EP3073569A1 - Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix - Google Patents
Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix Download PDFInfo
- Publication number
- EP3073569A1 EP3073569A1 EP16161459.9A EP16161459A EP3073569A1 EP 3073569 A1 EP3073569 A1 EP 3073569A1 EP 16161459 A EP16161459 A EP 16161459A EP 3073569 A1 EP3073569 A1 EP 3073569A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguides
- butler matrix
- waveguide
- parallel
- planar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
- H01Q3/40—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
- H01P1/182—Waveguide phase-shifters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/12—Hollow waveguides
- H01P3/121—Hollow waveguides integrated in a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/02—Coupling devices of the waveguide type with invariable factor of coupling
- H01P5/022—Transitions between lines of the same kind and shape, but with different dimensions
- H01P5/024—Transitions between lines of the same kind and shape, but with different dimensions between hollow waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
- H01Q1/288—Satellite antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/006—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
- H01Q15/0073—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having corrugations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/006—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
- H01Q15/008—Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0086—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
- H01Q15/08—Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
- H01Q15/10—Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/16—Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
- H01Q19/13—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
- H01Q19/138—Parallel-plate feeds, e.g. pill-box, cheese aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0031—Parallel-plate fed arrays; Lens-fed arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/064—Two dimensional planar arrays using horn or slot aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/007—Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
- H01Q25/008—Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device lens fed multibeam arrays
Definitions
- the present invention relates to a compact Butler matrix, a planar two-dimensional beamformer and a multi-beam planar antenna comprising such a Butler matrix. It applies to any multibeam antenna, especially in the field of space applications such as satellite telecommunications, and more particularly to thin antennas.
- the beamformers are used in multibeam antennas to develop output beams from input radio frequency signals.
- a conventional beamformer comprises N inputs In1 to InN, P outputs Out1 to OutP, and a plurality of radio frequency circuits 11, 12, 13 able to divide and recombine the input radio frequency signals according to a chosen phase and amplitude law. to form output beams.
- the radio frequency circuits comprise a large number of individual waveguides 10 which intercross with each other so as to allow the combinations necessary for the formation of the different output beams by radiofrequency signal combiners 12.
- These beam formers are suitable for a limited number of radiating elements and to form a limited number of beams as they become very complex as the number of beams increases due to the necessary crossovers between the waveguides.
- Butler matrix consisting of a symmetrical passive circuit with N input ports and N output ports, which drives radiating elements producing N different beams of equal amplitudes.
- the circuit is composed of junctions that connect the input ports to the output ports by N different transmission lines 18 and parallel to each other.
- Butler matrix comprises couplers 15, of the 3 dB, 90 ° hybrid coupler type, making it possible to combine or divide the power of the waves input radio frequency, phase shifters 16 capable of applying a phase delay of 45 °, and crossing devices 17 for crossing two different transmission lines.
- each crossing device 17 may consist of two 3 dB, 90 ° couplers connected in series.
- FIG. figure 2 An example of a Butler matrix architecture with four input ports A, B, C, D and four output ports A ', B', C ', D' is shown in FIG. figure 2 .
- the Butler matrix has four 3 dB, 90 °, two 45 ° phase shifters and a crossover.
- This type of beamformer is well suited for forming a small number of beams but becomes too complex as the number of beams increases. In addition, it allows the formation of beams in only one direction of the space perpendicular to the transmission lines 18.
- planar quasi-optical beamformers using electromagnetic propagation of radiofrequency waves originating from several input power sources, for example radiating horns, according to a propagation mode in general TEM between two plates. parallel metallic.
- the focusing and collimation of the beams can be performed by an optical lens as described for example in the documents US 3170158 and US 5936588 which illustrate the case of a Rotman lens, or alternatively by a reflector as described for example in the documents FR 2944153 and FR 2 986377 , the optical lens or the reflector respectively being inserted in the propagation path of the radio frequency waves, between the two parallel metal plates.
- optical lenses may be used, these optical lenses serving essentially as phase correctors and allowing in most cases to convert one or more cylindrical waves emitted by the sources into one or more plane waves propagating in the waveguide with parallel metal plates.
- the optical lens may comprise two opposite edges with parabolic profiles, respectively input and output.
- the optical lens may be a dielectric lens, or a right-sided index gradient lens, or any other type of optical lens.
- an optical lens quasi-optical beamformer to obtain a plane antenna, it is sufficient to place elements radiating input around the input edge of the optical lens and attaching radio frequency probes to the output edge of the optical lens, and then connecting each radio frequency probe to a radiating output element via a line transmission, for example a coaxial cable.
- pillbox beamformer In the case of a pillbox beamformer, to obtain a planar antenna, input radiating elements are placed in front of the integrated parabolic reflector, and radiating output elements are placed in the path of the radiofrequency waves reflected by the parabolic reflector. .
- pillbox beamformers using one or more reflectors.
- a quasi-optical beamformer is much simpler than traditional waveguide beamformers because it does not have a coupler or a crossover device.
- all known planar beam formers are able to form beams only in one dimension of space, in a direction parallel to the plane of the metal plates.
- To form beams according to two dimensions of the space, in two directions, respectively parallel and orthogonal to the plane of the metal plates it is necessary to combine orthogonally between them, two sets of beam forming, each beam forming assembly consisting of a stack of several layers of unidirectional beamformers.
- connection interfaces in particular input / output connectors, on each set of beam forming and then connect in pairs the different inputs and outputs.
- the object of the invention is to overcome the drawbacks of known beam formers and to realize a planar two-dimensional beamformer comprising continuous transmission lines and making it possible to form beams in two dimensions of space without any connection interface or no interconnecting cable.
- Another object of the invention is to provide a new and particularly compact Butler matrix having a new parallel plate architecture compatible with quasi-optical beamformers.
- the invention relates to a compact Butler matrix comprising N waveguides, where N is an integer greater than three and selected from the powers of two, couplers for coupling two adjacent waveguides, phase shifters and at least one crossing device capable of crossing two adjacent waveguides, the crossing device comprising two couplers connected in series.
- the Butler matrix consists of a planar multilayer structure comprising N + 1 metal plates parallel to each other, stacked one above the other, and regularly spaced from each other, each space between two consecutive metal plates forming a guide parallel plate wave having two opposite walls, respectively upper and lower, constituted by the two consecutive metal plates, two waveguides with adjacent metal plates having a common wall formed by one of the metal plates, and the couplers, the phase shifters and the crossing device are constituted by metasurfaces integrated in the respective walls of the waveguides to be coupled, crossed and out of phase.
- the metasurfaces constituting each coupler and the crossing device between two adjacent waveguides may consist of a metallized support provided with a plurality of through holes regularly distributed in a coupling zone, respectively a crossing zone, of the wall common to the two adjacent adjacent waveguides, the crossing zone consisting of two coupling zones arranged in cascade one behind the other.
- the metasurfaces constituting each phase shifter integrated in a waveguide may consist of corrugations arranged in a phase shift zone, on the two opposite walls of the corresponding waveguide.
- each metal plate may consist of a metal coating deposited on a dielectric substrate and each coupler and crossing device between two adjacent waveguides may consist of a plurality of slots etched in the metal coating, the slots being regularly distributed throughout the coupling zone, respectively throughout the crossing zone, the crossing zone consisting of two coupling zones arranged in cascade one behind the other.
- each phase-shifter may consist of a set of periodically photo-etched metal patches on the dielectric substrate of the two walls of a phase-shifted waveguide.
