[go: up one dir, main page]

EP3005547A1 - Device for converting heat energy into electrical energy with heat-sensitive molecules - Google Patents

Device for converting heat energy into electrical energy with heat-sensitive molecules

Info

Publication number
EP3005547A1
EP3005547A1 EP14725496.5A EP14725496A EP3005547A1 EP 3005547 A1 EP3005547 A1 EP 3005547A1 EP 14725496 A EP14725496 A EP 14725496A EP 3005547 A1 EP3005547 A1 EP 3005547A1
Authority
EP
European Patent Office
Prior art keywords
temperature
molecules
attachment
type
attachment molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14725496.5A
Other languages
German (de)
French (fr)
Inventor
Abdelkader Aliane
Philippe Coronel
Olivier Poncelet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP3005547A1 publication Critical patent/EP3005547A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1892Generators with parts oscillating or vibrating about an axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass
    • H02K99/10Generators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/97Switches controlled by moving an element forming part of the switch using a magnetic movable element
    • H03K2017/9706Inductive element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96035Touch switches by temperature detection, i.e. body heat
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96038Inductive touch switches

Definitions

  • the present invention relates to the field of devices for converting thermal energy into electrical energy, and provides for the realization of a device for converting thermal energy into electrical energy by means of a magnetic particle movement generated consecutively to a temperature variation.
  • WO2011 / 144525 A2 has for example a device for converting a mechanical energy into electrical energy, using a movable magnet mechanically actuated and which is disposed in the center of a coil. When the magnet is moved, its movement generates a current in the coil.
  • the present invention relates first of all to a device for converting thermal energy into electrical energy comprising: a support, a conductive circuit in which an induced current is intended to circulate, a set of magnetic particles attached to the support via fastening means adapted to hold the magnetic particles in at least a first position with respect to said conductive circuit when the device is subjected to a first temperature, the fastening means being formed of attachment molecules of less a first type, sensitive to temperature, so that when the attachment molecules of the first type are subjected to a given temperature variation of the first temperature to the second temperature, the attachment means move the magnetic particles of the first position to a second position with respect to said driver circuit, the displacement of the particles from the first position to the second position inducing a current in said conductive circuit.
  • the movement of the particles makes it possible to vary the magnetic field as seen by the conducting circuit and to generate an electric current induced in this conductive circuit.
  • magnetic particles By magnetic particles is meant magnetic particles. These particles may be based on a ferromagnetic material. The magnetization of the ferromagnetic material may be natural or may have been imparted for example by an electromagnet.
  • the attachment molecules may be polymer molecules that are sensitive to temperature, also known as heat-sensitive polymers.
  • the attachment molecules of the first type may be molecules having a LCST1 transition characteristic temperature located between said first temperature and said second temperature and be adapted for, when they are subjected to said given temperature variation, to go from a first configuration to a second configuration.
  • This configuration change is preferably reversible so that the heat-sensitive fastening molecules are further configured so that when subjected to an inverse temperature variation ie, between the second temperature and the first temperature, they pass from said second temperature. configuration to said first configuration.
  • the heat-sensitive fastening molecules can thus be provided so that, when subjected to a temperature variation from the second temperature to the first temperature, the fastening means move the magnetic particles from the second position to the first position with respect to said driver circuit.
  • the attachment molecules of the first type may be such that in the first configuration they have an affinity for the given water, whereas in the second configuration, the attachment molecules have an affinity for water that is the inverse of said given affinity. .
  • the attachment molecules are hydrophilic
  • the attachment molecules are hydrophobic
  • the attachment means further comprise attachment molecules of at least a second type.
  • the attachment molecules of the second type may also be temperature sensitive.
  • the attachment molecules of the second type may also be polymer molecules.
  • the magnetic particles can thus be attached to a first zone of the support by means of the attachment molecules of the first type and to a second zone of the support by means of attachment molecules of the second type.
  • the attachment molecules of the second type may be molecules having a characteristic transition temperature between a third temperature and a fourth temperature, the attachment molecules of the second type being further configured so that when subjected to a temperature change from the third temperature to the fourth temperature the attachment molecules of the second type change affinity for the water.
  • the attachment molecules of the first type may have an affinity for the water given at the first temperature, while the attachment molecules of the second type have another affinity for water, inverse of said affinity given at the first temperature, the attachment molecules of the second type having an affinity for the water given at a second temperature, the attachment molecules of the first type having an affinity for water inverse to said affinity given at said second temperature.
  • the attachment molecules of the first type are hydrophilic
  • the attachment molecules of the second type are hydrophobic
  • the second temperature the attachment molecules of the first type are hydrophobic
  • the attachment molecules of the second type are at the same time hydrophilic.
  • the attachment molecules may be such that they are capable of passing from a solvophilic character to a solvophobic character as a result of a temperature variation.
  • the attachment molecules may be temperature-sensitive polymer molecules chosen from one or more of the following polymers: PolyNipam, Polyvinylcaprolactam, Hydroxypropylcellulose, Polyoxazoline, Polyvinylmethylether, Polyethyleneglycol.
  • the magnetic particles may be attached to a first region of the support by means of attachment molecules and to a second region of the support by means of other attachment molecules, the conductive circuit being disposed on the support so as to form a conductive winding around an axis passing through said first zone and said second zone of the support, and producing a non-zero angle, in particular orthogonal, with respect to a main plane of the support.
  • the magnetic particles are formed of a body based on a magnetic material coated with a hook layer bonded to said attachment molecules.
  • the support may be a substrate based on polymeric material.
  • the support can also be provided based on a material and a thickness making it flexible.
  • the present invention also provides an energy recovery system comprising a device for converting thermal energy into electrical energy as defined above, as well as means for applying a variable thermal flux to said device for converting thermal energy into electrical energy. .
  • the present invention also provides a method for producing a device for converting thermal energy into electrical energy as defined above, in which the attachment molecules are based on a temperature-sensitive polymer, the process comprising at least a step of grafting the magnetic particles to said polymer molecules.
  • the method may further comprise forming in the first substrate at least a first cavity and at least a second cavity around the first cavity, said attachment molecules being fixed in the first cavity.
  • second cavity, the conductive circuit being formed in the second cavity.
  • the method may include steps of:
  • FIGS. 1A, 1B, 1C, 1D illustrate an example of a device for converting thermal energy into electrical energy as implemented according to the invention
  • FIGS. 2A-2F, 3A-3C and 4A-4B illustrate an exemplary method of producing a device for converting thermal energy into electrical energy according to the invention
  • FIGS. 5A-5B illustrate grafting reactions of polymer particles on a substrate that can be implemented during the manufacture of a device according to the invention.
  • FIG. 1A illustrates a general principle of operation of such a device provided with a support 100, intended to be subjected to a thermal flux ⁇ , and on which magnetic particles 150 are arranged.
  • the device also comprises a conductive circuit 120, which may be in the form of a winding, for example a spiral, disposed around the magnetic particles 150.
  • the magnetic particles 150 are magnetized and can be based on of a material, in particular ferromagnetic, having a natural magnetization or having a magnetization generated by means of an electromagnet.
  • the magnetic particles 150 are bonded or attached to the support 100 by means of attachment means 140 sensitive to temperature, themselves linked or attached to the support 100 and intended to move the particles 150 relative to the conductive circuit 120, depending a variation of the temperature at which these attachment means 140 are subjected.
  • a temperature variation acting on the attachment means 140 is capable of triggering a movement of the magnetic particles (magnet) relative to the support 100 and to the conducting circuit 120, this movement making it possible to vary the magnetic field as seen by the conducting circuit 120 and generating an induced electric current in this conductive circuit 120.
  • the origin of this electric current is an electric field which is orthogonal to said magnetic field.
  • the device makes it possible to produce an induced current by means of the movement of the magnetic particles 150 magnetized with respect to the conductive winding 120, this movement being itself triggered by the fastening means 140 reacting to a temperature variation. a heat flux ⁇ that has been recovered.
  • the heat flux ⁇ that can be recovered can come from a source of light radiation, for example a laser source.
  • the attachment means 140 of the magnetic particles 150 are molecules, called thermosensitive molecules or thermostimulables, that is to say molecules sensitive to temperature, the configuration of which is susceptible to to be modified, by a variation of temperature beyond and / or below a characteristic temperature of these molecules, and without change of state of the molecules, and while preserving the constituent chemical elements of the molecules.
  • thermosensitive molecules molecules sensitive to temperature
  • the configuration change of the molecules following a temperature variation is such that their volume as well as some of their properties are modified.
  • the configuration change of the attachment molecules of the device is preferably reversible when they undergo an inverse temperature variation.
  • the molecules may, for example, have a variable solvophile / solvophobic character as a function of temperature.
  • the attachment molecules 140 may be molecules having an affinity to the variable water molecules as a function of temperature, and which are configured to be able to pass for example from a hydrophilic state to a hydrophobic state when they undergo a given variation temperature.
  • the molecules 140 are preferably chosen so that this change in affinity to water is reversible, the molecules 140 then being capable of passing from a hydrophobic state to a hydrophilic state when they are subjected to an inverse temperature variation.
  • the attachment molecules 140 may be molecules with a molecular weight greater than 200 so that the change in affinity allows a change of arrangement, for example a significant wetting angle variation.
  • the attachment molecules 140 may in particular be molecules of actionable polymers liable to undergo a modification of their physical properties under the action of a temperature variation exceeding or passing below a threshold temperature, characteristic of these molecules, called LCST (LCST for "lower critical solution temperature” or lower critical solubility).
  • LCST LCST for "lower critical solution temperature” or lower critical solubility
  • the attachment molecules 140 of the magnetic particles 150 may be, for example, thermosensitive or thermo-activatable polymer molecules of the poly (N-isopropylacrylamide) or PNIPAM type. Such a polymer undergoes a reversible macromolecular transition from a hydrophilic state to a hydrophobic state around its lower critical temperature of solubility LCST. This transition is rapid and is between 30 ° C and 37 ° C. Thus, when the attachment molecules 140 are for example based on PNIPAM and subjected to a first temperature Ti, located below the LCST transition temperature, they have a hydrophilic character and are soluble in water.
  • attachment molecules 140 based on PNIPAM When the attachment molecules 140 based on PNIPAM are subjected to a second temperature T 2 > Ti and located above their transition temperature, they have a hydrophobic nature and insoluble in water.
  • hydroxypropylcellulose having an LCST between 40 ° C. and 56 ° C.
  • polyoxazoline having an LCST of the order of 70 ° C
  • polyvinyl methyl ether having an LCST of the order of 45 ° C
  • polyethylene glycol having an LCST between 100 ° C and 130 ° C.
  • the attachment means 140 of the magnetic particles 150 may be formed of several types of thermo-sensitive or thermo-activatable polymers, with different respective LCST transition temperatures, so as to be able to cover different ranges of temperature, that is to say to be able to set in motion the magnetic particles 150 for temperature variations in different temperature ranges and possibly distinct.
  • FIG. 1B illustrates a particular detailed embodiment in which the support 100 of the particles 150 is in the form of a flexible substrate 101 and based on a polymer material, for example PEN (polyethylene naphthalate) or PET (polyethylene terephthalate) , or PI (Polyimide), on which the conductive circuit 120 is also arranged.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PI Polyimide
  • the substrate 101 comprises a central cavity 102 in which the magnetic particles 150 and the attachment molecules 140 are disposed, as well as a peripheral cavity 104, arranged around the central cavity 102, and in which the conductive circuit 120 is housed.
  • the conducting circuit 120 is formed of a set of conductive tracks 121 wound around the central cavity 102 in which the magnetic particles 150 are located.
  • These magnetic particles 150 may be formed of a body 151 based on magnetic material, in particular ferromagnetic such as for example nickel, neodymium iron boron (Nd 2 Fei 4 B), Samarium cobalt (SmCos), an alloy of Nickel and Cobalt (NiCo), a material based on Strontium and ferrite such as SrFei 2 0i9, or based on Barium and ferrite such as BaFei 2 Oig.
  • the body 151 is coated with a layer 152 for attaching the particles with the attachment molecules.
  • the layer 152 may also have a role of protection against oxidation.
  • This attachment layer 152 may for example be based on SiO 2 so as to facilitate adhesion with heat-sensitive polymer molecules such as PNIPAM, they themselves fixed or attached to the substrate 101.
  • the particles 150 may have a diameter or a critical dimension, for example of the order of 50 nm.
  • the body 151 may have a diameter or critical dimension, for example between 10 nm and 40 nm, while the layer 152 may have a thickness of between 40 nm and 10 nm.
  • the magnetic particles 150 are intended to be displaced in one direction, producing a non-zero angle with respect to the main plane of the substrate 101, in particular orthogonal or substantially orthogonal to the main plane of the substrate 101 (the principal plane of the substrate being defined as a plane passing through it and parallel to the plane [O; x; y] in Figure 1B).
  • the advantage of having a movement of the particles along the z axis in this example makes it possible to maximize the electric field E and thus the current generated in the conducting circuit 120.
  • the magnetic particles 150 are attached, for example by grafting, to different types of temperature-sensitive polymer attachment molecules 141, 142, these attachment molecules 141, 142 being themselves fixed or attached to the substrate 101, for example by grafting.
  • the magnetic particles 150 are, in this example, attached to a first region 131 of the support by means of thermosensitive polymer molecules 141 of a first type, having a characteristic transition temperature LCST1 which can be situated for example between 20 ° C. and 50 ° C. So when the temperature goes up and exceeds the LCST1 transition characteristic temperature, the thermostimulatory molecules 141 of the first type may for example become hydrophobic and undergo a change in volume.
  • LCST1 characteristic transition temperature
  • LCST temperature for a thermostimulable polymer family can be achieved by forming a copolymer, the copolymer optionally having a charge or an amphiphilic moiety.
