[go: up one dir, main page]

EP3006682B1 - Dispositif et procédé de fonctionnement d'une station de transmission thermique - Google Patents

Dispositif et procédé de fonctionnement d'une station de transmission thermique Download PDF

Info

Publication number
EP3006682B1
EP3006682B1 EP14187849.6A EP14187849A EP3006682B1 EP 3006682 B1 EP3006682 B1 EP 3006682B1 EP 14187849 A EP14187849 A EP 14187849A EP 3006682 B1 EP3006682 B1 EP 3006682B1
Authority
EP
European Patent Office
Prior art keywords
heat
fluid
heat exchanger
working medium
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14187849.6A
Other languages
German (de)
English (en)
Other versions
EP3006682A1 (fr
Inventor
Richard Aumann
Daniela Walter
Roy Langer
Markus Lintl
Andreas Schuster
Jens-Patrick Springer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to DK14187849.6T priority Critical patent/DK3006682T3/da
Priority to PL14187849.6T priority patent/PL3006682T3/pl
Priority to EP14187849.6A priority patent/EP3006682B1/fr
Priority to CN201580065182.3A priority patent/CN107002512A/zh
Priority to PCT/EP2015/071760 priority patent/WO2016055263A1/fr
Publication of EP3006682A1 publication Critical patent/EP3006682A1/fr
Application granted granted Critical
Publication of EP3006682B1 publication Critical patent/EP3006682B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic

Definitions

  • the invention relates to a heat transfer station for transferring heat from a supplier heat network with a first heat-carrying fluid to a customer heat network with a second heat-carrying fluid. Furthermore, the invention relates to a method for transferring heat from a supplier heat network with a first heat-carrying fluid to a customer heat network with a second heat-carrying fluid.
  • District heating refers to the supply of buildings with heating and hot water.
  • water is well suited as a medium for heat transport, with it being used in liquid or vapor form.
  • the medium is pumped in thermally insulated pipelines in a constant circulation.
  • Local heat refers to a corresponding transfer of heat for heating purposes over comparatively short distances, although the transition to district heating is fluid.
  • Heat transfer stations connect such local and district heating networks with heat consumers.
  • the operating temperatures of the district heating networks depend on the consumers with the highest required temperature level. In downtown Kunststoff, for example, the temperature of the district heating flow is 130 °C in winter and 80 °C in summer. The return temperature must not exceed 45 °C. These temperatures belong to the parameters that are usually specified in the technical connection conditions of the respective utility company and must be adhered to by the operating mode and construction of the system. However, the majority of consumers require lower flow temperatures for their heating systems. In the case of residential buildings, the required flow temperature is the hot water supply usually at about 60 - 65 °C, and therefore, according to the prior art, the temperature must first be lowered by adding colder water.
  • the document EP 2 538 040 A1 discloses a combined heat and power plant and associated method.
  • the document DE 10 2012 217 929 A1 discloses a combined heat and power plant and a method for operating a combined heat and power plant.
  • the object of the invention is to overcome this disadvantage and to make better use of the potential of district heating.
  • the working medium can be deheated in the condenser before it condenses. Furthermore, the working medium can optionally be supercooled below the condensation temperature in the condenser after the condensation.
  • the first heat-conducting fluid and the second heat-conducting fluid can be the same fluid. In the heat transfer station, heat is transferred from a network with a first temperature level to a network with a second, lower temperature level.
  • the heat transfer station is designed to use the electrical energy at least partially to operate the customer's heating network, in particular a customer's heating system.
  • the advantage of the heat transfer station according to the invention is that the said exergy difference between the district heating side and the heat customer side can be used to generate electrical energy by interposing a cyclic process, for example an organic Rankine process (ORC process) with an organic working medium, a Stirling cycle, a steam power process, etc.
  • a cyclic process for example an organic Rankine process (ORC process) with an organic working medium, a Stirling cycle, a steam power process, etc.
  • ORC process organic Rankine process
  • Part of the high-temperature heat extracted from the district heating network is converted into electrical energy in the thermodynamic cycle.
  • the heat of condensation of the working medium feeds the heating network with low-temperature heat. In this way, the heat supply can be realized in whole or in part via the thermodynamic cycle process.
  • the main benefit of the invention is the additional provision of electrical energy to the heat customer.
  • the heat transfer station according to the invention can be further developed such that a third heat exchanger can be provided for the direct transfer of heat from the first fluid to the second fluid.
  • a third heat exchanger can be provided for the direct transfer of heat from the first fluid to the second fluid.
  • a development of the aforementioned development consists in that means for dividing the mass flow of the second fluid into a first part and a second part; means for passing the first portion of the second fluid through the condenser and for passing a second portion of the second fluid through the third heat exchanger; and means for combining the first part of the mass flow of the second fluid after passing through the condenser and the second part of the mass flow of the second fluid after passing through the third heat exchanger may be provided.
  • the return temperature of the supplier heating network can be kept at a constant level by appropriate control of the cyclic process device.
  • the flow temperature in the customer heating network can be regulated as required. If there is a higher demand for heat, the mass flow to the cycle is reduced.
  • the means for dividing the mass flow of the second fluid can be provided in a flow or in a return of the customer heating network, and they preferably include a three-way valve or a pump in a flow to the third heat exchanger. This corresponds in each case to advantageous examples for the arrangement and for the specific design of these means.
  • a fourth heat exchanger is provided for the direct transfer of heat from the first fluid to the working medium.
  • a heat pump operating mode of the cyclic process device is made possible by the development. Heat pump operation offers heat customers the advantage that the installed connected load can be lower.
  • a further development of the previously mentioned development is that means for diverting the working medium from an inlet of the evaporator to the fourth heat exchanger, in particular in the form of a three-way valve or a solenoid valve; and means are provided for operating the expander as a compressor.
  • the working medium can be routed to the fourth heat exchanger instead of to the first heat exchanger, in order to absorb heat from the first fluid there when the expansion machine is operated as a compressor.
  • the means for operating the expansion machine as a compressor include: means for directly conducting the working medium from the fourth heat exchanger to a low-pressure side of the expansion machine operated as a compressor, in particular a first valve for blocking the connection between the evaporator and the High-pressure side of the expansion machine and a bypass line with a second valve for establishing a connection between the fourth heat exchanger and the low-pressure side of the expansion machine, and further means for directly conducting the compressed working medium from a high-pressure side of the expansion machine operated as a compressor to the condenser, in particular a fourth valve for blocking a connection between the low pressure side of the expander and the condenser and a bypass line with a third valve for establishing a connection between the high pressure kside of the expander and the condenser.
