EP3012461A1 - Centrifugal compressor - Google Patents
Centrifugal compressor Download PDFInfo
- Publication number
- EP3012461A1 EP3012461A1 EP13887157.9A EP13887157A EP3012461A1 EP 3012461 A1 EP3012461 A1 EP 3012461A1 EP 13887157 A EP13887157 A EP 13887157A EP 3012461 A1 EP3012461 A1 EP 3012461A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flow path
- path width
- diffuser section
- side wall
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/441—Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/50—Inlet or outlet
- F05D2250/52—Outlet
Definitions
- the present invention relates to a centrifugal compressor.
- a centrifugal compressor As a compressor used in a plant or the like, a centrifugal compressor is known. Several improvements are proposed in order to enable miniaturization of the centrifugal compressor, or operation at a small flow rate.
- Patent Literature 1 discloses a centrifugal compressor in which a flow path width of one part of a diffuser is narrowed by use of a variable diaphragm mechanism in order to enable operation at a small flow rate.
- Patent Literature 2 discloses a centrifugal compressor in which a flow path height of a diffuser flow path is gradually increases and a flow path width is enlarged in order to attain miniaturization and enlarge an operating range to a large flow rate side.
- the present invention has been made in view of the above circumstances, and an object of the invention is to provide a centrifugal compressor in which a malfunction such as shaft vibration due to rotating stall and degradation of performance due to friction losses or the like are suppressed.
- a centrifugal compressor includes: an impeller that is rotatable around an axis, and discharges fluid, which flows in an axial direction along the axis, in a direction inclined from the axial direction; a casing section that houses the impeller; and a diffuser section that circulates the fluid discharged from the impeller, wherein the impeller includes a hub and a shroud that are arranged along the axial direction side by side, and a plurality of blades that are arranged between the hub and the shroud, wherein a flow path width of the diffuser section at an inflow position where the fluid flows in the diffuser section is narrower than a flow path width of the impeller at a discharge position where the fluid discharges from the impeller, and wherein a flow path width enlarged section wider than the flow path width of the diffuser section at the inflow position is provided on a downstream side with respect to the inflow position of the diffuser section.
- the centrifugal compressor according to the present invention includes: the impeller that discharges the fluid, which flows along the axial direction, in the direction inclined from the axial direction; the casing section that houses the impeller; and the diffuser section that circulates the fluid discharged from the impeller, wherein the impeller has the hub and the shroud that are arranged along the axial direction side by side, and the plurality of blades that are arranged between the hub and the shroud.
- the flow path width of the diffuser section at the inflow position where the fluid flows in the diffuser section is narrower than the flow path width of the impeller at the discharge position where the fluid discharges from the impeller.
- the flow velocity of the fluid at the inflow position where the fluid flows in the diffuser section is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall.
- the flow path width enlarged section wider than the flow path width of the diffuser section at the inflow position is provided on a downstream side with respect to the inflow position of the diffuser section.
- the diffuser section is defined by a hub side wall provided on a side of the hub, and a shroud side wall provided on a side of the shroud
- the hub side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the hub side wall at the inflow position
- the shroud side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the shroud side wall at the inflow position.
- both side walls at the flow path width enlarged section of the diffuser section are disposed in the direction in which the flow path width of the diffuser section enlarges, and it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of the diffuser section to the downstream side is the same.
- the diffuser section is defined by a hub side wall provided on a side of the hub, and a shroud side wall provided on a side of the shroud, and the hub side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the hub side wall at the inflow position.
- the hub side wall of the diffuser section at the flow path width enlarged section is disposed in the direction in which the flow path width of the diffuser section enlarges, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of the diffuser section to the downstream side is the same.
- the hub side wall is disposed in the direction in which the flow path width of the diffuser section enlarges, and therefore it is possible to form the flow path in which the fluid is stably circulated, in a case where the discharge direction in which fluid discharges from the impeller is directed to a direction of the hub side wall with respect to a direction orthogonal to the axial direction.
- the diffuser section is defined by a hub side wall provided on a side of the hub, and a shroud side wall provided on a side of the shroud, and the shroud side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the shroud side wall at the inflow position.
- the shroud side wall of the diffuser section at the flow path width enlarged section is disposed in the direction in which the flow path width of the diffuser section enlarges, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of the diffuser section to the downstream side is the same.
- a shape of the hub side wall may be a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section
- a shape of the shroud side wall may be a tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid at the intermediate position of the diffuser section.
- a shape of the hub side wall may be a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section.
- a shape of the shroud side wall may be a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section.
- a shape of the hub side wall may be a stepped shape in which the flow path width enlarges along a circulating direction of the fluid stepwise at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section
- a shape of the shroud side wall may be a stepped shape in which the flow path width enlarges along the circulating direction of the fluid stepwise at the intermediate position of the diffuser section.
- the flow path connecting the inflow position and the downstream side can be formed at the intermediate position of the diffuser section by a relatively easy machining process.
- a shape of the hub side wall may be a stepped shape in which the flow path width enlarges along a circulating direction of the fluid stepwise at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section.
- the flow path connecting the inflow position and the downstream side can be formed at the intermediate position of the diffuser section by a relatively easy machining process.
- a shape of the shroud side wall may be a stepped shape in which the flow path width enlarges along a circulating direction of the fluid stepwise at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section.
- the flow path connecting the inflow position and the downstream side can be formed at the intermediate position of the diffuser section by a relatively easy machining process.
- a ratio of the flow path width of the diffuser section at the inflow position to the flow path width of the impeller at the discharge position is not less than 0.5 and less than 0.8.
- the flow path width of the diffuser section at the inflow position is made to be a sufficiently narrow width, and the flow velocity of the fluid at the inflow position where the fluid flows in the diffuser section is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall.
- a ratio of a flow path width of the diffuser section at the flow path width enlarged section to the flow path width of the impeller at the discharge position is not less than 0.8 and not more than 1.0.
- the flow path width of the diffuser section at the flow path width enlarged section is made to be a sufficiently wide width, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of the diffuser section to the downstream side is the same.
- the impeller discharges the fluid, which flows along the axial direction, in a direction orthogonal to the axial direction.
- a flow rate coefficient is not less than 0.01 and not more than 0.05.
- the present invention it is possible to provide a centrifugal compressor in which a malfunction such as shaft vibration due to rotating stall is suppressed, and degradation of performance due to friction losses or the like is suppressed.
- FIG. 1 is a longitudinal sectional view of the centrifugal compressor 10 of the first embodiment.
- FIG. 2 is a front view of the centrifugal compressor 10 of the first embodiment.
- the centrifugal compressor 10 illustrated in FIG. 1 includes an impeller 13 rotatable around an axis A, a casing section 11 housing the impeller 13, a diffuser section 15 for circulating fluid discharged from the impeller 13, and a volute section 16 provided downstream of the diffuser section 15.
- FIG. 2 is a front view when viewing a position where fluid flows in the impeller 13 along the axial direction of axis A.
- the impeller 13, the diffuser section 15, the casing section 11, and the volute section 16 are partially omitted.
- the centrifugal compressor 10 of the first embodiment is a centrifugal compressor whose flow rate coefficient is a relatively small flow rate coefficient, namely not less than 0.01 and not more than 0.05.
- the impeller 13 is connected to a driving device such as a motor and a turbine (not illustrated) through a rotary shaft (not illustrated) along the axis A, and is rotatable around the axis A.
- the impeller 13 has a hub 1 and a shroud 2 arranged along the axial direction of axis A, and a plurality of blades 3 arranged between the hub 1 and the shroud 2. Although only one blade 3 is illustrated in FIG. 1 , a plurality of the blades 3 are arranged at equal intervals in a circumferential direction with the axis A as the center, between the hub 1 and the shroud 2 ( FIG. 2 ).
- the impeller 13 is provided with a space defined by an inner wall 1a of the hub 1 and an inner wall 2a of the shroud 2, and the space is partitioned into a plurality of spaces by the plurality of blades 3. Then, the impeller 13 applies radial centrifugal force to fluid flowing along the axial direction (direction illustrated by the arrow in FIG. 1 ), discharges the fluid in a direction orthogonal to the axial direction (inclined direction; radial direction of the impeller 13), and allows the fluid to flow in the diffuser section 15.
- the diffuser section 15 is a fluid flow path defined by a hub side wall 15a provided on the hub 1 side and a shroud side wall 15b provided on the shroud 2 side. As illustrated in FIG. 2 , the diffuser section 15 is provided so as to surround a discharge position provided on a whole circumference of the impeller 13. In the diffuser section 15, the flow velocity of the fluid discharged from the discharge position of the impeller 13 is reduced, so that kinetic energy (dynamic pressure) applied to the fluid is converted into pressure energy (static pressure).
