EP3064617A1 - Device and method for nickel plating large-area components - Google Patents
Device and method for nickel plating large-area components Download PDFInfo
- Publication number
- EP3064617A1 EP3064617A1 EP15157457.1A EP15157457A EP3064617A1 EP 3064617 A1 EP3064617 A1 EP 3064617A1 EP 15157457 A EP15157457 A EP 15157457A EP 3064617 A1 EP3064617 A1 EP 3064617A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- anode
- anodes
- shielding
- shielding elements
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/008—Current shielding devices
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
- C25D17/12—Shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/02—Electroplating of selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/16—Electroplating with layers of varying thickness
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/623—Porosity of the layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
Definitions
- the invention relates to a device for the electrolytic nickel plating of large-area components and to a method for the electrolytic nickel plating of large-area components.
- a problem with the nickel plating of large-area components results from the practical handling. To be nickel-plated components in conventional nickel plating process about 25 different baths, resulting in an immense space requirement. The bathrooms must be comparatively large. Due to the fact that the nickel plating is absolutely free of pores and moreover a drying of the surface to be nickel-plated during the process must be avoided at all costs (water-free), a variety of device and process-related difficulties arise. In particular, the nickel plating of materials problematic in this respect or the inner coating of large-volume containers are associated with particularly great difficulties. Thus, due to the large depth of such containers associated with correspondingly large volumes and the usually different diameters at different depths, a uniform coating is associated with comparatively great problems. Thus, in particular a movement or emptying of such containers, which can easily have a weight of over 100 t, almost impossible.
- the containers have a cylindrical and / or square receiving area and a sealing area with different diameters, resulting in special requirements for the formation of a nickel coating.
- a device for electrolytic nickel plating of a large-area component comprising an electrolysis tank or attachment or conversion elements to form an electrolysis tank and spaced apart anodes and / or anode groups, wherein planar shielding elements between individual anodes and / or anode groups are arranged the shielding elements are arranged such that they form at least partially electrically shielded volume regions for segmental coating of the large-area component.
- the interference fields occurring at the edges of the anodes lead to an undesirable heterogeneity of the electric field as a whole.
- the deposition of homogeneous layers of the same thickness is therefore possible only to a very limited extent in these systems.
- a plurality of spatially limited, relatively small electric fields are constructed, which are easier to handle and less prone to interference.
- the formation of interference fields at the edges of the anodes is advantageously prevented by the inventive interposition of the shielding elements according to the invention.
- the invention thus enables the deposition of a particularly homogeneous nickel layer, which has substantially the same layer thickness at each surface portion of the component to be coated.
- Substantially the same layer thickness in the sense of the invention means a layer thickness which differs by less than ⁇ 2 ⁇ m, preferably by less than ⁇ 1 ⁇ m and particularly preferably by less than ⁇ 0.5 ⁇ m from the average layer thickness of the nickel coating.
- the shielding elements are flat.
- the shielding elements are advantageously comparatively light and yet form a comparatively large electrically shielded volume region.
- the shielding elements can be designed in any desired planar form.
- the shielding elements are in the form of plates, sheets, membranes, disks and the like. The preferred shape depends essentially on the strength of the electric field to be shielded. If an electric field with comparatively high field strength is to be shielded, shielding elements with a comparatively large thickness, ie plate-shaped or disk-shaped shielding elements, are preferred.
- shielding elements with a comparatively small thickness, that is to say sheet-like or membrane-shaped shielding elements, are preferred.
- the shielding elements are each preferably formed of circular plates or discs. Particularly preferred here is the design as a perforated disc.
- a substantially annular volume region can be formed between two shielding elements, in which a preferably also ring-shaped anode is arranged. It has been found here that any fields present in the interior of the annular anode have no influence on the coating result.
- the training of the Shielding element as a perforated disk thus to material savings, without negatively affecting the shielding effect in the result.
- the shielding elements are arranged interchangeably within the device. It is thereby possible to replace elements requiring repair or otherwise unusable in a simple manner. As a result, in particular the maintenance of the device is lowered in an advantageous manner overall. It also allows the adaptation of the device according to the invention to the respective requirements, in particular the field strengths to be set. Depending on requirements, shielding elements of different types can be interchanged here. As an example, the exchange of plate-shaped elements against membrane-shaped elements may be mentioned here. In this way, the device according to the invention can be adapted to a large number of possible nickel plating methods and thus has a comparatively broad range of applications.
- shielding elements of different types for the shielding of different volume areas in parallel. This is particularly advantageous in cases in which anodes or anode groups of different volume ranges are individually controlled and operated with different process parameters. This may be advantageous, in particular, for the case in which some surface segments of the large-area component are to be coated deliberately and simultaneously with different layer thicknesses. It may be provided to provide different field strengths in the individual volume areas. In order to shield the different field strengths, it is preferably provided that the above-mentioned suitable shielding elements are combined with each other in terms of shape and material as a function of the respective field strength.
- the shielding elements are formed of an electrically insulating material.
- polymeric materials which are stable in the electrolyte used.
- Particularly preferred are polypropylene (PP), polytetrafluoroethylene (PTFE), polyimides (PI) and polysulfone (PSU).
- PP polypropylene
- PTFE polytetrafluoroethylene
- PI polyimides
- PSU polysulfone
- these materials are electrical insulators and on the other hand have excellent resistance to electrolytes typically used in nickel plating.
- it can preferably be provided to use shielding elements made of different materials.
- an electrolysis tank or attachment or conversion elements to form an electrolysis tank is provided on the device side.
- the second variant is used here in particular the inner coating of large-volume containers. Due to the invention or conversion elements of the container to be coated to a Remodeled electrolysis tank. By virtue of this measure, large immersion vessels, as provided according to the first variant, can be dispensed with, since the electrolysis vessel for accommodating the electrolyte is essentially formed by the large-volume vessel to be coated itself.
- the attachment and conversion elements represent collar, overflow areas, drainage holes or the like and are arranged as needed on the container to be coated.
- the anodes and / or the anode groups is formed individually controllable.
- individual means in particular that different anode or anode groups can be operated simultaneously but independently of one another.
- the surface segments of the component to be coated on the process side can thereby be coated either with the same deposition characteristics, in particular current density and field strength, or with different deposition characteristics. If the surface segments are coated with the same deposition characteristics, the result is a homogeneous nickel coating according to the invention with essentially the same layer thicknesses. On the other hand, if the surface segments are coated with different deposition characteristics, then individual surface segments may preferably be coated with different layer thicknesses or different speeds.
- Such a process management can be advantageous where different segments of the large-area component are exposed to different levels of stress and must be coated with a correspondingly greater layer thickness.
- This possibility, opened up by the invention, of coating different surface segments with different layer thicknesses in one process step permits an extensive simplification of the nickel plating process.
- the component In the prior art, the component must go through various baths for this purpose, which on the one hand represents a comparatively large logistical problem and on the other hand leads to inefficient use of resources.
- the aforementioned problems can be completely avoided by the invention.
- the individual controllability of the anodes and / or the anode groups is realized by the assignment of a separate rectifier. The rectifier and the anodes and / or the anode groups are connected to each other for this purpose control technology.
- the anodes and / or the anode groups are formed such that their spatial position and / or their orientation are variable.
- the anodes and / or anode groups are movably received by the device for this purpose.
- the anodes and / or anode groups are preferably designed to be pivotable.
- Particularly preferred are the anodes and / or Anode groups both movably received by the device and designed to be pivotable.
- the anodes and / or the anode groups can be spatially adapted to the geometry of the surface segment to be coated or their positioning and alignment can be matched to the material to be coated.
- anodes and / or anode groups can produce high quality nickel layers with the advantages of the invention despite complex surface textures.
- the anodes and / or anode groups are so movably received by the device that they are movable only within the electrically shielded volume space. This avoids that the anodes and / or anode groups are moved out of the electrically shielded area.
- the shielding according to the invention and the associated formation of a homogeneous nickel coating is advantageously ensured even when the anodes are moved in an advantageous manner.
- the anodes and / or the anode groups are received only linearly movable by the device.
- a shielded volume space of at least two shielding elements is limited. Inside the volume space, the anode is arranged.
- the side of the volume space, which faces the surface segment to be coated in the intended use case, is preferably formed without a screening element. Preferably, this side is designed to be completely open, in order to ensure the necessary for the coating ion flow in the direction of the surface segment to be coated.
- the anode is received by the device in the direction of the screening element-free, preferably the completely open side and in the opposite direction linearly movable. In this way it is ensured that the necessary for the formation of a homogeneous nickel layer electric field is always aligned in the direction of the surface segment to be coated, whereby the formation of interference fields is effectively prevented.
- the anodes can be shaped as desired.