  • the heat transfer station can be designed in such a way that the second heat-carrying fluid is conducted completely both through the condenser and through the third heat exchanger. A large mass flow flows through the condenser. This is advantageous for the electrical efficiency of the system.
  • the heat transfer station with a third heat exchanger also includes means for dividing the mass flow of the first fluid into a first part and a second part, in particular a three-way valve, and means for conducting the first part of the first fluid to the third heat exchanger.
  • the aforementioned development can also be further developed such that a heat accumulator is provided in thermal contact with the second fluid. This enables the temperature gradients of the second fluid entering the condenser to be flattened. If the temperature of the second fluid is greater than the temperature of the heat accumulator, the second fluid is cooled, if it is lower, it is heated.
  • the object of the invention is further achieved by a method according to claim 11.
  • the method according to the invention transfers heat from a supplier heat network with a first heat-carrying fluid to a customer heat network with a second heat-carrying fluid by means of a thermodynamic cycle device, in particular an ORC device, the thermal cycle device having a first heat exchanger designed as an evaporator, an expansion machine, one with the expansion machine coupled generator, a second heat exchanger designed as a condenser and a feed pump, the method comprising the following steps: preheating, evaporating and optionally additional overheating of the working medium while supplying heat from the first fluid to the first heat exchanger; Generating mechanical energy by expanding the vaporized working medium with the expander and at least partially converting the mechanical energy into electrical energy with the generator; condensing the expanded working medium and transferring thermal energy from the expanded working medium to the second fluid with the second heat exchanger; and conveying the condensed working medium under pressure increase to the evaporator with the feed pump. Before condensing, the expanded working medium can optionally be deheated. After
  • the electrical energy is used at least partially to operate the customer's heating network, in particular a customer's heating system.
  • the further step of directly transferring heat from the first fluid to the second fluid using a third heat exchanger is provided.
  • a development of the aforementioned development consists in the following further steps being provided: dividing the mass flow of the second fluid into a first part and a second part; passing the first portion of the second fluid through the condenser and passing a second portion of the second fluid through the third heat exchanger; and combining the first portion of the mass flow of the second fluid after passing through the condenser and the second portion of the mass flow of the second fluid after passing through the third heat exchanger.
  • the method includes the step of directly transferring heat from the first fluid to the working medium using a fourth heat exchanger.
  • Another development is that the second heat-carrying fluid is conducted completely both through the condenser and through the third heat exchanger.
  • Exergy describes the part of the energy that can be completely converted into any other form of energy, such as electrical energy. It is therefore the workable part of the energy. In contrast to this, anergy is the non-workable part of energy, conversion into other forms of energy is not possible here. Even in an idealized process, thermal energy can only be partially converted into mechanical energy.
  • T is the temperature of the heat source
  • T U is the temperature of the environment.
  • the exergy contained in the heat flow is destroyed by lowering the temperature, such as 1 clarified.
  • the lowering of the temperature can have different reasons. It may be necessary to lower the temperature, for example in order to comply with temperature limits in the heating system. This is ensured, for example, by the heat transfer station. A further reduction in temperature takes place with any heat transfer, be it in the heat transfer station or in the heating system, which heats up a room, for example. When the heat has reduced to ambient temperature, it no longer has the ability to work and is pure anergy.
  • thermodynamic cycle into the heating system (see 2 ) the further use of part of the exergy contained in the heat flow in the form of electrical energy.
  • the energy flow which is converted into electrical energy, is no longer available for heating, but it can be compensated for by slightly increasing the heat supply in the ORC process. Due to the low prices of the energy sources and thus of the thermal energy generated compared to the purchase prices for electrical energy, this is economically interesting, especially in the area of the housing industry/small consumers.
  • FIG. 3 shows in a first embodiment of the invention the simplest realization of the power-generating heat transfer station.
  • the reference symbols used here are also retained in the further figures for the other embodiments if the same elements are involved.
  • the first embodiment of the heat transfer station 1 for transferring heat from a supplier heating network 10 with a first heat-carrying fluid to a customer heating network 20 with a second heat-carrying fluid comprises a thermodynamic cycle device 30 with a working medium (e.g.
  • thermodynamic cycle device 30 comprises: a first heat exchanger designed as an evaporator 31 for evaporating and optionally additional preheating and/or superheating of the working medium while supplying heat from the first fluid, an expansion machine 32 for generating mechanical Energy by expanding the vaporized working medium, a generator 33 coupled to the expansion machine for at least partially converting the mechanical energy into electrical energy, a second heat exchanger designed as a condenser 34 for condensing and optionally prior deheating and/or additional sub-cooling of the expanded working medium and transferring thermal energy from the expanded working medium to the second fluid, and a feed pump 35 for conveying the condensed working medium under pressure increase to the evaporator.
  • the feed pump is driven by a motor 36 .
  • a pump 21 is provided in the heating circuit of the customer heating network, with which the second fluid (water, for example) is conveyed.
  • a simplified representation of the district heating network 10, the ORC process 30 and the heating network 20 is chosen.