- the fluid is compressed, and flows in a volute section (volute chamber) 16 communicated with diffuser section 15.
- the compressed fluid that flows in the volute section 16 is discharged to a discharge pipe (not illustrated) through a discharge port (not illustrated).
- the driving device such as the motor and the turbine (not illustrated) rotates the impeller 13 around the axis A.
- the impeller 13 rotates, so that fluid taken from a suction port (not illustrated) is introduced into the casing section 11.
- centrifugal force in the direction orthogonal to the axis A radial direction
- the fluid, to which the centrifugal force is applied is discharged from the impeller 13, and flows in the diffuser section 15.
- the flow velocity of the fluid that flows in the diffuser section 15 reduces, and the fluid becomes compressed fluid to be discharged to the volute section 16.
- the compressed fluid that flows in the volute section 16 is discharged to the discharge pipe (not illustrated) through the discharge port (not illustrated).
- a flow path width W2 of the diffuser section 15 at an inflow position where fluid flows in the diffuser section 15 is narrower than a flow path width W1 of the impeller 13 at a discharge position where the fluid is discharged from the impeller 13.
- a flow path width enlarged section 15c in which the flow path width of the diffuser section 15 is enlarged is provided on the downstream side of the inflow position where the fluid flows in the diffuser section 15, in order to suppress the losses due to the friction.
- the flow path width W1 expresses a length in a direction along the axis A (axial direction).
- the flow path width W1 is equal to a distance in the axial direction between the inner wall 1a of the hub 1 and the inner wall 2a of the shroud 2 at the discharge position where the fluid is discharged from the impeller 13.
- the flow path width W2 expresses a length in the direction along the axis A.
- the flow path width W2 is equal to a distance in the axial direction between the hub side wall 15a and the shroud side wall 15b at the inflow position where the fluid flows in the diffuser section 15.
- the flow path width of the diffuser section 15 (distance in the axial direction between the hub side wall 15a and the shroud side wall 15b) in a range in a circulating direction of the fluid (direction orthogonal to the axial direction) from the inflow position where the fluid flows in the diffuser section 15 to L1 is constant, namely the flow path width W2. Then, at a position (intermediate position) where the distance from the inflow position is between L1 and L2, the hub side wall 15a that defines the diffuser section 15 has a tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid.
- the shroud side wall 15b that defines the diffuser section 15 also has a tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid.
- the hub side wall 15a at a position where the distance from the inflow position where the fluid flows in the diffuser section 15 is between L2 and L3 is disposed in a direction in which the flow path width of the diffuser section 15 enlarges with respect to the hub side wall 15a at the inflow position where the fluid flows in the diffuser section 15.
- the shroud side wall 15b is disposed in a direction in which the flow path width of the diffuser section 15 enlarges with respect to the shroud side wall 15b at the inflow position where the fluid flows in the diffuser section 15.
- the flow path width of the diffuser section 15 is constant, namely a flow path width W3.
- the flow path width enlarged section 15c that is wider than the flow path width of the diffuser section 15 at the inflow position of the diffuser section 15 is provided on the downstream side in the circulating direction of the fluid with respect to the inflow position where the fluid flows in the diffuser section 15.
- the shape of the hub side wall 15a and the shape of the shroud side wall 15b are desirably horizontally symmetrical with respect to the center axis of the flow path.
- a ratio of the flow path width W2 of the diffuser section 15 at the inflow position to the flow path width W1 of the impeller 13 at the discharge position is not less than 0.5 and less than 0.8. Additionally, a ratio of the flow path width W3 of the diffuser section 15 at the flow path width enlarged section 15c to the flow path width W1 of the impeller 13 at the discharge position is not less than 0.8 and not more than 1.0. However, as described above, the respective ratios are selected such that the flow path width W3 of the diffuser section 15 at the flow path width enlarged section 15c is wider than the flow path width W2 of the diffuser section 15 at the inflow position.
- the centrifugal compressor 10 of the first embodiment includes the impeller 13 that discharges fluid, which flows along the axial direction, in the inclined direction from the axial direction (radial direction orthogonal to the axial direction), the casing section 11 that houses the impeller 13, and the diffuser section 15 that circulates the fluid discharged from the impeller 13, wherein the impeller 13 has the hub 1 and the shroud 2 arranged along the axial direction side by side, and the plurality of blades 3 arranged between the hub 1 and the shroud 2.
- the flow path width W2 of the diffuser section 15 at the inflow position where the fluid flows in the diffuser section 15 is narrower than the flow path width W1 of the impeller 13 at the discharge position where the fluid is discharged from the impeller 13.
- the flow velocity of the fluid at the inflow position where the fluid flows in the diffuser section 15 is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall.
- the flow path width enlarged section 15c having the flow path width W3 wider than the flow path width of the diffuser section 15 at the inflow position of the diffuser section 15 is provided downstream with respect to the inflow position of the diffuser section 15.
- the diffuser section 15 is defined by the hub side wall 15a provided on the hub 1 side, and the shroud side wall 15b provided on the shroud 2 side. Then, the hub side wall 15a at the flow path width enlarged section 15c is disposed in the direction in which the flow path width of the diffuser section 15 enlarges with respect to the hub side wall 15a at the inflow position. Additionally, the shroud side wall 15b at the flow path width enlarged section 15c is disposed in the direction in which the flow path width of the diffuser section 15 enlarges with respect to the shroud side wall 15b at the inflow position.
- the both side walls at the flow path width enlarged section 15c of the diffuser section 15 are disposed in the direction in which the flow path width of the diffuser section 15 enlarges, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to the case where the flow path width from the inflow position of the diffuser section 15 to the downstream side is the same flow path width, namely the flow path width W2.
- the shape of the hub side wall 15a is the tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid at the intermediate position between the inflow position of the diffuser section 15 and the flow path width enlarged section 15c
- the shape of the shroud side wall 15b is the tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid at the intermediate position of the diffuser section 15.
- the ratio of the flow path width W2 of the diffuser section 15 at the inflow position to the flow path width W1 of the impeller 13 at the discharge position is not less than 0.5 and less than 0.8.
- the flow path width W2 relative to the flow path width W1 is made to be a sufficiently narrow width, and the flow velocity of the fluid at the inflow position where the fluid flows in the diffuser section 15 is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall.
- the ratio of the flow path width W3 of the diffuser section 15 at the flow path width enlarged section 15c to the flow path width W1 of the impeller 13 at the discharge position is not less than 0.8 and not more than 1.0.
- the flow path width W3 relative to the flow path width W1 is made to be a sufficiently wide width, and it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to the case where the flow path width from the inflow position of the diffuser section 15 to the downstream side is the same flow path width, namely the flow path width W2.
- FIG. 3 is a longitudinal sectional view of the centrifugal compressor 10 of the second embodiment.
- the both side walls (the hub side wall 15a and the shroud side wall 15b) of the diffuser section 15 at the flow path width enlarged section 15c is disposed in the direction in which the flow path width of the diffuser section 15 enlarges.
- one side wall (hub side wall 15a) of a diffuser section 15 at a flow path width enlarged section 15c is disposed in a direction in which a flow path width of the diffuser section 15 enlarges.
- the second embodiment is a modification of the first embodiment.
- Configurations other than the shape of the hub side wall 15a which defines the diffuser section 15 are similar to those of the first embodiment, and therefore the description of the configurations will be omitted.
- the hub side wall 15a at the flow path width enlarged section 15c is disposed in the direction in which the flow path width of the diffuser section 15 enlarges with respect to the hub side wall 15a at an inflow position.
- the shroud side wall 15b at the flow path width enlarged section 15c and the shroud side wall 15b at the inflow position are disposed such that the positions in the axial direction are the same.
- the centrifugal compressor 10 illustrated in FIG. 3 discharges fluid, which flows in an impeller 13, in a direction orthogonal to the axial direction
- a modification in which the centrifugal compressor discharges fluid in a direction inclined to the hub side wall 15a with respect to the direction orthogonal to the axial direction is applicable.
- the fluid that flows in the diffuser section 15 includes a velocity component in a direction in which the fluid vertically abuts on the hub side wall 15a. Accordingly, a loss due to friction is more easily generated at the hub side wall 15a than the shroud side wall 15b, and therefore suppression of a friction loss generated at the hub side wall 15a is desirable.
- the hub side wall 15a is disposed in the direction in which the flow path width of the diffuser section 15 enlarges, and therefore it is possible to form the flow path in which the fluid is stably circulated, and a friction loss caused by the hub side wall 15a is suppressed, in a case where a discharge direction in which fluid discharged from the impeller 13 is directed (inclined) to the direction of the hub side wall 15a with respect to the direction orthogonal to the axial direction.
