcteur comprend une cartographie dans laquelle sont stockées des valeurs de pente de signaux de correction de couple en fonction du glissement de la roue.
Ainsi, en calculant la pente du signal de correction du couple à transmettre à la roue du véhicule à partir du glissement de celle-ci, il est possible d' adapter la rampe et, plus particulièrement, la pente de la rampe du signal de correction du couple en fonction de l' adhérence de la roue par rapport au sol. Dans un mode de réalisation, le système comporte des moyens de limitation de pente destinés à limiter la pente issue de la cartographie.
Par exemple, les moyens de limitation de pente assurent une augmentation des pentes négatives et une diminution des pentes positives.
L' invention a également pour objet, selon un autre aspect, un procédé de contrôle de motricité pour véhicule automobile, dans lequel on mesure le glissement d' au moins l' une des roues du véhicule, on émet un signal en rampe de correction d' un couple à transmettre sur au moins l' une des roues du véhicule et l' on corrige le couple à transmettre sur ladite roue en fonction dudit signal de correction.
On extrait en outre une valeur de pente de la rampe du signal de correction à partir d'une cartographie dans laquelle sont stockées des valeurs de pente de signaux en rampe de correction de couple en fonction du glissement de la roue.
Dans un mode de mise en œuvre, on limite la pente issue de la cartographie.
On peut par exemple augmenter les pentes négatives et/ou diminuer les pentes négatives.
D ' autres buts, caractéristiques et avantages de l' invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d' exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
la figure 1 est un schéma d' ensemble d' un dispositif de contrôle de motricité selon un mode de réalisation de l' invention ;
la figure 2 illustre les moyens de calcul de l' erreur de glissement du dispositif de la figure 1 ;
la figure 3 illustre le calcul du signal de correction du couple mis en œuvre dans le dispositif de la figure
1 ;
la figure 4 est un graphe de la modélisation de Pacejka en longitudinal, et la figure 5 représente un exemple de procédé de contrôle de motricité au moyen du dispositif de la figure 1.
La figure 1 représente un exemple de dispositif de contrôle de motricité selon un mode de réalisation de l' invention, désigné par la référence numérique générale 1.
Plus précisément, dans le mode de réalisation envisagé, le dispositif de contrôle illustré à la figure 1 fait partie d' un dispositif d' anti-patinage, que l'homme du métier désigne par le terme d' ASR.
Ce dispositif a pour but de corriger le couple commandé par le conducteur pour permettre au véhicule d' avoir une meilleure tenue de route. Il émet à cet égard un signal de correction utilisé pour corriger le couple transmis à une roue motrice du véhicule, à partir de données concernant le glissement de cette roue.
Les paramètres d' entrée du dispositif de contrôle 1 comprennent la vitesse de rotation des roues VROT et la vitesse de référence du véhicule par rapport au sol VREF-
Le fonctionnement de cet exemple de contrôle de motricité se fait en deux étapes.
Dans une première étape, on détermine l'erreur de glissement de la roue, et dans un second temps on calcule une valeur de signal corrigé.
Le dispositif de contrôle comporte ainsi un premier module de calcul 2 destiné à calculer l' erreur de glissement EAS R I de la roue, qui est la première variable intermédiaire nécessaire pour l' élaboration du signal de correction. L' erreur EAS R I est calculée à partir de la vitesse de rotation VROT de la roue et de la vitesse de référence VREF du véhicule. Le module de calcul 2 sera détaillé en référence à la figure 2.
Le dispositif de contrôle comporte également un deuxième module de calcul 8 , qui sera décrit en référence à la figure 3 , qui calcule le signal GAS R I de correction du couple transmis à la roue à partir de l' erreur de glissement de la roue EAS R I issue du module 2. On se référera tout d' abord à la figure 2 qui représente le premier module 2 servant à calculer l' erreur de glissement EAS R I de la roue. Ce premier module de calcul 2 comprend un comparateur 3 raccordé à deux blocs d'entrée 4 et 5 reliés à un premier moyen 6 de mesure de la vitesse de référence VREF du véhicule par rapport au sol et à un deuxième moyen 7 de mesure de la vitesse VROT de rotation de la roue.
Le premier bloc d'entrée 4 permet de manipuler la vitesse de référence VREF selon une fonction de transfert, par exemple une fonction constante, affine, polynôme ... selon le comportement désiré.
Le deuxième bloc d'entrée 5 met en œuvre une fonction de transfert qui permet d' obtenir, à partir de la vitesse de rotation VROT de la roue, la vitesse tangentielle VT de la roue par rapport au sol, calculée au point de calcul de la vitesse de référence VREF - Le comparateur 3 permet de soustraire au signal de vitesse de référence VREF, éventuellement manipulé, le signal de vitesse tangentielle VT de manière à obtenir le signal d' erreur de glissement EAS R I de la roue.
En se référant à la figure 3 , le second module de calcul 8 reçoit en entrée le signal d' erreur de glissement EAS R I délivré en sortie du premier module de calcul 2. Il comporte un bloc de transfert 1 1 qui délivre le signal GAS R I de correction du couple transmis à la roue. Ce signal de correction est destiné à provoquer une correction du couple à transmettre afin que le couple transmis à la roue soit adapté à l' adhérence de la roue par rapport au sol, et que les à-coups soient évités, tout en conservant la rapidité su système.
Le bloc de transfert 1 1 comprend un contrôleur 12 de correction de l' erreur de glissement. Ce contrôleur est associé à deux cartographies 13 et 14 dans lesquelles sont stockées des valeurs de pente, respectivement positive et négative, de signaux en rampe de correction du couple en fonction du glissement de la roue et, plus particulièrement, en fonction de l'erreur de glissement de la roue. Il s'agit en d'autres termes de délivrer une valeur de réduction du couple moteur appliqué à la roue en fonction du niveau de glissement de la roue.