  • liquid working medium is vaporized with the supply of heat, expanded in the expansion machine 32 (eg screw expander, turbine) and liquefied at a lower pressure level.
  • the expansion machine 32 eg screw expander, turbine
  • heat is released from the working fluid to the heating water network and the required flow temperature is thereby reached.
  • the expansion machine 32 is coupled to the generator 33 via a shaft, which converts the mechanical energy into electrical energy. This can be fed into a network or used to cover the heating system's own requirements.
  • thermodynamic cycle process 30 in a heat transfer station 1 thus offers the possibility of a decentralized combined heat and power generation for heat consumers.
  • the parallel operation of several systems in a stack is made possible by a modular design. In this way, better part-load behavior and increased flexibility are achieved.
  • thermodynamic cycle involves the problem that the ORC can only use part of the temperature gradient between district heating supply and return. This is due to the fact that the pinch point between the temperature of the heat source and the temperature of the working medium limits the heat absorption, as shown in the ORC process TQ diagram in 4 clarified.
  • the temperature curves of the fluids in the district heating network, in the heating network and in the ORC process are shown there.
  • Q ⁇ max,ORC is the maximum amount of heat that the ORC can absorb
  • Q ⁇ requirement,customer is the heat requirement of the building.
  • the pinch point also called pinch point or point of lowest degree
  • the pinch point is the point of the smallest temperature difference between two media that transfer heat via one or more heat exchangers.
  • the heating performance is lower 3 depending on the operation of the ORC 30.
  • the heat supply to the heating network 20 is no longer possible, since heat is no longer extracted via the condenser 34.
  • thermodynamic machine and method for its operation describes a device and a method for avoiding cavitation in a thermodynamic cycle, which is particularly advantageous when using air condensers.
  • the working medium is subjected to additional pressure by adding a non-condensing gas in the condenser. Since this is synonymous with a higher flow height of the pump, the difference between the actual pressure and the boiling pressure increases in the pump inlet. In return, this reduces the pressure difference across the expansion machine and thus the electrical power output. Since the pressure difference across the expansion machine is relatively low when condensing against water, this solution is disadvantageous for the present application.
  • the heating operation is 2 after in the second embodiment figure 5 independent of the operation of the cyclic process.
  • a variable part of the heat is absorbed by the cyclic process, while the rest is transferred directly into the heating network 20 via a third heat exchanger 40 .
  • another pump in the heating network flow to the third heat exchanger 40 can be used to split the mass flow.
  • the pumps can also be arranged both in the flow and in the return of the heating network 20. If the cyclic process fails, the entire amount of heat can be supplied via the third heat exchanger 40 . An emergency operation functionality is thus given with adequate dimensioning of the third heat exchanger 40 .
  • the return temperature of the district heating network can be kept at a constant level or below a required maximum temperature by appropriate control of the cycle process.
  • the temperature is slightly higher than when the ORC is switched off.
  • the flow temperature in the heating network 20 can be regulated as required. If there is a higher demand for heat, the mass flow in the cyclic process is reduced. With constant input and output temperatures of the working medium, there is less heat input to the ORC. Due to the constant mass flow in the district heating network 10, this in turn means that the outlet temperature on the side of the district heating network 10 increases. As a result, there is a greater temperature difference across the third heat exchanger 40, as a result of which the amount of heat transferred directly to the heating network 20 is increased.
  • the system can be integrated both in heating water networks in which the district heating network and heating water network are separate from one another and in networks in which there is only one common network.
  • the third heat exchanger 40 is no longer required for integration into a mixed network, since a partial flow of the district heating water can be routed directly into the heating network.
  • This second embodiment also has improved functionality to prevent cavitation damage.
  • the mass flow of the heating water through the condenser 34 can be reduced via the 3-way valve 22 .
  • this increases the temperature spread of the water mass flow.
  • the condensation temperature of the working medium is determined by the inlet temperature of the water, the temperature difference at the pinch point, and the mass flow and thus the temperature spread of the water. If the water-side inlet temperature increases, the condensation pressure of the working medium also increases. If the mass flow of the water decreases, the outlet temperature of the water increases. Since the heat transfer surface remains constant, but the temperature difference between the working medium and the water increases, the working medium is supercooled to a greater extent. Greater subcooling has the same effect as greater head in the feed pump flow, since the difference between the actual pressure and the evaporating pressure at the pump inlet increases.
  • the heat transfer in the evaporator 34 quickly reaches its limits. Due to the pinch point between the working medium and the fluid at the entrance to the first heat exchanger (evaporator), cooling of the district heating return and thus the supply of heat is only possible to a limited extent.
  • this second embodiment enables 2 different operating modes.
  • a first operating mode is used for heating and electricity production. With an average heat requirement, the cyclic process runs parallel to the heat supply and part of the heat requirement is covered by the condensation heat. A small part of the heat from the heating network 20 is converted into electrical energy via the expansion machine 32 and the generator 33 .
  • a second operating mode serves as a pure heating operation. For this purpose, the cyclic process is used when the heat requirement is very high 30 switched off and the entire heat required is supplied to the heating network 20 via the third heat exchanger 40 . This operating mode is similar to that of a conventional transfer station.
  • the return temperature is an important parameter in order to extract as much heat as possible from the source and to increase the efficiency of the system.