- a compressor of a type of discharge in a direction inclined to the hub side wall 15a with respect to the direction orthogonal to the axial direction of the impeller 13 is called a mixed flow compressor.
- the compressor is not called the mixed flow compressor, but called a centrifugal compressor which means a compressor that converts fluid flowing in the axial direction into fluid including a velocity component in a direction orthogonal to an axis A (centrifugal direction).
- a flow path width W2 of the diffuser section 15 at the inflow position where the fluid flows in the diffuser section 15 is narrower than a flow path width W1 of the impeller 13 at a discharge position where the fluid is discharged from the impeller 13.
- the hub side wall 15a at the flow path width enlarged section 15c is disposed in the direction in which the flow path width of the diffuser section 15 enlarges with respect to the hub side wall 15a at the inflow position.
- the hub side wall 15a of the diffuser section 15 at the flow path width enlarged section 15c is disposed in the direction in which the flow path width of the diffuser section 15 enlarges, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of the diffuser section 15 to the downstream side is the same flow path width, namely the flow path width W2.
- the shape of the hub side wall 15a is a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of the diffuser section 15 and the flow path width enlarged section 15c.
- FIG. 4 is a longitudinal sectional view of the centrifugal compressor 10 of the third embodiment.
- the both side walls (the hub side wall 15a and the shroud side wall 15b) of the diffuser section 15 at the flow path width enlarged section 15c is disposed in the direction in which the flow path width of the diffuser section 15 enlarges.
- one side wall (shroud side wall 15b) of a diffuser section 15 at a flow path width enlarged section 15c is disposed in a direction in which a flow path width of the diffuser section 15 enlarges.
- the third embodiment is a modification of the first embodiment. Configurations other than the shape of the shroud side wall 15b which defines the diffuser section 15 are similar to those of the first embodiment, and therefore the description of the configurations will be omitted.
- the shroud side wall 15b at the flow path width enlarged section 15c is disposed in the direction in which the flow path width of the diffuser section 15 enlarges with respect to the shroud side wall 15b at an inflow position.
- the hub side wall 15a at the flow path width enlarged section 15c and the hub side wall 15a at the inflow position are disposed such that the positions in the axial direction are the same.
- a flow path width W2 of the diffuser section 15 at the inflow position where the fluid flows in the diffuser section 15 is narrower than a flow path width W1 of the impeller 13 at a discharge position where the fluid is discharged from the impeller 13.
- the shroud side wall 15b at the flow path width enlarged section 15c is disposed in the direction in which the flow path width of the diffuser section 15 enlarges with respect to the shroud side wall 15b at the inflow position.
- the shroud side wall 15b of the diffuser section 15 at the flow path width enlarged section 15c is disposed in the direction in which the flow path width of the diffuser section 15 enlarges, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of the diffuser section 15 to the downstream side is the same flow path width, namely the flow path width W2.
- the shape of the shroud side wall 15b is the tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at the intermediate position of the diffuser section 15.
- FIG. 5 is a longitudinal sectional view of the centrifugal compressor 10 of the fourth embodiment.
- both the hub side wall 15a and the shroud side wall 15b have tapered shapes in which the flow path width gradually enlarges along the circulating direction of fluid.
- a flow path width of a diffuser section 15 (distance in the axial direction between a hub side wall 15a and a shroud side wall 15b) in a range in the circulating direction of the fluid (direction orthogonal to the axial direction) from an inflow position where the fluid flows in the diffuser section 15 to L4 is constant, namely a flow path width W2. Then, at a position where the distance from the inflow position is between L4 and L3, the flow path width of the diffuser section 15 is constant, namely a flow path width W3.
- the diffuser section 15 may be formed in a stepped shape of two steps, three steps, or more steps, and the flow path width of the diffuser section may be gradually enlarge.
- both the hub side wall 15a and the shroud side wall 15b are provided with stepped shapes.
- the stepped shape may be provided in any one of the hub side wall 15a and the shroud side wall 15b, and the stepped shape may not be provided in the other wall.
- the hub side wall 15a at the flow path width enlarged section 15c, and the hub side wall 15a at the inflow position are disposed such that the positions in the axial direction are the same.
- the shroud side wall 15b at the flow path width enlarged section 15c, and the shroud side wall 15b at the inflow position are disposed such that the positions in the axial direction are the same.
- a flow path width W2 of the diffuser section 15 at the inflow position where the fluid flows in the diffuser section 15 is narrower than a flow path width W1 of an impeller 13 at a discharge position where the fluid is discharged from the impeller 13.
- the flow path width enlarged section 15c having the flow path width W3, which is wider than the flow path width W2 of the diffuser section 15 at the inflow position of the diffuser section 15, is provided on the downstream side with respect to the inflow position of the diffuser section 15.
- the shape of the hub side wall 15a is the stepped shape in which the flow path width enlarges along the circulating direction of the fluid stepwise at the intermediate position between the inflow position of the diffuser section 15 and the flow path width enlarged section 15c
- the shape of the shroud side wall 15b is the stepped shape in which the flow path width gradually enlarges along the circulating direction of the fluid at the intermediate position of the diffuser section 15.
- FIG. 6 is a longitudinal sectional view of the centrifugal compressor 10 of the fifth embodiment.
- the centrifugal compressor 10 of the fifth embodiment is a multistage centrifugal compressor in which fluid compressed by an impeller 13 and a diffuser section 15 at the first stage flows in an impeller 13 and a diffuser section 15 at a next stage.
- the fifth embodiment is a modification of the first embodiment. Configurations are similar to those of the first embodiment except that a return bend 17 and a return vane 18 are provided in place of the volute section 16, and therefore the description of the configurations will be omitted.
- compressed fluid that flows in the flow path width enlarged section 15c of the diffuser section 15 flows in the volute section 16 provided downstream of the flow path width enlarged section 15c.
- compressed fluid that flows in a flow path width enlarged section 15c of the diffuser section 15 flows in the return bend 17 provided downstream of the flow path width enlarged section 15c.
- the compressed fluid that flows in the return bend 17 is guided to the impeller 13 at the next stage (second stage) via the return vane 18.
- the fluid guided to the impeller 13 at the second stage is discharged to the diffuser section 15 at the second stage.
- the fluid further compressed in the diffuser section 15 at the second stage is guided to a volute section 16 similar to the volute section illustrated in FIG. 1 of the first embodiment.
- fluid guided to an impeller 13 at a second stage is discharged to a diffuser section 15 at a second stage.
- the fluid further compressed in the diffuser section 15 at the second stage flows in a return bend 17 at the second stage.
- the compressed fluid that flows in the return bend 17 at the second stage is guided to an impeller 13 at a next state (third stage) via the return vane 18.
- the fluid guided to the impeller 13 at the third stage is discharged to a diffuser section 15 at the third stage.
- the fluid further compressed in the diffuser section 15 at the third stage is guided to a volute section 16 similar to the volute section illustrated in FIG. 1 of the first embodiment.
- the two-stage or the three-stage centrifugal compressor 10 is employed as the centrifugal compressor 10, so that it is possible to further increase a compression ratio of fluid. Additionally, an effect similar to the effect of the first embodiment can be exerted by the shapes of the impeller 13 and the diffuser section 15 at each stage.
- the shape of the diffuser section 15 at each stage not only the shape described in the first embodiment, but also any shape described in the second embodiment to the fourth embodiment can be employed.
- the two-stage and the three-stage centrifugal compressor 10 are described. However, a modification of a four or more stage centrifugal compressor 10 may be employed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
- The present invention relates to a centrifugal compressor.
- Conventionally, as a compressor used in a plant or the like, a centrifugal compressor is known. Several improvements are proposed in order to enable miniaturization of the centrifugal compressor, or operation at a small flow rate.
- For example,
Patent Literature 1 discloses a centrifugal compressor in which a flow path width of one part of a diffuser is narrowed by use of a variable diaphragm mechanism in order to enable operation at a small flow rate. - Additionally,
Patent Literature 2 discloses a centrifugal compressor in which a flow path height of a diffuser flow path is gradually increases and a flow path width is enlarged in order to attain miniaturization and enlarge an operating range to a large flow rate side. -
- {PTL 1}
Japanese Unexamined Patent Application, Publication No. 2003-120594 - {PTL 2}
Japanese Unexamined Patent Application, Publication No. 2010-144698 - In the centrifugal compressor, it is generally known that, when a flow angle (angle formed by the discharge direction of fluid from the impeller and the radial direction of the impeller) increases, a loss becomes large, and rotating stall causing an uneven circumferential flow occurs, thereby resulting in generation of a malfunction such as shaft vibration. In order to prevent the malfunction such as the shaft vibration, the flow angle is reduced. That is, it is effective to bring the discharge direction of the fluid from the impeller close to the radial direction of the impeller. Then, for example, as described in Patent Citation 1 and Patent Citation 2, the flow path width of the diffuser is narrowed, so that the flow velocity of the fluid can be increased, and the flow angle can be reduced.