De cette manière, un signal de correction de couple est émis avec une valeur de rampe mieux adaptée à un comportement non linéaire qu' avec un correcteur classique, par exemple un correcteur de type Proportionnel - Intégral - Dérivé PID.
Un limiteur de rampe 15 est placé en aval du contrôleur 12. Il traite également les valeurs de pente issues des cartographies 13 et 14. Le limiteur de rampe 15 combine les signaux issus du contrôleur et des cartographies de manière à émettre un signal de sortie en rampe dont la pente dépend de l' erreur de glissement EAS R I , en tenant compte du comportement non-linéaire du pneumatique. Dans cet exemple, on régule enfin la réponse au moyen d' un étage additionnel 16 apte à limiter la sortie entre un minimum et un maximum.
Ainsi, au moyen de ce bloc de transfert 1 1 , le signal de réponse permet une variation de couple mieux adaptée au comportement non linéaire du pneumatique. Par construction, la cartographie est en effet moins sensible au bruitage des données d' entrée qu'un correcteur classique, même compatible avec le comportement non linéaire du pneumatique, par exemple un correcteur de type PID.
A l ' aide d' un dispositif de ce type, il est possible d' adapter la réponse en rampe à différents paramètres tels que l' adhérence, en vue de préserver la réactivité et le confort de conduite. Par exemple, en situation de forte adhérence, les à-coups sont généralement plus fortement perceptibles par le conducteur et la réactivité du système de contrôle de motricité est moins importante que dans une situation de faible adhérence. Comme cela sera expliqué par la suite, le couple transmis à la roue est ainsi modifié en fonction du domaine de fonction du pneumatique.
La figure 4 représente la courbe de la modélisation de Pacejka d'un pneumatique en effort longitudinal. Cette courbe représente l' effort longitudinal transmis au sol par le pneumatique d' une roue en fonction du glissement longitudinal du pneumatique. Il apparaît que le comportement du pneumatique n' est pas linéaire. On distingue trois domaines de fonctionnement du pneumatique sur cette courbe.
Dans un premier domaine A, on dit que le pneumatique « adhère » . Le couple transmis par le pneumatique au sol est proportionnel à la vitesse de glissement longitudinal. L' intégralité du couple étant transmis à la route, les à coups de couple ne sont pas souhaitables car fortement perceptibles par le conducteur.
Dans un deuxième domaine B , on dit que le pneumatique est « en limite d' adhérence » . Le couple transmis par le pneumatique décroit légèrement lorsque la vitesse de glissement longitudinal augmente. Une partie du couple n' est plus transmise à la route, les à- coups de couple sont légèrement filtrés.
Dans un troisième domaine C, on dit que le pneumatique est « saturé en glissement » . Le couple transmis par le pneumatique au sol est constant quelle que soit la vitesse de glissement longitudinal. Une partie majeure du couple n' est plus transmise à la route, les à-coups de couple sont imperceptibles par le conducteur.
Un signal de correction entraînant une forte variation de couple n' aura donc pas le même impact sur la tenue de route et sur le confort selon la vitesse de glissement longitudinal à laquelle est soumis le pneumatique.
A partir de cette modélisation, on peut calculer, pour différents niveaux de glissement, une variation de couple permettant une correction du glissement optimale, c ' est à dire permettant une bonne réactivité tout en évitant les à-coups. On peut en particulier calculer, pour différents niveaux de glissement, un signal de correction du couple transmis en rampe, dont la pente plus ou moins raide permet la variation de couple optimale. On peut alors construire une cartographie dans laquelle sont stockées des valeurs de pente de signaux de correction en rampe en fonction du glissement longitudinal de la roue.
Par exemple, lorsque le pneumatique n' est pas saturé en glissement, c'est-à-dire lorsqu' il a conservé une bonne adhérence, la réactivité de la correction est moins importante et les à-coups sont filtrés. Un coefficient de pente de rampe élevé est donc approprié.
La rapidité de l' élaboration du signal de correction dépend de la construction de la cartographie, tandis que celle d'un correcteur PID dépend des termes proportionnels et dérivatifs . Au contraire, selon le niveau de construction de la cartographie, il est possible d' obtenir un contrôleur et une cartographie plus réactifs qu' un correcteur de type PID.
La figure 5 présente un exemple de procédé de contrôle de motricité mettant en œuvre le dispositif qui vient d' être décrit.
Dans une première étape E01 , on détermine les données d' entrée qui vont être traitées au cours des étapes suivantes. Cette première phase comprend notamment la mesure de la vitesse de référence du véhicule VREF et de la mesure de la vitesse de rotation des roues VROT-
Dans une seconde étape E02 , on calcule l' erreur de glissement EAS R I , à partir de la vitesse tangentielle de la roue par rapport au sol et du seuil d' activation du contrôle de motricité. Ces deux données sont obtenues respectivement à partir de la vitesse de rotation de la roue et de la vitesse de référence du véhicule par rapport au sol.
On élabore, au cours d'une troisième étape E03 , ensuite un signal de correction en rampe dont la pente est extraite d'une cartographie en fonction du glissement et du comportement non linéaire du pneumatique.
Dans une quatrième étape E04 , on corrige le couple à transmettre à la roue à partir du signal de correction élaboré au cours de l'étape E03 . Des moyens de correction, par exemple une pression de freinage appliquée sur la roue, permettent de mettre en œuvre la correction élaborée au cours du processus.
Ainsi, grâce au processus qui vient d' être décrit, il est possible de corriger le couple commandé par le conducteur en fonction du glissement et de paramètres complémentaires tels qu'un couple de référence pouvant désigner un couple maximal transmissible avant perte d' adhérence. De cette façon, le couple transmis à la roue permet d'obtenir une bonne tenue de route et ce avec une réactivité importante.