- the decision is which anode is used, but according to the preferred process parameters, the surface finish of the component to be coated and the desired properties of the resulting nickel coating.
- the use of rod-shaped anodes with a round or oval cross-section is particularly preferred.
- the design of the anodes in plate form is particularly advantageous.
- the arrangement of anodes of different geometry in the individual volume regions can preferably be provided with particular advantage.
- Anode groups are preferably formed from at least two, preferably a plurality, anodes of the same type.
- a method for the electrolytic nickel plating of a large-area component is proposed to solve the problem underlying the invention, wherein the surface of the component is coated by means of suitable anodes and a nickel-containing electrolyte with nickel, characterized in that the surface is coated in segments, each surface segment is spatially associated with an anode or an anode group, wherein the anode or the anode group of the respective surface segment is electrically shielded by anodes or anode groups of the remaining surface segments.
- the method according to the invention advantageously makes it possible to coat the surface of large-area components particularly homogeneously by segment-wise nickel-plating.
- layers can be produced here in which differences in the layer thickness can be almost completely avoided.
- the effect is due among other things to an almost interference-free control of the deposition processes in the individual shielded areas.
- an undesirable formation of interference fields which lead to a detrimental heterogeneity of the electric field as a whole can be advantageously avoided.
- a plurality of comparatively small, spatially limited electric fields are built up during the process, which are easier to handle and less susceptible to interference than the comparatively large electric fields provided for this purpose by the prior art.
- the method according to the invention thus makes it possible to deposit a particularly homogeneous nickel layer which has substantially the same layer thickness at each surface section of the component to be coated.
- the surface segments are pretreated prior to electrolysis.
- Such pretreatment may in particular comprise the steps of heating, pickling, rinsing and / or decaping.
- these current densities can be set in segments, which is advantageous in terms of the transport of the current required for this purpose.
- the anodes and / or the anode groups are individually controlled for segmental coating of the surface of the component.
- the individual surface segments of the component to be coated can preferably be coated independently of one another in this case either with the same deposition characteristics, in particular current density and field strength, or with different deposition characteristics. If the surface segments are coated with the same deposition characteristics, the result is a homogeneous nickel coating according to the invention with essentially the same layer thicknesses. On the other hand, if the surface segments are coated with different deposition characteristics, individual surface segments may preferably be coated with different layer thicknesses and / or different speeds.
- Such a process management can be advantageous where different segments of the large-area component are exposed to different levels of stress and must be coated with a correspondingly greater layer thickness.
- This possibility, opened up by the invention, of coating different surface segments with different layer thicknesses in one process step permits an extensive simplification of the nickel plating process.
- the component In the prior art, the component must go through various baths for this purpose, which on the one hand represents a comparatively large logistical problem and on the other hand leads to inefficient use of resources.
- the aforementioned problems can be completely avoided by the invention.
- the component is coated with nickel.
- nickel is deposited here from an aqueous nickel sulfamate solution.
- the nickel sulfamate solution contains at least boric acid in addition to nickel sulfamate and water.
- the nickel sulfamate concentration is preferably adjusted to a value between 60 and 100 g / l, preferably 80 g / l.
- the boric acid concentration is preferably adjusted to a value between 20 and 50 g / l, preferably 30 g / l.
- the pH of the electrolyte is preferably adjusted to a value between 3 and 4, preferably 3.2.
- the electrolyte temperature is preferably set to a value between 35 and 45 C, preferably 40 ° C set.
- the current density is preferably set to a value between 1 and 20 mA / cm 2 , preferably 15 and 18 mA / cm 2 .
- it is intended to nickel-plating various surface segments by means of different current densities.
- Fig.1 shows an inventive arrangement of the anodes 1, 2, 3 and the planar shielding elements 4, 5, 6, 7 in a device according to the invention for the electrolytic nickel plating of a large-area component 8 in a sectional view.
- the shielding elements 4, 5, 6, 7 are presently arranged such that they form the electrically mutually shielded volume regions 9, 10, 11 between them.
- the anode 1 is arranged in the interior of the volume region 11 in the interior of the volume region 9, the anode 2 in the interior of the volume region 10 and the anodes 3, which together form the anode group 12.
- the volume regions 9, 10, 11 are formed on their respective component side 13, 14, 15 shielding element. In the present case, they are designed to be completely open, so that unimpeded ion transport in the direction of the component 8 is ensured.
- anode 1 is present rod-shaped and formed with a circular diameter.
- the anode 2 arranged in the anode region 10 is in the present case plate-shaped.
- the anode group 12 arranged in the volume region 11 is formed from a plurality of rod-shaped anodes 3 with a circular cross-section.
- the anodes 1, 2 and the anode group 12 are formed individually controllable in the present case.
- the arrangement of individually controllable anodes of different types in each of electrically electrically shielded volume regions 9, 10, 11 allows the coating of the respective surface segments 16, 17, 18 with different process parameters. In the present case, this can be used to nickel-coat the surface segments 16, 17, 18 in parallel operation with different layer thicknesses, different speeds and the like.
- anodes 1, 2 and the anode group 12 are adapted by their respective shape design to the different geometry not shown here and the partially different material of the individual surface segments 16, 17, 18 in order to optimize the deposition of a homogeneous nickel layer within the respective segment ,
- the anodes 1, 2 and the anode group 12 are presently received by the device linearly movable. They are in each case in the direction of the component-side side 13, 14, 15 of the respective volume space 9, 10, 11 movable. In this way, a further adaptation to the surface condition of the respective surface segment 16, 17, 18 is possible.
- the anodes 1, 2 and the anode group 12 are also designed to be pivotable. Preferably, they are pivotable at an angle of up to 20 ° in relation to the respective mid-perpendicular.
- the electrolysis tank (not shown) is filled here with an electrolyte for nickel plating of the component 8 to be coated.
- the electrolyte completely fills the volume regions 9, 10, 11 and ensures permanent wetting of the surface segments 16, 17, 18 of the component 8 to be coated.
- the electrolyte is formed from an aqueous nickel sulfamate solution.
- the solution contains nickel sulfamate in a concentration of 80 g / l, boric acid in a concentration of 30 g / l.
- the pH of the electrolyte is adjusted to a value of 3.2.
- the electrolyte temperature is set to a value of 40 ° C.
- a current density of 10 mA / cm 2 is set in the present case.
- a current density of 15 mA / cm 2 is set.
- a current density of 18 mA / cm 2 is set.
- the shielding elements 4, 5, 6, 7 are in the present case designed as plates.
- the plates consist entirely of the electrical insulator polytetrafluoroethylene. Furthermore, the material is resistant to the electrolyte used.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Die Erfindung betrifft eine Vorrichtung zur elektrolytischen Vernickelung eines großflächigen Bauteils, aufweisend einen Elektrolysebehälter oder An- bzw. Umbauelemente zur Bildung eines Elektrolysebehälters und voneinander beabstandete Anoden und/oder Anodengruppen, wobei flächige Abschirmelemente zwischen einzelnen Anoden und/oder Anodengruppen angeordnet sind, wobei die Abschirmelemente derart angeordnet sind, dass sie wenigstens teilweise elektrisch abgeschirmte Volumenbereiche zur segmentweisen Beschichtung des großflächigen Bauteils ausbilden.The invention relates to a device for the electrolytic nickel plating of a large-area component, comprising an electrolysis tank or attachment or conversion elements for forming an electrolysis tank and spaced apart anodes and / or anode groups, wherein planar shielding elements between individual anodes and / or anode groups are arranged, wherein the shielding are arranged such that they form at least partially electrically shielded volume areas for segmental coating of the large-area component.
Description
Die Erfindung betrifft eine Vorrichtung zur elektrolytischen Vernickelung großflächiger Bauteile sowie ein Verfahren zur elektrolytischen Vernickelung großflächiger Bauteile.The invention relates to a device for the electrolytic nickel plating of large-area components and to a method for the electrolytic nickel plating of large-area components.