  • the magnetic particles 150 are also attached to a second zone 132 of the support via thermosensitive polymer molecules 142 of a second type.
  • the attachment molecules 142 of the second type may have a characteristic LCST2 transition temperature different from that LCST1 of the attachment molecules of the first type, and such that LCST2 is located between a third temperature T3 ( different from T1 and T2) and a fourth temperature T4.
  • the attachment molecules 142 of the second type can then be configured so that when they are subjected to a temperature change from the third temperature to the fourth temperature, their affinity for water is changed by passing for example a hydrophilic character with a hydrophobic character or vice versa.
  • the heat-sensitive attachment molecules 142 of the second type have a temperature-dependent affinity for water in a manner opposite to that of the heat-sensitive attachment molecules of the first type.
  • the molecules 141 of the first type are at the same time hydrophilic, while at another temperature, when molecules of the second type 142 are hydrophilic, the molecules of the first type 141 are hydrophobic.
  • Such an embodiment can be obtained for example when the heat-sensitive attachment molecules 141 of the first type are PNIPAM molecules having a characteristic transition temperature LCST1 located for example in a temperature range between 20 ° C and 50 ° C.
  • the thermosensitive attachment molecules 142 of the second type may be, for their part, molecules having a characteristic temperature UCST2 (UCST for "upper critical solution temperature") in a temperature range between 20 ° C and 50 ° C.
  • the attachment molecules 142 may for example be of hydrogel type and pass from a hydrophobic character to a hydrophilic character above a temperature greater than UCST2.
  • the attachment molecules 142 may for example be based on PDMAPS (poly-3-dimethyl (methacryloyloxyethyl) ammonium propane sulphonate) having, for example, a UCST of between 32 ° C. and 35 ° C. or based on poly (propylsulfonatedimethylammoniumethylmethacrylate) of which the UCST is of the order of 30 ° C.
  • attachment molecules 141, 142 may have a variable solvophile / solvophobic character as a function of temperature.
  • thermo-stimulable polymer molecules 141 and / or 142 induce the movement of the magnetic particles 150 which are grafted onto the thermostimulable molecules 141, 142.
  • the current density flowing in the circuit is proportional to the movement of the magnetic particles 150.
  • the first zone 131 on which the heat-sensitive polymer molecules 141 are grafted is located at the bottom of the central cavity 102, while the second zone 132 on which the heat-sensitive polymer molecules 142 are grafted, is itself arranged. in front of the first zone 131, on a portion of the support forming a cover 160 for the central cavity 102.
  • a vertical oscillatory movement can thus be implemented.
  • the cover 160 covering the central cavity 102 may include openings 163 to allow a fluid to enter and exit the central cavity 102.
  • the openings 163 may in particular allow moisture to enter the cavity 102.
  • the temperature-sensitive molecules 141, 142 exhibit a variation in affinity to the water molecule as a function of temperature, it may be important to allow a good moisture input into the central cavity 102.
  • the water or moisture can be confined in the cavity 102 by providing on the inner walls of this cavity one or more zones having a good affinity with water such as polyimide (PI), polydimethylsiloxane (PDMS), or even depositing a layer SAM (self-assembled monolayer) polar such as a layer of 2,2- (ethylenedioxy) diethanethiol, Hexa (ethylene glycol) dithiol, Tetra (ethylene glycol) dithiol, (11- Mercaptoundecyl tetra (ethylene glycol), (11-Mercaptoundecyl) hexa (ethylene glycol), triethylene glycol mono-11-mercaptoundecyl ether.
  • PI polyimide
  • PDMS polydimethylsiloxane
  • SAM self-assemble
  • This SAM layer or layers can be formed on a metal zone for example such as gold (Au), and / or silver (Ag), and / or copper (Cu).
  • FIGS. 1C-1D a movement of the particles 150 within a conversion device of the type of that described above is illustrated.
  • the magnetic particles 150 are firstly held by the molecules 141, 142 in a first position with respect to said conductive circuit 120 when the device is subjected to a first temperature Tl ⁇ LCST1 (with LCST1 the transition temperature of the molecules of the first type ). In this first position the particles 150 are situated at a height h 1 (measured in the z direction in FIG. 1C), for example of the order of 500 nm, with respect to the substrate 101.
  • a change in temperature from the first temperature to a second temperature above the temperature results in a displacement of the attachment molecules that move the magnetic particles 150 from the first position to a second position with respect to said conductive circuit 120.
  • This displacement of the magnetic particles from the first position to the second position induces a current in said conductive circuit 120.
  • the particles 150 are located at a height h 2 for example of the order of 1 ⁇ , compared to substrate 101.
  • thermosensitive fastening molecules 140 and the magnetic particles 150 which are grafted onto them directly on conductive tracks of a conductive circuit, the conducting circuit playing in this case the role of support.
  • FIGS. 2A-2F, 3A-3C and 4A-4B An example of a method for producing a device for converting thermal energy into electrical energy, according to the invention, will now be described in connection with FIGS. 2A-2F, 3A-3C and 4A-4B.
  • the starting material is a substrate 101, which can be flexible and based on a polymeric material such as, for example, PEN (polyethylene naphthalate), or PET (polyethylene terephthalate), or PI (polyimide).
  • the substrate 101 may have a thickness (measured in a direction orthogonal to the [0, x, y] plane of the orthogonal coordinate system [0, x, y, z] in FIG. 2A) for example between 25 ⁇ and 125 ⁇ .
  • first cavities 102, 104 are produced, including a central cavity 102 and a peripheral cavity 104 arranged around the central cavity 102.
  • the cavities 102, 104 may be formed for example by an etching, which may be carried out by means of a laser or with the aid of a plasma for example based on (0 2 + SF 6) or wet type with for example, a solution of the methylbenzoate type.
  • the central cavity 102 and the peripheral cavity 104 may be separated by walls 103 formed by etching of the substrate 101.
  • the height H of the cavities 102, 104 (measured in a direction orthogonal to the plane [0, x, y] of the orthogonal coordinate system [0, x, y, z] in FIG. 2A) may be for example between 1 ⁇ and 5 ⁇ .
  • conductive zones 105a, 105b are formed on certain localized regions of the substrate 101, in particular located in the peripheral cavity 104.
  • a deposit of conductive material for example by sputtering.
  • the deposited material may be a metal, for example stainless such as gold and have a thickness for example between 30 nm and 300 nm.
  • At least one insulating zone 107 is formed by depositing a dielectric material, for example by screen printing or by ink jet.
  • the dielectric material may be chosen so as to have a low dielectric constant and may for example be polyimide or a fluorinated polymer with a thickness of, for example, between 100 nm and 1 ⁇ . This deposit may be followed by annealing of a duration for example between 10 minutes and 20 minutes at a temperature for example of the order of 100 ° C.
  • a conductive circuit 120 is then formed in the peripheral cavity 104 (FIG. 2D).
  • This circuit 120 may be in the form of a conductive winding produced by deposition of a metal layer, for example based on Ag, or Au, or Cu, according to a technique which may be for example PVD (deposit physical vapor phase) through a mask or screen printing, or by an inkjet technique.
  • the thickness of the deposited metal layer may be for example between 100 nm and 5 ⁇ .
  • This conductive circuit 120 has one end disposed on the conductive zone 105a while another end is in contact with another conductive zone 105b, the the remainder of the winding being disposed either on the substrate 100 or on the insulating zone 107.
  • a first attachment zone 131 is formed on the substrate 100 on which magnetic particle attachment means are intended to be arranged later.
  • This zone 131 may for example be based on copper oxide formed by screen printing, or by ink jet.
  • the deposition is carried out in a thickness of, for example, between 100 nm and 1 ⁇ at the bottom of the central cavity 104.
  • thermostimulable or thermosensitive molecules 141 of a first type for example thermosensitive polymers
  • the grafted molecules 141 may already be provided at one of their ends with magnetic particles 150, formed of a body 151 based on a magnetic ferromagnetic material such as, for example, Ni or Nd 2 Fei 4 B, or SmCos, or NiCo, or SrFei 2 0i9, or BaFei Oig 2 and coated with a primer 152 which can also play the role of protective layer and for example be based on Si0 2.
  • the temperature at which the fixing or grafting step of the molecules 141 is carried out may depend on their LCST1 transition temperature.
  • the magnetic particles 150 may have been previously grafted onto the molecules 141, using a graft promoting solvent, for example dichloromethane.
  • the magnetic particles may have natural magnetization or have been magnetized by means of an electromagnet.
  • thermosensitive or thermostimulable molecules 141 of the first type may be, for example, PNIPAM molecules having a water affinity variable in a temperature range, for example between 20 ° C. to 50 ° C., and passing from a hydrophilic character. to a hydrophobic character when subjected to a temperature beyond their LCST1 transition temperature.
  • the method also comprises, previously, or simultaneously, or after carrying out the steps which have just been described in connection with FIGS. 2A-2F, the production on another substrate 201, for example a PEN-based polymer substrate, or PET base, or based on PI, thickness for example between 25 ⁇ and 50 ⁇ , a second zone 232 attachment on which magnetic particle attachment molecules are intended to be arranged later ( Figure 3A ).
  • another substrate 201 for example a PEN-based polymer substrate, or PET base, or based on PI, thickness for example between 25 ⁇ and 50 ⁇ , a second zone 232 attachment on which magnetic particle attachment molecules are intended to be arranged later (Figure 3A ).
  • the fixing zone 232 may for example be based on copper oxide CuO and have a thickness for example between 100 nm and 1 ⁇ .
  • the attachment zone 232 may be a copper zone obtained by reducing a layer of copper oxide (FIG. 3A).
  • thermosensitive or thermostimulable molecules grafted onto the second substrate 201 are of a second type, different from that of the grafted molecules on the first substrate 101.
  • thermosensitive or thermostimulable molecules 142 of the second type may be temperature-sensitive polymers having an LCST2 transition temperature.
  • thermosensitive or thermostimulable molecules 142 of the second type may have an affinity for variable water in a temperature range, for example between 20 ° C. and 50 ° C., and which in this range varies inversely with that or opposite to that of thermosensitive or thermo-stimulable molecules 141 of the first type.
  • thermosensitive or thermo-stimulable molecules 142 of the second type may have an affinity for the variable water molecules in a temperature range that is different from that in which the affinity for the molecules of water water of thermosensitive or thermo-stimulable molecules 141 of the first type varies.
  • one or more adhesive zones 260 are formed to allow assembly with the first substrate 101 and the second substrate 201.
  • Adhesive zones 260 may in particular be made on the second substrate 201, for example in a peripheral region of the latter (FIG. 3C).
  • the adhesive zones 260 may for example be formed by screen printing or by manual dispensing of a layer, for example epoxy, which is not conductive or NCP (NCP for "Non Conductive Paste”).
  • the adhesive zones 260 can be made using a SAM layer (SAM for "Self-Assembled Monolayer” or mono-layer auto assembly) of isocyanate type and comprising ethyl, amine or benzyl groups.
  • Such a SAM layer can make it possible to ensure a bonding between the two substrates 101 and 201, in particular when these substrates 101, 201 are based on PEN or PET.
  • This SAM layer may be deposited on the PEN or PET material of the second substrate 201 after having carried out a preliminary treatment with a UV / O3 (ultraviolet / ozone) plasma of several minutes on a peripheral region of the substrate 201. This treatment, the areas on which thermostimulable molecules have been placed, and in particular the attachment zone 231, can be masked in order to avoid being damaged.
  • UV / O3 ultraviolet / O3
  • the second substrate 200 is then transferred to the first substrate 100 (FIG. 4A). This transfer can be achieved by bonding using alignment marks provided on the substrates 101, 201.
  • the two substrates 101, 201 can be bonded by applying the adhesion zones 260, formed, for example, of epoxy glue (NCP) or of the SAM layer (self-assembled monolayer) on top of the walls 103 separating the cavities 102. , 104.
  • NCP epoxy glue
  • SAM self-assembled monolayer
  • This bonding step may be followed by annealing at 100 ° C. for about ten minutes in order to solidify the adhesive layer or create bonds between the two substrates 101, 201.
  • the second substrate 201 may make it possible to form a closure cap for the central cavity 102.
  • Openings 163 can then be made in the second substrate 201 forming a cover, for example using a laser.
  • openings 163 allow a fluid exchange between the outside of the device and the inside of the central cavity 102, and in particular to allow moisture to enter the central cavity 102.
  • the grafting steps of the attachment molecules on the support illustrated respectively in FIG. 2F and in FIG. 3B can be carried out by means of a silane coupling agent carrying an isocyanate group.
  • a silane coupling agent carrying an isocyanate group carrying an isocyanate group.
  • An example of a reaction is given here with a polyethylene glycol (PEG) isocyanate.
  • PEG polyethylene glycol
  • a covalent urethane bond is thus formed.
  • silane coupling agents carrying an isocyanate function may be employed:
  • the substrate 101 or 201 on which the graft is made can be dipped in an anhydrous solution of H (OCH 2 CH 2 ) nOCO NH (CH 2 ) 3 Si (OEt) 3 and CH 2 Cl 2 .
  • Figure 5A illustrates two types of reactions leading to the formation of grafted molecules on a substrate 101.
  • This type of grafting is not necessarily limited to a polymer substrate but can be implemented on other types of substrates, for example based on metal and oxide.
  • thermosensitive polymer may be:
  • PEG polyvinylmethylether, hydroxypropylcellulose
  • urea polyvinyl methyl ether
  • the surface of the substrate 101 may be modified and the thermostimulable polymer bearing a reactive function on the surface (which may be the surface of a nanoparticle) may be reacted.
  • FIG. 5B illustrates another example of grafting in which the reaction of an alanine bis-catechol on a substrate 101 leads to the formation of a catecholate, the NH 2 of the amino acid function of alanine remaining free to react. with a thermosensitive polymer chain bearing a reactive group.
  • this reactive group is a succinimidyl ester group.
  • This table illustrates the reactivity of different PEG agents measured by hydrolysis at pH 8, 25 ° C, and measured by the UV absorbance of the hydrolyzed succinimidyl (NHS) group.
  • the surface of the substrate on which the graft is carried carries NH 2 pendant amino groups, preferably primary, PEG succinimidyl esters could also react.
  • These primary amino groups can be obtained by hydrolysis of silane coupling agents such as:
  • grafting mode uses the method called “diazonium-induced anchoring process” (DIAP).
  • DIBP diazonium-induced anchoring process
  • An aryl diazonium salt is grafted onto the surface of the substrate leaving an aniline group neutralized with HCl, which can be reactivated to primary amine by adding a base. We then return to the previously described grafting cases where the surface is covered with amino-primary groups.
  • An example of a particular application of a device according to the invention may be that of a tactile device, for example a keyboard, provided with keys operated by means of a detection of a temperature variation due to the presence of 'a finger.
  • the finger thus plays, in this example, the role of thermal energy source for activating thermosensitive molecules which, when they change their configuration, make it possible to move magnetic particles, this displacement inducing a current in a conductive circuit.
  • This generated current can be translated by a dedicated electronic reading circuit of the touch device which then makes it possible to address the activated key.
  • a power supply of the touch keyboard is not essential.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention relates to a system for recovering heat energy and converting said heat energy into electrical energy by means of heat-sensitive molecules (141, 142) to which magnetic particles (150) are connected, the heat-sensitive molecules being able to move said magnetic particles in relation to a conductive circuit in order to generate an induced current in said circuit.