- the invention also relates to a planar beamformer capable of synthesizing beams according to two dimensions of space, comprising at least one Butler matrix with N + 1 parallel plates.
- the beamformer may comprise two different Butler matrices stacked one above the other and respectively dedicated to two different polarizations orthogonal to each other.
- the beamformer may further comprise N respectively integrated optical lenses, at the output, or alternatively at the input, of the Butler matrix, in the N waveguides delimited by the N + 1 metal plates.
- each optical lens may be a lens of constant thickness and index gradient.
- the beamformer may comprise two stacked stages, respectively lower and upper, each stage comprising an identical number of parallel plate waveguides, the Butler matrix being located on the upper stage, each waveguide of the lower stage being connected in series to a waveguide of the upper stage by a respective intermediate waveguide comprising parallel metal plates arranged orthogonally to the XOY plane of the two lower and upper stages, the parallel metal plates constituting the walls of each intermediate waveguide forming a reflector integrated in the beamformer.
- the invention also relates to a planar antenna comprising at least one Butler matrix with N + 1 parallel plates, the antenna further comprising M radiating feed horns connected at the input of each waveguide with parallel metal plates, ie MN radiating feed horns for the N metal plate waveguides, where M is greater than 2, and N output radiating horns respectively connected to the N metal plate waveguides.
- each output radiating horn can be a longitudinal horn coupled to a linear radiating aperture extending transversely over the entire width of the corresponding parallel plate waveguide.
- the linear radiating openings may be oriented in a direction perpendicular to the plane of the parallel plates of the corresponding parallel plate waveguide.
- the Butler matrix consists of a planar multilayer structure comprising N + 1 metal plates 20, parallel to each other, stacked one above the other, and regularly spaced from each other.
- PPW parallel plate waveguide
- the metal plates are parallel to the XOY plane, the X direction corresponding to the longitudinal direction of propagation of the radio frequency waves in each parallel plate waveguide.
- Two adjacent waveguides PPW1 and PPW2, PPW2 and PPW3, PPW3 and PPW4, comprise a common wall formed by one of the metal plates 20.
- the Butler matrix therefore comprises N parallel-plate waveguides stacked one above the other in the direction Z orthogonal to the plane XOY, where N is an integer greater than three and selected from the powers of two.
- the Butler matrix also comprises couplers, for example of the hybrid coupler type 3dB, 90 °, each coupler being intended to couple two waveguides adjacent to each other, 45 ° phase shifters and crossover devices (in English: crossover) intended to intersect with each other two adjacent waveguides.
- the couplers 15, the crossing devices 17 and the phase-shifters 16 are integrated locally into the metal plates forming the walls of the waveguides PPW1, PPW2, PPW3, PPW4 in respective coupling zones 22a, 22b, 22c, 22d, crossover 24 and phase shift 23a, 23b, located in the path of propagation of radiofrequency waves and extending transversely, parallel to the Y direction, over the entire width D of the corresponding metal plate 20.
- the metal plate forming the common wall between the two adjacent waveguides comprises coupling zones and crossing zones constituted by metasurfaces integrated locally in said common wall.
- a metasurface is a textured surface consisting of a dense planar distribution of small identical or non-identical elements, fixed, or printed, or engraved, on a very thin support.
- a metasurface is characterized by a surface impedance that locally modifies the longitudinal propagation of a guided wave in a waveguide.
- a metasurface has very interesting properties from an electromagnetic point of view because it allows to control the propagation of electromagnetic waves along its surface.
- the elements fixed, or printed or engraved may for example be metal studs or metal patches or holes, or slots, regularly distributed or of variable density, the distance between two consecutive elements being less than Central wavelength of operation.
- the metasurface is constituted a metallized support 26 provided with a plurality of through holes 25 regularly distributed throughout the coupling zone, respectively throughout the crossing zone. The distance separating two adjacent holes is much less than, at least a factor of three, at the wavelengths guided in the parallel plate guide.
- the metasurface has a high reactive surface impedance, for example 100 ohms, the value of which depends on the density of the holes and the length L of the coupling zone.
- a 90 ° 3dB coupler synthesized by a metasurface having a reactive surface impedance of 100 Ohms was obtained with holes regularly distributed over a length L equal to 35 mm.
- Two identical metasurfaces put end to end synthesize the crossing zone. It has been verified that these surface impedances are effective for radio waves having different angles of incidence.
- the two metal plates forming the upper and lower walls of the corresponding waveguide comprise phase shift zones 23a, 23b which may consist of corrugations arranged locally on the inner surface of the two corresponding metal plates and whose width is equal to the transverse width D of the corresponding metal plates.
- the number N of waveguides is four, and the number of metal plates 20 is five.
- a first coupling zone 22a is integrated in the second metal plate common to the first waveguide PPW1 and at the second waveguide PPW2 and a second coupling zone 22b is integrated in the fourth metal plate common to the third waveguide PPW3 and the fourth waveguide PPW4.
- the Butler matrix Downstream of the two coupling zones 22a, 22b, the Butler matrix comprises a crossing zone 24 consisting of two hybrid couplers 3dB, 90 °, cascaded, one behind the other, in the third metal plate common to the second and third waveguides PPW2, PPW3, and two phase shift zones 23a, 23b respectively arranged in the upper and lower walls of the first and fourth waveguides PPW1, PPW4.
- a third and a fourth coupling zone 23c, 23d are respectively integrated in the second metal plate common to the first and second waveguides PPW1, PPW2 and in the fourth metal plate common to the third and fourth waveguides PPW3, PPW4.
- the radiofrequency signals propagating in the two adjacent waveguides intersect and mutually exchange their propagation waveguide, which allows to group two by two signals that propagate initially in non-adjacent waveguides to couple them.
- the radiofrequency signals propagating initially in the waveguides PPW2 and PPW3 are exchanged in the crossing zone 24 and then propagate, downstream of the crossing zone, respectively in the waveguides.
- PPW3 and PPW2. They can then be respectively coupled to radio frequency signals that propagate in waveguides PPW4 and PPW1.
- phase shift, coupling and crossover areas be compact and so that the surface impedances are high.
- the size of the phase shift, coupling and crossover areas is further reduced if the Butler matrix operates over a wider band and for higher radiofrequency waveforms.
- the Butler matrix can be made using a printed circuit technology by using a multilayer composite structure comprising a stack of several layers consisting of etched and metallized substrates S1, S2, S3, S4, S5 possibly being separated by spacers E1, E2, E3, E4.
- Each layer forms a waveguide comprising two metallized walls parallel to each other, each wall consisting of a metal coating 33 deposited on a dielectric substrate 32, the spacer located between two metallized walls may consist of air or comprise a material transparent to radiofrequency waves, such as for example a honeycomb material, or a quartz material, or a material made of kevlar, or an expanded polymer foam.
- the role of a spacer is to reduce propagation losses, but this spacer is not essential.
- the metal coating 33 deposited on the substrate 32 is then equivalent to a metal plate 20.
- the coupling zones 22a, 22b, 22c, 22d and crossing 24 between two adjacent waveguides then consist of a plurality of etched slots in the metal coating, the slots being evenly distributed throughout the coupling zone, respectively throughout the crossing zone, the length of the crossing zone 24 being equal to twice the length of a coupling zone.
- the phase shift zones consist of metasurfaces, deposited on the metal coating, which modify the propagation delay of the radiofrequency waves.