- However, in the diffuser of the centrifugal compressor described in each of Patent Citation 1 and Patent
Citation 2, while the flow path width of the one part of the flow path is narrowed, a flow path width of the diffuser section at an inflow position, in which the fluid discharged from the impeller flows, is not narrowed. Accordingly, in the diffuser described in each of Patent Citation 1 and Patent Citation 2, the flow velocity of the fluid at the inflow position of the fluid to the diffuser is not sufficiently increased, which sometimes causes rotating stall. - The present invention has been made in view of the above circumstances, and an object of the invention is to provide a centrifugal compressor in which a malfunction such as shaft vibration due to rotating stall and degradation of performance due to friction losses or the like are suppressed.
- A centrifugal compressor according to the present invention includes: an impeller that is rotatable around an axis, and discharges fluid, which flows in an axial direction along the axis, in a direction inclined from the axial direction; a casing section that houses the impeller; and a diffuser section that circulates the fluid discharged from the impeller, wherein the impeller includes a hub and a shroud that are arranged along the axial direction side by side, and a plurality of blades that are arranged between the hub and the shroud, wherein a flow path width of the diffuser section at an inflow position where the fluid flows in the diffuser section is narrower than a flow path width of the impeller at a discharge position where the fluid discharges from the impeller, and wherein a flow path width enlarged section wider than the flow path width of the diffuser section at the inflow position is provided on a downstream side with respect to the inflow position of the diffuser section.
- The centrifugal compressor according to the present invention includes: the impeller that discharges the fluid, which flows along the axial direction, in the direction inclined from the axial direction; the casing section that houses the impeller; and the diffuser section that circulates the fluid discharged from the impeller, wherein the impeller has the hub and the shroud that are arranged along the axial direction side by side, and the plurality of blades that are arranged between the hub and the shroud.
- Then, according to the centrifugal compressor according to the present invention, the flow path width of the diffuser section at the inflow position where the fluid flows in the diffuser section is narrower than the flow path width of the impeller at the discharge position where the fluid discharges from the impeller. Thus, the flow velocity of the fluid at the inflow position where the fluid flows in the diffuser section is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall.
- Additionally, according to the centrifugal compressor according to the present invention, the flow path width enlarged section wider than the flow path width of the diffuser section at the inflow position is provided on a downstream side with respect to the inflow position of the diffuser section. Thus, it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid circulating in the diffuser section, compared to a case where the flow path width from the inflow position of the diffuser section to the downstream side is the same.
- In a centrifugal compressor of a first aspect of the present invention, the diffuser section is defined by a hub side wall provided on a side of the hub, and a shroud side wall provided on a side of the shroud, the hub side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the hub side wall at the inflow position, and the shroud side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the shroud side wall at the inflow position.
- Thus, the both side walls at the flow path width enlarged section of the diffuser section are disposed in the direction in which the flow path width of the diffuser section enlarges, and it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of the diffuser section to the downstream side is the same.
- In a centrifugal compressor of a second aspect of the present invention, the diffuser section is defined by a hub side wall provided on a side of the hub, and a shroud side wall provided on a side of the shroud, and the hub side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the hub side wall at the inflow position.
- Thus, the hub side wall of the diffuser section at the flow path width enlarged section is disposed in the direction in which the flow path width of the diffuser section enlarges, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of the diffuser section to the downstream side is the same. Additionally, the hub side wall is disposed in the direction in which the flow path width of the diffuser section enlarges, and therefore it is possible to form the flow path in which the fluid is stably circulated, in a case where the discharge direction in which fluid discharges from the impeller is directed to a direction of the hub side wall with respect to a direction orthogonal to the axial direction.
- In a centrifugal compressor of a third aspect of the present invention, the diffuser section is defined by a hub side wall provided on a side of the hub, and a shroud side wall provided on a side of the shroud, and the shroud side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the shroud side wall at the inflow position.
- Thus, the shroud side wall of the diffuser section at the flow path width enlarged section is disposed in the direction in which the flow path width of the diffuser section enlarges, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of the diffuser section to the downstream side is the same.
- In the above centrifugal compressor of the first aspect of the present invention, a shape of the hub side wall may be a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section, and a shape of the shroud side wall may be a tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid at the intermediate position of the diffuser section.
- Thus, it is possible to form the flow path that allows the fluid to stably circulate in the flow path at the intermediate position of the diffuser section.
- In the above centrifugal compressor of the second aspect of the present invention, a shape of the hub side wall may be a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section.
- Thus, it is possible to form the flow path that allows the fluid to stably circulate in the flow path at the intermediate position of the diffuser section.
- In the above centrifugal compressor of the third aspect of the present invention, a shape of the shroud side wall may be a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section.
- Thus, it is possible to form the flow path that allows the fluid to stably circulate in the flow path at the intermediate position of the diffuser section.
- In the above centrifugal compressor of the first aspect of the present invention, a shape of the hub side wall may be a stepped shape in which the flow path width enlarges along a circulating direction of the fluid stepwise at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section, and a shape of the shroud side wall may be a stepped shape in which the flow path width enlarges along the circulating direction of the fluid stepwise at the intermediate position of the diffuser section.
- Thus, the flow path connecting the inflow position and the downstream side can be formed at the intermediate position of the diffuser section by a relatively easy machining process.
- In the above centrifugal compressor of the second aspect of the present invention, a shape of the hub side wall may be a stepped shape in which the flow path width enlarges along a circulating direction of the fluid stepwise at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section.
- Thus, the flow path connecting the inflow position and the downstream side can be formed at the intermediate position of the diffuser section by a relatively easy machining process.
- In the above centrifugal compressor of the third aspect of the present invention, a shape of the shroud side wall may be a stepped shape in which the flow path width enlarges along a circulating direction of the fluid stepwise at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section.
- Thus, the flow path connecting the inflow position and the downstream side can be formed at the intermediate position of the diffuser section by a relatively easy machining process.
- In a centrifugal compressor of a fourth aspect of the present invention, a ratio of the flow path width of the diffuser section at the inflow position to the flow path width of the impeller at the discharge position is not less than 0.5 and less than 0.8.
- Thus, the flow path width of the diffuser section at the inflow position is made to be a sufficiently narrow width, and the flow velocity of the fluid at the inflow position where the fluid flows in the diffuser section is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall.
- In a centrifugal compressor of a fifth aspect of the present invention, a ratio of a flow path width of the diffuser section at the flow path width enlarged section to the flow path width of the impeller at the discharge position is not less than 0.8 and not more than 1.0.
- Thus, the flow path width of the diffuser section at the flow path width enlarged section is made to be a sufficiently wide width, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of the diffuser section to the downstream side is the same.
- In a centrifugal compressor of a sixth aspect of the present invention, the impeller discharges the fluid, which flows along the axial direction, in a direction orthogonal to the axial direction.
- Thus, in the centrifugal compressor that discharges the fluid, which flows along the axial direction, in the direction orthogonal to the axial direction, it is possible to suppress a malfunction such as shaft vibration due to rotating stall, and to suppress degradation of performance due to friction losses or the like.
- In a centrifugal compressor of a seventh aspect of the present invention, a flow rate coefficient is not less than 0.01 and not more than 0.05.
- Thus, in the centrifugal compressor having a relatively small flow rate coefficient, it is possible to suppress a malfunction such as shaft vibration due to rotating stall, and to suppress degradation of performance due to friction losses or the like.
- According to the present invention, it is possible to provide a centrifugal compressor in which a malfunction such as shaft vibration due to rotating stall is suppressed, and degradation of performance due to friction losses or the like is suppressed.