Description

DISPOSITIF DE CONVERSION D'ENERGIE THERMIQUE EN ENERGIE ELECTRIQUE  DEVICE FOR CONVERTING THERMAL ENERGY IN ELECTRICAL ENERGY

A MOLECULES THERMO-SENSIBLES  A THERMO-SENSITIVE MOLECULES

DESCRIPTION DOMAINE TECHNIQUE DESCRIPTION TECHNICAL FIELD

La présente invention se rapporte au domaine des dispositifs permettant de convertir une énergie thermique en énergie électrique, et prévoit la réalisation d'un dispositif de conversion d'énergie thermique en énergie électrique par le biais d'un mouvement de particules magnétiques généré consécutivement à une variation de température. The present invention relates to the field of devices for converting thermal energy into electrical energy, and provides for the realization of a device for converting thermal energy into electrical energy by means of a magnetic particle movement generated consecutively to a temperature variation.

Elle s'applique notamment à la réalisation d'un système de récupération d'énergie doté d'un tel dispositif de conversion d'énergie thermique en énergie électrique.  It applies in particular to the realization of an energy recovery system provided with such a device for converting thermal energy into electrical energy.

ART ANTERIEUR Afin d'alimenter des dispositifs électroniques ou des microsystèmes tout en limitant l'utilisation de batteries, de nombreux types de systèmes de récupération d'énergie sont apparus. PRIOR ART In order to power electronic devices or microsystems while limiting the use of batteries, many types of energy recovery systems have appeared.

Le document « WO2011/144525 A2 » présente par exemple un dispositif permettant de convertir une énergie mécanique en énergie électrique, en utilisant un aimant déplaçable actionné mécaniquement et qui est disposé au centre d'une bobine. Lorsque l'aimant est déplacé, son mouvement permet de générer un courant dans la bobine.  The document "WO2011 / 144525 A2" has for example a device for converting a mechanical energy into electrical energy, using a movable magnet mechanically actuated and which is disposed in the center of a coil. When the magnet is moved, its movement generates a current in the coil.

Les circuits électroniques, lors de leur fonctionnement, produisent de la chaleur. Cette chaleur n'est généralement pas utilisée et doit être évacuée afin de ne pas détériorer les circuits. D'autres sources de chaleur dont la chaleur dégagée est inutilisée sont également présentes dans notre environnement. I l se pose le problème de trouver un nouveau système de récupération d'énergie thermique dans lequel une conversion d'énergie thermique en énergie électrique serait mise en œuvre. Electronic circuits, when operating, produce heat. This heat is generally not used and must be removed in order not to damage the circuits. Other sources of heat whose unused heat is unused are also present in our environment. There is the problem of finding a new thermal energy recovery system in which a conversion of thermal energy into electrical energy would be implemented.

EXPOSÉ DE L'INVENTION La présente invention concerne tout d'abord un dispositif de conversion d'énergie thermique en énergie électrique comprenant : un support, un circuit conducteur dans lequel un courant induit est destiné à circuler, un ensemble de particules magnétiques rattachées au support par le biais de moyens d'attache aptes à maintenir les particules magnétiques dans au moins une première position par rapport audit circuit conducteur lorsque le dispositif est soumis à une première température, les moyens d'attache étant formés de molécules d'attache d'au moins un premier type, sensibles à la température, de sorte que lorsque les molécules d'attache du premier type sont soumis à une variation donnée de température de la première température vers la deuxième température, les moyens d'attache déplacent les particules magnétiques de la première position vers une deuxième position par rapport audit circuit conducteur, le déplacement des particules magnétiques de la première position vers la deuxième position induisant un courant dans ledit circuit conducteur. DISCLOSURE OF THE INVENTION The present invention relates first of all to a device for converting thermal energy into electrical energy comprising: a support, a conductive circuit in which an induced current is intended to circulate, a set of magnetic particles attached to the support via fastening means adapted to hold the magnetic particles in at least a first position with respect to said conductive circuit when the device is subjected to a first temperature, the fastening means being formed of attachment molecules of less a first type, sensitive to temperature, so that when the attachment molecules of the first type are subjected to a given temperature variation of the first temperature to the second temperature, the attachment means move the magnetic particles of the first position to a second position with respect to said driver circuit, the displacement of the particles from the first position to the second position inducing a current in said conductive circuit.

Ainsi le mouvement des particules permet de faire varier le champ magnétique vu par le circuit conducteur et de générer un courant électrique induit da ns ce circuit conducteur.  Thus the movement of the particles makes it possible to vary the magnetic field as seen by the conducting circuit and to generate an electric current induced in this conductive circuit.

Par particules magnétiques on entend des particules aimantées. Ces particules peuvent être à base d'un matériau ferromagnétique. L'aimantation du matériau ferromagnétique peut être naturelle ou avoir été conférée par exemple par un électro-aimant.  By magnetic particles is meant magnetic particles. These particles may be based on a ferromagnetic material. The magnetization of the ferromagnetic material may be natural or may have been imparted for example by an electromagnet.

Les molécules d'attache peuvent être en particulier des molécules de polymère(s) sensible(s) à la température encore appelés polymères thermosensibles.  In particular, the attachment molecules may be polymer molecules that are sensitive to temperature, also known as heat-sensitive polymers.

Les molécules d'attache du premier type peuvent être des molécules ayant une température caractéristique de transition LCST1 située entre ladite première température et ladite deuxième température et être adaptées pour, lorsqu'elles sont soumises à ladite variation donnée de température, passer d'une première configuration vers une deuxième configuration. The attachment molecules of the first type may be molecules having a LCST1 transition characteristic temperature located between said first temperature and said second temperature and be adapted for, when they are subjected to said given temperature variation, to go from a first configuration to a second configuration.

Ce changement de configuration est de préférence réversible de sorte que les molécules d'attache thermosensibles sont configurées en outre pour que lorsqu'elles sont soumises à une variation inverse de température i.e., entre la deuxième température et la première température, elles passent de ladite deuxième configuration vers ladite première configuration.  This configuration change is preferably reversible so that the heat-sensitive fastening molecules are further configured so that when subjected to an inverse temperature variation ie, between the second temperature and the first temperature, they pass from said second temperature. configuration to said first configuration.

Les molécules d'attache thermosensibles peuvent être ainsi prévues de sorte que, lorsqu'elles sont soumises à une variation de température de la deuxième température vers la première température, les moyens d'attache déplacent les particules magnétiques de la deuxième position vers la première position par rapport audit circuit conducteur.  The heat-sensitive fastening molecules can thus be provided so that, when subjected to a temperature variation from the second temperature to the first temperature, the fastening means move the magnetic particles from the second position to the first position with respect to said driver circuit.

Les molécules d'attache du premier type peuvent être telles que dans la première configuration elles ont une affinité pour l'eau donnée, tandis que dans la deuxième configuration, les molécules d'attache ont une affinité pour l'eau inverse de ladite affinité donnée.  The attachment molecules of the first type may be such that in the first configuration they have an affinity for the given water, whereas in the second configuration, the attachment molecules have an affinity for water that is the inverse of said given affinity. .

Ainsi, lorsque par exemple, dans la première configuration les molécules d'attache sont hydrophiles, dans la deuxième configuration les molécules d'attache sont hydrophobes.  Thus, when, for example, in the first configuration the attachment molecules are hydrophilic, in the second configuration the attachment molecules are hydrophobic.

Avantageusement, les moyens d'attache comportent en outre des molécules d'attache d'au moins un deuxième type.  Advantageously, the attachment means further comprise attachment molecules of at least a second type.

Les molécules d'attache du deuxième type peuvent être également sensibles à la température. Les molécules d'attache du deuxième type peuvent être également des molécules de polymère(s).  The attachment molecules of the second type may also be temperature sensitive. The attachment molecules of the second type may also be polymer molecules.

Les particules magnétiques peuvent être ainsi rattachées à une première zone du support par le biais des molécules d'attache du premier type et à une deuxième zone du support par le biais de molécules d'attache du deuxième type.  The magnetic particles can thus be attached to a first zone of the support by means of the attachment molecules of the first type and to a second zone of the support by means of attachment molecules of the second type.

Selon une première possibilité de mise en œuvre, les molécules d'attache du deuxième type peuvent être des molécules ayant une température caractéristique de transition située entre une troisième température et une quatrième température, les molécules d'attache du deuxième type étant configurées en outre de sorte que lorsqu'elles sont soumises à une variation de température de la troisième température vers la quatrième température les molécules d'attache du deuxième type changent d'affinité pour l'eau. According to a first implementation possibility, the attachment molecules of the second type may be molecules having a characteristic transition temperature between a third temperature and a fourth temperature, the attachment molecules of the second type being further configured so that when subjected to a temperature change from the third temperature to the fourth temperature the attachment molecules of the second type change affinity for the water.

Selon cette première possibilité, on peut effectuer une conversion d'énergie thermique en énergie électrique sur plusieurs gammes de températures.  According to this first possibility, it is possible to convert heat energy into electrical energy over several temperature ranges.

Selon une deuxième possibilité de mise en œuvre, les molécules d'attache du premier type peuvent avoir une affinité pour l'eau donnée à la première température, tandis que les molécules d'attache du deuxième type ont une autre affinité pour l'eau, inverse de ladite affinité donnée à la première température, les molécules d'attache du deuxième type ayant une affinité pour l'eau donnée à une deuxième température, les molécules d'attache du premier type ayant une affinité pour l'eau inverse de ladite affinité donnée à ladite deuxième température.  According to a second possibility of implementation, the attachment molecules of the first type may have an affinity for the water given at the first temperature, while the attachment molecules of the second type have another affinity for water, inverse of said affinity given at the first temperature, the attachment molecules of the second type having an affinity for the water given at a second temperature, the attachment molecules of the first type having an affinity for water inverse to said affinity given at said second temperature.

Selon cette deuxième possibilité, on peut effectuer une conversion d'énergie thermique en énergie électrique sur plusieurs gammes de températures.  According to this second possibility, it is possible to convert heat energy into electrical energy over several temperature ranges.

Dans ce cas, si par exemple à la première température les molécules d'attache du premier type sont hydrophiles, tandis que les molécules d'attache du deuxième type sont hydrophobes, la deuxième température les molécules d'attache du premier type sont hydrophobes, les molécules d'attache du deuxième type étant quant à elles dans le même temps hydrophiles.  In this case, if for example at the first temperature the attachment molecules of the first type are hydrophilic, while the attachment molecules of the second type are hydrophobic, the second temperature the attachment molecules of the first type are hydrophobic, the attachment molecules of the second type are at the same time hydrophilic.

Plus généralement, les molécules d'attache peuvent être telles qu'elles sont susceptibles de passer d'un caractère solvophile à un caractère solvophobe à la suite d'une variation de température.  More generally, the attachment molecules may be such that they are capable of passing from a solvophilic character to a solvophobic character as a result of a temperature variation.

Avantageusement, les molécules d'attache peuvent être des molécules de polymère sensibles à la température choisies parmi un ou plusieurs polymères suivants : PolyNipam, Polyvinylcaprolactame, Hydroxypropylcellulose, Polyoxazoline, Polyvinylméthyléther, Polyéthylèneglycol.  Advantageously, the attachment molecules may be temperature-sensitive polymer molecules chosen from one or more of the following polymers: PolyNipam, Polyvinylcaprolactam, Hydroxypropylcellulose, Polyoxazoline, Polyvinylmethylether, Polyethyleneglycol.

Les particules magnétiques peuvent être rattachées à une première zone du support par le biais de molécules d'attache et à une deuxième zone du support par le biais d'autres molécules d'attache, le circuit conducteur étant disposé sur le support de manière à former un enroulement conducteur autour d'un axe passant par ladite première zone et ladite deuxième zone du support, et réalisant un angle non-nul, en particulier orthogonal, par rapport à un plan principal du support. The magnetic particles may be attached to a first region of the support by means of attachment molecules and to a second region of the support by means of other attachment molecules, the conductive circuit being disposed on the support so as to form a conductive winding around an axis passing through said first zone and said second zone of the support, and producing a non-zero angle, in particular orthogonal, with respect to a main plane of the support.

Avantageusement les particules magnétiques sont formées d'un corps à base d'un matériau magnétique enrobé d'une couche d'accroché liée auxdites molécules d'attache.  Advantageously, the magnetic particles are formed of a body based on a magnetic material coated with a hook layer bonded to said attachment molecules.

Selon une possibilité de mise en œuvre, le support peut être un substrat à base de matériau polymère. Le support peut être également prévu à base d'un matériau et selon une épaisseur le rendant flexible.  According to one possible implementation, the support may be a substrate based on polymeric material. The support can also be provided based on a material and a thickness making it flexible.

La présente invention prévoit également un système de récupération d'énergie comportant un dispositif de conversion d'énergie thermique en énergie électrique tel que défini précédemment, ainsi que des moyens pour appliquer un flux thermique variable audit dispositif de conversion d'énergie thermique en énergie électrique.  The present invention also provides an energy recovery system comprising a device for converting thermal energy into electrical energy as defined above, as well as means for applying a variable thermal flux to said device for converting thermal energy into electrical energy. .

La présente invention prévoit également un procédé de réalisation d'un dispositif de conversion d'énergie thermique en énergie électrique tel que défini plus haut, dans lequel les molécules d'attache sont à base de polymère sensible à la température, le procédé comprenant au moins une étape de greffage des particules magnétiques auxdites molécules de polymère.  The present invention also provides a method for producing a device for converting thermal energy into electrical energy as defined above, in which the attachment molecules are based on a temperature-sensitive polymer, the process comprising at least a step of grafting the magnetic particles to said polymer molecules.

Selon une possibilité de mise en œuvre, le procédé peut comprendre en outre la formation dans le premier substrat d'au moins une première cavité et d'au moins une deuxième cavité autour de la première cavité, lesdites molécules d'attache étant fixées dans la deuxième cavité, le circuit conducteur étant formé dans la deuxième cavité.  According to one possible implementation, the method may further comprise forming in the first substrate at least a first cavity and at least a second cavity around the first cavity, said attachment molecules being fixed in the first cavity. second cavity, the conductive circuit being formed in the second cavity.

Le procédé peut comprendre des étapes de :  The method may include steps of:

- fixation d'un premier ensemble de molécules d'attache de polymère sur le premier substrat,  attaching a first set of polymer attachment molecules to the first substrate,

- fixation d'un deuxième ensemble de molécules d'attache de polymère sur un deuxième substrat, puis assemblage du premier substrat et du deuxième substrat. BRÈVE DESCRIPTION DES DESSINS fixing a second set of polymer attachment molecules on a second substrate, and then assembling the first substrate and the second substrate. BRIEF DESCRIPTION OF THE DRAWINGS

La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : The present invention will be better understood on reading the description of exemplary embodiments given, purely by way of indication and in no way limiting, with reference to the appended drawings in which:

- les figures 1A, 1B, 1C, 1D illustrent un exemple de dispositif de conversion d'énergie thermique en énergie électrique tel que mis en œuvre suivant l'invention ;  FIGS. 1A, 1B, 1C, 1D illustrate an example of a device for converting thermal energy into electrical energy as implemented according to the invention;

- les figures 2A-2F, 3A-3C et 4A-4B illustrent un exemple de procédé de réalisation d'un dispositif de conversion d'énergie thermique en énergie électrique suivant l'invention ;  FIGS. 2A-2F, 3A-3C and 4A-4B illustrate an exemplary method of producing a device for converting thermal energy into electrical energy according to the invention;

- les figures 5A-5B illustrent des réactions de greffage de particules polymères sur un substrat susceptibles d'être mises en œuvre lors de la fabrication d'un dispositif suivant l'invention.  FIGS. 5A-5B illustrate grafting reactions of polymer particles on a substrate that can be implemented during the manufacture of a device according to the invention.