- the metasurfaces may, for example, consist of a set of metal pads, or metal patches 30 periodically photogravated by photolithography on the face. internal of the dielectric substrate of the two walls of the corresponding waveguide.
- the metal patches may for example be short-circuited by connecting them to the metal coating of the wall of the corresponding waveguide, through a metallized through hole 31 arranged in the corresponding dielectric substrate.
- the distribution period of the metal patches equal to the distance between two adjacent metal patches, is less than the propagation wavelength of the radiofrequency waves in the waveguide with parallel metallic walls.
- the Butler matrix according to the invention constitutes a one-dimensional beamformer when used alone.
- the two-dimensional planar beamformer comprises a Butler matrix 41 having N parallel-stacked PPW waveguides stacked one above the other, where N is an integer greater than three and selected among the powers of two, for example, 4, 8, 16, 32 ..., and further comprises an optical device of the optical lens or reflective type.
- N is an integer greater than three and selected among the powers of two, for example, 4, 8, 16, 32 ...
- the number N of waveguides PPW1, PPW2, PPW3, PPW4 is equal to 4.
- the structure of the Butler matrix is identical to that represented on the Figures 3a and 3b .
- the beam trainer has N optical lenses 42 respectively integrated in the N waveguides delimited by the N + 1 parallel metal plates.
- the optical lenses 42 are arranged in the waveguides PPW, at the input of the Butler matrix 41, between the input feed horns 43 of each waveguide and the Butler matrix 41, whereas on the figure 7 , the optical lenses 42 are arranged in the waveguides PPW at the outlet of the Butler matrix 41, between the Butler matrix and exit horns 44.
- each optical lens 42 may be a dielectric lens whose dielectric permittivity is different from that of the propagation medium of the parallel plate waveguides PPW1, PPW2, PPW3, PPW4 (which is equal to 1 if the waveguides PPW1,..., PPW4 are filled with air or equal to the permittivity of the substrate 32 in the case where the waveguides consist of a stack of layers of metallized and etched substrates).
- Each optical lens 42 integrated in a parallel plate waveguide may have parabolic edges as shown in the waveguide PPW of the figure 8a , or be a lens of variable thickness, or, to avoid shape discontinuities, be a straight-edged lens of constant thickness and refractive index gradient as shown in the waveguide PPW of the figure 8b , or any other type of optical lens with a variable refractive index which makes it possible to phase out the radiofrequency waves according to a predefined phase law.
- planar beam former thus produced makes it possible, with the Butler matrix 41, to synthesize beams in the XOZ plane perpendicular to the parallel plates and makes it possible, with the optical lens 42, to synthesize beams in the XOY plane parallel to the parallel plates without any discontinuity. propagation in the parallel plate waveguides and without using any interconnection or any connecting cable.
- each waveguide PPW wave can be connected to several radiating output elements or to a single longitudinal radiating horn 44 coupled to a linear aperture radiating.
- the number M of feeding horns 43 is equal to 7 per waveguide, ie MN horns input total, equal to 28 for the four PPW waveguides.
- a single longitudinal radiating horn 44 is used at the output of each waveguide PPW.
- Each linear aperture radiant coupled to the longitudinal radiating horn 44 output extends transversely over the entire width D of the corresponding waveguide.
- each linear aperture radiating is oriented to radiate in a direction Z perpendicular to the plane XOY parallel plates but it is not essential, the linear openings could also be in the extension of the parallel plates.
- the plane of radiation of the longitudinal radiating horns is not an extension of the parallel plates, but is folded with respect to the parallel plates. Of course, this is not essential.
- a longitudinal horn has the advantage of radiating energy over the entire width of the opening of the parallel plate waveguide, which makes it possible to produce an antenna with a large bandwidth of operation and with a large beam misalignment capability. formed and makes it possible to get rid of network lobes.
- the dimensions of the beamformer including optical lenses are strongly constrained by the focal length between each optical lens 42 and the input feed horns 43.
- the required focal distance between each optical lens and the feed horns is advantageously used by the Butler matrix, which makes it possible to reduce the dimensions of the beamformer which is then more compact.
- radiofrequency waves propagating in the Butler matrix are no longer flat but cylindrical.
- the figure 9 illustrates another embodiment of a two-dimensional planar beamformer having no discontinuity of spread.
- the planar beam former comprises 2N + 1 parallel plates 20 constituting the respective walls of 2N parallel plate waveguides distributed over two floors, respectively lower 50 and upper 51.
- Each stage comprises N guide plates. wave in PPW technology, stacked one above the other, where N is greater than three.
- Each parallel plate waveguide PPW1, PPW2, PPW3, PPW4 of the lower stage is respectively connected in series with a parallel plate waveguide PPW8, PPW7, PPW6, PPW5 of the upper stage via of a respective intermediate waveguide, with parallel plates PPWP1, PPWP2, PPWP3, PPWP4, arranged orthogonally to the XOY plane of the two stages of the beamformer.
- the parallel metal plates forming the walls of each intermediate waveguide then form a reflector integrated in the beamformer, as in a pillbox-type beamformer.
- the parallel metal plates constituting the walls of the intermediate waveguides may comprise a chosen shape profile, which may for example be of straight shape as illustrated in FIG.
- the N waveguides PPW8, PPW7, PPW6, PPW5 of the upper stage are coupled together by a Butler matrix according to the invention and as described in connection with the Figures 3a and 3b .
- the invention For operation in double polarization, for example circular, the invention consists in using two identical Butler matrices, respectively dedicated to each polarization, and stacked one above the other as shown on the figure 11 wherein each Butler matrix comprises four waveguides A, B, C, D and A ', B', C ', D', in PPW parallel plate waveguide technology.
- Each Butler matrix being dedicated to one of the two polarizations, at the output of the beamformer, the PPW waveguides operating in the same polarization are adjacent to each other.
- the invention also consists in successively crossing adjacent waveguides chosen to group two by two the waveguides of different polarizations.
- the crossings are made by metasurfaces integrated in the metal plates common to two adjacent waveguides to cross, as explained in connection with the figure 3b . So, in the example of the figure 11 a first crossing is made between the waveguides D and A 'by a metasurface integrated in the fifth metal plate 5. Then two successive crossings are respectively made between the waveguides D and C and between the waveguides B and C by corresponding metasurfaces integrated in the fourth and third metal plates 4, 3.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Aviation & Aerospace Engineering (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
La matrice de Butler compacte est constituée d'une structure multicouches planaire comportant N guides d'onde à plaques métalliques parallèles PPW, empilés les uns au-dessus des autres, deux guides d'onde PPW adjacents comportant une paroi commune constituée par l'une des plaques métalliques. Les coupleurs, les déphaseurs et les dispositifs de croisement de la matrice de Butler sont constitués par des métasurfaces intégrées dans les plaques métalliques. Le formateur de faisceaux bidimensionnel planaire peut comporter une matrice de Butler à guides d'onde PPW associée à des lentilles optiques intégrées dans chaque guide d'onde PPW. Alternativement, le formateur de faisceaux bidimensionnel planaire peut comporter un étage supérieur constitué d'une matrice de Butler à guides d'onde PPW, et un étage inférieur comportant des guides d'onde PPW équipés de réflecteurs intégrés, les deux étages étant connectés en série.The compact Butler matrix consists of a planar multilayer structure comprising N waveguides with parallel metal plates PPW stacked one above the other, two adjacent waveguides PPW having a common wall formed by one metal plates. The couplers, phase shifters and crossover devices of the Butler matrix are constituted by metasurfaces integrated into the metal plates. The planar two-dimensional beamformer may comprise a PPW waveguide Butler matrix associated with optical lenses integrated in each PPW waveguide. Alternatively, the planar two-dimensional beamformer may comprise an upper stage consisting of a Butler matrix with PPW waveguides, and a lower stage comprising PPW waveguides equipped with integrated reflectors, the two stages being connected in series. .