Ein Problem bei der Vernickelung großflächiger Bauteile ergibt sich aus der praktischen Abwicklung. Zu vernickelnde Bauteile müssen bei herkömmlichen Vernickelungsverfahren etwa 25 verschiedene Bäder durchlaufen, woraus sich ein immenser Raumbedarf ergibt. Die Bäder müssen hierbei vergleichsweise groß sein. Aufgrund der Tatsache, dass die Vernickelung absolut porenfrei erfolgt und darüber hinaus eine Antrocknung der zu vernickelnden Oberfläche während des Verfahrens unbedingt vermieden werden muss (wasserbruchfrei), ergeben sich eine Vielzahl vorrichtungs- und verfahrensseitiger Schwierigkeiten. Insbesondere die Vernickelung von in dieser Hinsicht ohnehin problematischen Materialien oder die Innenbeschichtung großvolumiger Behälter sind mit besonders großen Schwierigkeiten verbunden. So ist aufgrund der mit entsprechend großen Volumina einhergehenden großen Tiefe solcher Behälter und den üblicherweise unterschiedlichen Durchmessern in verschiedenen Tiefen eine gleichmäßige Beschichtung mit vergleichsweise großen Problemen verbunden. So ist insbesondere eine Bewegung oder Entleerung solcher Behälter, welche ohne weiteres ein Gewicht von über 100 t haben können, nahezu unmöglich.A problem with the nickel plating of large-area components results from the practical handling. To be nickel-plated components in conventional nickel plating process about 25 different baths, resulting in an immense space requirement. The bathrooms must be comparatively large. Due to the fact that the nickel plating is absolutely free of pores and moreover a drying of the surface to be nickel-plated during the process must be avoided at all costs (water-free), a variety of device and process-related difficulties arise. In particular, the nickel plating of materials problematic in this respect or the inner coating of large-volume containers are associated with particularly great difficulties. Thus, due to the large depth of such containers associated with correspondingly large volumes and the usually different diameters at different depths, a uniform coating is associated with comparatively great problems. Thus, in particular a movement or emptying of such containers, which can easily have a weight of over 100 t, almost impossible.
Ein entsprechender Anwendungsbereich, für eine Innenvernicklung großvolumiger Behälter fällt in den Bereich der der Transport- und Lagerbehälter für radioaktive Abfälle. Die Behälter weisen einen zylindrischen und/oder quadratischen Aufnahmebereich und einen Abdichtbereich mit unterschiedlichen Durchmessern auf, so dass sich für besondere Anforderungen bei der Ausbildung einer Nickelbeschichtung ergeben.A corresponding field of application, for an internal nickeling of large-volume containers, falls within the scope of the transport and storage containers for radioactive waste. The containers have a cylindrical and / or square receiving area and a sealing area with different diameters, resulting in special requirements for the formation of a nickel coating.
Zur Vermeidung der vorgenannten Probleme und der Bereitstellung einer porenfreien Vernicklung ist aus der
Obwohl sich das vorbeschriebene Verfahren in der Praxis bewährt hat, besteht gleichwohl Verbesserungsbedarf hinsichtlich der Präzision und der Flexibilität des Verfahrens insgesamt. Es haben sich insbesondere Schwierigkeiten bei der Abscheidung einer homogenen Schichtstärke der Nickelschicht ergeben. Es hat sich ferner gezeigt, dass bestimmte Bereiche der zu beschichtenden Oberfläche größeren Belastungen widerstehen müssen als andere Bereiche. Es ist hierzu erforderlich, in diesen einander übergehenden Bereichen voneinander abweichende Schichtstärken abzuscheiden, wobei jede Fläche für sich nach Möglichkeit keine Schichtdifferenzen aufweisen darf. Bei den vorgenannten Schwierigkeiten stößt das aus dem Stand der Technik bekannte Verfahren an seine Grenzen.Although the method described above has been proven in practice, there is nevertheless a need for improvement with regard to the precision and the flexibility of the method as a whole. In particular, difficulties have resulted in the deposition of a homogeneous layer thickness of the nickel layer. It has also been found that certain areas of the surface to be coated must withstand greater loads than other areas. For this purpose, it is necessary to deposit different layer thicknesses in these mutually adjoining areas, wherein each area must not, if possible, have any layer differences. In the aforementioned difficulties, the known from the prior art method reaches its limits.
Es ist daher die Aufgabe der Erfindung eine Vorrichtung und Verfahren bereitzustellen, welche die aus dem Stand der Technik bekannten Nachteile beseitigen.It is therefore the object of the invention to provide a device and method which eliminate the disadvantages known from the prior art.
Zur Lösung der Aufgabe wird eine Vorrichtung zur elektrolytischen Vernickelung eines großflächigen Bauteils, aufweisend einen Elektrolysebehälter oder An- bzw. Umbauelemente zur Bildung eines Elektrolysebehälters und voneinander beabstandete Anoden und/oder Anodengruppen, wobei flächige Abschirmelemente zwischen einzelnen Anoden und/oder Anodengruppen angeordnet sind, wobei die Abschirmelemente derart angeordnet sind, dass sie wenigstens teilweise elektrisch abgeschirmte Volumenbereiche zur segmentweisen Beschichtung des großflächigen Bauteils ausbilden.To achieve the object, a device for electrolytic nickel plating of a large-area component, comprising an electrolysis tank or attachment or conversion elements to form an electrolysis tank and spaced apart anodes and / or anode groups, wherein planar shielding elements between individual anodes and / or anode groups are arranged the shielding elements are arranged such that they form at least partially electrically shielded volume regions for segmental coating of the large-area component.
Durch die erfindungsgemäße Ausgestaltung ist es vorteilhafterweise möglich, die Oberfläche großflächiger Bauteile durch segmentweises vernickeln besonders homogen zu beschichten. Insbesondere können hiermit Schichten hergestellt werden, bei denen Differenzen in der Schichtstärke nahezu vollständig vermieden werden können. Es hat sich herausgestellt, dass es durch die erfindungsgemäße Anordnung von Abschirmelementen zwischen den für die Beschichtung erforderlichen Anoden oder Anodengruppen und dem zu beschichtenden Oberflächensegment zur Ausbildung von besonders homogenen elektrischen Feldern kommt. Dies ermöglicht im Gegensatz zu den aus dem Stand der Technik bekannten Ansätzen eine nahezu störungsfreie Steuerung der Abscheidungsprozesse in den einzelnen abgeschirmten Bereichen. In abschirmungsfreien Systemen, wie es sich im Stand der Technik etabliert hat, ist die Aufrechterhaltung eines sich über die gesamte Oberfläche des zu beschichtenden Bauteils erstreckenden homogenen elektrischen Feldes nahezu unmöglich. Insbesondere die an den Rändern der Anoden auftretenden Störfelder führen zu einer unerwünschten Heterogenität des elektrischen Feldes insgesamt. Die Abscheidung homogener Schichten gleicher Schichtstärke ist in diesen Systemen daher nur sehr eingeschränkt möglich. Bei der erfindungsgemäßen Vorrichtung werden in Abkehr vom Stand der Technik eine Mehrzahl räumlich begrenzter, vergleichsweise kleiner elektrischer Felder aufgebaut, die leichter zu handhaben und weniger anfällig für Störungen sind. Darüber hinaus wird die Ausbildung von Störfeldern an den Rändern der Anoden durch die erfindungsgemäße Zwischenordnung der erfindungsgemäßen Abschirmelemente vorteilhafterweise unterbunden. Die Erfindung ermöglicht somit die Abscheidung einer besonders homogenen Nickelschicht, die an jedem Oberflächenabschnitt des zu beschichtenden Bauteils im Wesentlichen die gleiche Schichtstärke aufweist. Im Wesentlichen die gleiche Schichtstärke bedeutet im Sinne der Erfindung eine Schichtstärke, die um weniger als ±2 µm, vorzugsweise um weniger als ±1 µm und besonders bevorzugt um weniger als ±0,5 µm von der mittleren Schichtstärke der Nickelbeschichtung abweicht.Due to the configuration according to the invention, it is advantageously possible to coat the surface of large-area components particularly homogeneously by segment-wise nickel-plating. In particular, layers can be produced here in which differences in the layer thickness can be almost completely avoided. It has been found that the arrangement of shielding elements according to the invention between the anode or anode groups required for the coating and the surface segment to be coated results in the formation of particularly homogeneous electric fields. This allows in contrast to those known from the prior art Approaches a virtually trouble-free control of the deposition processes in the individual shielded areas. In shielding-free systems, as has been established in the prior art, the maintenance of a homogeneous electric field extending over the entire surface of the component to be coated is virtually impossible. In particular, the interference fields occurring at the edges of the anodes lead to an undesirable heterogeneity of the electric field as a whole. The deposition of homogeneous layers of the same thickness is therefore possible only to a very limited extent in these systems. In the device according to the invention, in contrast to the prior art, a plurality of spatially limited, relatively small electric fields are constructed, which are easier to handle and less prone to interference. In addition, the formation of interference fields at the edges of the anodes is advantageously prevented by the inventive interposition of the shielding elements according to the invention. The invention thus enables the deposition of a particularly homogeneous nickel layer, which has substantially the same layer thickness at each surface portion of the component to be coated. Substantially the same layer thickness in the sense of the invention means a layer thickness which differs by less than ± 2 μm, preferably by less than ± 1 μm and particularly preferably by less than ± 0.5 μm from the average layer thickness of the nickel coating.