  • the third embodiment 3 according to 7 represents a further development of the second embodiment 2, through which correspondingly low temperatures in the district heating return can be achieved.
  • a heat pump operating mode of the ORC enables.
  • the expander 32 is operated as a compressor 32 in that the valve 54 is closed and the valve 53 is opened, so that the fluid flows into the expansion machine 32 on the low-pressure side. Furthermore, the valve 55 is closed.
  • the compressed working medium flows through the open valve 52 into the condenser 34 where it gives off heat to the heating network 20 .
  • the throttle 56 causes the pressure to drop, which is accompanied by a reduction in the boiling temperature.
  • part of the thermal energy is transferred to the heating network 20 and the return temperature is thus reduced to a range suitable for the heat pump.
  • the working medium can then be routed via the 3-way valve 51 to the fourth heat exchanger 50, where it can be evaporated. This further cools the district heating return.
  • Heat pump operation offers heat customers the advantage that the installed connected load can be lower. This is due to the fact that the nominal connected load is defined by a fixed spread between district heating flow and return as well as the area of the heat exchanger. Due to the additional cooling of the return with a constant heat transfer surface and constant mass flow, the actual heat supply in heat pump operation is greater than the nominal connected load. For operators of geothermal heating plants, for example, there is the advantage that more energy can be extracted from the regenerative heat source. Due to the higher yield of thermal energy low return temperatures, part of the provision of peak load energy can also be replaced.
  • the valves 52, 53, 54, 55 allow the expansion machine 32 to be bypassed, which means that the pressure losses are reduced and the heat can be provided to the heating network 20 via natural circulation.
  • the third heat exchanger 40 can enable the bypass.
  • low district heating return temperatures can be achieved.
  • the heating network flow temperature is limited by the maximum condensation temperature plus the temperature of the heat exchanger. With minor modifications, it can be used in both separate and mixed heating circuits.
  • the cavitation avoidance is given here as for the second embodiment.
  • the temperature spread of the evaporator is the same as in the second embodiment. With the large temperature difference between district heating flow and return, the heat transfer in the evaporator quickly reaches its limits. Due to the pinch point between the working medium and the fluid in the district heating line, the cooling of the district heating return and thus the heat supply to the ORC is only possible to a limited extent.
  • FIG. 9 shows a fourth embodiment 4 of the heat transfer station according to the invention.
  • this fourth embodiment 4 means for dividing the mass flow of the first fluid into a first part and a second part in the form of a three-way valve, and means for conducting the first part of the first fluid to the third heat exchanger 40 are provided.
  • ORC operation the district heating return temperature is slightly higher than in the second embodiment 2.
  • the flow temperature in the heating network can be regulated as required. If (e.g.
  • a heat accumulator 60 (latent heat accumulator or a sensitive heat accumulator) is connected in front of the condenser 34 as a thermal buffer in the return of the heating network 20 . This allows the temperature gradients of the heating water entering the condenser 34 to be flattened out. With the large temperature difference between district heating flow and return, the heat transfer in the evaporator quickly reaches its limits. Due to the pinch point between the working medium and the fluid in the district heating line, the cooling of the district heating return and thus the heat supply is only possible to a limited extent.
  • the condenser 34 of the ORC on the side of the heating network 20 is always flowed through with the coldest temperature and with a large mass flow, since the second heat-carrying fluid is passed completely both through the condenser 34 and through the third heat exchanger 40.
  • This is advantageous for the electrical efficiency of the system, as a larger mass flow results in a lower temperature difference in the heating water return.
  • a lower back pressure to the expansion machine is set (see Fig. 11), which leads to a higher electrical output. If the cyclic process fails, the entire amount of heat can be supplied via the third heat exchanger 40 . An emergency operation functionality is thus given with adequate dimensioning of the third heat exchanger 40 .
  • the district heating return cannot be cooled as much by the third heat exchanger 40 as in the second embodiment. Depending on the mode of operation, this results in an increase in the district heating return temperature in ORC operation, for example by around 10 to 15 K.
  • the flow temperature in the heating network 20 can be regulated as desired. If there is a need for heat, the mass flow in the cyclic process is reduced, which means that more heat at a higher temperature level is transferred directly to the heating network via the third heat exchanger 40 transfer. With minor modifications, it can be used in both separate and mixed heating circuits.
  • a latent heat store or a sensitive heat store can be connected upstream of the condenser 34 as a thermal buffer in the return flow of the heating network. This enables the temperature gradients of the heating water entering the condenser to be flattened. Temperature spread in the evaporator of the fifth embodiment 5 corresponds to that of the second embodiment 2.
  • the heat transfer station has the following advantages and disadvantages.
  • the advantages are better utilization of the exergy used (large additional benefit with little additional heat output, see 2 ); less destruction of exergy when heat is transferred to heat consumers; decentralized combined heat and power at the end user (electricity-generating heating system); Use of different temperature variants and network types (mixed and separate circuits); great flexibility in terms of performance and operation, adaptable to a growing heating network (can be designed as a stack); and increase the efficiency and power rating of the overall system.
  • a disadvantage is a slightly lower maximum heat supply for the heat customer and in the embodiments 1, 2, 4, 5 a slight to moderate increase in the temperature of the district heating return. In the embodiments with an emergency function, the entire connected load can still be made available by bypassing the ORC, ie by switching it off, and by adequately dimensioning the third heat exchanger 40 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Claims (15)