Description
La présente invention concerne une matrice de Butler compacte, un formateur de faisceaux bidimensionnel planaire et une antenne plane à faisceaux multiples comportant une telle matrice de Butler. Elle s'applique à toute antenne multifaisceaux, notamment au domaine des applications spatiales telles que les télécommunications par satellite, et plus particulièrement aux antennes de faible épaisseur.The present invention relates to a compact Butler matrix, a planar two-dimensional beamformer and a multi-beam planar antenna comprising such a Butler matrix. It applies to any multibeam antenna, especially in the field of space applications such as satellite telecommunications, and more particularly to thin antennas.
Les formateurs de faisceaux sont utilisés dans les antennes multifaisceaux pour élaborer des faisceaux de sortie à partir de signaux radiofréquence d'entrée. Un formateur de faisceaux classique comporte N entrées In1 à InN, P sorties Out1 à OutP, et une pluralité de circuits radiofréquences 11, 12, 13 aptes à diviser et recombiner les signaux radiofréquences d'entrée suivant une loi de phase et d'amplitude choisie pour former des faisceaux de sortie. Il existe différentes technologies de formateurs de faisceaux. Sur la
Il est également connu de former des faisceaux en utilisant une matrice de Butler constituée d'un circuit passif symétrique à N ports d'entrée et N ports de sorties, qui pilote des éléments rayonnants produisant N faisceaux différents d'amplitudes égales. Le circuit est composé de jonctions qui connectent les ports d'entrée aux ports de sortie par N lignes de transmission 18 différentes et parallèles entre elles. Il existe plusieurs configurations possibles de matrice de Butler. Sur le schéma de la
Selon une autre technologie, il existe des formateurs de faisceaux quasi-optiques planaires utilisant une propagation électromagnétique des ondes radiofréquence provenant de plusieurs sources d'alimentation placées en entrée, par exemple des cornets rayonnants, selon un mode de propagation en général TEM entre deux plaques métalliques parallèles. La focalisation et la collimation des faisceaux peuvent être réalisées par une lentille optique comme décrit par exemple dans les documents
Comme cette technologie utilise des guides d'onde à plaques parallèles, en alternative à l'utilisation de plusieurs éléments rayonnants discrets alignés côte à côte, il est possible d'utiliser une ouverture linéaire rayonnante continue en sortie de chaque guide d'onde à plaques parallèles. Ces ouvertures linéaires rayonnantes, qui ne sont pas spatialement quantifiées, ont des performances très supérieures par rapport aux réseaux linéaires de plusieurs éléments rayonnants, pour les faisceaux dépointés, en raison de l'absence de quantification, et en bande passante en raison de l'absence de modes de propagation résonants.Since this technology uses parallel plate waveguides, as an alternative to the use of multiple discrete radiators aligned side by side, it is possible to use a continuous linear aperture radiating out of each plate waveguide parallel. These linear radiating apertures, which are not spatially quantized, have much higher performances compared to the linear arrays of several radiating elements, for the depointed beams, because of the absence of quantization, and in bandwidth because of the absence of resonant propagation modes.
Un formateur de faisceaux quasi-optique est de réalisation beaucoup plus simple que les formateurs de faisceaux traditionnels à guides d'onde individuels car il ne comporte ni coupleur, ni dispositif de croisement. Cependant, tous les formateurs de faisceaux planaires connus ne sont capables de former des faisceaux que selon une seule dimension de l'espace, dans une direction parallèle au plan des plaques métalliques. Pour former des faisceaux selon deux dimensions de l'espace, dans deux directions, respectivement parallèle et orthogonale au plan des plaques métalliques, il est nécessaire de combiner orthogonalement entre eux, deux ensembles de formation de faisceaux, chaque ensemble de formation de faisceaux étant constitué d'un empilement de plusieurs couches de formateurs de faisceaux unidirectionnels. Pour combiner orthogonalement deux ensembles de formation de faisceaux, il est en outre nécessaire d'aménager des interfaces de connexion, en particulier des connecteurs d'entrée/sortie, sur chaque ensemble de formation de faisceaux puis de relier deux à deux les différentes entrées et sorties correspondantes des deux ensembles de formation de faisceaux par des câbles d'interconnexion dédiés comme représenté par exemple dans le document
A notre connaissance, jusqu'à ce jour, il n'existe pas de dispositif de formation de faisceaux planaire permettant de former des faisceaux selon deux dimensions de l'espace. Par ailleurs, il n'existe pas non plus de solutions simples d'interconnexion de deux formateurs de faisceaux unidirectionnels permettant de s'affranchir des interfaces de connexion et des câbles d'interconnexions.To our knowledge, to date, there is no planar beam forming device for forming beams in two dimensions of space. Moreover, there are also no simple solutions for interconnecting two unidirectional beamformers to overcome connection interfaces and interconnection cables.
Le but de l'invention est de remédier aux inconvénients des formateurs de faisceaux connus et de réaliser un formateur de faisceaux bidimensionnel planaire comportant des lignes de transmission continues et permettant de former des faisceaux selon deux dimensions de l'espace sans aucune interface de connexion ni aucun câble d'interconnexion.The object of the invention is to overcome the drawbacks of known beam formers and to realize a planar two-dimensional beamformer comprising continuous transmission lines and making it possible to form beams in two dimensions of space without any connection interface or no interconnecting cable.
Un autre but de l'invention est de réaliser une nouvelle matrice de Butler particulièrement compacte et ayant une nouvelle architecture à plaques parallèles compatible avec les formateurs de faisceaux quasi-optiques.Another object of the invention is to provide a new and particularly compact Butler matrix having a new parallel plate architecture compatible with quasi-optical beamformers.
Pour cela, l'invention concerne une matrice de Butler compacte comportant N guides d'onde, où N est un nombre entier supérieur à trois et choisi parmi les puissances de deux, des coupleurs destinés à coupler deux guides d'onde adjacents, des déphaseurs et au moins un dispositif de croisement apte à croiser deux guides d'onde adjacents, le dispositif de croisement comportant deux coupleurs connectés en série. La matrice de Butler est constituée d'une structure multicouches planaire comportant N+1 plaques métalliques parallèles entre elles, empilées les unes au-dessus des autres, et régulièrement espacées les unes des autres, chaque espace entre deux plaques métalliques consécutives formant un guide d'onde à plaques parallèles ayant deux parois opposées, respectivement supérieure et inférieure, constituées par les deux plaques métalliques consécutives, deux guides d'onde à plaques métalliques adjacents comportant une paroi commune constituée par l'une des plaques métalliques, et les coupleurs, les déphaseurs et le dispositif de croisement sont constitués par des métasurfaces intégrées dans les parois respectives des guides d'onde à coupler, à croiser et à déphaser.For this purpose, the invention relates to a compact Butler matrix comprising N waveguides, where N is an integer greater than three and selected from the powers of two, couplers for coupling two adjacent waveguides, phase shifters and at least one crossing device capable of crossing two adjacent waveguides, the crossing device comprising two couplers connected in series. The Butler matrix consists of a planar multilayer structure comprising N + 1 metal plates parallel to each other, stacked one above the other, and regularly spaced from each other, each space between two consecutive metal plates forming a guide parallel plate wave having two opposite walls, respectively upper and lower, constituted by the two consecutive metal plates, two waveguides with adjacent metal plates having a common wall formed by one of the metal plates, and the couplers, the phase shifters and the crossing device are constituted by metasurfaces integrated in the respective walls of the waveguides to be coupled, crossed and out of phase.