Claims

REVENDICATIONS
1. Système de contrôle de motricité pour véhicule automobile, comprenant :
des moyens pour déterminer le glissement d' au moins l' une des roues du véhicule par rapport au sol,
des moyens de calcul (8) , comprenant un correcteur ( 12, 13 , 14) apte à émettre un signal en rampe de correction du couple à transmettre sur au moins l' une des roues du véhicule, et
des moyens pour corriger le couple à transmettre sur ladite roue, en fonction du signal de correction émis par le correcteur,
caractérisé en ce que ledit correcteur comprend une cartographie ( 13 , 14) dans laquelle sont stockées des valeurs de pente de signaux de correction de couple en fonction du glissement de la roue.
2. Système de contrôle selon la revendication 1 , caractérisé en ce qu' il comporte des moyens de limitation de pente ( 15) destinés à limiter la pente issue de la cartographie.
3. Système de contrôle selon la revendication 2, caractérisé en ce que les moyens de limitation de pente ( 15) assurent une augmentation des pentes négatives et une diminution des pentes positives.
4. Procédé de contrôle de motricité pour véhicule automobile, dans lequel on mesure le glissement d' au moins l' une des roues du véhicule, on émet un signal en rampe de correction d' un couple à transmettre sur au moins l' une des roues du véhicule et l' on corrige le couple à transmettre sur ladite roue en fonction dudit signal de correction, caractérisé en ce que l' on extrait une valeur de pente de la rampe du signal de correction à partir d'une cartographie ( 13 , 14) dans laquelle sont stockées des valeurs de pente de signaux en rampe de correction de couple en fonction du glissement de la roue.
5. Procédé selon la revendication 4, dans lequel on limite la pente issue de la cartographie.
6. Procédé selon la revendication 5 , dans lequel on augmente les pentes négatives et on diminue les pentes négatives .
EP14805260.8A 2013-11-28 2014-11-27 Systeme de controle de motricite pour vehicule automobile utilisant un signal de correction en rampe extrait d'une cartographie et procede de controle correspondant Withdrawn EP3074263A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1361769A FR3013666B1 (fr) 2013-11-28 2013-11-28 Systeme de controle de motricite pour vehicule automobile utilisant un signal de correction en rampe extrait d'une cartographie et procede de controle correspondant
PCT/EP2014/075836 WO2015078977A1 (fr) 2013-11-28 2014-11-27 Systeme de controle de motricite pour vehicule automobile utilisant un signal de correction en rampe extrait d'une cartographie et procede de controle correspondant

Publications (1)

Publication Number Publication Date
EP3074263A1 true EP3074263A1 (fr) 2016-10-05

Family

ID=50289854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14805260.8A Withdrawn EP3074263A1 (fr) 2013-11-28 2014-11-27 Systeme de controle de motricite pour vehicule automobile utilisant un signal de correction en rampe extrait d'une cartographie et procede de controle correspondant

Country Status (3)

Country Link
EP (1) EP3074263A1 (fr)
FR (1) FR3013666B1 (fr)
WO (1) WO2015078977A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106032143B (zh) * 2016-06-27 2018-08-10 奇瑞汽车股份有限公司 扭矩控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645084B1 (fr) * 1989-03-31 1991-07-19 Peugeot Procede et dispositif de regulation du glissement de traction des roues motrices d'un vehicule automobile
GB9005081D0 (en) * 1990-03-07 1990-05-02 Lucas Ind Plc Method of and apparatus for controlling wheel spin
JP3440546B2 (ja) * 1993-07-09 2003-08-25 マツダ株式会社 車両のトラクションコントロール装置
DE4430108B4 (de) * 1994-08-25 2011-11-24 Robert Bosch Gmbh Antriebsschlupfregelsystem
DE19913825A1 (de) * 1999-03-26 2000-09-28 Bosch Gmbh Robert Regelsystem für ein Fahrzeug

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015078977A1 *

Also Published As

Publication number Publication date
WO2015078977A1 (fr) 2015-06-04
FR3013666B1 (fr) 2017-04-14
FR3013666A1 (fr) 2015-05-29

Similar Documents

Publication Publication Date Title
FR2678885A1 (fr) Procede pour eviter des instabilites dans le comportement en marche d'un vehicule.
EP2895826B1 (fr) Dispositif et procede d'estimation de la charge d'un vehicule automobile
EP4037947B1 (fr) Dispositif de contrôle d'un véhicule automobile à conduite autonome
WO2013175093A1 (fr) Procede de detection d'une acceleration intempestive d'un vehicule automobile
EP0539263B1 (fr) Procédé et dispositif de freinage de véhicules par asservissement du couple de freinage appliqué sur une roue
FR2905107A1 (fr) Procede de controle de trajectoire d'un vehicule.
WO2015078977A1 (fr) Systeme de controle de motricite pour vehicule automobile utilisant un signal de correction en rampe extrait d'une cartographie et procede de controle correspondant
FR3013665A1 (fr) Systeme et procede de controle de motricite pour vehicule automobile avec adaptation de la variation du couple au domaine de fonctionnement du pneumatique des roues du vehicule.
EP2082939B1 (fr) Procédé et système d'estimation d'adhérence dans un véhicule automobile
EP3074264B1 (fr) Systeme de controle de motricite pour vehicule automobile et procede de controle correspondant
EP1621431B1 (fr) Procédé et dispositif de répartition avant/arrière du freinage pour un véhicule en décélération
FR2915802A1 (fr) Procede et systeme de determination d'adherence pour vehicule automobile
FR3013662A1 (fr) Systeme et procede de controle de motricite pour vehicule automobile avec adaptation de la variation du couple au glissement absolu des roues du vehicule
FR2832359A1 (fr) Dispositif et procede de diagnostic de la traction en biais causee par des freins ou l'entrainement
EP1541435B1 (fr) Procédé de contrôle de la décélération d'un véhicule à roues, utilisant des couples de freinage répartis à dissymétrie bornée.
FR2858951A1 (fr) Procede et dispositif de coordination d'un systeme de regulation de la dynamique de roulage et d'un systeme differentiel
FR2937586A1 (fr) Procede de controle de la pression d'air de pneumatiques en fonction de l'etat de conduite et dispositif pour sa mise en oeuvre
FR3013663A1 (fr) Systeme de controle de motricite pour vehicule automobile par mesure de lacet et procede de controle correspondant
FR2994897A1 (fr) Procede de gestion du glissement d'une roue motrice d'un vehicule automobile
EP1982888A1 (fr) Procédé de contrôle de stabilité en boucle fermée pour véhicule automobile
FR2647723A1 (fr) Procede et dispositif de pilotage d'un differentiel commande, notamment pour vehicule automobile
FR3054987A1 (fr) Dispositif de controle des pressions des liquides de frein pour les deux roues d'un train arriere de vehicule automobile
WO2010010263A1 (fr) Procede de controle du sous-virage d'un vehicule automobile
FR3097508A1 (fr) Procédé de régulation de vitesse d’un véhicule automobile mettant en œuvre une fonction de régulation de vitesse adaptative
FR2918320A1 (fr) Systeme de commande de deux roues d'un vehicule automobile actionnables par un seul organe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20181025

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190305