-
- [
FIG. 1] FIG. 1 is a longitudinal sectional view of a centrifugal compressor of a first embodiment. - [
FIG. 2] FIG. 2 is a front view of the centrifugal compressor of the first embodiment. - [
FIG. 3] FIG. 3 is a longitudinal sectional view of a centrifugal compressor of a second embodiment. - [
FIG. 4] FIG. 4 is a longitudinal sectional view of a centrifugal compressor of a third embodiment. - [
FIG. 5] FIG. 5 is a longitudinal sectional view of a centrifugal compressor of a fourth embodiment. - [
FIG. 6] FIG. 6 is a longitudinal sectional view of a centrifugal compressor of a fifth embodiment. - Hereinafter, a
centrifugal compressor 10 of a first embodiment will be described with reference toFIG. 1 andFIG. 2 .FIG. 1 is a longitudinal sectional view of thecentrifugal compressor 10 of the first embodiment.FIG. 2 is a front view of thecentrifugal compressor 10 of the first embodiment. - The
centrifugal compressor 10 illustrated inFIG. 1 includes animpeller 13 rotatable around an axis A, acasing section 11 housing theimpeller 13, adiffuser section 15 for circulating fluid discharged from theimpeller 13, and avolute section 16 provided downstream of thediffuser section 15. -
FIG. 2 is a front view when viewing a position where fluid flows in theimpeller 13 along the axial direction of axis A. In order to facilitate the description, theimpeller 13, thediffuser section 15, thecasing section 11, and thevolute section 16 are partially omitted. - The
centrifugal compressor 10 of the first embodiment is a centrifugal compressor whose flow rate coefficient is a relatively small flow rate coefficient, namely not less than 0.01 and not more than 0.05. - The
impeller 13 is connected to a driving device such as a motor and a turbine (not illustrated) through a rotary shaft (not illustrated) along the axis A, and is rotatable around the axis A. Theimpeller 13 has ahub 1 and ashroud 2 arranged along the axial direction of axis A, and a plurality ofblades 3 arranged between thehub 1 and theshroud 2. Although only oneblade 3 is illustrated inFIG. 1 , a plurality of theblades 3 are arranged at equal intervals in a circumferential direction with the axis A as the center, between thehub 1 and the shroud 2 (FIG. 2 ). - The
impeller 13 is provided with a space defined by aninner wall 1a of thehub 1 and aninner wall 2a of theshroud 2, and the space is partitioned into a plurality of spaces by the plurality ofblades 3. Then, theimpeller 13 applies radial centrifugal force to fluid flowing along the axial direction (direction illustrated by the arrow inFIG. 1 ), discharges the fluid in a direction orthogonal to the axial direction (inclined direction; radial direction of the impeller 13), and allows the fluid to flow in thediffuser section 15. - The
diffuser section 15 is a fluid flow path defined by ahub side wall 15a provided on thehub 1 side and ashroud side wall 15b provided on theshroud 2 side. As illustrated inFIG. 2 , thediffuser section 15 is provided so as to surround a discharge position provided on a whole circumference of theimpeller 13. In thediffuser section 15, the flow velocity of the fluid discharged from the discharge position of theimpeller 13 is reduced, so that kinetic energy (dynamic pressure) applied to the fluid is converted into pressure energy (static pressure). - The fluid, the flow velocity of which is reduced when passing through the
diffuser section 15, is compressed, and flows in a volute section (volute chamber) 16 communicated withdiffuser section 15. The compressed fluid that flows in thevolute section 16 is discharged to a discharge pipe (not illustrated) through a discharge port (not illustrated). - Herein, operation of the
centrifugal compressor 10 will be described. - In the
centrifugal compressor 10, the driving device such as the motor and the turbine (not illustrated) rotates theimpeller 13 around the axis A. Theimpeller 13 rotates, so that fluid taken from a suction port (not illustrated) is introduced into thecasing section 11. To the fluid introduced into thecasing section 11, centrifugal force in the direction orthogonal to the axis A (radial direction) is applied through theblades 3 by the rotation of theimpeller 13. The fluid, to which the centrifugal force is applied, is discharged from theimpeller 13, and flows in thediffuser section 15. The flow velocity of the fluid that flows in thediffuser section 15 reduces, and the fluid becomes compressed fluid to be discharged to thevolute section 16. The compressed fluid that flows in thevolute section 16 is discharged to the discharge pipe (not illustrated) through the discharge port (not illustrated). - Now, flow path widths of the
impeller 13 and thediffuser section 15 will be described. - As illustrated in
FIG. 1 , a flow path width W2 of thediffuser section 15 at an inflow position where fluid flows in thediffuser section 15 is narrower than a flow path width W1 of theimpeller 13 at a discharge position where the fluid is discharged from theimpeller 13. By such a narrowing configuration, a flow velocity of the fluid at the inflow position where the fluid flows in thediffuser section 15 is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall. - Thus, the flow velocity of the fluid at the inflow position where the fluid flows in the
diffuser section 15 is sufficiently increased, so that occurrence of rotating stall is suppressed. On the other hand, when the flow velocity of the fluid is increased, losses due to friction between the fluid and thehub side wall 15a and friction between the fluid and theshroud side wall 15b increase. Therefore, in the first embodiment, a flow path width enlargedsection 15c in which the flow path width of thediffuser section 15 is enlarged is provided on the downstream side of the inflow position where the fluid flows in thediffuser section 15, in order to suppress the losses due to the friction. - As illustrated in
FIG. 1 , the flow path width W1 expresses a length in a direction along the axis A (axial direction). The flow path width W1 is equal to a distance in the axial direction between theinner wall 1a of thehub 1 and theinner wall 2a of theshroud 2 at the discharge position where the fluid is discharged from theimpeller 13. - As illustrated in
FIG. 1 , the flow path width W2 expresses a length in the direction along the axis A. The flow path width W2 is equal to a distance in the axial direction between thehub side wall 15a and theshroud side wall 15b at the inflow position where the fluid flows in thediffuser section 15. - The flow path width of the diffuser section 15 (distance in the axial direction between the
hub side wall 15a and theshroud side wall 15b) in a range in a circulating direction of the fluid (direction orthogonal to the axial direction) from the inflow position where the fluid flows in thediffuser section 15 to L1 is constant, namely the flow path width W2. Then, at a position (intermediate position) where the distance from the inflow position is between L1 and L2, thehub side wall 15a that defines thediffuser section 15 has a tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid. Additionally, at the position (intermediate position) where the distance from the inflow position is between L1 and L2, theshroud side wall 15b that defines thediffuser section 15 also has a tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid. - The
hub side wall 15a at a position where the distance from the inflow position where the fluid flows in thediffuser section 15 is between L2 and L3 is disposed in a direction in which the flow path width of thediffuser section 15 enlarges with respect to thehub side wall 15a at the inflow position where the fluid flows in thediffuser section 15. Similarly, theshroud side wall 15b is disposed in a direction in which the flow path width of thediffuser section 15 enlarges with respect to theshroud side wall 15b at the inflow position where the fluid flows in thediffuser section 15. At the position where the distance from the inflow position is between L2 and L3, the flow path width of thediffuser section 15 is constant, namely a flow path width W3. - As described above, the flow path width enlarged
section 15c that is wider than the flow path width of thediffuser section 15 at the inflow position of thediffuser section 15 is provided on the downstream side in the circulating direction of the fluid with respect to the inflow position where the fluid flows in thediffuser section 15. - In the flow path width enlarged
section 15c, the shape of thehub side wall 15a and the shape of theshroud side wall 15b are desirably horizontally symmetrical with respect to the center axis of the flow path. - In the first embodiment, a ratio of the flow path width W2 of the
diffuser section 15 at the inflow position to the flow path width W1 of theimpeller 13 at the discharge position is not less than 0.5 and less than 0.8. Additionally, a ratio of the flow path width W3 of thediffuser section 15 at the flow path width enlargedsection 15c to the flow path width W1 of theimpeller 13 at the discharge position is not less than 0.8 and not more than 1.0. However, as described above, the respective ratios are selected such that the flow path width W3 of thediffuser section 15 at the flow path width enlargedsection 15c is wider than the flow path width W2 of thediffuser section 15 at the inflow position. - As described above, the
centrifugal compressor 10 of the first embodiment includes theimpeller 13 that discharges fluid, which flows along the axial direction, in the inclined direction from the axial direction (radial direction orthogonal to the axial direction), thecasing section 11 that houses theimpeller 13, and thediffuser section 15 that circulates the fluid discharged from theimpeller 13, wherein theimpeller 13 has thehub 1 and theshroud 2 arranged along the axial direction side by side, and the plurality ofblades 3 arranged between thehub 1 and theshroud 2. - According to the
centrifugal compressor 10 of the first embodiment, the flow path width W2 of thediffuser section 15 at the inflow position where the fluid flows in thediffuser section 15 is narrower than the flow path width W1 of theimpeller 13 at the discharge position where the fluid is discharged from theimpeller 13. Thus, the flow velocity of the fluid at the inflow position where the fluid flows in thediffuser section 15 is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall. - According to the
centrifugal compressor 10 of the first embodiment, the flow path width enlargedsection 15c having the flow path width W3 wider than the flow path width of thediffuser section 15 at the inflow position of thediffuser section 15 is provided downstream with respect to the inflow position of thediffuser section 15. Thus, it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid circulating in thediffuser section 15, compared to a case where the flow path width from the inflow position of thediffuser section 15 to the downstream side is the same flow path width, namely the flow path width W2. - In the first embodiment, the
diffuser section 15 is defined by thehub side wall 15a provided on thehub 1 side, and theshroud side wall 15b provided on theshroud 2 side. Then, thehub side wall 15a at the flow path width enlargedsection 15c is disposed in the direction in which the flow path width of thediffuser section 15 enlarges with respect to thehub side wall 15a at the inflow position. Additionally, theshroud side wall 15b at the flow path width enlargedsection 15c is disposed in the direction in which the flow path width of thediffuser section 15 enlarges with respect to theshroud side wall 15b at the inflow position. - Thus, the both side walls at the flow path width enlarged
section 15c of thediffuser section 15 are disposed in the direction in which the flow path width of thediffuser section 15 enlarges, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to the case where the flow path width from the inflow position of thediffuser section 15 to the downstream side is the same flow path width, namely the flow path width W2. - In the first embodiment, the shape of the
hub side wall 15a is the tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid at the intermediate position between the inflow position of thediffuser section 15 and the flow path width enlargedsection 15c, and the shape of theshroud side wall 15b is the tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid at the intermediate position of thediffuser section 15. Thus, it is possible to form the flow path that allows the fluid to stably circulate in the flow path at the intermediate position of thediffuser section 15. - In the first embodiment, the ratio of the flow path width W2 of the
diffuser section 15 at the inflow position to the flow path width W1 of theimpeller 13 at the discharge position is not less than 0.5 and less than 0.8. Thus, the flow path width W2 relative to the flow path width W1 is made to be a sufficiently narrow width, and the flow velocity of the fluid at the inflow position where the fluid flows in thediffuser section 15 is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall. - In the first embodiment, the ratio of the flow path width W3 of the
diffuser section 15 at the flow path width enlargedsection 15c to the flow path width W1 of theimpeller 13 at the discharge position is not less than 0.8 and not more than 1.0. Thus, the flow path width W3 relative to the flow path width W1 is made to be a sufficiently wide width, and it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to the case where the flow path width from the inflow position of thediffuser section 15 to the downstream side is the same flow path width, namely the flow path width W2. - Now, a
centrifugal compressor 10 of a second embodiment will be described with reference toFIG. 3. FIG. 3 is a longitudinal sectional view of thecentrifugal compressor 10 of the second embodiment. - In the first embodiment, the both side walls (the
hub side wall 15a and theshroud side wall 15b) of thediffuser section 15 at the flow path width enlargedsection 15c is disposed in the direction in which the flow path width of thediffuser section 15 enlarges. On the contrary, in the second embodiment, one side wall (hub side wall 15a) of adiffuser section 15 at a flow path width enlargedsection 15c is disposed in a direction in which a flow path width of thediffuser section 15 enlarges. - The second embodiment is a modification of the first embodiment. Configurations other than the shape of the
hub side wall 15a which defines thediffuser section 15 are similar to those of the first embodiment, and therefore the description of the configurations will be omitted. - In the second embodiment, as illustrated in
FIG. 3 , thehub side wall 15a at the flow path width enlargedsection 15c is disposed in the direction in which the flow path width of thediffuser section 15 enlarges with respect to thehub side wall 15a at an inflow position. On the other hand, theshroud side wall 15b at the flow path width enlargedsection 15c and theshroud side wall 15b at the inflow position are disposed such that the positions in the axial direction are the same. - Although the
centrifugal compressor 10 illustrated inFIG. 3 discharges fluid, which flows in animpeller 13, in a direction orthogonal to the axial direction, a modification in which the centrifugal compressor discharges fluid in a direction inclined to thehub side wall 15a with respect to the direction orthogonal to the axial direction is applicable. In this case, the fluid that flows in thediffuser section 15 includes a velocity component in a direction in which the fluid vertically abuts on thehub side wall 15a. Accordingly, a loss due to friction is more easily generated at thehub side wall 15a than theshroud side wall 15b, and therefore suppression of a friction loss generated at thehub side wall 15a is desirable. - In the modification of the second embodiment, the
hub side wall 15a is disposed in the direction in which the flow path width of thediffuser section 15 enlarges, and therefore it is possible to form the flow path in which the fluid is stably circulated, and a friction loss caused by thehub side wall 15a is suppressed, in a case where a discharge direction in which fluid discharged from theimpeller 13 is directed (inclined) to the direction of thehub side wall 15a with respect to the direction orthogonal to the axial direction. - Like the modification of the second embodiment, a compressor of a type of discharge in a direction inclined to the
hub side wall 15a with respect to the direction orthogonal to the axial direction of theimpeller 13 is called a mixed flow compressor. In the second embodiment, the compressor is not called the mixed flow compressor, but called a centrifugal compressor which means a compressor that converts fluid flowing in the axial direction into fluid including a velocity component in a direction orthogonal to an axis A (centrifugal direction). - As described above, according to the
centrifugal compressor 10 of the second embodiment, a flow path width W2 of thediffuser section 15 at the inflow position where the fluid flows in thediffuser section 15 is narrower than a flow path width W1 of theimpeller 13 at a discharge position where the fluid is discharged from theimpeller 13. Thus, a flow velocity of fluid at the inflow position where the fluid flows in thediffuser section 15 is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall. - In the second embodiment, the
hub side wall 15a at the flow path width enlargedsection 15c is disposed in the direction in which the flow path width of thediffuser section 15 enlarges with respect to thehub side wall 15a at the inflow position. Thus, thehub side wall 15a of thediffuser section 15 at the flow path width enlargedsection 15c is disposed in the direction in which the flow path width of thediffuser section 15 enlarges, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of thediffuser section 15 to the downstream side is the same flow path width, namely the flow path width W2. - In the second embodiment, the shape of the
hub side wall 15a is a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of thediffuser section 15 and the flow path width enlargedsection 15c. Thus, it is possible to form the flow path that allows the fluid to stably circulate in the flow path at the intermediate position of thediffuser section 15. - Now, a
centrifugal compressor 10 of the third embodiment will be described with reference toFIG. 4. FIG. 4 is a longitudinal sectional view of thecentrifugal compressor 10 of the third embodiment. - In the first embodiment, the both side walls (the
hub side wall 15a and theshroud side wall 15b) of thediffuser section 15 at the flow path width enlargedsection 15c is disposed in the direction in which the flow path width of thediffuser section 15 enlarges. On the contrary, in the third embodiment, one side wall (shroud side wall 15b) of adiffuser section 15 at a flow path width enlargedsection 15c is disposed in a direction in which a flow path width of thediffuser section 15 enlarges. - The third embodiment is a modification of the first embodiment. Configurations other than the shape of the
shroud side wall 15b which defines thediffuser section 15 are similar to those of the first embodiment, and therefore the description of the configurations will be omitted. - In the third embodiment, as illustrated in
FIG. 4 , theshroud side wall 15b at the flow path width enlargedsection 15c is disposed in the direction in which the flow path width of thediffuser section 15 enlarges with respect to theshroud side wall 15b at an inflow position. On the other hand, thehub side wall 15a at the flow path width enlargedsection 15c and thehub side wall 15a at the inflow position are disposed such that the positions in the axial direction are the same. - As described above, according to the
centrifugal compressor 10 of the third embodiment, a flow path width W2 of thediffuser section 15 at the inflow position where the fluid flows in thediffuser section 15 is narrower than a flow path width W1 of theimpeller 13 at a discharge position where the fluid is discharged from theimpeller 13. Thus, a flow velocity of fluid at the inflow position where the fluid flows in thediffuser section 15 is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall. - In the third embodiment, the
shroud side wall 15b at the flow path width enlargedsection 15c is disposed in the direction in which the flow path width of thediffuser section 15 enlarges with respect to theshroud side wall 15b at the inflow position. Thus, theshroud side wall 15b of thediffuser section 15 at the flow path width enlargedsection 15c is disposed in the direction in which the flow path width of thediffuser section 15 enlarges, so that it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of the fluid, compared to a case where the flow path width from the inflow position of thediffuser section 15 to the downstream side is the same flow path width, namely the flow path width W2. - In the third embodiment, the shape of the
shroud side wall 15b is the tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at the intermediate position of thediffuser section 15. Thus, it is possible to form the flow path that allows the fluid to stably circulate in the flow path at the intermediate position of thediffuser section 15. - Now, a
centrifugal compressor 10 of the fourth embodiment will be described with reference toFIG. 5. FIG. 5 is a longitudinal sectional view of thecentrifugal compressor 10 of the fourth embodiment. - In the first embodiment, between the flow path having the flow path width W2, provided at the inflow position of the
diffuser section 15, and the flow path width enlargedsection 15c having the flow path width W3, provided downstream of the diffuser section 15 (at the intermediate position), both thehub side wall 15a and theshroud side wall 15b have tapered shapes in which the flow path width gradually enlarges along the circulating direction of fluid. - On the contrary, in the fourth embodiment, in place of the tapered shape, a stepped shape in which the flow path width enlarges along the circulating direction of the fluid stepwise.
- A flow path width of a diffuser section 15 (distance in the axial direction between a
hub side wall 15a and ashroud side wall 15b) in a range in the circulating direction of the fluid (direction orthogonal to the axial direction) from an inflow position where the fluid flows in thediffuser section 15 to L4 is constant, namely a flow path width W2. Then, at a position where the distance from the inflow position is between L4 and L3, the flow path width of thediffuser section 15 is constant, namely a flow path width W3. - In the fourth embodiment illustrated in
FIG. 5 , only one step is provided in thediffuser section 15. However, not only one step but also a plurality of steps may be provided. For example, in place of the tapered part (intermediate position of the diffuser section 15) illustrated inFIG. 1 of the first embodiment, thediffuser section 15 may be formed in a stepped shape of two steps, three steps, or more steps, and the flow path width of the diffuser section may be gradually enlarge. - In the fourth embodiment illustrated in
FIG. 5 , both thehub side wall 15a and theshroud side wall 15b are provided with stepped shapes. However, the stepped shape may be provided in any one of thehub side wall 15a and theshroud side wall 15b, and the stepped shape may not be provided in the other wall. For example, in a case where the stepped shape is not provided in thehub side wall 15a, thehub side wall 15a at the flow path width enlargedsection 15c, and thehub side wall 15a at the inflow position are disposed such that the positions in the axial direction are the same. Additionally, for example, in a case where the stepped shape is not provided in theshroud side wall 15b, theshroud side wall 15b at the flow path width enlargedsection 15c, and theshroud side wall 15b at the inflow position are disposed such that the positions in the axial direction are the same. - As described above, according to the
centrifugal compressor 10 of the fourth embodiment, a flow path width W2 of thediffuser section 15 at the inflow position where the fluid flows in thediffuser section 15 is narrower than a flow path width W1 of animpeller 13 at a discharge position where the fluid is discharged from theimpeller 13. Thus, a flow velocity of fluid at the inflow position where the fluid flows in thediffuser section 15 is sufficiently increased, and occurrence of rotating stall is suppressed, so that it is possible to suppress a malfunction such as shaft vibration due to rotating stall. - According to the
centrifugal compressor 10 of the fourth embodiment, the flow path width enlargedsection 15c having the flow path width W3, which is wider than the flow path width W2 of thediffuser section 15 at the inflow position of thediffuser section 15, is provided on the downstream side with respect to the inflow position of thediffuser section 15. Thus, it is possible to suppress degradation of performance due to, for example, friction losses caused by increase in the flow velocity of fluid circulating in thediffuser section 15, compared to a case where the flow path width from the inflow position of thediffuser section 15 to the downstream side is the same flow path width, namely the flow path width W2. - In the fourth embodiment, the shape of the
hub side wall 15a is the stepped shape in which the flow path width enlarges along the circulating direction of the fluid stepwise at the intermediate position between the inflow position of thediffuser section 15 and the flow path width enlargedsection 15c, and the shape of theshroud side wall 15b is the stepped shape in which the flow path width gradually enlarges along the circulating direction of the fluid at the intermediate position of thediffuser section 15. Thus, the flow path connecting the inflow position and the downstream side can be formed at the intermediate position of thediffuser section 15 by a relatively easy machining process. - Now, a
centrifugal compressor 10 of the fifth embodiment will be described with reference toFIG. 6. FIG. 6 is a longitudinal sectional view of thecentrifugal compressor 10 of the fifth embodiment. - In the first embodiment to the fourth embodiment, a single-stage centrifugal compressor provided with the
volute section 16 downstream of thediffuser section 15 is described. However, thecentrifugal compressor 10 of the fifth embodiment is a multistage centrifugal compressor in which fluid compressed by animpeller 13 and adiffuser section 15 at the first stage flows in animpeller 13 and adiffuser section 15 at a next stage. - The fifth embodiment is a modification of the first embodiment. Configurations are similar to those of the first embodiment except that a
return bend 17 and areturn vane 18 are provided in place of thevolute section 16, and therefore the description of the configurations will be omitted. - In the first embodiment, compressed fluid that flows in the flow path width enlarged
section 15c of thediffuser section 15 flows in thevolute section 16 provided downstream of the flow path width enlargedsection 15c. On the contrary, in the fifth embodiment, compressed fluid that flows in a flow path width enlargedsection 15c of thediffuser section 15 flows in thereturn bend 17 provided downstream of the flow path width enlargedsection 15c. The compressed fluid that flows in thereturn bend 17 is guided to theimpeller 13 at the next stage (second stage) via thereturn vane 18. - In a case where a two-stage centrifugal compressor is employed as the
centrifugal compressor 10 of the fifth embodiment, the fluid guided to theimpeller 13 at the second stage is discharged to thediffuser section 15 at the second stage. The fluid further compressed in thediffuser section 15 at the second stage is guided to avolute section 16 similar to the volute section illustrated inFIG. 1 of the first embodiment. - In a case where a three-stage centrifugal compressor is employed as the
centrifugal compressor 10 of the fifth embodiment, fluid guided to animpeller 13 at a second stage is discharged to adiffuser section 15 at a second stage. The fluid further compressed in thediffuser section 15 at the second stage flows in areturn bend 17 at the second stage. The compressed fluid that flows in thereturn bend 17 at the second stage is guided to animpeller 13 at a next state (third stage) via thereturn vane 18. The fluid guided to theimpeller 13 at the third stage is discharged to adiffuser section 15 at the third stage. The fluid further compressed in thediffuser section 15 at the third stage is guided to avolute section 16 similar to the volute section illustrated inFIG. 1 of the first embodiment. - As described above, the two-stage or the three-stage
centrifugal compressor 10 is employed as thecentrifugal compressor 10, so that it is possible to further increase a compression ratio of fluid. Additionally, an effect similar to the effect of the first embodiment can be exerted by the shapes of theimpeller 13 and thediffuser section 15 at each stage. - As the shape of the
diffuser section 15 at each stage, not only the shape described in the first embodiment, but also any shape described in the second embodiment to the fourth embodiment can be employed. - Additionally, in the fifth embodiment, the two-stage and the three-stage
centrifugal compressor 10 are described. However, a modification of a four or more stagecentrifugal compressor 10 may be employed. -
- 1: Hub
- 2: Shroud
- 3: Blade
- 10: Centrifugal compressor
- 11: Casing section
- 13: Impeller
- 15: Diffuser section
- 15a: Hub side wall
- 15b: Shroud side wall
- 15c: Flow path width enlarged section
- 16: Volute section
- A: Axis
- W1: Flow path width of impeller at discharge position
- W2: Flow path width of diffuser section at inflow position
- W3: Flow path width of diffuser section at flow path width
- enlarged section
Claims (14)
- A centrifugal compressor comprising:an impeller that is rotatable around an axis, and discharges fluid, which flows in an axial direction along the axis, in a direction inclined from the axial direction;a casing section that houses the impeller; anda diffuser section that circulates the fluid discharged from the impeller, whereinthe impeller includes a hub and a shroud that are arranged along the axial direction side by side, and a plurality of blades that are arranged between the hub and the shroud,a flow path width of the diffuser section at an inflow position where the fluid flows in the diffuser section is narrower than a flow path width of the impeller at a discharge position where the fluid discharges from the impeller, anda flow path width enlarged section wider than the flow path width of the diffuser section at the inflow position is provided on a downstream side with respect to the inflow position of the diffuser section.
- The centrifugal compressor according to claim 1, wherein
the diffuser section is defined by a hub side wall provided on a side of the hub, and a shroud side wall provided on a side of the shroud,
the hub side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the hub side wall at the inflow position, and
the shroud side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the shroud side wall at the inflow position. - The centrifugal compressor according to claim 1,
wherein
the diffuser section is defined by a hub side wall provided on a side of the hub, and a shroud side wall provided on a side of the shroud, and
the hub side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the hub side wall at the inflow position. - The centrifugal compressor according to claim 1,
wherein
the diffuser section is defined by a hub side wall provided on a side of the hub, and a shroud side wall provided on a side of the shroud, and
the shroud side wall at the flow path width enlarged section is disposed in a direction in which the flow path width of the diffuser section enlarges with respect to the shroud side wall at the inflow position. - The centrifugal compressor according to claim 2,
wherein
a shape of the hub side wall is a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section, and
a shape of the shroud side wall is a tapered shape in which the flow path width gradually enlarges along the circulating direction of the fluid at the intermediate position of the diffuser section. - The centrifugal compressor according to claim 3,
wherein
a shape of the hub side wall is a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section. - The centrifugal compressor according to claim 4,
wherein
a shape of the shroud side wall is a tapered shape in which the flow path width gradually enlarges along a circulating direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section. - The centrifugal compressor according to claim 2,
wherein
a shape of the hub side wall is a stepped shape in which the flow path width enlarges along a circulating direction of the fluid stepwise at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section, and
a shape of the shroud side wall is a stepped shape in which the flow path width enlarges along the circulating direction of the fluid stepwise at the intermediate position of the diffuser section. - The centrifugal compressor according to claim 3,
wherein
a shape of the hub side wall is a stepped shape in which the flow path width enlarges along a circulating direction of the fluid stepwise at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section. - The centrifugal compressor according to claim 4,
wherein
a shape of the shroud side wall is a stepped shape in which the flow path width enlarges along a circulating direction of the fluid stepwise at an intermediate position between the inflow position of the diffuser section and the flow path width enlarged section. - The centrifugal compressor according to any one of
claims 1 to 10, wherein
a ratio of the flow path width of the diffuser section at the inflow position to the flow path width of the impeller at the discharge position is not less than 0.5 and less than 0.8. - The centrifugal compressor according to any one of
claims 1 to 11, wherein
a ratio of a flow path width of the diffuser section at the flow path width enlarged section to the flow path width of the impeller at the discharge position is not less than 0.8 and not more than 1.0. - The centrifugal compressor according to any one of
claims 1 to 12, wherein
the impeller discharges the fluid, which flows along the axial direction, in a direction orthogonal to the axial direction. - The centrifugal compressor according to any one of
claims 1 to 13, wherein
a flow rate coefficient is not less than 0.01 and not more than 0.05.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/066989 WO2014203379A1 (en) | 2013-06-20 | 2013-06-20 | Centrifugal compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3012461A1 true EP3012461A1 (en) | 2016-04-27 |
EP3012461A4 EP3012461A4 (en) | 2017-02-08 |
Family
ID=52104141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13887157.9A Withdrawn EP3012461A4 (en) | 2013-06-20 | 2013-06-20 | Centrifugal compressor |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160108920A1 (en) |
EP (1) | EP3012461A4 (en) |
CN (1) | CN105121864B (en) |
WO (1) | WO2014203379A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015103615A1 (en) * | 2014-10-24 | 2016-04-28 | Volkswagen Aktiengesellschaft | centrifugal compressors |
KR102104415B1 (en) * | 2015-02-05 | 2020-04-24 | 한화파워시스템 주식회사 | Compressor |
JP6594019B2 (en) * | 2015-04-14 | 2019-10-23 | 三菱重工サーマルシステムズ株式会社 | Inlet guide vane and centrifugal compressor |
JP6470853B2 (en) | 2015-12-25 | 2019-02-13 | 三菱重工エンジン&ターボチャージャ株式会社 | Centrifugal compressor and turbocharger |
US10935035B2 (en) * | 2017-10-26 | 2021-03-02 | Hanwha Power Systems Co., Ltd | Closed impeller with self-recirculation casing treatment |
CN109707665B (en) * | 2017-10-26 | 2022-04-29 | 韩华压缩机株式会社 | Closed impeller with self-recirculating casing treatment |
DE102017127758A1 (en) * | 2017-11-24 | 2019-05-29 | Man Diesel & Turbo Se | Centrifugal compressor and turbocharger |
US10851801B2 (en) * | 2018-03-02 | 2020-12-01 | Ingersoll-Rand Industrial U.S., Inc. | Centrifugal compressor system and diffuser |
US20200378303A1 (en) | 2019-06-03 | 2020-12-03 | Pratt & Whitney Canada Corp. | Diffuser pipe exit flare |
US20240159245A1 (en) * | 2022-11-13 | 2024-05-16 | Borgwarner Inc. | Controlled area progression diffuser |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3289921A (en) * | 1965-10-08 | 1966-12-06 | Caterpillar Tractor Co | Vaneless diffuser |
JPS50138410A (en) * | 1974-04-23 | 1975-11-05 | ||
GB1574942A (en) * | 1977-04-20 | 1980-09-10 | Komatsu Mfg Co Ltd | Centrifugal compressor combines with a turbine |
SU688705A1 (en) * | 1978-04-20 | 1979-09-30 | Ленинградский Ордена Ленина Политехнический Институт Им. М.И.Калинина | Centrifugal compressor stage |
JPS62101898A (en) * | 1985-10-29 | 1987-05-12 | Mitsubishi Heavy Ind Ltd | Centrifugal compressor |
JPH078597U (en) * | 1993-07-06 | 1995-02-07 | 三菱重工業株式会社 | Centrifugal compressor |
JP2003120594A (en) | 2001-10-12 | 2003-04-23 | Mitsubishi Heavy Ind Ltd | Centrifugal compressor |
ITMI20012414A1 (en) * | 2001-11-15 | 2003-05-15 | Nuovo Pignone Spa | BLADE FOR CENTRIFUGAL COMPRESSOR IMPELLER WITH MEDIUM-HIGH FLOW COEFFICIENT |
JP5050511B2 (en) * | 2006-12-04 | 2012-10-17 | 株式会社Ihi | Structure of diffuser in centrifugal compressor |
JP5233436B2 (en) * | 2008-06-23 | 2013-07-10 | 株式会社日立プラントテクノロジー | Centrifugal compressor with vaneless diffuser and vaneless diffuser |
GB0821089D0 (en) * | 2008-11-19 | 2008-12-24 | Ford Global Tech Llc | A method for improving the performance of a radial compressor |
JP2010144698A (en) * | 2008-12-22 | 2010-07-01 | Ihi Corp | Centrifugal compressor |
JP5535562B2 (en) * | 2009-09-16 | 2014-07-02 | 三菱重工業株式会社 | Discharge scroll and turbo machine |
-
2013
- 2013-06-20 CN CN201380075731.6A patent/CN105121864B/en not_active Expired - Fee Related
- 2013-06-20 EP EP13887157.9A patent/EP3012461A4/en not_active Withdrawn
- 2013-06-20 US US14/785,024 patent/US20160108920A1/en not_active Abandoned
- 2013-06-20 WO PCT/JP2013/066989 patent/WO2014203379A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2014203379A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN105121864A (en) | 2015-12-02 |
WO2014203379A1 (en) | 2014-12-24 |
EP3012461A4 (en) | 2017-02-08 |
US20160108920A1 (en) | 2016-04-21 |
CN105121864B (en) | 2017-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3012461A1 (en) | Centrifugal compressor | |
EP3529498B1 (en) | Diaphragm for a centrifugal compressor | |
EP2949946B1 (en) | Centrifugal rotation machine | |
EP3056741B1 (en) | Impeller of a compressor and compressor provided with same | |
JP5905315B2 (en) | Centrifugal compressor | |
WO2013128539A1 (en) | Rotary machine | |
WO2018083306A1 (en) | High efficiency double suction impeller | |
US8328510B2 (en) | Sealing device for rotary fluid machine, and rotary fluid machine | |
JP5722673B2 (en) | Multistage centrifugal compressor and turbo refrigerator using the same | |
WO2016051835A1 (en) | Centrifugal compressor | |
WO2012001997A1 (en) | Seal device and fluid machinery provided with same | |
EP2955387A1 (en) | Centrifugal compressor | |
EP3168479A1 (en) | Rotary machine | |
EP3048309B1 (en) | Rotating machine | |
EP3567260B1 (en) | Centrifugal rotary machine | |
WO2018155546A1 (en) | Centrifugal compressor | |
JP6265000B2 (en) | Centrifugal compressor | |
CN103423171B (en) | Turbocompressor | |
JP2003293992A (en) | Multi-stage centrifugal compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151016 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170111 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04D 29/44 20060101AFI20170104BHEP Ipc: F04D 17/10 20060101ALI20170104BHEP |
|
17Q | First examination report despatched |
Effective date: 20180323 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20180423 |