Avantageusement, les métasurfaces constituant chaque coupleur et le dispositif de croisement entre deux guides d'onde adjacents peuvent être constituées d'un support métallisé muni d'une pluralité de trous traversants régulièrement répartis dans une zone de couplage, respectivement une zone de croisement, de la paroi commune aux deux guides d'onde adjacents correspondants, la zone de croisement étant constituée de deux zones de couplage disposées en cascade l'une derrière l'autre.Advantageously, the metasurfaces constituting each coupler and the crossing device between two adjacent waveguides may consist of a metallized support provided with a plurality of through holes regularly distributed in a coupling zone, respectively a crossing zone, of the wall common to the two adjacent adjacent waveguides, the crossing zone consisting of two coupling zones arranged in cascade one behind the other.
Avantageusement, les métasurfaces constituant chaque déphaseur intégré dans un guide d'onde peuvent être constituées de corrugations aménagées dans une zone de déphasage, sur les deux parois opposées du guide d'onde correspondant.Advantageously, the metasurfaces constituting each phase shifter integrated in a waveguide may consist of corrugations arranged in a phase shift zone, on the two opposite walls of the corresponding waveguide.
Alternativement, selon un mode de réalisation particulier, chaque plaque métallique peut être constituée d'un revêtement métallique déposé sur un substrat diélectrique et chaque coupleur et dispositif de croisement entre deux guides d'ondes adjacents peut être constitué d'une pluralité de fentes gravées dans le revêtement métallique, les fentes étant régulièrement réparties dans toute la zone de couplage, respectivement dans toute la zone de croisement, la zone de croisement étant constituée de deux zones de couplage disposées en cascade l'une derrière l'autre.Alternatively, according to a particular embodiment, each metal plate may consist of a metal coating deposited on a dielectric substrate and each coupler and crossing device between two adjacent waveguides may consist of a plurality of slots etched in the metal coating, the slots being regularly distributed throughout the coupling zone, respectively throughout the crossing zone, the crossing zone consisting of two coupling zones arranged in cascade one behind the other.
Alternativement, chaque déphaseur peut être constitué d'un ensemble de patchs métalliques périodiquement photogravés sur le substrat diélectrique des deux parois d'un guide d'onde à déphaser.Alternatively, each phase-shifter may consist of a set of periodically photo-etched metal patches on the dielectric substrate of the two walls of a phase-shifted waveguide.
L'invention concerne aussi un formateur de faisceaux planaire apte à synthétiser des faisceaux selon deux dimensions de l'espace, comportant au moins une matrice de Butler à N+1 plaques parallèles.The invention also relates to a planar beamformer capable of synthesizing beams according to two dimensions of space, comprising at least one Butler matrix with N + 1 parallel plates.
Avantageusement, le formateur de faisceau peut comporter deux matrices de Butler différentes empilées l'une au-dessus de l'autre et respectivement dédiées à deux polarisations différentes orthogonales entre elles.Advantageously, the beamformer may comprise two different Butler matrices stacked one above the other and respectively dedicated to two different polarizations orthogonal to each other.
Selon un mode de réalisation, le formateur de faisceaux peut comporter en outre N lentilles optiques respectivement intégrées, en sortie, ou alternativement en entrée, de la matrice de Butler, dans les N guides d'onde délimités par les N+1 plaques métalliques.According to one embodiment, the beamformer may further comprise N respectively integrated optical lenses, at the output, or alternatively at the input, of the Butler matrix, in the N waveguides delimited by the N + 1 metal plates.
Avantageusement, chaque lentille optique peut être une lentille d'épaisseur constante et à gradient d'indice.Advantageously, each optical lens may be a lens of constant thickness and index gradient.
Selon un autre mode de réalisation, le formateur de faisceaux peut comporter deux étages empilés, respectivement inférieur et supérieur, chaque étage comportant un nombre identique de guides d'onde à plaques parallèles, la matrice de Butler étant située à l'étage supérieur, chaque guide d'onde de l'étage inférieur étant connecté en série à un guide d'onde de l'étage supérieur par un guide d'onde intermédiaire respectif comportant des plaques métalliques parallèles disposées orthogonalement au plan XOY des deux étages inférieur et supérieur, les plaques métalliques parallèles constituant les parois de chaque guide d'onde intermédiaire formant un réflecteur intégré dans le formateur de faisceaux.According to another embodiment, the beamformer may comprise two stacked stages, respectively lower and upper, each stage comprising an identical number of parallel plate waveguides, the Butler matrix being located on the upper stage, each waveguide of the lower stage being connected in series to a waveguide of the upper stage by a respective intermediate waveguide comprising parallel metal plates arranged orthogonally to the XOY plane of the two lower and upper stages, the parallel metal plates constituting the walls of each intermediate waveguide forming a reflector integrated in the beamformer.
L'invention concerne également une antenne plane comportant au moins une matrice de Butler à N+1 plaques parallèles, l'antenne comportant en outre M cornets rayonnants d'alimentation connectés en entrée de chaque guide d'onde à plaques métalliques parallèles, soit M.N cornets rayonnants d'alimentation pour les N guides d'onde à plaques métalliques, où M est supérieur à 2, et N cornets rayonnants de sortie respectivement connectés aux N guides d'onde à plaques métalliques.The invention also relates to a planar antenna comprising at least one Butler matrix with N + 1 parallel plates, the antenna further comprising M radiating feed horns connected at the input of each waveguide with parallel metal plates, ie MN radiating feed horns for the N metal plate waveguides, where M is greater than 2, and N output radiating horns respectively connected to the N metal plate waveguides.
Avantageusement, chaque cornet rayonnant de sortie peut être un cornet longitudinal couplé à une ouverture linéaire rayonnante s'étendant transversalement sur toute la largeur du guide d'onde à plaques parallèles correspondant.Advantageously, each output radiating horn can be a longitudinal horn coupled to a linear radiating aperture extending transversely over the entire width of the corresponding parallel plate waveguide.
Avantageusement, les ouvertures linéaires rayonnantes peuvent être orientées selon une direction perpendiculaire au plan des plaques parallèles du guide d'onde à plaques parallèles correspondant.Advantageously, the linear radiating openings may be oriented in a direction perpendicular to the plane of the parallel plates of the corresponding parallel plate waveguide.