Des parties identiques, similaires ou équivalentes des différentes figures portent les mêmes références numériques de façon à faciliter le passage d'une figure à l'autre.  Identical, similar or equivalent parts of the different figures bear the same numerical references so as to facilitate the passage from one figure to another.

Les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.  The different parts shown in the figures are not necessarily in a uniform scale, to make the figures more readable.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS Un exemple de dispositif de conversion d'énergie thermique en énergie électrique, tel que mis en œuvre suivant l'invention, va à présent être décrit en liaison avec les figures 1A - 1D. DETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS An example of a device for converting thermal energy into electrical energy, as implemented according to the invention, will now be described with reference to FIGS. 1A-1D.

La figure 1A illustre un principe général de fonctionnement d'un tel dispositif doté d'un support 100, destiné à être soumis à un flux thermique φ, et sur lequel des particules magnétiques 150 sont disposées.  FIG. 1A illustrates a general principle of operation of such a device provided with a support 100, intended to be subjected to a thermal flux φ, and on which magnetic particles 150 are arranged.

Le dispositif comporte également un circuit conducteur 120, qui peut être sous forme d'un enroulement, par exemple en spirale, disposé autour des particules magnétiques 150. Les particules magnétiques 150 sont aimantées et peuvent être à base d'un matériau, en particulier ferromagnétique, ayant une aimantation naturelle ou ayant une aimantation générée par le biais d'un électro-aimant. The device also comprises a conductive circuit 120, which may be in the form of a winding, for example a spiral, disposed around the magnetic particles 150. The magnetic particles 150 are magnetized and can be based on of a material, in particular ferromagnetic, having a natural magnetization or having a magnetization generated by means of an electromagnet.

Les particules magnétiques 150 sont liées ou rattachées au support 100 par le biais de moyens d'attache 140 sensibles à la température, eux-mêmes liés ou rattachés au support 100 et prévus pour déplacer les particules 150 par rapport au circuit conducteur 120, en fonction d'une variation de la température à laquelle ces moyens d'attache 140 sont soumis.  The magnetic particles 150 are bonded or attached to the support 100 by means of attachment means 140 sensitive to temperature, themselves linked or attached to the support 100 and intended to move the particles 150 relative to the conductive circuit 120, depending a variation of the temperature at which these attachment means 140 are subjected.

Le principe de fonctionnement de la conversion est basé notamment sur la loi de Faraday/Lenz : rot E=-dB/dt avec E : le champ électrique, B : le champ magnétique et t : le temps.  The operating principle of the conversion is based notably on the Faraday / Lenz law: rot E = -dB / dt with E: the electric field, B: the magnetic field and t: the time.

Une variation de température agissant sur les moyens d'attache 140 est susceptible de déclencher un mouvement des particules magnétique (aimant) par rapport au support 100 et au circuit conducteur 120, ce mouvement permettant de faire varier le champ magnétique vu par le circuit conducteur 120 et de générer un courant électrique induit dans ce circuit conducteur 120. L'origine de ce courant électrique est un champ électrique qui est orthogonal audit champ magnétique.  A temperature variation acting on the attachment means 140 is capable of triggering a movement of the magnetic particles (magnet) relative to the support 100 and to the conducting circuit 120, this movement making it possible to vary the magnetic field as seen by the conducting circuit 120 and generating an induced electric current in this conductive circuit 120. The origin of this electric current is an electric field which is orthogonal to said magnetic field.

Ainsi, le dispositif permet de produire un courant induit à l'aide du mouvement des particules magnétiques 150 aimantées par rapport à l'enroulement conducteur 120, ce mouvement étant lui-même déclenché par les moyens d'attache 140 réagissant à une variation de température d'un flux thermique φ que l'on a récupéré.  Thus, the device makes it possible to produce an induced current by means of the movement of the magnetic particles 150 magnetized with respect to the conductive winding 120, this movement being itself triggered by the fastening means 140 reacting to a temperature variation. a heat flux φ that has been recovered.

Le flux thermique φ que l'on récupère peut provenir d'une source de rayonnement lumineux, par exemple une source laser.  The heat flux φ that can be recovered can come from a source of light radiation, for example a laser source.

Dans le dispositif suivant l'invention, les moyens d'attache 140 des particules magnétiques 150 sont des molécules, dites thermosensibles ou encore appelées thermo-stimulables, c'est-à-dire des molécules sensibles à la température dont la configuration est susceptible d'être modifiée, par une variation de température au-delà et/ou au deçà d'une température caractéristique de ces molécules, et ce sans changement d'état des molécules, et tout en conservant les éléments chimiques constitutifs des molécules. Le changement de configuration des molécules suite à une variation de température est tel que leur volume ainsi que certaines de leurs propriétés sont modifiées. In the device according to the invention, the attachment means 140 of the magnetic particles 150 are molecules, called thermosensitive molecules or thermostimulables, that is to say molecules sensitive to temperature, the configuration of which is susceptible to to be modified, by a variation of temperature beyond and / or below a characteristic temperature of these molecules, and without change of state of the molecules, and while preserving the constituent chemical elements of the molecules. The configuration change of the molecules following a temperature variation is such that their volume as well as some of their properties are modified.

Le changement de configuration des molécules d'attache du dispositif est de préférence réversible lorsqu'elles subissent une variation inverse de température.  The configuration change of the attachment molecules of the device is preferably reversible when they undergo an inverse temperature variation.

Les molécules peuvent par exemple avoir un caractère solvophile/solvophobe variable en fonction de la température.  The molecules may, for example, have a variable solvophile / solvophobic character as a function of temperature.

Les molécules d'attache 140 peuvent être des molécules ayant une affinité aux molécules d'eau variable en fonction de la température, et qui sont configurées pour pouvoir passer par exemple d'un état hydrophile à un état hydrophobe lorsqu'elles subissent une variation donnée de température. Les molécules 140 sont de préférence choisies de sorte que ce changement d'affinité à l'eau est réversible, les molécules 140 étant alors susceptibles de passer d'un état hydrophobe à un état hydrophile lorsqu'elles sont soumises à une variation inverse de température. Les molécules d'attache 140 peuvent être en particulier des molécules de masse moléculaire supérieure à 200 pour que le changement d'affinité permette un changement d'agencement, par exemple une variation d'angle de mouillage significative.  The attachment molecules 140 may be molecules having an affinity to the variable water molecules as a function of temperature, and which are configured to be able to pass for example from a hydrophilic state to a hydrophobic state when they undergo a given variation temperature. The molecules 140 are preferably chosen so that this change in affinity to water is reversible, the molecules 140 then being capable of passing from a hydrophobic state to a hydrophilic state when they are subjected to an inverse temperature variation. . In particular, the attachment molecules 140 may be molecules with a molecular weight greater than 200 so that the change in affinity allows a change of arrangement, for example a significant wetting angle variation.

Les molécules d'attache 140 peuvent être en particulier des molécules de polymères actionnables susceptibles de subir une modification de leurs propriétés physiques sous l'action d'une variation de température dépassant ou passant au dessous d'une température seuil, caractéristique de ces molécules, appelée de transition LCST (LCST pour « lower critical solution température » ou température critique inférieure de solubilité).  The attachment molecules 140 may in particular be molecules of actionable polymers liable to undergo a modification of their physical properties under the action of a temperature variation exceeding or passing below a threshold temperature, characteristic of these molecules, called LCST (LCST for "lower critical solution temperature" or lower critical solubility).

Les molécules d'attache 140 des particules magnétiques 150 peuvent être par exemple des molécules polymères thermosensibles ou thermo-activables de type poly(N-isopropylacrylamide) ou PNIPAM. Un tel polymère subit une transition macromoléculaire réversible, d'un état hydrophile à un état hydrophobe, autour de sa température critique inférieure de solubilité LCST. Cette transition est rapide et située entre 30°C et 37°C. Ainsi, lorsque les molécules d'attache 140 sont par exemple à base de PNIPAM et soumises à une première température Ti, située sous la température de transition LCST, elles ont un caractère hydrophile et soluble dans l'eau. The attachment molecules 140 of the magnetic particles 150 may be, for example, thermosensitive or thermo-activatable polymer molecules of the poly (N-isopropylacrylamide) or PNIPAM type. Such a polymer undergoes a reversible macromolecular transition from a hydrophilic state to a hydrophobic state around its lower critical temperature of solubility LCST. This transition is rapid and is between 30 ° C and 37 ° C. Thus, when the attachment molecules 140 are for example based on PNIPAM and subjected to a first temperature Ti, located below the LCST transition temperature, they have a hydrophilic character and are soluble in water.

Lorsque les molécules d'attache 140 à base de PNIPAM sont soumises à une deuxième température T2 > Ti et situées au-dessus de leur température de transition, elles ont un caractère hydrophobe et insoluble dans l'eau. When the attachment molecules 140 based on PNIPAM are subjected to a second temperature T 2 > Ti and located above their transition temperature, they have a hydrophobic nature and insoluble in water.

D'autres types de polymères actionnables peuvent être utilisés en fonction du domaine de température ciblé, par exemple le Polyvinylcaprolactame (présentant une LCST = 37°C), l'Hydroxypropylcellulose (présentant une LCST comprise entre 40°C et 56°C), le Polyoxazoline (présentant une LCST de l'ordre de 70°C), le Polyvinylméthyléther (présentant une LCST de l'ordre de 45°C), Polyéthylèneglycol (présentant une LCST comprise entre 100°C et 130°C).  Other types of activatable polymers can be used depending on the targeted temperature range, for example polyvinylcaprolactam (having an LCST = 37 ° C.), hydroxypropylcellulose (having an LCST between 40 ° C. and 56 ° C.), polyoxazoline (having an LCST of the order of 70 ° C), polyvinyl methyl ether (having an LCST of the order of 45 ° C), polyethylene glycol (having an LCST between 100 ° C and 130 ° C).

Selon une possibilité de mise en œuvre, les moyens d'attache 140 des particules magnétiques 150 peuvent être formés de plusieurs types de polymères thermo-sensibles ou thermo-activables, avec des températures de transition LCST respectives distinctes, ce de manière à pouvoir couvrir différentes gammes de température, c'est-à-dire de pouvoir mettre en mouvement les particules magnétiques 150 pour des variations de températures selon des gammes différentes de température et éventuellement distinctes.  According to one possible embodiment, the attachment means 140 of the magnetic particles 150 may be formed of several types of thermo-sensitive or thermo-activatable polymers, with different respective LCST transition temperatures, so as to be able to cover different ranges of temperature, that is to say to be able to set in motion the magnetic particles 150 for temperature variations in different temperature ranges and possibly distinct.

La figure 1B illustre un exemple de réalisation détaillé particulier dans lequel le support 100 des particules 150 est sous forme d'un substrat 101 flexible et à base de matériau polymère, par exemple du PEN (Polyéthylène naphthalate), ou du PET (Polyéthylène téréphthalate), ou du PI (Polyimide), sur lequel le circuit conducteur 120 est également disposé.  FIG. 1B illustrates a particular detailed embodiment in which the support 100 of the particles 150 is in the form of a flexible substrate 101 and based on a polymer material, for example PEN (polyethylene naphthalate) or PET (polyethylene terephthalate) , or PI (Polyimide), on which the conductive circuit 120 is also arranged.

Le substrat 101 comporte une cavité 102 centrale dans laquelle les particules magnétiques 150 et les molécules d'attache 140 sont disposées, ainsi qu'une cavité 104 périphérique, agencée autour de la cavité 102 centrale, et dans laquelle le circuit conducteur 120 est logé. Le circuit conducteur 120 est dans cet exemple formé d'un ensemble de pistes conductrices 121 s'enroulant autour de la cavité centrale 102 dans laquelle sont situées les particules magnétiques 150. Ces particules magnétiques 150 peuvent être formées d'un corps 151 à base de matériau magnétique, en particulier ferromagnétique tel que par exemple du Nickel, du Néodyme Fer Bore (Nd2Fei4B), du Samarium Cobalt (SmCos), un alliage de Nickel et de Cobalt (NiCo), un matériau à base de Strontium et ferrite tel que le SrFei20i9, ou à base de Barium et de ferrite tel que le BaFei2Oig. Le corps 151 est enrobé d'une couche 152 d'accrochage des particules avec les molécules d'attache. La couche 152 peut également avoir un rôle de protection contre l'oxydation. Cette couche d'accrochage 152 peut être par exemple à base de Si02 afin de permettre de faciliter l'accroche avec des molécules de polymère thermosensibles tel que le PNIPAM, elles même fixées ou rattachées au substrat 101. The substrate 101 comprises a central cavity 102 in which the magnetic particles 150 and the attachment molecules 140 are disposed, as well as a peripheral cavity 104, arranged around the central cavity 102, and in which the conductive circuit 120 is housed. In this example, the conducting circuit 120 is formed of a set of conductive tracks 121 wound around the central cavity 102 in which the magnetic particles 150 are located. These magnetic particles 150 may be formed of a body 151 based on magnetic material, in particular ferromagnetic such as for example nickel, neodymium iron boron (Nd 2 Fei 4 B), Samarium cobalt (SmCos), an alloy of Nickel and Cobalt (NiCo), a material based on Strontium and ferrite such as SrFei 2 0i9, or based on Barium and ferrite such as BaFei 2 Oig. The body 151 is coated with a layer 152 for attaching the particles with the attachment molecules. The layer 152 may also have a role of protection against oxidation. This attachment layer 152 may for example be based on SiO 2 so as to facilitate adhesion with heat-sensitive polymer molecules such as PNIPAM, they themselves fixed or attached to the substrate 101.

Les particules 150 peuvent avoir un diamètre ou une dimension critique par exemple de l'ordre de 50 nm.  The particles 150 may have a diameter or a critical dimension, for example of the order of 50 nm.

Le corps 151 peut avoir un diamètre ou dimension critique par exemple compris(e) entre 10 nm et 40 nm, tandis que la couche 152 peut avoir une épaisseur compris(e) entre 40 nm et 10 nm.  The body 151 may have a diameter or critical dimension, for example between 10 nm and 40 nm, while the layer 152 may have a thickness of between 40 nm and 10 nm.