Erfindungsgemäß sind die Abschirmelemente flächig ausgebildet. Hierdurch sind die Abschirmelemente vorteilhafterweise vergleichsweise leicht und bilden dennoch einen vergleichsweise großen elektrisch abgeschirmten Volumenbereich aus. Die Abschirmelemente können hierzu in beliebiger flächiger Form ausgestaltet sein. Bevorzugt sind die Abschirmelemente in Form von Platten, Blättern, Membranen, Scheiben und Ähnlichem ausgebildet. Die bevorzugte Form richtet sich im Wesentlichen nach der Stärke des abzuschirmenden elektrischen Feldes. Soll ein elektrisches Feld mit vergleichsweise hoher Feldstärke abgeschirmt werden, sind Abschirmelemente mit vergleichsweise großer Dicke, also platten- oder scheibenförmige Abschirmelemente bevorzugt. Soll hingegen ein elektrisches Feld mit vergleichsweise geringer Feldstärke abgeschirmt werden, sind Abschirmelemente mit vergleichsweise geringer Dicke, also blatt- oder membranförmige Abschirmelemente bevorzugt. Im besonderen Fall der Innenbeschichtung zylinderförmiger großvolumiger Behälter sind die Abschirmelemente jeweils vorzugsweise kreisförmiger Platten oder Scheiben ausgebildet. Besonders bevorzugt ist hierbei die Ausgestaltung als Lochscheibe. Hierbei kann zwischen zwei Abschirmelementen ein im Wesentlichen ringförmiger Volumenbereich ausgebildet werden, in welchem eine vorzugsweise ebenfalls ringförmig ausgebildete Anode angeordnet ist. Es hat sich hierbei herausgestellt, dass etwaige im Inneren der ringförmigen Anode vorliegende Felder keinerlei Einfluss auf das Beschichtungsergebnis haben. Vorteilhafterweise führt die Ausbildung des Abschirmelements als Lochscheibe damit zu Materialeinsparungen, ohne die Abschirmwirkung im Ergebnis negativ zu beeinflussen.According to the invention the shielding elements are flat. As a result, the shielding elements are advantageously comparatively light and yet form a comparatively large electrically shielded volume region. For this purpose, the shielding elements can be designed in any desired planar form. Preferably, the shielding elements are in the form of plates, sheets, membranes, disks and the like. The preferred shape depends essentially on the strength of the electric field to be shielded. If an electric field with comparatively high field strength is to be shielded, shielding elements with a comparatively large thickness, ie plate-shaped or disk-shaped shielding elements, are preferred. If, on the other hand, an electrical field with comparatively low field strength is to be shielded, shielding elements with a comparatively small thickness, that is to say sheet-like or membrane-shaped shielding elements, are preferred. In the particular case of the inner coating of cylindrical bulky containers, the shielding elements are each preferably formed of circular plates or discs. Particularly preferred here is the design as a perforated disc. In this case, a substantially annular volume region can be formed between two shielding elements, in which a preferably also ring-shaped anode is arranged. It has been found here that any fields present in the interior of the annular anode have no influence on the coating result. Advantageously, the training of the Shielding element as a perforated disk thus to material savings, without negatively affecting the shielding effect in the result.
Gemäß einem bevorzugten Merkmal der Erfindung sind die Abschirmelemente austauschbar innerhalb der Vorrichtung angeordnet. Es ist hierdurch möglich, reparaturbedürftige oder anderweitig unbrauchbare Elemente in einfacher Weise zu ersetzen. Hierdurch wird insbesondere der Wartungsaufwand der Vorrichtung in vorteilhafter Weise insgesamt gesenkt. Es ermöglicht ferner die Anpassung der erfindungsgemäßen Vorrichtung an die jeweiligen Anforderungen, insbesondere der einzustellenden Feldstärken. Hier können je nach Bedarf Abschirmelemente unterschiedlichen Typs gegeneinander ausgetauscht werden. Als Beispiel sei hier der Austausch von plattenförmigen Elementen gegen membranförmige Elemente genannt. Auf diese Weise ist die erfindungsgemäße Vorrichtung an eine Vielzahl möglicher Vernickelungsverfahren anpassbar und weist damit ein vergleichsweise breites Anwendungsspektrum auf. Besonders bevorzugt kann es vorgesehen sein, Abschirmelemente unterschiedlichen Typs für die Abschirmung unterschiedlicher Volumenbereichen parallel zu verwenden. Dies ist insbesondere in solchen Fällen von Vorteil, in denen Anoden oder Anodengruppen unterschiedlicher Volumenbereiche individuell angesteuert werden und mit unterschiedlichen Verfahrensparametern betrieben werden. Dies kann insbesondere für den Fall vorteilhaft sein, in weichem manche Oberflächensegmente des großflächigen Bauteils bewusst und zeitgleich mit unterschiedlichen Schichtstärken beschichtet werden sollen. Hierbei kann es vorgesehen sein, in den einzelnen Volumenbereichen unterschiedliche Feldstärken vorzusehen. Zur Abschirmung der unterschiedlichen Feldstärken ist es bevorzugt vorgesehen, in Abhängigkeit der jeweiligen Feldstärke hinsichtlich Form und Material hierfür vorstehend genannte geeignete Abschirmelemente miteinander zu kombinieren.According to a preferred feature of the invention, the shielding elements are arranged interchangeably within the device. It is thereby possible to replace elements requiring repair or otherwise unusable in a simple manner. As a result, in particular the maintenance of the device is lowered in an advantageous manner overall. It also allows the adaptation of the device according to the invention to the respective requirements, in particular the field strengths to be set. Depending on requirements, shielding elements of different types can be interchanged here. As an example, the exchange of plate-shaped elements against membrane-shaped elements may be mentioned here. In this way, the device according to the invention can be adapted to a large number of possible nickel plating methods and thus has a comparatively broad range of applications. Particularly preferably, it may be provided to use shielding elements of different types for the shielding of different volume areas in parallel. This is particularly advantageous in cases in which anodes or anode groups of different volume ranges are individually controlled and operated with different process parameters. This may be advantageous, in particular, for the case in which some surface segments of the large-area component are to be coated deliberately and simultaneously with different layer thicknesses. It may be provided to provide different field strengths in the individual volume areas. In order to shield the different field strengths, it is preferably provided that the above-mentioned suitable shielding elements are combined with each other in terms of shape and material as a function of the respective field strength.
Gemäß einem bevorzugten Merkmal der Erfindung sind die Abschirmelemente aus einem elektrisch isolierenden Material ausgebildet. Bevorzugt sind hierbei insbesondere polymere Materialien, die im verwendeten Elektrolyten stabil sind. Besonders bevorzugt sind hierbei Polypropylen (PP), Polytetrafluorethylen (PTFE), Polyimide (PI) und Polysulfon (PSU). Diese Werkstoffe sind einerseits elektrische Isolatoren und weisen andererseits eine exzellente Beständigkeit gegenüber bei der Vernickelung typischerweise verwendeten Elektrolyten auf. Je nach Einstellung der Verfahrensparameter kann es vorzugsweise vorgesehen sein, Abschirmelemente aus unterschiedlichen Materialien zu verwenden.According to a preferred feature of the invention, the shielding elements are formed of an electrically insulating material. In this case, preference is given in particular to polymeric materials which are stable in the electrolyte used. Particularly preferred are polypropylene (PP), polytetrafluoroethylene (PTFE), polyimides (PI) and polysulfone (PSU). On the one hand, these materials are electrical insulators and on the other hand have excellent resistance to electrolytes typically used in nickel plating. Depending on the setting of the process parameters, it can preferably be provided to use shielding elements made of different materials.
Erfindungsgemäß ist vorrichtungsseitig entweder ein Elektrolysebehälter oder An- bzw. Umbauelemente zur Bildung eines Elektrolysebehälters vorgesehen. Die zweite Variante dient hierbei insbesondere der Innenbeschichtung von großvolumigen Behältern. Durch die erfindungsgemäßen An- bzw. Umbauelemente wird der zu beschichtende Behälter zu einem Elektrolysebehälter umgebildet. Durch diese Maßnahme können große Tauchbehälter, wie sie nach der ersten Variante vorgesehen sind, entfallen, da der Elektrolysebehälter zur Aufnahme des Elektrolyten im Wesentlichen durch den zu beschichtenden großvolumigen Behälter selbst gebildet wird. Die An- und Umbauelemente stellen Kragen, Überlaufbereiche, Entwässerungsbohrungen oder dergleichen dar und werden bedarfsweise an den zu beschichtenden Behälter angeordnet.According to the invention either an electrolysis tank or attachment or conversion elements to form an electrolysis tank is provided on the device side. The second variant is used here in particular the inner coating of large-volume containers. Due to the invention or conversion elements of the container to be coated to a Remodeled electrolysis tank. By virtue of this measure, large immersion vessels, as provided according to the first variant, can be dispensed with, since the electrolysis vessel for accommodating the electrolyte is essentially formed by the large-volume vessel to be coated itself. The attachment and conversion elements represent collar, overflow areas, drainage holes or the like and are arranged as needed on the container to be coated.