D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :
-
figure 1 : un schéma synoptique d'un exemple de formateur de faisceaux traditionnel, selon l'art antérieur ; -
figure 2 : un exemple de schéma synoptique d'une matrice de Butler, selon l'art antérieur ; -
figures 3a et 3b : deux schémas, respectivement en perspective et en coupe longitudinale, d'un premier exemple de réalisation d'une matrice de Butler comportant un empilement de plusieurs guides d'onde à plaques parallèles, selon l'invention ; -
figures 4a et 4b : deux schémas, respectivement en coupe longitudinale et en vue de dessus, illustrant un exemple de zone de couplage insérée dans une plaque métallique commune entre deux guides d'onde à plaques métalliques, selon l'invention ; -
figure 5 : un schéma en coupe longitudinale, d'un deuxième exemple de réalisation d'une matrice de Butler comportant un empilement composite de plusieurs couches de substrats gravés et métallisés séparées par des espaceurs, selon l'invention ; -
figure 6 : un schéma en perspective, d'un premier exemple de formateur de faisceaux à deux dimensions, connecté à des ouvertures linéaires rayonnantes, et comportant une matrice de Butler, selon l'invention ; -
figure 7 : un schéma en perspective, d'un deuxième exemple de formateur de faisceaux à deux dimensions, connecté à des ouvertures linéaires rayonnantes, et comportant une matrice de Butler, selon l'invention ; -
figure 8a : un schéma en perspective d'un exemple de lentille diélectrique intégrée dans un guide d'onde à plaques parallèles ; selon l'invention ; -
figure 8b : un schéma en perspective d'un exemple de lentille d'épaisseur constante et à gradient d'indice intégrée dans un guide d'onde à plaques parallèles ; selon l'invention ; -
figure 9 : un schéma, en coupe longitudinale, d'un troisième exemple de formateur de faisceaux à deux dimensions comportant une matrice de Butler, selon l'invention ; -
figure 10a et 10b : un schéma, en vue de dessus, de deux étages, respectivement inférieur et supérieur, d'une antenne plane selon le mode de réalisation de lafigure 9 ; -
figure 11 : un schéma en coupe longitudinale, d'un exemple de matrice de Butler bi-polarisation, selon l'invention.
-
figure 1 : a block diagram of an example of traditional beamformer, according to the prior art; -
figure 2 an example of a block diagram of a Butler matrix, according to the prior art; -
Figures 3a and 3b two diagrams, respectively in perspective and in longitudinal section, of a first exemplary embodiment of a Butler matrix comprising a stack of several parallel plate waveguides, according to the invention; -
Figures 4a and 4b two diagrams, respectively in longitudinal section and in plan view, illustrating an example of a coupling zone inserted in a metal plate common between two waveguides with metal plates, according to the invention; -
figure 5 : a longitudinal sectional diagram of a second embodiment of a Butler matrix comprising a composite stack of several layers of etched and metallized substrates separated by spacers, according to the invention; -
figure 6 : a perspective diagram of a first example of a two-dimensional beamformer connected to linear apertures radiating, and comprising a Butler matrix, according to the invention; -
figure 7 a perspective diagram of a second example of a two-dimensional beamformer connected to linear apertures radiating and having a Butler matrix according to the invention; -
figure 8a : a perspective diagram of an example of a dielectric lens integrated into a parallel plate waveguide; according to the invention; -
figure 8b : a perspective diagram of an example of a constant thickness, index gradient lens integrated into a parallel plate waveguide; according to the invention; -
figure 9 : a diagram, in longitudinal section, of a third example of a two-dimensional beamformer comprising a Butler matrix, according to the invention; -
figure 10a and 10b : a diagram, in plan view, of two floors, respectively lower and upper, of a planar antenna according to the embodiment of thefigure 9 ; -
figure 11 : a longitudinal sectional diagram of an example of bi-polarization Butler matrix, according to the invention.
Conformément à l'invention, comme représenté sur les schémas des
Pour coupler ou croiser deux guides d'onde adjacents entre eux, la plaque métallique formant la paroi commune entre les deux guides d'onde adjacents, comporte des zones de couplage et des zones de croisement constituées par des métasurfaces intégrées localement dans ladite paroi commune. Une métasurface est une surface texturée constituée d'une distribution planaire dense de petits éléments identiques ou non, fixés, ou imprimés, ou gravés, sur un support très fin. Une métasurface est caractérisée par une impédance de surface qui modifie localement la propagation longitudinale d'une onde guidée dans un guide d'onde. Une métasurface possède des propriétés très intéressantes d'un point de vue électromagnétique car elle permet de contrôler la propagation des ondes électromagnétiques le long de sa surface. Suivant les propriétés recherchées, les éléments fixés, ou imprimés, ou gravés peuvent par exemple être des plots métalliques ou des patchs métalliques ou des trous, ou des fentes, régulièrement répartis ou de densité variable, la distance entre deux éléments consécutifs étant inférieure à la longueur d'onde centrale de fonctionnement. Comme représenté sur les
Pour réaliser un déphasage dans un guide d'onde à plaques parallèles, PPW1, PPW4, les deux plaques métalliques formant les parois supérieure et inférieure du guide d'onde correspondant comportent des zones de déphasage 23a, 23b pouvant être constituées de corrugations aménagées localement sur la surface interne des deux plaques métalliques correspondantes et dont la largeur est égale à la largeur transversale D des plaques métalliques correspondantes. Dans l'exemple des
Alternativement, comme représenté sur l'exemple de la
La matrice de Butler selon l'invention constitue un formateur de faisceaux à une dimension lorsqu'elle est utilisée seule. Selon l'invention, le formateur de faisceaux planaire à deux dimensions comporte une matrice de Butler 41 comportant N guides d'onde PPW à plaques parallèles, empilés les uns au-dessus des autres, où N est un nombre entier supérieur à trois et choisi parmi les puissances de deux, par exemple, 4, 8, 16, 32..., et comporte en outre un dispositif optique de type lentille optique ou réflecteur. Sur les
Le formateur de faisceau planaire ainsi réalisé permet avec la matrice de Butler 41, de synthétiser des faisceaux dans le plan XOZ perpendiculaire aux plaques parallèles et permet avec la lentille optique 42 de synthétiser des faisceaux dans le plan XOY parallèle aux plaques parallèles sans aucune discontinuité de propagation dans les guides d'ondes à plaques parallèles et sans utiliser aucune interconnexion, ni aucun câble de liaison.The planar beam former thus produced makes it possible, with the
Pour obtenir une antenne plane, M cornets d'alimentation 43 alignés les uns à côté des autres sont connectés en entrée de chaque guide d'onde PPW, où M est supérieur à deux, et en sortie du formateur de faisceaux, chaque guide d'onde PPW peut être relié à plusieurs éléments rayonnants de sortie ou à un seul cornet rayonnant longitudinal 44 couplé à une ouverture linéaire rayonnante. Sur les
Les dimensions du formateur de faisceau incluant des lentilles optiques sont fortement contraintes par la distance focale entre chaque lentille optique 42 et les cornets d'alimentation d'entrée 43. Plus la distance focale est grande, meilleure est la qualité des faisceaux dépointés. Lorsque les lentilles optiques sont aménagées en sortie de la matrice de Butler comme représenté sur la
La
Pour réaliser une antenne plane, il suffit alors d'équiper, chaque guide d'onde PPWP1, PPWP2, PPWP3, PPWP4 de l'étage inférieur du formateur de faisceaux, de plusieurs cornets rayonnants 43 d'alimentation et en sortie de la matrice de Butler 41, de coupler chaque guide d'onde PPW8, PPW7, PPW6, PPW5 de l'étage supérieur à un cornet longitudinal 44 de sortie couplé à une ouverture linéaire rayonnante s'étendant transversalement sur toute la largeur D du guide d'onde à plaques métalliques correspondant, comme représenté sur les
Pour un fonctionnement en double polarisation, par exemple circulaire, l'invention consiste à utiliser deux matrices de Butler identiques, respectivement dédiées à chaque polarisation, et empilées l'une au-dessus de l'autre comme représenté sur la
Bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with particular embodiments, it is obvious that it is not limited thereto and that it includes all the technical equivalents of the means described and their combinations if they are within the scope of the invention.