Les particules magnétiques 150 sont dans cet exemple destinées à être déplacées dans une direction, réalisant un angle non-nul par rapport au plan principal du substrat 101 en particulier orthogonale ou sensiblement orthogonale au plan principal du substrat 101 (le plan principal du substrat étant défini comme un plan passant par ce dernier et parallèle au plan [O; x ; y] sur la figure 1B). L'avantage d'avoir un mouvement des particules selon l'axe z permet dans cet exemple de maximiser le champ électrique E et donc le courant généré dans le circuit conducteur 120.  In this example, the magnetic particles 150 are intended to be displaced in one direction, producing a non-zero angle with respect to the main plane of the substrate 101, in particular orthogonal or substantially orthogonal to the main plane of the substrate 101 (the principal plane of the substrate being defined as a plane passing through it and parallel to the plane [O; x; y] in Figure 1B). The advantage of having a movement of the particles along the z axis in this example makes it possible to maximize the electric field E and thus the current generated in the conducting circuit 120.

Les particules magnétiques 150 sont rattachées, par exemple par greffage, à différents types de molécules d'attache 141, 142 polymère sensibles à la température, ces molécules d'attache 141, 142 étant, elles mêmes fixées ou rattachées au substrat 101, par exemple par greffage.  The magnetic particles 150 are attached, for example by grafting, to different types of temperature-sensitive polymer attachment molecules 141, 142, these attachment molecules 141, 142 being themselves fixed or attached to the substrate 101, for example by grafting.

Les particules magnétiques 150 sont, dans cet exemple, rattachées à une première zone 131 du support par le biais de molécules polymères thermosensibles 141 d'un premier type, ayant une température caractéristique de transition LCST1 qui peut être située par exemple entre 20°C et 50°C. Ainsi, quand la température augmente et dépasse la température caractéristique de transition LCSTl, les molécules thermo- stimulables 141 du premier type peuvent par exemple devenir hydrophobes et subir un changement de volume. The magnetic particles 150 are, in this example, attached to a first region 131 of the support by means of thermosensitive polymer molecules 141 of a first type, having a characteristic transition temperature LCST1 which can be situated for example between 20 ° C. and 50 ° C. So when the temperature goes up and exceeds the LCST1 transition characteristic temperature, the thermostimulatory molecules 141 of the first type may for example become hydrophobic and undergo a change in volume.

Il est possible de modifier la température caractéristique de transition LCST des polymères thermosensibles en leur ajoutant un sel (pour diminuer leur température caractéristique de transition LCST) ou en ajoutant un tensio-actif ou un solvant approprié du polymère (pour augmenter leur température caractéristique de transition LCST).  It is possible to modify the LCST transition temperature of the heat-sensitive polymers by adding a salt (to decrease their LCST transition temperature) or by adding a suitable surfactant or polymer solvent (to increase their transition temperature LCST).

De la même manière, une modification de la température LCST pour une famille de polymère thermo-stimulable peut être réalisée par formation d'un copolymère, le copolymère portant au choix une charge ou un groupement amphiphile.  Similarly, a modification of the LCST temperature for a thermostimulable polymer family can be achieved by forming a copolymer, the copolymer optionally having a charge or an amphiphilic moiety.

Dans cet exemple de réalisation, les particules magnétiques 150 sont également rattachées à une deuxième zone 132 du support par le biais de molécules polymères thermosensibles 142 d'un deuxième type.  In this embodiment, the magnetic particles 150 are also attached to a second zone 132 of the support via thermosensitive polymer molecules 142 of a second type.

Selon une possibilité de mise en œuvre, les molécules d'attache 142 du deuxième type peuvent avoir une température caractéristique de transition LCST2 différente de celle LCSTl des molécules d'attache du premier type, et telle que LCST2 est située entre une troisième température T3 (différente de Tl et T2) et d'une quatrième température T4.  According to one possibility of implementation, the attachment molecules 142 of the second type may have a characteristic LCST2 transition temperature different from that LCST1 of the attachment molecules of the first type, and such that LCST2 is located between a third temperature T3 ( different from T1 and T2) and a fourth temperature T4.

Les molécules d'attache 142 du deuxième type peuvent être alors configurées de sorte que lorsqu'elles sont soumises à une variation de température de la troisième température vers la quatrième température, leur affinité pour l'eau est modifiée en passant par exemple d'un caractère hydrophile à un caractère hydrophobe ou inversement.  The attachment molecules 142 of the second type can then be configured so that when they are subjected to a temperature change from the third temperature to the fourth temperature, their affinity for water is changed by passing for example a hydrophilic character with a hydrophobic character or vice versa.

En variante, les molécules d'attache 142 thermosensibles du deuxième type ont une affinité pour l'eau qui varie en fonction de la température d'une manière inverse de celle des molécules d'attache 141 thermosensibles du premier type.  Alternatively, the heat-sensitive attachment molecules 142 of the second type have a temperature-dependent affinity for water in a manner opposite to that of the heat-sensitive attachment molecules of the first type.

Dans ce mode de réalisation particulier, à une température donnée, lorsque molécules 142 du deuxième type sont hydrophobes, les molécules 141 du premier type sont dans le même temps hydrophiles, tandis qu'à une autre température, lorsque molécules du deuxième type 142 sont hydrophiles, les molécules du premier type 141 sont hydrophobes. In this particular embodiment, at a given temperature, when molecules 142 of the second type are hydrophobic, the molecules 141 of the first type are at the same time hydrophilic, while at another temperature, when molecules of the second type 142 are hydrophilic, the molecules of the first type 141 are hydrophobic.

Un tel mode de réalisation peut être obtenu par exemple lorsque les molécules d'attache 141 thermosensibles du premier type sont des molécules PNIPAM ayant une température caractéristique de transition LCST1 située par exemple dans une gamme de températures entre 20°C et 50°C.  Such an embodiment can be obtained for example when the heat-sensitive attachment molecules 141 of the first type are PNIPAM molecules having a characteristic transition temperature LCST1 located for example in a temperature range between 20 ° C and 50 ° C.

Les molécules d'attache 142 thermosensibles du deuxième type peuvent être, quant à elles, des molécules présentant une température caractéristique UCST2 (UCST pour « upper critical solution température ») dans une gamme de températures entre 20°C et 50°C. Les molécules d'attache 142 peuvent être par exemple de type hydrogel et passer d'un caractère hydrophobe à un caractère hydrophile au dessus d'une température supérieure à UCST2. Les molécules d'attache 142 peuvent être par exemple à base de PDMAPS (poly-3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate) présentant par exemple une UCST comprise entre 32°C et 35°C ou à base de poly(propylsulfonatedimethylammoniumethylmethacrylate) dont l'UCST est de l'ordre de 30°C.  The thermosensitive attachment molecules 142 of the second type may be, for their part, molecules having a characteristic temperature UCST2 (UCST for "upper critical solution temperature") in a temperature range between 20 ° C and 50 ° C. The attachment molecules 142 may for example be of hydrogel type and pass from a hydrophobic character to a hydrophilic character above a temperature greater than UCST2. The attachment molecules 142 may for example be based on PDMAPS (poly-3-dimethyl (methacryloyloxyethyl) ammonium propane sulphonate) having, for example, a UCST of between 32 ° C. and 35 ° C. or based on poly (propylsulfonatedimethylammoniumethylmethacrylate) of which the UCST is of the order of 30 ° C.

Plus généralement, Les molécules d'attache 141, 142 peuvent avoir un caractère solvophile/solvophobe variable en fonction de la température.  More generally, the attachment molecules 141, 142 may have a variable solvophile / solvophobic character as a function of temperature.

Une variation de la température sur le dispositif induit un mouvement mécanique des molécules polymères thermo-stimulables 141 et/ou 142 entraînant le mouvement des particules magnétique 150 qui sont greffés sur les molécules thermo- stimulables 141, 142. La densité de courant circulant dans le circuit est proportionnelle au mouvement des particules magnétiques 150.  A variation of the temperature on the device induces a mechanical movement of the thermo-stimulable polymer molecules 141 and / or 142 causing the movement of the magnetic particles 150 which are grafted onto the thermostimulable molecules 141, 142. The current density flowing in the circuit is proportional to the movement of the magnetic particles 150.

Dans cet exemple de réalisation, la première zone 131 sur laquelle les molécules polymères thermosensibles 141 sont greffées est située au fond de la cavité centrale 102, tandis que la deuxième zone 132 sur laquelle les molécules polymères thermosensibles 142 sont greffées, est quant à elle disposée en vis-à-vis de la première zone 131, sur une partie du support formant un capot 160 pour la cavité centrale 102. On peut mettre en œuvre ainsi un mouvement oscillatoire vertical. Le capot 160 recouvrant la cavité centrale 102 peut comporter des ouvertures 163 pour permettre à un fluide de pénétrer dans, et sortir de, la cavité centrale 102. Les ouvertures 163 peuvent en particulier permettre à de l'humidité de pénétrer dans la cavité 102. In this embodiment, the first zone 131 on which the heat-sensitive polymer molecules 141 are grafted is located at the bottom of the central cavity 102, while the second zone 132 on which the heat-sensitive polymer molecules 142 are grafted, is itself arranged. in front of the first zone 131, on a portion of the support forming a cover 160 for the central cavity 102. A vertical oscillatory movement can thus be implemented. The cover 160 covering the central cavity 102 may include openings 163 to allow a fluid to enter and exit the central cavity 102. The openings 163 may in particular allow moisture to enter the cavity 102.

Lorsque les molécules 141, 142 sensibles à la température présentent une variation d'affinité à la molécule d'eau en fonction de la température, il peut s'avérer important de permettre un bon apport en humidité dans la cavité centrale 102. Pour améliorer cet apport en humidité, on peut confiner l'eau ou l'humidité dans la cavité 102 en prévoyant sur les parois internes de cette cavité une ou plusieurs zones présentant une bonne affinité avec l'eau comme par exemple du polyimide (PI), du Polydimethylsiloxane (PDMS), ou même en déposant une couche SAM (mono couche autoassemblée) polaire comme par exemple une couche de 2,2-(Ethylenedioxy) diethanethiol, Hexa(ethylene glycol) dithiol, Tetra(ethylene glycol) dithiol, (11- Mercaptoundecyl)tetra(ethylene glycol), (ll-Mercaptoundecyl)hexa(ethylene glycol), Triéthylene glycol mono-ll-mercaptoundecyl ether.  When the temperature-sensitive molecules 141, 142 exhibit a variation in affinity to the water molecule as a function of temperature, it may be important to allow a good moisture input into the central cavity 102. In moisture supply, the water or moisture can be confined in the cavity 102 by providing on the inner walls of this cavity one or more zones having a good affinity with water such as polyimide (PI), polydimethylsiloxane (PDMS), or even depositing a layer SAM (self-assembled monolayer) polar such as a layer of 2,2- (ethylenedioxy) diethanethiol, Hexa (ethylene glycol) dithiol, Tetra (ethylene glycol) dithiol, (11- Mercaptoundecyl tetra (ethylene glycol), (11-Mercaptoundecyl) hexa (ethylene glycol), triethylene glycol mono-11-mercaptoundecyl ether.

Cette ou ces couches SAM peuvent être formées sur une zone de métal par exemple tel que de l'Or (Au), et/ou de l'argent (Ag), et/ou du Cuivre (Cu).  This SAM layer or layers can be formed on a metal zone for example such as gold (Au), and / or silver (Ag), and / or copper (Cu).

Sur les figures 1C-1D, un mouvement des particules 150 au sein d'un dispositif de conversion du type de celui décrit précédemment est illustré.  In FIGS. 1C-1D, a movement of the particles 150 within a conversion device of the type of that described above is illustrated.

Les particules magnétiques 150 sont tout d'abord maintenues par les molécules 141, 142 dans une première position par rapport audit circuit conducteur 120 lorsque le dispositif est soumis à une première température Tl < LCST1 (avec LCST1 la température de transition des molécules du premier type). Dans cette première position les particules 150 sont situées à une hauteur hi (mesurée dans la direction z sur la figure 1C) par exemple de l'ordre de 500 nm, par rapport au substrat 101.  The magnetic particles 150 are firstly held by the molecules 141, 142 in a first position with respect to said conductive circuit 120 when the device is subjected to a first temperature Tl <LCST1 (with LCST1 the transition temperature of the molecules of the first type ). In this first position the particles 150 are situated at a height h 1 (measured in the z direction in FIG. 1C), for example of the order of 500 nm, with respect to the substrate 101.

Une variation de température de la première température vers une deuxième température supérieure à la température, entraine un déplacement des molécules d'attache qui déplacent les particules magnétiques 150 de la première position vers une deuxième position par rapport audit circuit conducteur 120. Ce déplacement des particules magnétiques de la première position vers la deuxième position induit un courant dans ledit circuit conducteur 120. Dans cette deuxième position, les particules 150 sont situées à une hauteur h2 par exemple de l'ordre de 1 μιη, par rapport au substrat 101. A change in temperature from the first temperature to a second temperature above the temperature results in a displacement of the attachment molecules that move the magnetic particles 150 from the first position to a second position with respect to said conductive circuit 120. This displacement of the magnetic particles from the first position to the second position induces a current in said conductive circuit 120. In this second position, the particles 150 are located at a height h 2 for example of the order of 1 μιη, compared to substrate 101.

Selon un autre exemple de réalisation, on peut agencer les molécules d'attache 140 sensibles à la température et les particules magnétiques 150 qui leur sont greffées, directement sur des pistes conductrices d'un circuit conducteur, le circuit conducteur jouant dans ce cas le rôle de support.  According to another exemplary embodiment, it is possible to arrange the temperature sensitive fastening molecules 140 and the magnetic particles 150 which are grafted onto them directly on conductive tracks of a conductive circuit, the conducting circuit playing in this case the role of support.

Un exemple de procédé de réalisation d'un dispositif de conversion d'énergie thermique en énergie électrique, suivant l'invention, va à présent être décrit en liaison avec les figures 2A-2F, 3A-3C et 4A-4B.  An example of a method for producing a device for converting thermal energy into electrical energy, according to the invention, will now be described in connection with FIGS. 2A-2F, 3A-3C and 4A-4B.

Le matériau de départ est un substrat 101, qui peut être flexible et à base d'un matériau polymère tel que par exemple du PEN (Polyéthylène naphthalate), ou du PET (Polyéthylène téréphtalate), ou du PI (Polyimide). Le substrat 101 peut avoir une épaisseur (mesurée dans une direction orthogonale au plan [0,x,y] du repère orthogonal [0,x,y,z] sur la figure 2A) comprise par exemple entre 25 μιη et 125 μιη.  The starting material is a substrate 101, which can be flexible and based on a polymeric material such as, for example, PEN (polyethylene naphthalate), or PET (polyethylene terephthalate), or PI (polyimide). The substrate 101 may have a thickness (measured in a direction orthogonal to the [0, x, y] plane of the orthogonal coordinate system [0, x, y, z] in FIG. 2A) for example between 25 μιη and 125 μιη.

Dans le substrat 101, on réalise tout d'abord, des cavités 102, 104, dont une cavité centrale 102 et une cavité périphérique 104 agencée autour de la cavité centrale 102.  In the substrate 101, first cavities 102, 104 are produced, including a central cavity 102 and a peripheral cavity 104 arranged around the central cavity 102.

Les cavités 102, 104 peuvent être formées par exemple par une gravure, qui peut être réalisée au moyen d'un laser ou à l'aide d'un plasma par exemple à base de (02 + SF6) ou de type humide à l'aide par exemple d'une solution de type méthylbenzoate. The cavities 102, 104 may be formed for example by an etching, which may be carried out by means of a laser or with the aid of a plasma for example based on (0 2 + SF 6) or wet type with for example, a solution of the methylbenzoate type.

La cavité centrale 102 et la cavité périphérique 104 peuvent être séparées par des parois 103 formées par gravure du substrat 101.  The central cavity 102 and the peripheral cavity 104 may be separated by walls 103 formed by etching of the substrate 101.

La hauteur H des cavités 102, 104 (mesurée dans une direction orthogonale au plan [0,x,y] du repère orthogonal [0,x,y,z] sur la figure 2A) peut être comprise par exemple entre 1 μιη et 5 μιη.  The height H of the cavities 102, 104 (measured in a direction orthogonal to the plane [0, x, y] of the orthogonal coordinate system [0, x, y, z] in FIG. 2A) may be for example between 1 μιη and 5 μιη.

Ensuite (figure 2B), on forme des zones 105a, 105b conductrices de reprise de contact sur certaines régions localisées du substrat 101, en particulier situées dans la cavité périphérique 104. Pour cela, on peut effectuer, à travers un masque M, un dépôt de matériau conducteur, par exemple par pulvérisation cathodique. Le matériau déposé peut être un métal, par exemple inoxydable tel que de l'or et avoir une épaisseur comprise par exemple entre 30 nm et 300 nm. Then (FIG. 2B) contacting conductive zones 105a, 105b are formed on certain localized regions of the substrate 101, in particular located in the peripheral cavity 104. For this purpose, it is possible to carry out, through a mask M, a deposit of conductive material, for example by sputtering. The deposited material may be a metal, for example stainless such as gold and have a thickness for example between 30 nm and 300 nm.

Puis (figure 2C), sur une zone conductrice donnée 105b parmi les zones Then (FIG. 2C), on a given conductive zone 105b among the zones

105a, 105b conductrices de reprise de contact, on forme au moins une zone isolante 107 par dépôt d'un matériau diélectrique, par exemple par sérigraphie ou par jet d'encre. 105a, 105b contact recovery conductors, at least one insulating zone 107 is formed by depositing a dielectric material, for example by screen printing or by ink jet.

Le matériau diélectrique peut être choisi de manière à avoir une constante diélectrique faible et peut être par exemple du polyimide ou un polymère fluoré d'épaisseur comprise par exemple entre 100 nm et 1 μιη. Ce dépôt peut être suivi d'un recuit d'une durée par exemple comprise entre 10 minutes et 20 minutes à une température par exemple de l'ordre de 100°C.  The dielectric material may be chosen so as to have a low dielectric constant and may for example be polyimide or a fluorinated polymer with a thickness of, for example, between 100 nm and 1 μιη. This deposit may be followed by annealing of a duration for example between 10 minutes and 20 minutes at a temperature for example of the order of 100 ° C.

On forme ensuite un circuit conducteur 120 dans la cavité périphérique 104 (figure 2D). Ce circuit 120 peut être sous forme d'un enroulement conducteur réalisé par dépôt d'une couche métallique, par exemple à base d'Ag, ou d'Au, ou de Cu, selon une technique qui peut être par exemple du PVD (dépôt physique en phase vapeur) à travers un masque ou par sérigraphie, ou par une technique de type jet d'encre.  A conductive circuit 120 is then formed in the peripheral cavity 104 (FIG. 2D). This circuit 120 may be in the form of a conductive winding produced by deposition of a metal layer, for example based on Ag, or Au, or Cu, according to a technique which may be for example PVD (deposit physical vapor phase) through a mask or screen printing, or by an inkjet technique.

L'épaisseur de la couche métallique déposée peut être comprise pa r exemple entre 100 nm et 5 μιη.  The thickness of the deposited metal layer may be for example between 100 nm and 5 μιη.

Une gravure peut être ensuite réalisée afin de définir des pistes conductrices 121 pour le circuit conducteur 120. Ce circuit conducteur 120 comporte une extrémité disposée sur la zone conductrice 105a tandis qu'une autre extrémité se trouve en contact avec une autre zone conductrice 105b, le reste de l'enroulement étant disposé soit sur le substrat 100 soit sur la zone isolante 107.  An etching can then be performed to define conductive tracks 121 for the conductive circuit 120. This conductive circuit 120 has one end disposed on the conductive zone 105a while another end is in contact with another conductive zone 105b, the the remainder of the winding being disposed either on the substrate 100 or on the insulating zone 107.

Ensuite (figure 2E), dans la cavité centrale 102, on forme une première zone 131 de fixation sur le substrat 100 sur laquelle des moyens d'attache de particules magnétiques sont destinés à être disposés ultérieurement. Cette zone 131 peut être par exemple à base d'oxyde de cuivre formée par dépôt par sérigraphie, ou par jet d'encre. Le dépôt est effectué selon une épaisseur comprise par exemple entre 100 nm et 1 μιη au fond de la cavité 104 centrale. En variante, on peut prévoir une zone de fixation à base de cuivre formée par dépôt d'oxyde de cuivre suivi d'un recuit de désoxydation réalisé par exemple à l'aide d'impulsions de rayonnement UV. Then (FIG. 2E), in the central cavity 102, a first attachment zone 131 is formed on the substrate 100 on which magnetic particle attachment means are intended to be arranged later. This zone 131 may for example be based on copper oxide formed by screen printing, or by ink jet. The deposition is carried out in a thickness of, for example, between 100 nm and 1 μιη at the bottom of the central cavity 104. As a variant, it is possible to provide a fixing zone based on copper formed by deposition of copper oxide followed by a deoxidation annealing carried out for example using pulses of UV radiation.

Ensuite (figure 2F), on réalise un greffage d'un premier ensemble de molécules thermo-stimulables ou thermosensibles 141 d'un premier type, par exemple des polymères thermosensibles, sur la zone 131 de fixation.  Next (FIG. 2F), a first set of thermostimulable or thermosensitive molecules 141 of a first type, for example thermosensitive polymers, is grafted onto the attachment zone 131.

Les molécules 141 greffées peuvent être déjà pourvues à une de leurs extrémités de particules magnétiques 150, formées d'un corps 151 à base d'un matériau ferromagnétique aimanté tel que par exemple du Ni ou du Nd2Fei4B, ou du SmCos, ou du NiCo, ou du SrFei20i9, ou du BaFei2Oig et enrobées par une couche d'accrochage 152 qui peut également jouer le rôle de couche de protection et être par exemple à base de Si02. La température à laquelle l'étape de fixation ou de greffage des molécules 141 est effectuée peut dépendre de leur température de transition LCST1. Les particules magnétiques 150 peuvent avoir été greffées préalablement sur les molécules 141, à l'aide d'un solvant favorisant le greffage, par exemple du dichlorométhane. Les particules magnétiques peuvent avoir une aimantation naturelle ou avoir été aimantées par le biais d'un électro-aimant. The grafted molecules 141 may already be provided at one of their ends with magnetic particles 150, formed of a body 151 based on a magnetic ferromagnetic material such as, for example, Ni or Nd 2 Fei 4 B, or SmCos, or NiCo, or SrFei 2 0i9, or BaFei Oig 2 and coated with a primer 152 which can also play the role of protective layer and for example be based on Si0 2. The temperature at which the fixing or grafting step of the molecules 141 is carried out may depend on their LCST1 transition temperature. The magnetic particles 150 may have been previously grafted onto the molecules 141, using a graft promoting solvent, for example dichloromethane. The magnetic particles may have natural magnetization or have been magnetized by means of an electromagnet.

Les molécules thermosensibles ou thermo-stimulables 141 du premier type peuvent être par exemple des molécules PNIPAM ayant une affinité pour l'eau variable dans une gamme de température, par exemple entre 20°C à 50°C, et passant d'un caractère hydrophile à un caractère hydrophobe lorsqu'elle sont soumises à une température allant au delà de leur température de transition LCST1.  The thermosensitive or thermostimulable molecules 141 of the first type may be, for example, PNIPAM molecules having a water affinity variable in a temperature range, for example between 20 ° C. to 50 ° C., and passing from a hydrophilic character. to a hydrophobic character when subjected to a temperature beyond their LCST1 transition temperature.

Le procédé comprend également, préalablement, ou simultanément, ou après réalisation des étapes qui viennent d'être décrites en liaison avec les figures 2A-2F, la réalisation sur un autre substrat 201, par exemple un substrat polymère à base de PEN, ou à base de PET, ou à base de PI, d'épaisseur comprise par exemple entre 25 μιη et 50 μιη, d'une deuxième zone 232 de fixation sur laquelle des molécules d'attache de particules magnétiques sont destinées à être disposées ultérieurement (figure 3A).  The method also comprises, previously, or simultaneously, or after carrying out the steps which have just been described in connection with FIGS. 2A-2F, the production on another substrate 201, for example a PEN-based polymer substrate, or PET base, or based on PI, thickness for example between 25 μιη and 50 μιη, a second zone 232 attachment on which magnetic particle attachment molecules are intended to be arranged later (Figure 3A ).

La zone de fixation 232 peut être par exemple à base d'oxyde de cuivre CuO et avoir une épaisseur comprise par exemple entre 100 nm et 1 μιη. Selon un autre exemple, la zone de fixation 232 peut être une zone de cuivre obtenue par réduction d'une couche d'oxyde de cuivre (figure 3A). The fixing zone 232 may for example be based on copper oxide CuO and have a thickness for example between 100 nm and 1 μιη. According to another for example, the attachment zone 232 may be a copper zone obtained by reducing a layer of copper oxide (FIG. 3A).

On en réalise sur le deuxième substrat 201 une greffe sur la deuxième zone de fixation 232 d'un ensemble de molécules thermosensibles ou thermo-stimulables 142 (figure 3B). Les molécules thermosensibles ou thermo-stimulables 142 greffées sur le deuxième substrat 201 sont d'un deuxième type, différent de celui des molécules greffées sur le premier substrat 101.  On the second substrate 201, a graft is made on the second attachment zone 232 of a set of thermosensitive or thermostimulable molecules 142 (FIG. 3B). The thermosensitive or thermostimulable molecules grafted onto the second substrate 201 are of a second type, different from that of the grafted molecules on the first substrate 101.

Les molécules thermosensibles ou thermo-stimulables 142 du deuxième type peuvent être des polymères sensibles à la température et ayant une température de transition LCST2.  The thermosensitive or thermostimulable molecules 142 of the second type may be temperature-sensitive polymers having an LCST2 transition temperature.

Les molécules thermosensibles ou thermo-stimulables 142 du deuxième type peuvent avoir une affinité pour l'eau variable dans une gamme de température, par exemple entre 20°C à 50°C, et qui, dans cette gamme varie de manière inverse de celle ou opposée à celle des molécules thermosensibles ou thermo-stimulables 141 du premier type. Par exemple, le PDMAPS (poly-3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate présente une température caractéristique de transition UCST=32°C.  The thermosensitive or thermostimulable molecules 142 of the second type may have an affinity for variable water in a temperature range, for example between 20 ° C. and 50 ° C., and which in this range varies inversely with that or opposite to that of thermosensitive or thermo-stimulable molecules 141 of the first type. For example, PDMAPS (poly-3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate has a typical transition temperature UCST = 32 ° C.

Selon une autre possibilité de mise en œuvre, les molécules thermosensibles ou thermo-stimulables 142 du deuxième type peuvent avoir une affinité pour les molécules d'eau variable dans une gamme de température qui est différente de celle dans laquelle l'affinité pour les molécules d'eau des molécules thermosensibles ou thermo-stimulables 141 du premier type varie.  According to another implementation possibility, the thermosensitive or thermo-stimulable molecules 142 of the second type may have an affinity for the variable water molecules in a temperature range that is different from that in which the affinity for the molecules of water water of thermosensitive or thermo-stimulable molecules 141 of the first type varies.

Ensuite, on forme une ou plusieurs zones adhésives 260 pour permettre un assemblage avec le premier substrat 101 et le deuxième substrat 201.  Next, one or more adhesive zones 260 are formed to allow assembly with the first substrate 101 and the second substrate 201.

Des zones adhésives 260 peuvent être en particulier réalisées sur le deuxième substrat 201, par exemple dans une région périphérique de ce dernier (figure 3C).  Adhesive zones 260 may in particular be made on the second substrate 201, for example in a peripheral region of the latter (FIG. 3C).

Les zones adhésives 260 peuvent être par exemple formées par impression par sérigraphie ou par dispense manuelle d'une couche, par exemple de type époxy, qui n'est pas conductrice ou de type NCP (NCP pour « Non Conductive Paste »). En variante, les zones adhésives 260 peuvent être réalisées à l'aide d'une couche SAM (SAM pour « Self-Assembled Monolayer » ou mono-couche auto assemblée) de type isocyanate et comportant des groupements éthyl, aminé ou benzyl. The adhesive zones 260 may for example be formed by screen printing or by manual dispensing of a layer, for example epoxy, which is not conductive or NCP (NCP for "Non Conductive Paste"). Alternatively, the adhesive zones 260 can be made using a SAM layer (SAM for "Self-Assembled Monolayer" or mono-layer auto assembly) of isocyanate type and comprising ethyl, amine or benzyl groups.

Une telle couche SAM peut permettre d'assurer un collage entre les deux substrats 101 et 201, en particulier lorsque ces substrats 101, 201 sont à base de PEN ou de PET. Cette couche SAM peut être déposée sur le matériau PEN ou PET du deuxième substrat 201 après avoir réalisé un traitement préalable à l'aide d'un plasma UV/O3 (ultraviolet/Ozone) de plusieurs minutes sur une région périphérique du substrat 201. Pendant ce traitement, les zones sur lesquelles des molécules thermo-stimulables ont été placées, et en particulier la zone de fixation 231, peuvent être masquées afin d'éviter d'être endommagées.  Such a SAM layer can make it possible to ensure a bonding between the two substrates 101 and 201, in particular when these substrates 101, 201 are based on PEN or PET. This SAM layer may be deposited on the PEN or PET material of the second substrate 201 after having carried out a preliminary treatment with a UV / O3 (ultraviolet / ozone) plasma of several minutes on a peripheral region of the substrate 201. this treatment, the areas on which thermostimulable molecules have been placed, and in particular the attachment zone 231, can be masked in order to avoid being damaged.