  1. Station de transfert de chaleur (2, 3, 4, 5) pour transférer de la chaleur d'un réseau de chaleur fournisseur (10) avec un premier fluide caloporteur vers un réseau de chaleur client (20) avec un second fluide caloporteur, comprenant :
    un dispositif à cycle thermodynamique (30) avec un milieu de travail, en particulier un dispositif ORC avec un milieu de travail organique, le dispositif à cycle thermodynamique comprenant :
    un premier échangeur de chaleur (31) conçu sous la forme d'un évaporateur (31) pour un préchauffage, une évaporation, et une surchauffe supplémentaire facultative du milieu de travail avec amenée de chaleur provenant du premier fluide,
    une machine à expansion (32) pour produire de l'énergie mécanique par détente du milieu de travail vaporisé,
    un générateur (33) couplé à la machine à expansion pour convertir au moins partiellement l'énergie mécanique en énergie électrique,
    un deuxième échangeur de chaleur (34) conçu sous la forme d'un condenseur (34) pour une condensation et une désurchauffe supplémentaire facultative et/ou un sous-refroidissement supplémentaire facultatif du milieu de travail détendu et un transfert d'énergie calorifique du milieu de travail détendu au second fluide, et
    une pompe d'alimentation (35) pour transporter le milieu de travail condensé vers l'évaporateur en augmentant la pression ;
    caractérisée en ce que
    la station de transfert de chaleur (2, 3, 4, 5) est conçue pour utiliser l'énergie électrique au moins en partie pour faire fonctionner le réseau de chaleur client, en particulier une installation de chauffage côté client.
  2. Station de transfert de chaleur selon la revendication 1, comprenant en outre :
    un troisième échangeur de chaleur (40) pour transférer directement de la chaleur du premier fluide au second fluide.
  3. Station de transfert de chaleur selon la revendication 2, comprenant en outre :
    des moyens (22) pour diviser le débit massique du second fluide en une première partie et une seconde partie ;
    des moyens pour faire passer la première partie du second fluide à travers le condenseur et pour faire passer une seconde partie du second fluide à travers le troisième échangeur de chaleur ; et
    des moyens pour réunir la première partie du débit massique du second fluide après passage dans le condenseur et la seconde partie du débit massique du second fluide après passage dans le troisième échangeur de chaleur.
  4. Station de transfert de chaleur selon la revendication 3, dans laquelle les moyens pour diviser le débit massique du second fluide sont prévus dans un trajet ou un retour du réseau de chaleur client et comprennent de préférence une vanne à trois voies, une électrovanne ou une pompe dans un trajet vers le troisième échangeur de chaleur.
  5. Station de transfert de chaleur selon l'une quelconque des revendications 1 à 4, comprenant en outre :
    un quatrième échangeur de chaleur (50) pour transférer directement de la chaleur du premier fluide au milieu de travail.
  6. Station de transfert de chaleur selon la revendication 5, comprenant en outre :
    des moyens (51) pour dévier le milieu de travail depuis un trajet de l'évaporateur vers le quatrième échangeur de chaleur, en particulier sous la forme d'une vanne à trois voies ou d'une électrovanne ; et
    des moyens (52, 53, 54, 55) pour faire fonctionner la machine à expansion en tant que compresseur.
  7. Station de transfert de chaleur selon la revendication 6, dans laquelle les moyens pour faire fonctionner la machine à expansion en tant que compresseur comprennent :
    des moyens (53, 54) pour diriger directement le milieu de travail du quatrième échangeur de chaleur (50) vers un côté basse pression de la machine à expansion (32) fonctionnant en tant que compresseur, en particulier une première vanne (54) pour bloquer la liaison entre l'évaporateur et le côté haute pression de la machine à expansion et une conduite de dérivation avec une deuxième vanne (53) pour établir une liaison entre le quatrième échangeur de chaleur (50) et le côté basse pression de la machine à expansion (32), et
    des moyens (52, 55) pour diriger directement le milieu de travail comprimé d'un côté haute pression de la machine à expansion (32) fonctionnant en tant que compresseur vers le condenseur (34), en particulier une quatrième vanne (55) pour bloquer une liaison entre le côté basse pression de la machine à expansion (32) et le condenseur (34) et une conduite de dérivation avec une troisième vanne (52) pour établir une liaison entre le côté haute pression de la machine à expansion (32) et le condenseur (34).
  8. Station de transfert de chaleur selon la revendication 2, dans laquelle la station de transfert de chaleur est formée de telle sorte que le second fluide caloporteur est complètement conduit à la fois à travers le condenseur et à travers le troisième échangeur de chaleur.
  9. Station de transfert de chaleur selon la revendication 2 ou 8, comprenant en outre :
    des moyens (41) pour diviser le débit massique du premier fluide en une première partie et une seconde partie, en particulier une vanne à trois voies, et
    des moyens pour diriger la première partie du premier fluide vers le troisième échangeur de chaleur.
  10. Station de transfert de chaleur selon la revendication 9, comprenant en outre :
    un accumulateur de chaleur (60) en contact thermique avec le second fluide.
  11. Procédé de transfert de chaleur d'un réseau de chaleur fournisseur comprenant un premier fluide caloporteur à un réseau de chaleur client comprenant un second fluide caloporteur à l'aide d'un dispositif à cycle thermodynamique, en particulier un dispositif ORC, dans lequel le dispositif à cycle thermodynamique comprend un premier échangeur de chaleur sous la forme d'un évaporateur, une machine à expansion, un générateur couplé à la machine à expansion, un deuxième échangeur de chaleur sous la forme d'une condensateur et une pompe d'alimentation, le procédé comprenant les étapes suivantes consistant à :
    préchauffer, évaporer et facultativement surchauffer de manière supplémentaire le milieu de travail avec amenée de chaleur provenant du premier fluide à l'aide du premier échangeur de chaleur ;
    générer de l'énergie mécanique par détente du milieu de travail vaporisé avec la machine à expansion et en convertissant au moins partiellement l'énergie mécanique en énergie électrique à l'aide du générateur ;
    condenser et désurchauffer facultativement de manière supplémentaire et/ou sous-refroidir facultativement de manière supplémentaire le milieu de travail détendu et
    transférer l'énergie calorifique du milieu de travail détendu au second fluide à l'aide du deuxième échangeur de chaleur ; et
    transporter le milieu de travail condensé avec augmentation de la pression vers l'évaporateur à l'aide de la pompe d'alimentation ;
    caractérisé par l'étape consistant à
    utiliser au moins partiellement de l'énergie électrique pour faire fonctionner le réseau de chaleur client, en particulier une installation de chauffage côté client.
  12. Procédé selon la revendication 11, comprenant en outre l'étape consistant à :
    transférer directement la chaleur du premier fluide au second fluide à l'aide d'un troisième échangeur de chaleur.
  13. Procédé selon la revendication 12, comprenant en outre les étapes consistant à :
    diviser le débit massique du second fluide en une première partie et une seconde partie ;
    faire passer la première partie du second fluide à travers le condenseur et faire passer une seconde partie du second fluide à travers le troisième échangeur de chaleur ; et
    Réunir la première partie du débit massique du second fluide après passage à travers le condenseur et la seconde partie du débit massique du second fluide après passage à travers le troisième échangeur de chaleur.
  14. Procédé selon l'une quelconque des revendications 11 à 13, comprenant l'étape supplémentaire consistant à :
    transférer directement de la chaleur du premier fluide au milieu de travail à l'aide d'un quatrième échangeur de chaleur.
  15. Procédé selon la revendication 12, dans lequel le second fluide caloporteur est amené à passer complètement à la fois à travers le condenseur et à travers le troisième échangeur de chaleur.
EP14187849.6A 2014-10-07 2014-10-07 Dispositif et procédé de fonctionnement d'une station de transmission thermique Active EP3006682B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK14187849.6T DK3006682T3 (da) 2014-10-07 2014-10-07 Indretning og fremgangsmåde til drift af en varmeoverføringsstation
PL14187849.6T PL3006682T3 (pl) 2014-10-07 2014-10-07 Urządzenie i sposób obsługi stacji wymiany ciepła
EP14187849.6A EP3006682B1 (fr) 2014-10-07 2014-10-07 Dispositif et procédé de fonctionnement d'une station de transmission thermique
CN201580065182.3A CN107002512A (zh) 2014-10-07 2015-09-22 用于运行换热站的设备和方法
PCT/EP2015/071760 WO2016055263A1 (fr) 2014-10-07 2015-09-22 Dispositif et procédé permettant de faire fonctionner une station de transfert de chaleur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14187849.6A EP3006682B1 (fr) 2014-10-07 2014-10-07 Dispositif et procédé de fonctionnement d'une station de transmission thermique

Publications (2)

Publication Number Publication Date
EP3006682A1 EP3006682A1 (fr) 2016-04-13
EP3006682B1 true EP3006682B1 (fr) 2022-08-03

Family

ID=51690848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14187849.6A Active EP3006682B1 (fr) 2014-10-07 2014-10-07 Dispositif et procédé de fonctionnement d'une station de transmission thermique

Country Status (5)

Country Link
EP (1) EP3006682B1 (fr)
CN (1) CN107002512A (fr)
DK (1) DK3006682T3 (fr)
PL (1) PL3006682T3 (fr)
WO (1) WO2016055263A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3404244B1 (fr) 2017-05-15 2021-02-24 Orcan Energy AG Dispositif et procédé de standardisation et de réalisation d'un conteneur orc
DE102017011851A1 (de) * 2017-12-21 2019-06-27 Daimler Ag Anordnung zur Umwandlung thermischer Energie aus Verlustwärme einer Verbrennungskraftmaschine
DE102018209695A1 (de) * 2018-06-15 2019-12-19 Schweizer Steimen Ag Betriebsverfahren und Steuereinheit für ein Kraft-Wärme-Kopplungssystem und Kraft-Wärme-Kopplungssystem
EP3647553B1 (fr) * 2018-11-05 2022-12-28 Orcan Energy AG Alimentation d'un convertisseur d'énergie électromécanique en énergie électrique à partir d'un processus de circuit thermodynamique
DE102020204682A1 (de) * 2020-04-14 2021-10-14 Siemens Aktiengesellschaft Steuerung eines Wärmenetzes
DE102020209046A1 (de) 2020-07-20 2022-01-20 Siemens Aktiengesellschaft Verfahren zum Steuern von Wärmeaustauschen zwischen mehreren Energiesystemen sowie Steuerungsplattform
WO2022219107A1 (fr) * 2021-04-15 2022-10-20 Climeon Ab Système et procédé de récupération d'énergie

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451460C (zh) * 2006-11-21 2009-01-14 清华大学 一种燃煤燃气联合供热的方法
DE102009053390B3 (de) 2009-11-14 2011-06-01 Orcan Energy Gmbh Thermodynamische Maschine sowie Verfahren zu deren Betrieb
EP2538040B1 (fr) * 2011-06-22 2016-10-05 Orcan Energy AG Installation de combinaison chaleur-électricité et procédé associé
DE102012217929A1 (de) * 2012-10-01 2014-04-03 Siemens Aktiengesellschaft Kraft-Wärme-Kraftwerk und Verfahren zum Betrieb eines Kraft-Wärme-Kraftwerks

Also Published As

Publication number Publication date
WO2016055263A1 (fr) 2016-04-14
CN107002512A (zh) 2017-08-01
PL3006682T3 (pl) 2023-01-30
EP3006682A1 (fr) 2016-04-13
DK3006682T3 (da) 2022-09-12

Similar Documents

Publication Publication Date Title
EP3006682B1 (fr) Dispositif et procédé de fonctionnement d'une station de transmission thermique
EP2748434B1 (fr) Installation de stockage d'énergie thermique
EP2900943B1 (fr) Centrale de cogénération et procédé de fonctionnement d'une centrale de cogénération
EP2538040B1 (fr) Installation de combinaison chaleur-électricité et procédé associé
EP2823156B1 (fr) Installation pour le stockage et le dépôt d'énergie thermique
EP2759679A1 (fr) Dispositif de stockage thermique destiné à l'utilisation de chaleur à basse température
DE212016000187U1 (de) ORC zum Wandeln von Verlustwärme von einer Wärmequelle in mechanische Energie und Kühlsystem, das Gebrauch von dem ORC macht
EP2447506A2 (fr) Système destiné à la production d'énergie mécanique et/ou électrique
EP3491303B1 (fr) Système de pompe à chaleur comprenant des ensembles pompe à chaleur couplés côté entrée et côté sortie
WO2017067790A1 (fr) Synergies fonctionnelles de cycles thermodynamiques et de sources de chaleur
DE102013005035B4 (de) Verfahren und Vorrichtung zur Einkopplung von Wärme aus einem Nahwärmenetz
EP4251859B1 (fr) Système et procédé de stockage d'énergie électrique sous forme d'énergie thermique et de libération de celle-ci
WO2013156284A1 (fr) Installation d'accumulation et de distribution d'énergie thermique au moyen d'un accumulateur de chaleur et d'un accumulateur de froid et procédé de fonctionnement de ladite installation
DE102016112601A1 (de) Vorrichtung zur Energieerzeugung nach dem ORC-Prinzip, Geothermieanlage mit einer solchen Vorrichtung und Betriebsverfahren
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
DE102014226837A1 (de) Variabel einsetzbares Wärmetauschersystem und Verfahren zum Betreiben eines Wärmetauschersystems
EP1895139B1 (fr) Système d'alimentation en énergie
WO2018029371A1 (fr) Échangeur de chaleur destiné à être utilisé dans une partie chaude d'une centrale de stockage d'énergie par air liquide, partie chaude et procédé permettant de faire fonctionner ledit échangeur de chaleur dans ladite partie chaude
EP4224092A1 (fr) Système de pompe à chaleur utilisant du co2 comme premier milieu de pompe à chaleur et de l'eau en tant que second milieu de pompe à chaleur
EP2951407A2 (fr) Procédé permettant de faire fonctionner une centrale basse température et centrale basse température
DE102013016461A1 (de) Verfahren zum Betrieb eines Niedertemperaturkraftwerkes, sowie Niedertemperaturkraftwerk selbst
AT511823A4 (de) Verfahren und einrichtung zur erzeugung von kälte und/oder nutzwärme sowie mechanischer bzw. elektrischer energie mittels eines absorptionskreislaufes
DE102016220634A1 (de) Abwärme-Kraftanlage mit stufenweiser Wärmezufuhr
DE102011114199B4 (de) Verfahren zur thermischen und thermoelektrischen Abgas- oder Heissgaswärmenutzung mit Dampfkreislauf, sowie Einrichtung zur Abgas- oder Heissgaswärmenutzung
DE102013001478B4 (de) Verfahren zum Betrieb eines Niedertemperaturkraftwerkes, sowie Niedertemperaturkraftwerk selbst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161013

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210726

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SPRINGER, JENS-PATRICK

Inventor name: SCHUSTER, ANDREAS

Inventor name: LINTL, MARKUS

Inventor name: LANGER, ROY

Inventor name: WALTER, DANIELA

Inventor name: AUMANN, RICHARD

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1508907

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014016333

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220909

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014016333

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221007

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26N No opposition filed

Effective date: 20230504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221007

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1508907

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241028

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20241023

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20241003

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241023

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241023

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20241025

Year of fee payment: 11