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1500565A FR3034262B1 (en) | 2015-03-23 | 2015-03-23 | COMPACT BUTLER MATRIX, PLANAR BIDIMENSIONAL BEAM FORMER AND FLAT ANTENNA COMPRISING SUCH A BUTLER MATRIX |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3073569A1 true EP3073569A1 (en) | 2016-09-28 |
EP3073569B1 EP3073569B1 (en) | 2020-05-20 |
Family
ID=54065910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16161459.9A Active EP3073569B1 (en) | 2015-03-23 | 2016-03-21 | Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix |
Country Status (3)
Country | Link |
---|---|
US (1) | US9887458B2 (en) |
EP (1) | EP3073569B1 (en) |
FR (1) | FR3034262B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3082362A1 (en) * | 2018-06-12 | 2019-12-13 | Thales | BEAM FORMING POINTING SYSTEM |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10374320B2 (en) * | 2016-07-11 | 2019-08-06 | Keyssa Systems, Inc. | Electromagnetic signal focusing structures |
SE541861C2 (en) | 2017-10-27 | 2019-12-27 | Metasum Ab | Multi-layer waveguide, arrangement, and method for production thereof |
US10840573B2 (en) | 2017-12-05 | 2020-11-17 | The United States Of America, As Represented By The Secretary Of The Air Force | Linear-to-circular polarizers using cascaded sheet impedances and cascaded waveplates |
US10547117B1 (en) | 2017-12-05 | 2020-01-28 | Unites States Of America As Represented By The Secretary Of The Air Force | Millimeter wave, wideband, wide scan phased array architecture for radiating circular polarization at high power levels |
FR3076088B1 (en) * | 2017-12-26 | 2020-01-10 | Thales | QUASI-OPTICAL BEAM FORMER, ELEMENTARY ANTENNA, ANTENNA SYSTEM, PLATFORM AND RELATED TELECOMMUNICATIONS METHOD |
CN109244679B (en) * | 2018-09-11 | 2023-10-20 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Compact multi-beam antenna array system |
KR102138445B1 (en) * | 2018-12-11 | 2020-07-27 | 광운대학교 산학협력단 | Small-sized butler matrix device and Beam-forming antenna device including the same |
CN110011040A (en) * | 2018-12-29 | 2019-07-12 | 瑞声科技(新加坡)有限公司 | Phase scanning array antenna and mobile terminal |
SE544044C2 (en) * | 2020-06-09 | 2021-11-16 | Metasum Ab | Multi-layer waveguide with metasurface, arrangement, and method for production thereof |
WO2022040552A2 (en) | 2020-08-21 | 2022-02-24 | The Charles Stark Draper Laboratory, Inc. | Two-dimensional planar and crossover-free beamforming network architecture |
JP7534641B2 (en) | 2021-04-23 | 2024-08-15 | 日本電信電話株式会社 | Array antenna and antenna system |
FR3132177B1 (en) * | 2022-01-27 | 2023-12-15 | Thales Sa | Quasi-optical beamformer with stacked parallel plate waveguide |
CN115001548B (en) * | 2022-04-14 | 2023-07-04 | 南京邮电大学 | NOMA wireless transmission method based on reflection and transmission super-surface |
CN117060090B (en) * | 2023-10-11 | 2024-02-02 | 华南理工大学 | A broadband circularly polarized planar integrated feed transmission array antenna |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3170158A (en) | 1963-05-08 | 1965-02-16 | Rotman Walter | Multiple beam radar antenna system |
US5812089A (en) * | 1996-12-23 | 1998-09-22 | Motorola, Inc. | Apparatus and method for beamforming in a triangular grid pattern |
US5936588A (en) | 1998-06-05 | 1999-08-10 | Rao; Sudhakar K. | Reconfigurable multiple beam satellite phased array antenna |
JP2004266521A (en) * | 2003-02-28 | 2004-09-24 | Ntt Docomo Inc | Antenna feeder circuit |
FR2944153A1 (en) | 2009-04-02 | 2010-10-08 | Univ Rennes | PILLBOX TYPE PARALLEL PLATE MULTILAYER ANTENNA AND CORRESPONDING ANTENNA SYSTEM |
US20110148727A1 (en) * | 2009-12-23 | 2011-06-23 | National Chiao Tung University | Leaky-wave antenna capable of multi-plane scanning |
US20130076565A1 (en) * | 2011-09-22 | 2013-03-28 | Electronics And Telecommunications Research Institute | Butler matrix |
US20130181880A1 (en) * | 2012-01-17 | 2013-07-18 | Lin-Ping Shen | Low profile wideband multibeam integrated dual polarization antenna array with compensated mutual coupling |
FR2986377A1 (en) | 2012-01-27 | 2013-08-02 | Thales Sa | TWO-DIMENSION MULTI-BEAM TRAINER, ANTENNA COMPRISING SUCH A MULTI-BEAM TRAINER, AND A SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH ANTENNA |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6377558B1 (en) * | 1998-04-06 | 2002-04-23 | Ericsson Inc. | Multi-signal transmit array with low intermodulation |
US6995730B2 (en) * | 2001-08-16 | 2006-02-07 | Raytheon Company | Antenna configurations for reduced radar complexity |
US6980169B2 (en) * | 2004-01-16 | 2005-12-27 | Vivato, Inc. | Electromagnetic lens |
KR101490795B1 (en) * | 2008-04-25 | 2015-02-09 | 삼성전자주식회사 | Beamformer and beam forming method |
FR3005211B1 (en) * | 2013-04-26 | 2015-05-29 | Thales Sa | DISTRIBUTED POWER DEVICE FOR ANTENNA BEAM FORMATION |
FR3005210B1 (en) * | 2013-04-26 | 2016-09-30 | Thales Sa | DISTRIBUTED POWER CIRCUIT FOR ANTENNA BEAM FORMING NETWORK |
-
2015
- 2015-03-23 FR FR1500565A patent/FR3034262B1/en not_active Expired - Fee Related
-
2016
- 2016-03-21 US US15/076,244 patent/US9887458B2/en not_active Expired - Fee Related
- 2016-03-21 EP EP16161459.9A patent/EP3073569B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3170158A (en) | 1963-05-08 | 1965-02-16 | Rotman Walter | Multiple beam radar antenna system |
US5812089A (en) * | 1996-12-23 | 1998-09-22 | Motorola, Inc. | Apparatus and method for beamforming in a triangular grid pattern |
US5936588A (en) | 1998-06-05 | 1999-08-10 | Rao; Sudhakar K. | Reconfigurable multiple beam satellite phased array antenna |
JP2004266521A (en) * | 2003-02-28 | 2004-09-24 | Ntt Docomo Inc | Antenna feeder circuit |
FR2944153A1 (en) | 2009-04-02 | 2010-10-08 | Univ Rennes | PILLBOX TYPE PARALLEL PLATE MULTILAYER ANTENNA AND CORRESPONDING ANTENNA SYSTEM |
US20110148727A1 (en) * | 2009-12-23 | 2011-06-23 | National Chiao Tung University | Leaky-wave antenna capable of multi-plane scanning |
US20130076565A1 (en) * | 2011-09-22 | 2013-03-28 | Electronics And Telecommunications Research Institute | Butler matrix |
US20130181880A1 (en) * | 2012-01-17 | 2013-07-18 | Lin-Ping Shen | Low profile wideband multibeam integrated dual polarization antenna array with compensated mutual coupling |
FR2986377A1 (en) | 2012-01-27 | 2013-08-02 | Thales Sa | TWO-DIMENSION MULTI-BEAM TRAINER, ANTENNA COMPRISING SUCH A MULTI-BEAM TRAINER, AND A SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH ANTENNA |
Non-Patent Citations (5)
Title |
---|