On effectue ensuite un report du deuxième substrat 200 sur le premier substrat 100 (figure 4A). Ce report peut être réalisé par collage en se servant de marques d'alignement prévues sur les substrats 101, 201.  The second substrate 200 is then transferred to the first substrate 100 (FIG. 4A). This transfer can be achieved by bonding using alignment marks provided on the substrates 101, 201.

Le collage des deux substrats 101, 201 peut être effectué en appliquant les zones d'adhésion 260, formées par exemple de colle époxy (NCP) ou de la couche SAM (mono couche auto assemblée) sur le dessus des parois 103 séparant les cavités 102, 104.  The two substrates 101, 201 can be bonded by applying the adhesion zones 260, formed, for example, of epoxy glue (NCP) or of the SAM layer (self-assembled monolayer) on top of the walls 103 separating the cavities 102. , 104.

Cette étape de collage peut être suivie d'un recuit à 100°C pendant une dizaine de minutes afin de solidifier la couche de colle ou créer des liaisons entre les deux substrats 101, 201.  This bonding step may be followed by annealing at 100 ° C. for about ten minutes in order to solidify the adhesive layer or create bonds between the two substrates 101, 201.

Le deuxième substrat 201 peut permettre de former un capot de fermeture de la cavité centrale 102.  The second substrate 201 may make it possible to form a closure cap for the central cavity 102.

Des ouvertures 163 (figure 4B) peuvent être ensuite pratiquées dans le deuxième substrat 201 formant un capot, par exemple à l'aide d'un laser.  Openings 163 (FIG. 4B) can then be made in the second substrate 201 forming a cover, for example using a laser.

Ces ouvertures 163 permettent un échange de fluides entre l'extérieur du dispositif et l'intérieur de la cavité centrale 102, et en particulier de permettre à de l'humidité de pénétrer dans la cavité centrale 102.  These openings 163 allow a fluid exchange between the outside of the device and the inside of the central cavity 102, and in particular to allow moisture to enter the central cavity 102.

Dans le procédé qui vient d'être décrit, les étapes de greffage des molécules d'attache sur le support illustrées respectivement sur la figure 2F et sur la figure 3B peuvent être réalisées par le biais d'un agent de couplage silane portant un groupement isocyanate. Un exemple de réaction est donné ici avec un isocyanate polyéthylène glycol (PEG). Une telle réaction peut avoir lieu dans le dichlorométhane anhydre : In the method which has just been described, the grafting steps of the attachment molecules on the support illustrated respectively in FIG. 2F and in FIG. 3B can be carried out by means of a silane coupling agent carrying an isocyanate group. . An example of a reaction is given here with a polyethylene glycol (PEG) isocyanate. Such a reaction can take place in anhydrous dichloromethane:

H(OCH2CH2)nO H+OCN(CH2)3Si(OEt)3H (OCH 2 CH 2 ) nO H + OCN (CH 2) 3 Si (OEt) 3

Une liaison covalente uréthane est ainsi formée.  A covalent urethane bond is thus formed.

Pour le greffage, d'autres agents de couplage silane portant une fonction isocyanate peuvent être employés : For grafting, other silane coupling agents carrying an isocyanate function may be employed:

Le substrat 101 ou 201 sur lequel est réalisé la greffe peut être trempé dans une solution anhydre de H( OCH2CH2)nOCO N H(CH2)3Si(OEt)3 et de CH2CI2. The substrate 101 or 201 on which the graft is made can be dipped in an anhydrous solution of H (OCH 2 CH 2 ) nOCO NH (CH 2 ) 3 Si (OEt) 3 and CH 2 Cl 2 .

La figure 5A illustre deux types de réactions menant à la formation de molécules greffées sur un substrat 101.  Figure 5A illustrates two types of reactions leading to the formation of grafted molecules on a substrate 101.

Une hydrolyse a tout d'abord lieu avec l'eau atmosphérique d'abord à température ambiante. Ensuite un traitement thermique peut être effectué.  Hydrolysis first takes place with atmospheric water first at room temperature. Then a heat treatment can be performed.

Ce type de greffage n'est pas nécessairement limité à un substrat polymère mais peut être mis en œuvre sur d'autres types de substrats, par exemple à base de métal et d'oxyde.  This type of grafting is not necessarily limited to a polymer substrate but can be implemented on other types of substrates, for example based on metal and oxide.

Pour permettre un greffage, les fonctions d'intérêts présentes sur le polymère thermosensible peuvent être :  To enable grafting, the interest functions present on the thermosensitive polymer may be:

- un alcool pour former un uréthane (PEG, polyvinylméthylether, hydroxypropylcellulose) ;  an alcohol to form a urethane (PEG, polyvinylmethylether, hydroxypropylcellulose);

- un acide carboxylique pour former un amide (PolyNipam, hydroxypropylcellulose) ;  a carboxylic acid to form an amide (PolyNipam, hydroxypropylcellulose);

- un aminé pour former une urée (polyvinymethylether, PEG).  an amine to form a urea (polyvinyl methyl ether, PEG).

D'autres modes de greffage sont possibles :  Other methods of grafting are possible:

On peut modifier la surface du substrat 101 et faire réagir le polymère thermo-stimulable portant une fonction réactive sur la surface (qui peut être la surface d'une nano-particule). La figure 5B illustre un autre exemple de greffage dans lequel la réaction d'un bis -catéchol d'alanine sur un substrat 101 conduit à la formation d'un catécholate, le NH2 de la fonction acide aminé de l'alanine restant libre pour réagir avec une chaîne polymère thermo-sensible portant un groupement réactif. De préférence, ce groupement réactif est un groupement succinimidyl ester. The surface of the substrate 101 may be modified and the thermostimulable polymer bearing a reactive function on the surface (which may be the surface of a nanoparticle) may be reacted. FIG. 5B illustrates another example of grafting in which the reaction of an alanine bis-catechol on a substrate 101 leads to the formation of a catecholate, the NH 2 of the amino acid function of alanine remaining free to react. with a thermosensitive polymer chain bearing a reactive group. Preferably, this reactive group is a succinimidyl ester group.

Un tel type de greffage est décrit par exemple dans le document « Biométrie Anchor for Surface-lnitiated Polymerization from Métal Substrates », Messersmith et al., J. AM. CHEM. SOC. 2005.  Such a type of grafting is described for example in the document "Anchor Biometry for Surface-lnitiated Polymerization from Metal Substrates", Messersmith et al., J. AM. CHEM. SOC. 2005.

Le tableau ci-dessous illustre une réactivité d'esters portant un groupement PEG.  The table below illustrates a reactivity of esters bearing a PEG group.

Le tableau suivant illustre la réactivité d'un type d'un succinimidyl ester particulier en jouant sur les conditions d'hydrolyse. The following table illustrates the reactivity of one type of a particular succinimidyl ester by altering the hydrolysis conditions.

Ce tableau illustre la réactivité de différents agents PEG mesurée par hydrolyse à pH 8, 25°C, et mesurée par l'absorbance UV du groupe hydrolysé succinimidyl (NHS). This table illustrates the reactivity of different PEG agents measured by hydrolysis at pH 8, 25 ° C, and measured by the UV absorbance of the hydrolyzed succinimidyl (NHS) group.

Si la surface du substrat sur laquelle on réalise la greffe porte des groupements pendants amino NH2, de préférence primaire, les esters PEG succinimidyls pourraient également réagir. Ces groupements amino primaire peuvent être obtenus par hydrolyse d'agents de couplage silane tels que : If the surface of the substrate on which the graft is carried carries NH 2 pendant amino groups, preferably primary, PEG succinimidyl esters could also react. These primary amino groups can be obtained by hydrolysis of silane coupling agents such as:

NH2(CH2)nSi Rlx(Y)3-x NH 2 (CH 2 ) n If Rlx (Y) 3 -x

Avec n=3 à 6, Rl=Me, Et, x=0 à 2, Y= Cl ou OR où R=Me ou Et. With n = 3 to 6, R1 = Me, and, x = 0 to 2, Y = Cl or OR where R = Me or Et.

Un autre mode de greffage utilise la méthode appelée « diazonium- induced anchoring process » (DIAP). Ce type de greffage est décrit par exemple dans le document de Mévellec et al. « Grafting Polymers on Surfaces : A new powerful and Versatile Diazonium Sait Based One-Step Process in Aqueous Media», Chem. Mater. 2007, 19, 6323-6330.  Another grafting mode uses the method called "diazonium-induced anchoring process" (DIAP). This type of grafting is described for example in the document by Mevellec et al. "Grafting Polymers on Surfaces: A New Powerful and Versatile Diazonium-Based One-Step Process in Aqueous Media," Chem. Mater. 2007, 19, 6323-6330.

Un sel d'aryl diazonium se greffe sur la surface du substrat en laissant un groupement aniline neutralisé par du HCI, celui-ci pouvant être réactivé en aminé primaire par ajout d'une base. On retourne alors dans les cas de greffage précédemment décrits où la surface est recouverte de groupements amino-primaires.  An aryl diazonium salt is grafted onto the surface of the substrate leaving an aniline group neutralized with HCl, which can be reactivated to primary amine by adding a base. We then return to the previously described grafting cases where the surface is covered with amino-primary groups.

Un exemple d'application particulière d'un dispositif suivant l'invention peut être celui d'un dispositif tactile, par exemple un clavier, doté de touches actionnées par le biais d'une détection d'une variation de température due à la présence d'un doigt.  An example of a particular application of a device according to the invention may be that of a tactile device, for example a keyboard, provided with keys operated by means of a detection of a temperature variation due to the presence of 'a finger.

Le doigt joue ainsi, dans cet exemple, le rôle de source d'énergie thermique d'activation des molécules thermo-sensibles qui lorsqu'elles changent de configuration permettent de déplacer des particules magnétiques, ce déplacement induisant un courant dans un circuit conducteur. Ce courant généré peut être traduit par un circuit électronique de lecture dédié du dispositif tactile qui permet alors d'adresser la touche activée. Dans cet exemple une alimentation du clavier tactile n'est pas indispensable.  The finger thus plays, in this example, the role of thermal energy source for activating thermosensitive molecules which, when they change their configuration, make it possible to move magnetic particles, this displacement inducing a current in a conductive circuit. This generated current can be translated by a dedicated electronic reading circuit of the touch device which then makes it possible to address the activated key. In this example, a power supply of the touch keyboard is not essential.

Claims

REVENDICATIONS 1. Dispositif de conversion d'énergie thermique en énergie électrique comprenant : A device for converting thermal energy into electrical energy comprising: - un support (100),  a support (100), - un circuit conducteur (120) dans lequel un courant induit est destiné à circuler,  a conductive circuit (120) in which an induced current is intended to flow, - un ensemble de particules magnétiques (150) rattachées au support par le biais de moyens d'attache (140) aptes à maintenir les particules magnétiques dans au moins une première position par rapport audit circuit conducteur (120) lorsque le dispositif est soumis à une première température, les moyens d'attache comportant des molécules d'attache (141) polymères thermosensibles d'au moins un premier type, les molécules d'attache (141) polymères étant sensibles à la température, de sorte que, lorsque les molécules d'attache du premier type sont soumis à une variation donnée de température de la première température vers une deuxième température, les moyens d'attache déplacent les particules magnétiques de la première position vers une deuxième position par rapport audit circuit conducteur (120), le déplacement des particules magnétiques de la première position vers la deuxième position induisant un courant dans ledit circuit conducteur (120).  a set of magnetic particles (150) attached to the support by means of attachment means (140) able to hold the magnetic particles in at least a first position relative to said conducting circuit (120) when the device is subjected to a first temperature, the attachment means comprising thermosensitive polymer attachment molecules (141) of at least a first type, the polymer attachment molecules (141) being temperature-sensitive, so that, when the of the first type are subjected to a given temperature variation from the first temperature to a second temperature, the attachment means moves the magnetic particles from the first position to a second position with respect to said conductive circuit (120), the displacement magnetic particles from the first position to the second position inducing a current in said conductive circuit (120). 2. Dispositif selon la revendication 1, dans lequel les molécules d'attache 141 du premier type sont des molécules ayant une température caractéristique de transition (LCST1) située entre la première température et la deuxième température et sont adaptées pour lorsqu'elles sont soumises à ladite variation donnée de température passer d'une première configuration vers une deuxième configuration, les molécules d'attache du premier type étant adaptées en outre pour lorsqu'elles sont soumises à une variation inverse de température entre la deuxième température et la première température, passer de ladite deuxième configuration vers ladite première configuration. 2. Device according to claim 1, wherein the attachment molecules 141 of the first type are molecules having a characteristic transition temperature (LCST1) located between the first temperature and the second temperature and are adapted for when subjected to said given temperature variation of a first configuration to a second configuration, the attachment molecules of the first type being further adapted for when subjected to an inverse temperature variation between the second temperature and the first temperature, passing from said second configuration to said first configuration. 3. Dispositif selon la revendication 2, dans lequel dans la première configuration les molécules d'attache (141) ont une affinité pour l'eau, hydrophile ou hydrophobe, donnée, dans la deuxième configuration, les molécules d'attache (141) ayant une affinité pour l'eau inverse de ladite affinité donnée. 3. Device according to claim 2, wherein in the first configuration the attachment molecules (141) have a hydrophilic or hydrophobic affinity for water, given, in the second configuration, the attachment molecules (141) having an affinity for the inverse water of said given affinity. 4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que les moyens d'attache comportent en outre des molécules d'attache (142) d'au moins un deuxième type, sensibles à la température. 4. Device according to one of claims 1 to 3, characterized in that the attachment means further comprise attachment molecules (142) of at least a second type, sensitive to temperature. 5. Dispositif selon la revendication 4, dans lequel les particules magnétiques (150) sont rattachées à une première zone (131) du support par le biais des molécules d'attache 141 du premier type et à une deuxième zone (132) du support par le biais de molécules d'attache 142 du deuxième type. 5. Device according to claim 4, wherein the magnetic particles (150) are attached to a first region (131) of the support by means of the attachment molecules 141 of the first type and to a second zone (132) of the support by by means of attachment molecules 142 of the second type. 6. Dispositif selon la revendication 4 ou 5, dans lequel les molécules d'attache (142) du deuxième type sont des molécules ayant une température caractéristique de transition (LCST2) située entre une troisième température et une quatrième température, les molécules d'attache du deuxième type étant configurées en outre de sorte que lorsqu'elles sont soumises à une variation de température de la troisième température vers la quatrième température à changer d'affinité pour l'eau. 6. Device according to claim 4 or 5, wherein the attachment molecules (142) of the second type are molecules having a characteristic transition temperature (LCST2) located between a third temperature and a fourth temperature, the attachment molecules of the second type being further configured such that when subjected to a temperature change from the third temperature to the fourth temperature to change affinity for water. 7. Dispositif selon l'une des revendications 4 ou 5, dans lequel les molécules d'attache (141) du premier type ont une affinité pour l'eau donnée à la première température, les molécules d'attache du deuxième type ayant une autre affinité pour l'eau, inverse de ladite affinité donnée à la première température, les molécules d'attache (142) du deuxième type ayant une affinité pour l'eau donnée à une deuxième température, les molécules d'attache (141) du premier type ayant une affinité pour l'eau inverse de ladite affinité donnée à ladite deuxième température. 7. Device according to one of claims 4 or 5, wherein the attachment molecules (141) of the first type have an affinity for the water given at the first temperature, the attachment molecules of the second type having another affinity for water, the inverse of said affinity given at the first temperature, the attachment molecules (142) of the second type having a given affinity for water at a second temperature, the attachment molecules (141) of the first a type having an affinity for water inverse to said affinity given at said second temperature. 8. Dispositif selon l'une des revendications 1 à 7, dans lequel les particules magnétiques sont rattachées à une première zone 131 du support par le biais de molécules d'attache et à une deuxième zone 132 du support par le biais de molécules d'attache dans lequel le circuit conducteur 120 est disposé sur le support de manière à former un enroulement conducteur autour d'un axe passant par ladite première zone et ladite deuxième zone du support, et réalisant un angle non-nul, en particulier orthogonal, par rapport à un plan principal du support. 8. Device according to one of claims 1 to 7, wherein the magnetic particles are attached to a first area 131 of the support by means of attachment molecules and a second area 132 of the support through molecules of wherein the conductive circuit 120 is disposed on the support so as to form a conductive winding about an axis passing through said first zone and said second zone of the support, and producing a non-zero angle, in particular orthogonal, with respect to to a main plane of the support. 9. Dispositif selon l'une des revendications 1 à 8, dans lequel les particules (150) sont formées d'un corps (151) à base d'un matériau magnétique enrobé d'une couche d'accroché (152) liée auxdites molécules d'attache. 9. Device according to one of claims 1 to 8, wherein the particles (150) are formed of a body (151) based on a magnetic material coated with a hook layer (152) bonded to said molecules attachment. 10. Dispositif selon l'une des revendications 1 à 9, dans lequel le support (100) est un substrat à base de matériau polymère. 10. Device according to one of claims 1 to 9, wherein the carrier (100) is a substrate based on polymeric material. 11. Dispositif selon l'une des revendications 1 à 10, da ns lequel pa rmi lesdites molécules d'attache sensibles à la température figurent un ou plusieurs polymères suivants : PolyNipam, Polyvinylcaprolactame, Hydroxypropylcellulose, Polyoxazoline, Polyvinylméthyléther, Polyéthylèneglycol. 11. The device according to one of claims 1 to 10, wherein said temperature-sensitive attachment molecules comprise one or more of the following polymers: PolyNipam, Polyvinylcaprolactam, Hydroxypropylcellulose, Polyoxazoline, Polyvinylmethylether, Polyethyleneglycol. 12. Système de récupération et de conversion d'énergie thermique en énergie électrique comportant : 12. System for recovering and converting thermal energy into electrical energy comprising: - un dispositif de conversion d'énergie thermique en énergie électrique selon l'une des revendications 1 à 11,  - a device for converting thermal energy into electrical energy according to one of claims 1 to 11, - des moyens pour appliquer un flux thermique variable audit dispositif de conversion d'énergie thermique en énergie électrique.  means for applying a variable thermal flux to said device for converting thermal energy into electrical energy. 13. Procédé de réalisation d'un dispositif selon l'une des revendications 1 à 12, da ns lequel les molécules d'attache sont à base de polymère sensible à la température, le procédé comprenant au moins une étape de greffage des particules magnétiques auxdites molécules de polymère. 13. A method of producing a device according to one of claims 1 to 12, in which the attachment molecules are based on polymer temperature sensitive, the method comprising at least one step of grafting the magnetic particles to said polymer molecules. 14. Procédé selon la revendication 13, dans lequel le support est formé d'un premier substrat, comprenant la réalisation dans le premier substrat (101) d'au moins une première cavité (102) et d'au moins une deuxième cavité (104) autour de la première cavité, lesdites molécules d'attache étant fixées dans la deuxième cavité, le circuit conducteur (120) étant formé dans la deuxième cavité (102). The method according to claim 13, wherein the support is formed of a first substrate, comprising producing in the first substrate (101) at least a first cavity (102) and at least a second cavity (104). ) around the first cavity, said attachment molecules being fixed in the second cavity, the conductive circuit (120) being formed in the second cavity (102). 15. Procédé selon la revendication 13 ou 14, comprenant des étapes de : The method of claim 13 or 14, comprising steps of: - fixation d'un premier ensemble de molécules d'attache (141) polymère sensible à la température sur le premier substrat (101),  - attaching a first set of temperature sensitive polymer attachment molecules (141) to the first substrate (101), - fixation d'un deuxième ensemble de molécules d'attache (142) polymère sensible à la température sur un deuxième substrat (201), puis assemblage du premier substrat (101) et du deuxième substrat (201) pour former ledit support (100).  - attaching a second set of temperature sensitive polymer attachment molecules (142) to a second substrate (201), and assembling the first substrate (101) and the second substrate (201) to form said support (100) .
EP14725496.5A 2013-05-24 2014-05-22 Device for converting heat energy into electrical energy with heat-sensitive molecules Withdrawn EP3005547A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1354701A FR3006111B1 (en) 2013-05-24 2013-05-24 DEVICE FOR CONVERTING THERMAL ENERGY IN ELECTRICAL ENERGY WITH THERMO-SENSITIVE MOLECULES
PCT/EP2014/060574 WO2014187915A1 (en) 2013-05-24 2014-05-22 Device for converting heat energy into electrical energy with heat-sensitive molecules

Publications (1)

Publication Number Publication Date
EP3005547A1 true EP3005547A1 (en) 2016-04-13

Family

ID=49151068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14725496.5A Withdrawn EP3005547A1 (en) 2013-05-24 2014-05-22 Device for converting heat energy into electrical energy with heat-sensitive molecules

Country Status (4)

Country Link
US (1) US9667121B2 (en)
EP (1) EP3005547A1 (en)
FR (1) FR3006111B1 (en)
WO (1) WO2014187915A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3089291B1 (en) 2018-11-29 2023-03-24 Commissariat Energie Atomique Structure for detecting electromagnetic radiation with optimized absorption and method of forming such a structure
RU2702982C1 (en) * 2018-12-10 2019-10-14 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Method of producing electricity when streamlining a heated body by pyroelectric heat conversion in a vortex wake
FR3090098B1 (en) 2018-12-13 2021-11-26 Commissariat Energie Atomique A method of manufacturing a detection structure with an optimized absorption rate and said structure

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840805B2 (en) * 1978-04-10 1983-09-08 東レ株式会社 Coordinate input structure
JP2004274942A (en) * 2003-03-11 2004-09-30 Ind Technol Res Inst Apparatus and method for magnetic power generation and cooling
IL160623A (en) * 2004-02-26 2010-05-17 Green Gold 2007 Ltd Thermal to electrical energy conversion apparatus
KR100768089B1 (en) * 2005-11-30 2007-10-18 한국전자통신연구원 Affirnity Chromatography microdevice, and preparing method of the same
US7732974B1 (en) * 2006-11-15 2010-06-08 Justin Boland Electrostatic power generator cell and method of manufacture
FR2911721B1 (en) 2007-01-19 2009-05-01 St Microelectronics Crolles 2 MOSFET DEVICE ON SELF
CN101647128B (en) 2007-03-28 2012-12-26 Abb研究有限公司 Thermomagnetic generator device and energy converting method
TW200909676A (en) * 2007-08-27 2009-03-01 Univ Nat Yang Ming Micro generator system
US8404347B2 (en) * 2009-01-26 2013-03-26 Hong Kong Polytechnic University Method of synthesis of amphiphilic magnetic composite particles
US8035274B2 (en) * 2009-05-14 2011-10-11 The Neothermal Energy Company Apparatus and method for ferroelectric conversion of heat to electrical energy
KR20110078179A (en) * 2009-12-30 2011-07-07 삼성전자주식회사 Thermoelectric touch sensor
CA2791472A1 (en) * 2010-03-10 2011-09-15 Bhp Billiton Aluminium Technologies Limited Heat recovery system for pyrometallurgical vessel using thermoelectric/thermomagnetic devices
ES2351138B1 (en) 2010-05-18 2011-11-21 Viva Developments S.L. ELECTROMECHANICAL GENERATOR CELL AND PROCEDURE FOR OBTAINING THE SAME
WO2012050906A1 (en) * 2010-09-29 2012-04-19 The Neothermal Energy Company Method and apparatus for generating electricity by thermally cycling an electrically polarizable material using heat from various sources and a vehicle comprising the apparatus
FR2971956B1 (en) 2011-02-24 2013-03-29 Commissariat Energie Atomique INSTALLATION AND METHOD FOR DEPOSITING PARTICLE FILM ORDERED ON A SCROLLING SUBSTRATE
FR2977121B1 (en) 2011-06-22 2014-04-25 Commissariat Energie Atomique THERMAL MANAGEMENT SYSTEM WITH VARIABLE VOLUME MATERIAL
FR2977983B1 (en) 2011-07-11 2013-08-16 Commissariat Energie Atomique SYSTEM FOR CONVERTING THERMAL ENERGY IN ELECTRICAL ENERGY
FR2977810A1 (en) 2011-07-13 2013-01-18 Commissariat Energie Atomique INSTALLATION AND METHOD FOR DEPOSITING OR ADJUSTABLE PARTICLE FILM OF ADJUSTABLE WIDTH TO A SCROLLING SUBSTRATE
FR2978616B1 (en) * 2011-07-26 2014-03-21 Soitec Silicon On Insulator ACTIVE COOLING FOR CONCENTRATION PHOTOVOLTAIC CELL
FR2985249B1 (en) 2012-01-02 2014-03-07 Commissariat Energie Atomique METHOD OF TRANSFERRING OBJECTS TO A SUBSTRATE USING A COMPACT PARTICLE FILM
FR2986721B1 (en) 2012-02-10 2014-06-27 Commissariat Energie Atomique METHOD FOR DEPOSITING A PARTICLE FILM ON A SUBSTRATE VIA A LIQUID CONVEYER, COMPRISING A STRUCTURING STEP OF THE FILM ON THE SUBSTRATE
FR2986720B1 (en) 2012-02-10 2014-03-28 Commissariat Energie Atomique METHOD FOR DEPOSITING PARTICLES ON A SUBSTRATE, COMPRISING A STEP FOR STRUCTURING A PARTICLE FILM ON A LIQUID CONVEYOR
FR2986722B1 (en) 2012-02-10 2014-03-28 Commissariat Energie Atomique METHOD FOR TRANSFERRING OBJECTS TO A SUBSTRATE USING A COMPACT PARTICLE FILM, WITH A CONNECTER IMPLEMENTATION STEP ON THE OBJECTS
FR2990268B1 (en) 2012-05-02 2014-06-06 Commissariat Energie Atomique DEVICE FOR CONVERTING THERMAL ENERGY IN MECHANICAL ENERGY WITH IMPROVED EFFICIENCY
FR2991456B1 (en) 2012-06-04 2023-02-10 Commissariat Energie Atomique CAPACITIVE HUMIDITY SENSOR WITH GRAPHENE ELECTRODE
FR2995228B1 (en) 2012-09-10 2014-09-05 Commissariat Energie Atomique METHOD FOR FORMING A PARTICLE FILM ON A CARRIER LIQUID, WITH DISPLACEMENT OF AN INCLINED PARTICLE COMPRESSION RAMP

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014187915A1 *

Also Published As

Publication number Publication date
US20160094108A1 (en) 2016-03-31
FR3006111B1 (en) 2016-11-25
FR3006111A1 (en) 2014-11-28
WO2014187915A1 (en) 2014-11-27
US9667121B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
US7416911B2 (en) Electrochemical method for attaching molecular and biomolecular structures to semiconductor microstructures and nanostructures
JP5701331B2 (en) Pattern transfer printing with dynamic control of adhesion to elastomeric stamps
US7592269B2 (en) Method and apparatus for depositing charge and/or nanoparticles
Le et al. Negative differential resistance in a bilayer molecular junction
Agina et al. Polymer surface engineering for efficient printing of highly conductive metal nanoparticle inks
KR20200043452A (en) 3D graphene
US8245393B2 (en) Method for fabricating a circuit board including aligned nanostructures
Thanh et al. Transfer‐Printing of As‐Fabricated Carbon Nanotube Devices onto Various Substrates
WO2014187915A1 (en) Device for converting heat energy into electrical energy with heat-sensitive molecules
Christou et al. Printing of Nano‐to Chip‐Scale Structures for Flexible Hybrid Electronics
Gorenskaia et al. Fabrication of metallic and non-metallic top electrodes for large-area molecular junctions
Enrico et al. Scalable manufacturing of single nanowire devices using crack-defined shadow mask lithography
JPWO2005057665A1 (en) FIELD EFFECT TRANSISTOR, ELECTRIC DEVICE ARRAY, AND METHOD FOR MANUFACTURING THE SAME
Rho et al. $\hbox {PbZr} _ {x}\hbox {Ti} _ {1-x}\hbox {O} _ {3} $ Ferroelectric Thin-Film Capacitors for Flexible Nonvolatile Memory Applications
Coll et al. Formation of silicon-based molecular electronic structures using flip-chip lamination
Caillard et al. Gold nanoparticles on oxide-free silicon–molecule interface for single electron transport
FR2959350A1 (en) METHOD FOR MANUFACTURING A MICROELECTRONIC DEVICE AND MICROELECTRONIC DEVICE SO MANUFACTURED
Khan et al. Characterization of a wake-up nano-gap gas sensor for ultra low power operation
CN118633363A (en) Method for forming a device comprising graphene
KR102265670B1 (en) High sensitive temperature sensor and manufacturing method for the same
Jeon et al. Self-Assembled 4-Aminopyridine Monolayer as a Nucleation-Inducing Layer for Transparent Silver Electrodes
Coll et al. Structural and electrical properties of flip chip laminated metal–molecule–silicon structures varying molecular backbone and atomic tether
Coll et al. Flip chip lamination to electrically contact organic single crystals on flexible substrates
Chen et al. Integration of single-walled carbon nanotubes on to CMOS circuitry with Parylene-C encapsulation
Tkachuk van der Waals Heterostructures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170915