Gemäß einer bevorzugten Ausgestaltung der Erfindung ist wenigstens ein Teil der Anoden und/oder der Anodengruppen individuell ansteuerbar ausgebildet. Individuell bedeutet im Sinne der Erfindung insbesondere, dass verschiedenen Anoden oder Anodengruppen zeitgleich, aber unabhängig voneinander betrieben werden können. Vorzugsweise lassen sich die Oberflächensegmente des zu beschichtenden Bauteils verfahrensseitig hierdurch entweder mit gleichen Abscheidecharakteristika, wie insbesondere Stromdichte und Feldstärke oder mit unterschiedlichen Abscheidecharakteristika beschichten. Werden die Oberflächensegmente mit gleichen Abscheidecharakteristika beschichtet, so resultiert hieraus eine erfindungsgemäß homogene Nickelbeschichtung mit im Wesentlichen gleichen Schichtstärken. Werden die Oberflächensegmente hingegen mit unterschiedlichen Abscheidecharakteristika beschichtet, so können einzelne Oberflächensegmente vorzugsweise mit unterschiedlichen Schichtstärken oder unterschiedlichen Geschwindigkeiten beschichtet werden. Eine solche Verfahrensführung kann dort von Vorteil sein, wo unterschiedliche Segmente des großflächigen Bauteils unterschiedlich starken Belastungen ausgesetzt sind und mit entsprechend größerer Schichtstärke beschichtet werden müssen. Diese, durch die Erfindung eröffnete Möglichkeit der Beschichtung unterschiedlicher Oberflächensegmente mit unterschiedlichen Schichtstärken in einem Verfahrensschritt erlaubt eine weitgehende Vereinfachung des Vernickelungsverfahrens. Im Stand der Technik muss das Bauteil hierfür verschiedene Bäder durchlaufen, was einerseits ein vergleichsweise großes logistisches Problem darstellt und andererseits zu einer ineffizienten Nutzung von Ressourcen führt. Vorgenannte Probleme können durch die Erfindung vollumfänglich vermieden werden. Vorzugsweise ist die individuelle Ansteuerbarkeit der Anoden und/oder der Anodengruppen durch die Zuordnung jeweils eines separaten Gleichrichters realisiert. Die Gleichrichter und die Anoden und/oder die Anodengruppen sind zu diesem Zweck steuerungstechnisch miteinander verbunden.According to a preferred embodiment of the invention, at least a part of the anodes and / or the anode groups is formed individually controllable. In the context of the invention, individual means in particular that different anode or anode groups can be operated simultaneously but independently of one another. Preferably, the surface segments of the component to be coated on the process side can thereby be coated either with the same deposition characteristics, in particular current density and field strength, or with different deposition characteristics. If the surface segments are coated with the same deposition characteristics, the result is a homogeneous nickel coating according to the invention with essentially the same layer thicknesses. On the other hand, if the surface segments are coated with different deposition characteristics, then individual surface segments may preferably be coated with different layer thicknesses or different speeds. Such a process management can be advantageous where different segments of the large-area component are exposed to different levels of stress and must be coated with a correspondingly greater layer thickness. This possibility, opened up by the invention, of coating different surface segments with different layer thicknesses in one process step permits an extensive simplification of the nickel plating process. In the prior art, the component must go through various baths for this purpose, which on the one hand represents a comparatively large logistical problem and on the other hand leads to inefficient use of resources. The aforementioned problems can be completely avoided by the invention. Preferably, the individual controllability of the anodes and / or the anode groups is realized by the assignment of a separate rectifier. The rectifier and the anodes and / or the anode groups are connected to each other for this purpose control technology.
Gemäß einer bevorzugten Ausgestaltung der Erfindung sind die Anoden und/oder die Anodengruppen derart ausgebildet, dass ihre räumliche Position und/oder ihre Ausrichtung variierbar sind. Vorzugsweise sind die Anoden und/oder Anodengruppen hierzu verfahrbar von der Vorrichtung aufgenommen. Ferner sind die Anoden und/oder Anodengruppen vorzugsweise verschwenkbar ausgebildet. Besonders bevorzugt sind die Anoden und/oder Anodengruppen sowohl verfahrbar von der Vorrichtung aufgenommen als auch verschwenkbar ausgebildet. Hierdurch können die Anoden und/oder die Anodengruppen räumlich an die Geometrie des zu beschichtenden Oberflächensegments angepasst werden oder deren Positionierung und Ausrichtung auf das zu beschichtende Material abgestimmt werden. In der Praxis müssen häufig Oberflächen mit komplexen Oberflächenbeschaffenheiten beschichtet werden, wodurch sich oftmals suboptimale Beschichtungsergebnisse ergeben können. Durch die räumlich flexible Ausgestaltung der Anoden und/oder Anodengruppen lassen trotz komplexer Oberflächenbeschaffenheiten hochqualitative Nickelschichten mit den erfindungsgemäßen Vorteilen herstellen. Vorzugsweise sind die Anoden und/oder Anodengruppen derart verfahrbar von der Vorrichtung aufgenommen, dass sie ausschließlich innerhalb des elektrisch abgeschirmten Volumenraumes verfahrbar sind. Hierdurch wird vermieden, dass die Anoden und/oder Anodengruppen aus dem elektrisch abgeschirmten Bereich heraus verfahren werden. Hierdurch wird die erfindungsgemäße Abschirmung und die damit verbundene Ausbildung einer homogenen Nickelbeschichtung auch bei einer Verfahrung der Anoden in vorteilhafter Weise in vollem Umfang gewährleistet. Weiter bevorzugt sind die Anoden und/oder die Anodengruppen lediglich linear verfahrbar von der Vorrichtung aufgenommen. In diesem Szenario ist ein abgeschirmter Volumenraum von wenigstens zwei Abschirmelementen begrenzt. Im Inneren des Volumenraumes ist die Anode angeordnet. Die Seite des Volumenraumes, welche im bestimmungsgemäßen Verwendungsfall dem zu beschichtenden Oberflächensegment zugewandt ist vorzugsweise abschirmelementfrei ausgebildet. Vorzugsweise ist diese Seite vollständig offen ausgestaltet, um den für die Beschichtung notwendigen Ionenfluss in Richtung des zu beschichtenden Oberflächensegments zu gewährleisten. Die Anode ist in diesem Fall in Richtung der abschirmelementfreien, vorzugsweise der vollständig offenen Seite und in die Gegenrichtung linear verfahrbar von der Vorrichtung aufgenommen. Auf diesem Wege wird gewährleistet, dass das für die Ausbildung einer homogenen Nickelschicht notwendige elektrische Feld stets in Richtung des zu beschichtenden Oberflächensegments ausgerichtet ist, wodurch die Ausbildung von Störfeldern wirkungsvoll unterbunden wird.According to a preferred embodiment of the invention, the anodes and / or the anode groups are formed such that their spatial position and / or their orientation are variable. Preferably, the anodes and / or anode groups are movably received by the device for this purpose. Furthermore, the anodes and / or anode groups are preferably designed to be pivotable. Particularly preferred are the anodes and / or Anode groups both movably received by the device and designed to be pivotable. As a result, the anodes and / or the anode groups can be spatially adapted to the geometry of the surface segment to be coated or their positioning and alignment can be matched to the material to be coated. In practice, surfaces often have to be coated with complex surface textures, which can often result in suboptimal coating results. Due to the spatially flexible configuration of the anodes and / or anode groups can produce high quality nickel layers with the advantages of the invention despite complex surface textures. Preferably, the anodes and / or anode groups are so movably received by the device that they are movable only within the electrically shielded volume space. This avoids that the anodes and / or anode groups are moved out of the electrically shielded area. As a result, the shielding according to the invention and the associated formation of a homogeneous nickel coating is advantageously ensured even when the anodes are moved in an advantageous manner. More preferably, the anodes and / or the anode groups are received only linearly movable by the device. In this scenario, a shielded volume space of at least two shielding elements is limited. Inside the volume space, the anode is arranged. The side of the volume space, which faces the surface segment to be coated in the intended use case, is preferably formed without a screening element. Preferably, this side is designed to be completely open, in order to ensure the necessary for the coating ion flow in the direction of the surface segment to be coated. In this case, the anode is received by the device in the direction of the screening element-free, preferably the completely open side and in the opposite direction linearly movable. In this way it is ensured that the necessary for the formation of a homogeneous nickel layer electric field is always aligned in the direction of the surface segment to be coated, whereby the formation of interference fields is effectively prevented.
Erfindungsgemäß können die Anoden beliebig geformt sein. Vorzugsweise richtet sich die Entscheidung welche Anode Verwendung findet, jedoch nach den bevorzugten Verfahrensparametern, der Oberflächenbeschaffenheit des zu beschichtenden Bauteils und nach den gewünschten Eigenschaften der resultierenden Nickelbeschichtung. Hinsichtlich der Innenbeschichtung großvolumiger zylinderförmiger und/oder quadratischer Behälter aus z.B. Sphäroguss (GJS-400-15 gemäß EN 1563), welcher besonders schwierig zu beschichten ist, ist insbesondere der Einsatz von stangenförmigen Anoden mit rundem oder ovalem Querschnitt bevorzugt. Für den Fall, dass großflächige Bauteile mit ebener Oberfläche beschichtet werden sollen, ist die Ausgestaltung der Anoden in Plattenform von besonderem Vorteil. In den Fällen, in denen ein Bauteil Oberflächensegmente unterschiedlicher Oberflächenbeschaffenheit und/oder Materialien aufweist, kann die Anordnung von Anoden unterschiedlicher Geometrie in den einzelnen Volumenbereichen bevorzugterweise mit besonderem Vorteil vorgesehen sein. Neben der Anordnung einzelner Anoden in den Volumenräumen kann es erfindungsgemäß ebenfalls vorgesehen sein, Anodengruppen in den Anodenräumen anzuordnen. Anodengruppen sind vorzugsweise aus wenigstens zwei, bevorzugt einer Mehrzahl, Anoden des gleichen Typs gebildet. Hierdurch können vergleichsweise starke elektrische Felder und eine hohe Stromdichte erzeugt werden, was insbesondere bei einer Beschichtung mit hoher Schichtstärke von Vorteil ist. Vorteilhafterweise wird hierdurch die Verfahrensdauer verringert, was verfahrensseitig zu einer Verbesserung der Wirtschaftlichkeit führt.According to the invention, the anodes can be shaped as desired. Preferably, the decision is which anode is used, but according to the preferred process parameters, the surface finish of the component to be coated and the desired properties of the resulting nickel coating. With regard to the inner coating of large-volume cylindrical and / or square containers made of ductile iron, for example (GJS-400-15 according to EN 1563), which is particularly difficult to coat, the use of rod-shaped anodes with a round or oval cross-section is particularly preferred. In the event that large-area components with level Surface to be coated, the design of the anodes in plate form is particularly advantageous. In the cases in which a component has surface segments of different surface properties and / or materials, the arrangement of anodes of different geometry in the individual volume regions can preferably be provided with particular advantage. In addition to the arrangement of individual anodes in the volume spaces, it may also be provided according to the invention to arrange anode groups in the anode spaces. Anode groups are preferably formed from at least two, preferably a plurality, anodes of the same type. As a result, comparatively strong electric fields and a high current density can be generated, which is advantageous in particular in the case of a coating with a high layer thickness. Advantageously, the process duration is thereby reduced, which leads to an improvement of the economy on the method side.
Verfahrensseitig wird zur Lösung der der Erfindung zugrunde liegenden Aufgabe ein Verfahren zur elektrolytischen Vernickelung eines großflächigen Bauteils vorgeschlagen, wobei die Oberfläche des Bauteils mittels geeigneter Anoden und eines nickelhaltigen Elektrolyten mit Nickel beschichtet wird, dadurch gekennzeichnet, dass die Oberfläche segmentweise beschichtet wird, wobei jedes Oberflächensegment räumlich einer Anode oder einer Anodengruppe zugeordnet wird, wobei die Anode oder die Anodengruppe des jeweiligen Oberflächensegments elektrisch von Anoden oder Anodengruppen der übrigen Oberflächensegmente abgeschirmt wird.In terms of the method, a method for the electrolytic nickel plating of a large-area component is proposed to solve the problem underlying the invention, wherein the surface of the component is coated by means of suitable anodes and a nickel-containing electrolyte with nickel, characterized in that the surface is coated in segments, each surface segment is spatially associated with an anode or an anode group, wherein the anode or the anode group of the respective surface segment is electrically shielded by anodes or anode groups of the remaining surface segments.
Durch die erfindungsgemäße Verfahrensführung ist es vorteilhafterweise möglich, die Oberfläche großflächiger Bauteile durch segmentweises vernickeln besonders homogen zu beschichten. Insbesondere können hiermit Schichten hergestellt werden, bei denen Differenzen in der Schichtstärke nahezu vollständig vermieden werden können. Erfindungsgemäß ist der Effekt unter Anderem auf eine nahezu störungsfreie Steuerung der Abscheidungsprozesse in den einzelnen abgeschirmten Bereichen zurückzuführen. Insbesondere kann eine unerwünschte Ausbildung von Störfeldern, welche zu einer schädlichen Heterogenität des elektrischen Feldes insgesamt führen vorteilhafterweise vermieden werden. Erfindungsgemäß werden während des Verfahrens eine Mehrzahl vergleichsweise kleiner, räumlich begrenzter elektrischer Felder aufgebaut, die leichter zu handhaben und weniger anfällig für Störungen sind, als die aus dem Stand der Technik hierfür vorgesehenen vergleichsweise großen elektrischen Felder. Das erfindungsgemäße Verfahren ermöglicht somit die Abscheidung einer besonders homogenen Nickelschicht, die an jedem Oberflächenabschnitt des zu beschichtenden Bauteils im Wesentlichen die gleiche Schichtstärke aufweist.The method according to the invention advantageously makes it possible to coat the surface of large-area components particularly homogeneously by segment-wise nickel-plating. In particular, layers can be produced here in which differences in the layer thickness can be almost completely avoided. According to the invention, the effect is due among other things to an almost interference-free control of the deposition processes in the individual shielded areas. In particular, an undesirable formation of interference fields which lead to a detrimental heterogeneity of the electric field as a whole can be advantageously avoided. According to the invention, a plurality of comparatively small, spatially limited electric fields are built up during the process, which are easier to handle and less susceptible to interference than the comparatively large electric fields provided for this purpose by the prior art. The method according to the invention thus makes it possible to deposit a particularly homogeneous nickel layer which has substantially the same layer thickness at each surface section of the component to be coated.
Gemäß einer bevorzugten Ausführungsform der Erfindung werden die Oberflächensegmente vor der Elektrolyse vorbehandelt. Eine solche Vorbehandlung kann insbesondere die Verfahrensschritte des Erwärmens, des Beizens, des Spülens und/oder des Dekapierens umfassen. Bei einer solchen Vorbehandlung ist es mitunter notwendig, vergleichsweise große Stromdichten an die vorzubehandelnde Oberfläche anzulegen. Durch die erfindungsgemäße Ausgestaltung können diese Stromdichten segmentweise eingestellt werden, was hinsichtlich des Transports des hierfür benötigten Stroms von Vorteil ist.According to a preferred embodiment of the invention, the surface segments are pretreated prior to electrolysis. Such pretreatment may in particular comprise the steps of heating, pickling, rinsing and / or decaping. In such a pretreatment, it is sometimes necessary to apply comparatively large current densities to the surface to be pretreated. By virtue of the configuration according to the invention, these current densities can be set in segments, which is advantageous in terms of the transport of the current required for this purpose.
Gemäß einem bevorzugten Merkmal der Erfindung werden die Anoden und/oder die Anodengruppen zur segmentweisen Beschichtung der Oberfläche des Bauteils individuell angesteuert. Vorzugsweise lassen sich die einzelnen Oberflächensegmente des zu beschichtenden Bauteils in einem Verfahrensschritt unabhängig voneinander hierbei entweder mit gleichen Abscheidecharakteristika, wie insbesondere Stromdichte und Feldstärke oder mit unterschiedlichen Abscheidecharakteristika beschichten. Werden die Oberflächensegmente mit gleichen Abscheidecharakteristika beschichtet, so resultiert hieraus eine erfindungsgemäß homogene Nickelbeschichtung mit im Wesentlichen gleichen Schichtstärken. Werden die Oberflächensegmente hingegen mit unterschiedlichen Abscheidecharakteristika beschichtete, so können einzelne Oberflächensegmente vorzugsweise mit unterschiedlichen Schichtstärken und/oder unterschiedlichen Geschwindigkeiten beschichtet werden. Eine solche Verfahrensführung kann dort von Vorteil sein, wo unterschiedliche Segmente des großflächigen Bauteils unterschiedlich starken Belastungen ausgesetzt sind und mit entsprechend größerer Schichtstärke beschichtet werden müssen. Diese, durch die Erfindung eröffnete Möglichkeit der Beschichtung unterschiedlicher Oberflächensegmente mit unterschiedlichen Schichtstärken in einem Verfahrensschritt erlaubt eine weitgehende Vereinfachung des Vernickelungsverfahrens. Im Stand der Technik muss das Bauteil hierfür verschiedene Bäder durchlaufen, was einerseits ein vergleichsweise großes logistisches Problem darstellt und andererseits zu einer ineffizienten Nutzung von Ressourcen führt. Vorgenannte Probleme können durch die Erfindung vollumfänglich vermieden werden.According to a preferred feature of the invention, the anodes and / or the anode groups are individually controlled for segmental coating of the surface of the component. The individual surface segments of the component to be coated can preferably be coated independently of one another in this case either with the same deposition characteristics, in particular current density and field strength, or with different deposition characteristics. If the surface segments are coated with the same deposition characteristics, the result is a homogeneous nickel coating according to the invention with essentially the same layer thicknesses. On the other hand, if the surface segments are coated with different deposition characteristics, individual surface segments may preferably be coated with different layer thicknesses and / or different speeds. Such a process management can be advantageous where different segments of the large-area component are exposed to different levels of stress and must be coated with a correspondingly greater layer thickness. This possibility, opened up by the invention, of coating different surface segments with different layer thicknesses in one process step permits an extensive simplification of the nickel plating process. In the prior art, the component must go through various baths for this purpose, which on the one hand represents a comparatively large logistical problem and on the other hand leads to inefficient use of resources. The aforementioned problems can be completely avoided by the invention.
Erfindungsgemäß wird das Bauteil mit Nickel beschichtet. Bevorzugt wird Nickel hierbei aus einer wässrigen Nickelsulfamatlösung abgeschieden. Die Nickelsulfamatlösung enthält neben Nickelsulfamat und Wasser wenigstens noch Borsäure. Die Nickelsulfamatkonzentration wird vorzugsweise auf einen Wert zwischen 60 und 100 g/l, bevorzugt 80 g/l eingestellt. Die Borsäurekonzentration wird vorzugsweise auf einen Wert zwischen 20 und 50 g/l, bevorzugt 30 g/l eingestellt.. Der pH-Wert des Elektrolyten wird vorzugsweise auf einen Wert zwischen 3 und 4, vorzugsweise 3,2 eingestellt. Die Elektrolyttemperatur wird vorzugsweise auf einen Wert zwischen 35 und 45 C, vorzugsweise 40°C eingestellt. Die Stromdichte wird vorzugsweise auf einen Wert zwischen 1 und 20 mA/cm2, bevorzugt 15 und 18 mA/cm2 eingestellt. Vorzugsweise ist es hierbei vorgesehen verschiedene Oberflächensegmente mittels unterschiedlicher Stromdichten zu vernickeln.According to the invention, the component is coated with nickel. Preferably, nickel is deposited here from an aqueous nickel sulfamate solution. The nickel sulfamate solution contains at least boric acid in addition to nickel sulfamate and water. The nickel sulfamate concentration is preferably adjusted to a value between 60 and 100 g / l, preferably 80 g / l. The boric acid concentration is preferably adjusted to a value between 20 and 50 g / l, preferably 30 g / l. The pH of the electrolyte is preferably adjusted to a value between 3 and 4, preferably 3.2. The electrolyte temperature is preferably set to a value between 35 and 45 C, preferably 40 ° C set. The current density is preferably set to a value between 1 and 20 mA / cm 2 , preferably 15 and 18 mA / cm 2 . Preferably, it is intended to nickel-plating various surface segments by means of different current densities.
Nachfolgend wird die Erfindung anhand eines für den Fachmann nicht beschränkend zu verstehenden Ausführungsbeispiels näher erläutert. Dabei zeigt
- Fig.1
- eine erfindungsgemäße Anordnung der Anoden und der Abschirmelemente in schematischer Schnittdarstellung;
- Fig.1
- an inventive arrangement of the anodes and the shielding in a schematic sectional view;
Die Abschirmelemente 4, 5, 6, 7 sind vorliegend derart angeordnet, dass sie die elektrisch voneinander abgeschirmten Volumenbereiche 9, 10, 11 zwischen sich ausbilden. Die Anode 1 ist hierbei im Inneren des Volumenbereichs 9, die Anode 2 im Inneren des Volumenbereichs 10 und die Anoden 3, die zusammen die Anodengruppe 12 bilden, im Inneren des Volumenbereichs 11 angeordnet.The
Die Volumenbereiche 9, 10, 11 sind auf ihrer jeweiligen bauteilseitigen Seite 13, 14, 15 abschirmelementfrei ausgebildet. Sie sind vorliegend vollständig offen ausgestaltet, so dass ein ungehinderter Ionentransport in Richtung des Bauteils 8 gewährleistet ist.The
Die im Volumenbereich 9 angeordnete Anode 1 ist vorliegend stabförmig und mit kreisförmigem Durchmesser ausgebildet. Die im Anodenbereich 10 angeordnete Anode 2 ist vorliegend plattenförmig ausgebildet. Die im Volumenbereich 11 angeordnete Anodengruppe 12 ist aus einer Mehrzahl stabförmiger Anoden 3 mit kreisförmigem Querschnitt gebildet. Die Anoden 1, 2 und die Anodengruppe 12 sind vorliegend individuell ansteuerbar ausgebildet. Die Anordnung von individuell ansteuerbaren Anoden unterschiedlichen Typs in den jeweils von einander elektrisch abgeschirmten Volumenbereichen 9, 10, 11 erlaubt die Beschichtung der jeweiligen Oberflächensegmente 16, 17, 18 mit unterschiedlichen Verfahrensparametern. Dies kann vorliegend dazu genutzt werden, die Oberflächensegmente 16, 17, 18 im Parallelbetrieb mit unterschiedlicher Schichtstärke, unterschiedlicher Geschwindigkeit und Ähnlichem zu vernickeln. Ferner sind die Anoden 1, 2 und die Anodengruppe 12 durch ihre jeweilige Formausgestaltung an die vorliegend nicht gezeigte unterschiedliche Geometrie und an das teilweise unterschiedliche Material der einzelnen Oberflächensegmente 16, 17, 18 angepasst, um innerhalb des jeweiligen Segments die Abscheidung einer homogenen Nickelschicht zu optimieren.The arranged in the
Die Anoden 1, 2 sowie die Anodengruppe 12 sind vorliegend von der Vorrichtung linear verfahrbar aufgenommen. Sie sind hierbei jeweils in Richtung der bauteilseitigen Seite 13, 14, 15 des jeweiligen Volumenraumes 9, 10, 11 verfahrbar. Auf diesem Wege ist eine weitere Anpassung an die Oberflächenbeschaffenheit des jeweiligen Oberflächensegments 16, 17, 18 möglich. Im Sinne einer noch weiteren Anpassung sind die Anoden 1, 2 sowie die Anodengruppe 12 darüber hinaus verschwenkbar ausgebildet. Vorzugsweise sind sie mit einem Winkel von bis zu 20 ° in Relation zu der jeweiligen Mittelsenkrechten verschwenkbar.The
Der Elektrolysebehälter (nicht gezeigt) ist vorliegend mit einem Elektrolyten zur Vernickelung des zu beschichtenden Bauteils 8 befüllt. Der Elektrolyt füllt hierbei die Volumenbereiche 9, 10, 11 vollständig aus und sorgt für eine ständige Benetzung der zu beschichtenden Oberflächensegmente 16, 17, 18 des Bauteils 8. Der Elektrolyt ist vorliegend aus einer wässrigen Nickelsulfamatlösung gebildet. Die Lösung enthält hierbei Nickelsulfamat in einer Konzentration von 80 g/l, Borsäure in einer Konzentration von 30 g/l. Verfahrensseitig wird der pH-Wert des Elektrolyten auf einen Wert von 3,2 eingestellt. Die Elektrolyttemperatur wird auf einen Wert von 40 °C eingestellt. Im Volumenbereich 9 wird vorliegend eine Stromdichte von 10 mA/cm2 eingestellt. Im Volumenbereich 10 wird eine Stromdichte von 15 mA/cm2 eingestellt Im Volumenbereich 11 wird eine Stromdichte 18 mA/cm2 eingestellt. Durch die Wahl der vorgenannten Parameter werden die Oberflächensegmente 16, 17, 18 mit verschiedenen Schichtstärken vernickelt, wobei Oberflächensegment 16 mit einer vergleichsweise geringen Schichtstärke im µm-Bereich und Oberflächensegment 18 mit einer vergleichsweise hohen Schichtstärke im mm - Bereich vernickelt werden. Oberflächensegment 17 wird im Vergleich hierzu mit einer mittleren Schichtstärke vernickelt.The electrolysis tank (not shown) is filled here with an electrolyte for nickel plating of the
Die Abschirmelemente 4, 5, 6, 7 sind vorliegend als Platten ausgebildet. Die Platten bestehen vollständig aus dem elektrischen Isolator Polytetrafluorethylen. Ferner ist das Material gegenüber dem verwendeten Elektrolyten beständig.The
- 11
- Anodeanode
- 22
- Anodeanode
- 33
- Anodeanode
- 44
- Abschirmelementshielding
- 55
- Abschirmelementshielding
- 66
- Abschirmelementshielding
- 77
- Abschirmelementshielding
- 88th
- Bauteilcomponent
- 99
- elektrisch abgeschirmter Volumenbereichelectrically shielded volume range
- 1010
- elektrisch abgeschirmter Volumenbereichelectrically shielded volume range
- 1111
- elektrisch abgeschirmter Volumenbereichelectrically shielded volume range
- 1212
- Anodengruppeanode group
- 1313
-
bauteilseitige Seite des Volumenbereichs 9Component-side side of the
volume region 9 - 1414
-
bauteilseitige Seite des Volumenbereichs 10Component-side side of the
volume region 10 - 1515
-
bauteilseitige Seite des Volumenbereichs 11Component-side side of the
volume region 11 - 1616
- Oberflächensegmentsurface segment
- 1717
- Oberflächensegmentsurface segment
- 1818
- Oberflächensegmentsurface segment
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15157457.1A EP3064617B1 (en) | 2015-03-03 | 2015-03-03 | Method for nickel plating large-area components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15157457.1A EP3064617B1 (en) | 2015-03-03 | 2015-03-03 | Method for nickel plating large-area components |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17200536.5 Division-Into | 2017-11-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3064617A1 true EP3064617A1 (en) | 2016-09-07 |
EP3064617B1 EP3064617B1 (en) | 2018-08-15 |
Family
ID=52627050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15157457.1A Active EP3064617B1 (en) | 2015-03-03 | 2015-03-03 | Method for nickel plating large-area components |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3064617B1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19502358A1 (en) | 1995-01-26 | 1996-10-31 | Metallveredlung Gmbh & Co Kg | Method of electrolytically coating large area components with nickel |
JPH1096097A (en) * | 1996-09-24 | 1998-04-14 | Hitachi Cable Ltd | Electroplating equipment |
DE19717489A1 (en) * | 1997-04-25 | 1998-10-29 | Schloemann Siemag Ag | Arrangement for electro-galvanic metal coating of strips |
US20010054556A1 (en) * | 2000-05-24 | 2001-12-27 | International Business Machines Corporation | Metal plating apparatus and process |
US20050000817A1 (en) * | 2003-07-01 | 2005-01-06 | Mchugh Paul R. | Reactors having multiple electrodes and/or enclosed reciprocating paddles, and associated methods |
US20050121331A1 (en) * | 2003-12-05 | 2005-06-09 | Mitsuru Kinoshita | Electroplating method for a semiconductor device |
US8623193B1 (en) * | 2004-06-16 | 2014-01-07 | Novellus Systems, Inc. | Method of electroplating using a high resistance ionic current source |
-
2015
- 2015-03-03 EP EP15157457.1A patent/EP3064617B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19502358A1 (en) | 1995-01-26 | 1996-10-31 | Metallveredlung Gmbh & Co Kg | Method of electrolytically coating large area components with nickel |
JPH1096097A (en) * | 1996-09-24 | 1998-04-14 | Hitachi Cable Ltd | Electroplating equipment |
DE19717489A1 (en) * | 1997-04-25 | 1998-10-29 | Schloemann Siemag Ag | Arrangement for electro-galvanic metal coating of strips |
US20010054556A1 (en) * | 2000-05-24 | 2001-12-27 | International Business Machines Corporation | Metal plating apparatus and process |
US20050000817A1 (en) * | 2003-07-01 | 2005-01-06 | Mchugh Paul R. | Reactors having multiple electrodes and/or enclosed reciprocating paddles, and associated methods |
US20050121331A1 (en) * | 2003-12-05 | 2005-06-09 | Mitsuru Kinoshita | Electroplating method for a semiconductor device |
US8623193B1 (en) * | 2004-06-16 | 2014-01-07 | Novellus Systems, Inc. | Method of electroplating using a high resistance ionic current source |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Week 199825, 14 April 1998 Derwent World Patents Index; AN 1998-280645, XP002743439 * |
Also Published As
Publication number | Publication date |
---|---|
EP3064617B1 (en) | 2018-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69316407T2 (en) | Metal foam and process for its production | |
EP1688518B1 (en) | Process and apparatus for continuous electrochemical treatment of pieces | |
DE1546930B2 (en) | DEVICE FOR THE ELECTROPHORETIC COVERING OF OBJECTS WITH AN ORGANIC FILM FORMER | |
DE2051578A1 (en) | Method of electrofassoning and means of the procedure | |
WO2003038158A2 (en) | Electroplating device and electroplating system for coating already conductive structures | |
DE1521011A1 (en) | Method and device for electroplating small parts or objects | |
EP3064617B1 (en) | Method for nickel plating large-area components | |
DE69923956T2 (en) | Anode structure for the production of metal foils | |
DE112014004565T5 (en) | A drum electrode, a method of manufacturing a drum electrode, a plating apparatus, a method of manufacturing a resin-formed body, and a method of producing a porous metal body | |
DE10238284B4 (en) | Method for producing a foam-shaped metal structure, metal foam and arrangement from a carrier substrate and a metal foam | |
EP1660701B1 (en) | Power supply device in a device for electrochemical treatment | |
DE1771953B2 (en) | DEVICE FOR ELECTRIC COATING OF HOLLOW BODIES | |
DE10007435A1 (en) | Process for electroplating a workpiece coated with an electrically conductive polymer | |
DE2212099B2 (en) | DEVICE FOR THE RECOVERY OF METAL FROM A LIQUID CONTAINING IONS OF THIS METAL | |
DE1621079C3 (en) | Three-dimensional openwork metal structure and process for its manufacture | |
DE102014223779A1 (en) | Heat transfer element and method of manufacture | |
DE4430652A1 (en) | Galvanic process for galvanic or chemical treatment, in particular for the continuous application of metallic layers to a body | |
DE19632132C1 (en) | Electrochemical treatment of rod-shaped components | |
DE1077497B (en) | Method and device for the electrolytic deposition of a metal layer | |
DE102006044673B3 (en) | Electrical contact application unit for galvanic deposition has contact region with at least two segments through which current can flow independently | |
DE102009013164A1 (en) | Method for partial galvanization of elongated products in electrolytes of electrolytic cell, which is associated to a bath current source, comprises placing the product for the treatment in the electrolytic cell between anode and cathode | |
DE202015006892U1 (en) | Anode basket for receiving soluble anode material in a galvanizing plant | |
EP3064615B1 (en) | Method for electrolytical coating of complex components | |
DE1771527C3 (en) | Device for the electrodeposition of a metallic film of uniform thickness on a flat surface | |
DE574316C (en) | Process for the simultaneous production of metal deposits of different strengths by galvanic means |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170123 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170630 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25D 17/00 20060101AFI20180316BHEP Ipc: C25D 17/12 20060101ALI20180316BHEP Ipc: C25D 3/12 20060101ALN20180316BHEP Ipc: C25D 5/16 20060101ALI20180316BHEP Ipc: C25D 5/02 20060101ALI20180316BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180420 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25D 17/12 20060101ALI20180406BHEP Ipc: C25D 3/12 20060101ALN20180406BHEP Ipc: C25D 5/16 20060101ALI20180406BHEP Ipc: C25D 5/02 20060101ALI20180406BHEP Ipc: C25D 17/00 20060101AFI20180406BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: AT Ref legal event code: REF Ref document number: 1029876 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015005405 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181115 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181115 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181116 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181215 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015005405 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190303 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190303 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190303 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502015005405 Country of ref document: DE Owner name: GNS GESELLSCHAFT FUER NUKLEAR-SERVICE MBH, DE Free format text: FORMER OWNER: MTV METALLVEREDLUNG GMBH & CO. KG, 42699 SOLINGEN, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502015005405 Country of ref document: DE Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502015005405 Country of ref document: DE Owner name: MTV NT GMBH, DE Free format text: FORMER OWNER: MTV METALLVEREDLUNG GMBH & CO. KG, 42699 SOLINGEN, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502015005405 Country of ref document: DE Representative=s name: BRINKMANN & PARTNER PATENTANWAELTE PARTNERSCHA, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181215 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1029876 Country of ref document: AT Kind code of ref document: T Effective date: 20200303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502015005405 Country of ref document: DE Owner name: GNS GESELLSCHAFT FUER NUKLEAR-SERVICE MBH, DE Free format text: FORMER OWNER: MTV NT GMBH, 42699 SOLINGEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240527 Year of fee payment: 10 |