ALESSANDRI F ET AL: "Rigorous and efficient fabrication-oriented CAD and optimization of complex waveguide networks", MICROWAVE SYMPOSIUM DIGEST, 1997., IEEE MTT-S INTERNATIONAL DENVER, CO, USA 8-13 JUNE 1997, NEW YORK, NY, USA,IEEE, US, 8 June 1997 (1997-06-08), pages 1013, XP032379882, ISBN: 978-0-7803-3814-2, DOI: 10.1109/MWSYM.1997.602973 * |
KANEDA T ET AL: "2D BEAM SCANNING PLANAR ANTENNA ARRAY USING COMPOSITE RIGHT/LEFT-HANDED LEAKY WAVE ANTENNAS", IEICE TRANSACTIONS ON ELECTRONICS, INSTITUTE OF ELECTRONICS, TOKYO, JP, vol. E89C, no. 12, 1 December 2006 (2006-12-01), pages 1904 - 1911, XP001541484, ISSN: 0916-8524, DOI: 10.1093/IETELE/E89-C.12.1904 * |
REMEZ J ET AL: "Compact Designs of Waveguide Butler Matrices", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, IEEE, PISCATAWAY, NJ, US, vol. 5, no. 1, 1 December 2006 (2006-12-01), pages 27 - 31, XP011148791, ISSN: 1536-1225, DOI: 10.1109/LAWP.2005.863615 * |
ROTMAN W: "Wide-angle scanning with microwave double-layer pillboxes", IRE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE, USA, vol. 10, no. 1, 1 January 1958 (1958-01-01), pages 96 - 105, XP011220509, ISSN: 0096-1973 * |
YU JIAN CHENG ET AL: "MINIATURIZED MULTILAYER FOLDED SUBSTRATE INTEGRATED WAVEGUIDE BUTLER MATRIX", PROGRESS IN ELECTROMAGNETICS RESEARCH C, vol. 21, 12 April 2011 (2011-04-12), pages 45 - 58, XP055238662, DOI: 10.2528/PIERC11020502 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3082362A1 (en) * | 2018-06-12 | 2019-12-13 | Thales | BEAM FORMING POINTING SYSTEM |
WO2019238643A1 (en) * | 2018-06-12 | 2019-12-19 | Thales | Beam-forming mispointing system |
Also Published As
Publication number | Publication date |
---|---|
FR3034262B1 (en) | 2018-06-01 |
EP3073569B1 (en) | 2020-05-20 |
FR3034262A1 (en) | 2016-09-30 |
US20160285165A1 (en) | 2016-09-29 |
US9887458B2 (en) | 2018-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3073569B1 (en) | Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix | |
EP2807702B1 (en) | Two dimensional multibeam former, antenna using such and satellite telecommunication system. | |
EP2664030B1 (en) | Printed slot-type directional antenna, and system comprising an array of a plurality of printed slot-type directional antennas | |
EP2795724B1 (en) | Basic antenna, and corresponding one- or two-dimensional array antenna | |
EP2869400B1 (en) | Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor | |
FR3079678A1 (en) | RADIATION ELEMENT WITH CIRCULAR POLARIZATION IMPLEMENTING A RESONANCE IN A CAVITY OF FABRY PEROT | |
EP3176875B1 (en) | Active antenna architecture with reconfigurable hybrid beam formation | |
WO2020194270A1 (en) | Radiofrequency component having a plurality of waveguide devices provided with ridges | |
EP4012834A1 (en) | Antenna source for an array antenna with direct radiation, radiating panel and antenna comprising a plurality of antenna sources | |
FR3035546A1 (en) | STRUCTURAL ANTENNA MODULE INTEGRATING ELEMENTARY RADIANT SOURCES WITH INDIVIDUAL ORIENTATION, RADIANT PANEL, RADIANT ARRAY AND MULTI-STAGE ANTENNA COMPRISING AT LEAST ONE SUCH MODULE | |
EP2688142A1 (en) | Multi-beam transmission and reception antenna with a plurality of sources per beam, antenna system and satellite telecommunication system comprising such an antenna | |
EP3840124B1 (en) | Antenna with leaky wave in afsiw technology | |
EP3113286B1 (en) | Quasi-optical lens beam former and planar antenna comprising such a beam former | |
WO2018073176A1 (en) | Multilayer waveguide comprising at least one device for transition between the layers of this multilayer waveguide | |
EP0048190B1 (en) | Non-dispersive antenna array and its application to electronic scanning | |
EP2637254B1 (en) | Planar antenna for terminal operating with dual circular polarisation, airborne terminal and satellite telecommunication system comprising at least one such antenna | |
EP3900113B1 (en) | Elementary microstrip antenna and array antenna | |
EP0407258B1 (en) | Ultrahigh frequency energy distributor radiating directly | |
WO2023218008A1 (en) | Low-profile antenna with two-dimensional electronic scanning | |
FR3132177A1 (en) | Superimposed parallel plate waveguide quasi-optical beamformer | |
FR3123162A1 (en) | ANTENNA WITH GAP DISTRIBUTION NETWORK | |
FR2690789A1 (en) | Antenna array for radar - has multiple element conducting lines mounted in triangular horn section with vertical stacking and fed centrally |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170224 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602016036637 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H01Q0001280000 Ipc: H01Q0019130000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01P 1/18 20060101ALI20191105BHEP Ipc: H01Q 19/13 20060101AFI20191105BHEP Ipc: H01Q 3/40 20060101ALI20191105BHEP Ipc: H01Q 15/08 20060101ALI20191105BHEP Ipc: H01P 3/12 20060101ALI20191105BHEP Ipc: H04B 7/185 20060101ALI20191105BHEP Ipc: H01Q 3/26 20060101ALI20191105BHEP Ipc: H01Q 21/00 20060101ALI20191105BHEP Ipc: H01Q 1/28 20060101ALI20191105BHEP Ipc: H01P 5/02 20060101ALI20191105BHEP Ipc: H01P 5/18 20060101ALI20191105BHEP Ipc: H01Q 25/00 20060101ALI20191105BHEP Ipc: H01Q 21/06 20060101ALI20191105BHEP Ipc: H01Q 15/10 20060101ALI20191105BHEP Ipc: H01Q 15/00 20060101ALI20191105BHEP Ipc: H01Q 15/16 20060101ALI20191105BHEP Ipc: H01P 3/20 20060101ALI20191105BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200102 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016036637 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1273229 Country of ref document: AT Kind code of ref document: T Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200820 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200920 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200821 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200820 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1273229 Country of ref document: AT Kind code of ref document: T Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016036637 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210223 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210225 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20210310 Year of fee payment: 6 Ref country code: DE Payment date: 20210310 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210321 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016036637 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220321 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |