EP2986910B1 - System and method for preheating makeup water in steam power plants, with process steam outcoupling - Google Patents
System and method for preheating makeup water in steam power plants, with process steam outcoupling Download PDFInfo
- Publication number
- EP2986910B1 EP2986910B1 EP13779573.8A EP13779573A EP2986910B1 EP 2986910 B1 EP2986910 B1 EP 2986910B1 EP 13779573 A EP13779573 A EP 13779573A EP 2986910 B1 EP2986910 B1 EP 2986910B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- condensate
- condenser
- heat exchanger
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 137
- 238000000034 method Methods 0.000 title claims description 18
- 238000007872 degassing Methods 0.000 claims description 73
- 238000010438 heat treatment Methods 0.000 claims description 43
- 239000007789 gas Substances 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008232 de-aerated water Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D1/00—Feed-water heaters, i.e. economisers or like preheaters
- F22D1/32—Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
- F22D1/34—Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines and returning condensate to boiler with main feed supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/34—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
- F01K7/44—Use of steam for feed-water heating and another purpose
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K9/00—Plants characterised by condensers arranged or modified to co-operate with the engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D1/00—Feed-water heaters, i.e. economisers or like preheaters
- F22D1/50—Feed-water heaters, i.e. economisers or like preheaters incorporating thermal de-aeration of feed-water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/34—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
- F01K7/40—Use of two or more feed-water heaters in series
Definitions
- the present invention relates to a system for feeding makeup water and preheating it into a water-steam cycle in a steam power plant. Furthermore, the present invention relates to a method for degassing make-up water in a water-steam cycle in a steam power plant.
- the water-steam cycle When decoupling process steam / heat in steam power plants, the water-steam cycle must be refilled by means of the continuous supply of make-up water due to leaks and losses of process steam / condensate.
- the make-up water is usually treated, but not degassed.
- the additional water contains dissolved foreign gases, which must be expelled again in a degasser of the steam power process. In order to increase the process efficiency, the additional water must be preheated before entering the degasser.
- make-up water also called makeup water
- makeup water a conventional degassing
- make-up water can be fed directly into a turbine condenser or into a low-pressure preheater.
- this variant can only be used for smaller amounts of make-up water.
- FIG. 2 Another conventional system for supplying make-up water is shown in a water-steam cycle.
- the condensate from a conventional condenser 201 is pumped through a conventional condensate pump 202 into a container 204.
- a mass flow m z of the make-up water is mixed in via a conventional supply line 203.
- the water mixture is then pumped by another condensate pump 205 through conventional heating devices 206, 208 of the water-steam cycle into the conventional degassing device 209.
- the water mixture is not degassed due to the additional water content and thus contains dissolved and corrosive media (eg oxygen), all containers, lines and fittings, including the container 204, must be made of corrosion-free stainless steel up to the conventional degassing device.
- the water is supplied to a conventional evaporator 207.
- DE 10 2005 040 380 B3 discloses a condensation process. Abdampf of a turbine is fed to an air-cooled condenser for condensation. The condensate recovered in the condenser is pre-heated in a Kondensat stiir Anlagenrmnote before it is fed from a feed pump upstream of the turbine evaporator. The condensate is heated by a partial steam flow of the turbine. Parallel to the condensate warm-up stage, a degasser for degassing make-up water is connected. A partial steam flow from the condenser is condensed by supplying the colder additional feed water. The additional feed water is heated and degassed at the same time. The degasser thus serves as a second downstream condensation stage.
- EP 1 093 836 A1 discloses a degassing system for power plants.
- the degassing system is used for gasification of an additionally supplied make-up water, which is connected as part of the condensation system of the power plant with a capacitor. From a make-up tank additional water is fed directly to the degassing system.
- EP 0 158 629 A2 discloses a steam cycle for steam power plants.
- steam from a turbine is cooled and condensed.
- the steam heat exchanger is supplied with additional water from a feedwater degasser.
- WO 2012/090778 A1 discloses a condensate flow rate control apparatus and a power plant control method.
- a power plant is equipped with a condensate flow rate control device.
- a breather is provided in which a condensate generated in a condenser is supplied via a breather water level control valve and into which the bleed steam from a steam turbine is introduced.
- the condensate flow rate control device has a water level adjusting device for performing the condensate flow rate control.
- the water level adjusting means adjusts the pressure in the condensate flow path from the breather water level adjusting valve to the breather so that input frequency fluctuations are suppressed or so that the output value of a generator corresponds to the input requested load changes, thereby adjusting the discharge steam amount from the steam turbine.
- This object is achieved with a system for supplying makeup water via an extra condensate make-up water heater of a water-steam cycle in a steam power plant and with a method for degassing make-up water in a downstream degasser of a water-steam cycle in a steam power plant according to the solved independent claims.
- a system for supplying make-up water to a preheater and / or evaporator of a water-steam cycle in a steam power plant comprises a condenser for condensing water vapor to water, a degassing device for degassing water, a supply line for supplying additional water and a heat exchanger.
- the condenser for condensing water vapor to water can be fed with steam from a turbine plant of the steam power plant.
- the degassing device for degassing water is coupled to the condenser such that a first portion of the condensate can be fed to the degassing device.
- the heat exchanger is coupled to the condenser such that a second portion of the condensate can be fed to the heat exchanger, wherein the heat exchanger is coupled to a feed line such that make-up water can be fed to the heat exchanger.
- the heat exchanger is set up such that the additional water can be heated by means of the second portion of the condensate.
- the heat exchanger is coupled to the degassing device in such a way that the heated additional water can be fed to the degassing device.
- a method for degassing make-up water for an evaporator of a water-steam cycle in a steam power plant is described.
- Steam power plants are nowadays often used to generate electrical energy.
- the power required to operate the steam turbine steam is generated in a boiler from previously cleaned and treated water.
- the temperature and the specific volume of the steam increase.
- From the boiler of the steam through pipes flows into a steam turbine plant, where it gives a portion of its previously recorded energy as kinetic energy to the turbine plant.
- a generator is coupled, which converts the mechanical power into electrical power.
- the expanded and cooled steam flows into the condenser where it is condensed by heat transfer to the environment (for example, fresh water from a river), and accumulates as liquid water at the lowest point of the capacitor.
- This water is called condensate.
- About the condensate pumps and preheaters or heating devices through the water is temporarily stored, for example, in a feedwater tank and then fed via another condensate pump again the steam boiler or the evaporator.
- the water is supplied to the degassing apparatus to remove harmful gases such as e.g. largely remove corrosive oxygen or carbon dioxide.
- the degassing apparatus may operate by a thermal degassing method or by a chemical degassing method.
- the thermal degassing method the degassing device is supplied with thermal energy, for example from bleed steam (from the medium-pressure region) of the turbine system, so that the water in the degassing device is "boiled up” and thus heated.
- the harmful gases such as oxygen and carbon dioxide
- the physical circumstance is used that with increasing temperature the solubility of gases in liquids decreases.
- the degassing device condensate from the one hand and additional water, which was previously heated in the heat exchanger, fed.
- the additional water is necessary because in the water-steam cycle water, or water vapor escapes due to leaks from the water-steam cycle. This relates in particular to plants with external heat consumers, ie plants with a process steam extraction.
- a heat exchanger which on the one hand receives the second portion of the condensate. Furthermore, a desired amount of make-up water is added to the heat exchanger via a supply line. The heat exchanger is set up, by means of the heat of the second portion of the condensate, the additional water to a to heat desired temperature. The heated additional water is then fed (in particular directly) to the degassing device.
- the heat exchanger according to the present invention is in particular a condensate / make-up water heat exchanger.
- the heat-emitting fluid here the second portion of the water or the condensate
- the heat-absorbing fluid here the make-up water
- the system according to the invention is energetically very efficient.
- the make-up water which may contain harmful gases, first mixed in the degassing with the first portion of the condensate.
- the devices for example, heating devices and condensate pumps
- the piping which may be present between the condenser and the degassing device need not necessarily be made of corrosion-resistant stainless steel, since these devices and pipelines do not come into contact with the corrosive makeup water come.
- the system according to the present invention can also use cheaper materials for the devices and pipelines between the condenser and the degassing device.
- the second portion of the condensate may be at least half smaller than the first portion of the water.
- the second part of the condensate is the total amount of condensate in particular only after the condenser and after at least one heating device branched off, so that the second portion of water has already been heated by means of a heating device, before the second portion of the water is supplied to the heat exchanger.
- the heat exchanger is coupled to the degassing device such that the second portion of the condensate is condensate after flowing through the heat exchanger of the degassing device.
- the second portion of the water is mixed with the make-up water and thus set an average temperature between the second portion of the water and the make-up water.
- the make-up water is thus also heated.
- the mixture of the second portion of the condensate and the make-up water is then mixed in the degassing device with the first portion of the water.
- the heat exchanger may also be coupled to the condenser such that the second portion of the condensate can be supplied to the condenser again after flowing through the heat exchanger.
- the second portion of the condensate can be mixed again with the water in the condenser and then re-supplied to the water-steam process.
- the second portion of the condensate after flowing through the heat exchanger, is fed to the condenser and before the heating device and mixed with the total proportion of water from the condenser.
- the system comprises the heating device for heating the water.
- the heating device is coupled to the condenser such that the condensate can be fed to the heating device.
- the heating device is coupled to the degassing device such that the heated water, or at least the first portion of the condensate, the degassing device can be fed.
- the heating device is set up such that the heating device can be fed with water vapor from the turbine system, in particular from a low-pressure region of the turbine system, of the steam power plant for heating the water.
- bleed steam is taken from the turbine plant to use the thermal energy of the bleed steam to heat the water after the condenser.
- the medium-pressure region of the turbine system is an area which is close to the last turbine stage of the turbine system in that the steam still has a relatively high thermal energy but a lower pressure.
- the heating device is coupled between the condenser and the heat exchanger such that the second portion of the condensate can be branched off after heating the make-up water in the heating device and can be fed to the heat exchanger.
- the degassing device is set up such that the degassing device for degassing the water (that is, the first portion of the condensate and the additional water heated in the heat exchanger) with water vapor from the turbine system, in particular from the low-pressure region and / or the medium-pressure region of the turbine plant , the steam power plant is fed.
- the system further comprises a condensate pump, which is arranged to increase the pressure of the water between the condenser and the degassing device.
- the make-up water is mixed with the condensate only in the degassing device.
- the make-up water is heated in the condensate / make-up water heat exchanger by a partial flow (the second portion) of the already pre-heated in Niedertownvorskarn (heating devices) second portion of the condensate.
- the used for heating second portion of the condensate can be removed from any number of upstream Nieder réellevor Anlagenrn and then used in one or more condensate / additional water heat exchangers for preheating the make-up water.
- Energetically useful is the removal of the second portion of the water (ie the preheating condensate) between the last heating device (low pressure preheater) and the degassing.
- the used for preheating the second portion of the water (condensate) is fed to the turbine condenser after cooling in the condensate / additional water heat exchanger in an exemplary embodiment again.
- the second portion of the condensate mass flow diverted to preheat the make-up water is separated by low-energy bleed steam, e.g. preheated from the relaxation process of the steam turbine plant.
- low-energy bleed steam e.g. preheated from the relaxation process of the steam turbine plant.
- the cost of equipment can be reduced and reduced e.g. a machine house in its base area are made smaller, because the additional installed preheater for the heating of the additional water can be omitted (these are necessary especially for large additional amounts of water).
- the costs for the power plant components decrease considerably.
- a very large additional water mass flow can be processed. This additional water mass flow can exceed the amount of condensate by more than double.
- Fig. 1 shows a system for supplying make-up water in a water-steam cycle of a steam power plant.
- a condenser 101 for condensing water vapor into water (this water is referred to below as condensate) can be fed with steam from a turbine plant 105 of the steam power plant.
- a degassing device 109 for degassing condensate is coupled to the condenser 101 such that a first portion of the condensate of the condenser 101 can be fed to the degassing device 109.
- the heat exchanger 102 is coupled to the condenser 101 such that a second portion of the condensate of the condenser 101 can be fed to the condensate / make-up water heat exchanger 102, the heat exchanger 102 being coupled to a feed line 103 in such a way that make-up water can be fed to the heat exchanger 102.
- the heat exchanger 102 is set up in such a way that the additional water can be heated by means of the second portion of the condensate.
- the heat exchanger 102 is coupled to the degassing device 109 such that the heated additional water of the degassing device 109 can be fed. After the degassing device 109, the water is supplied to an evaporator 107, for example.
- the heated additional water is fed directly after the heat exchanger 102 in the heater 109 and mixed only in the heater 109 with the first portion or first mass flow m 1 of the condensate of the condenser 101.
- the heat exchanger 102 may be coupled to the degassing device 109 such that the second portion (or a second mass flow m 2 ) of the condensate can be fed to the degassing device 109 after flowing through the heat exchanger 102.
- the heat exchanger 102 may be coupled to the condenser 101 such that the second portion of the condensate after flowing through the heat exchanger 102 to the capacitor 101 can be fed.
- At least one heating device 106 or, for example, a further plurality of further heating devices 108 can be coupled.
- the heating devices 106, 108 heat the entire mass flow of the water, which flows from the condenser 101 in the direction of the degassing device 109.
- the second portion (the second mass flow m 2 ) of the condensate can be diverted after passing through all the heating devices 108 and the heat exchanger 102 are supplied.
- the first portion (first mass flow m 1 ) of the condensate flows after the tapping of the second portion directly into the degassing device 109, in which the first portion of the condensate is mixed with the heated in the heat exchanger 102 additional water m z .
- the heating devices 106, 108 may be configured such that the heating devices 106, 108 for heating the condensate with steam (bleed steam) from the turbine system 105, in particular from a low pressure region of the turbine system 105, the steam power plant can be fed.
- bleed steam steam
- the degassing device 109 is set up in such a way that the degassing device 109 can be fed with water vapor from the turbine system 105, in particular from a low-pressure region of the turbine system 105 of the steam power plant, for degassing the water.
- a condensate pump 104 may be coupled to increase the pressure of the total mass flow of water downstream of the condenser 101.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Die vorliegende Erfindung betrifft ein System zum Zuführen von Zusatzwasser und dessen Vorwärmung in einen Wasser-Dampf-Kreislauf in einem Dampfkraftwerk. Ferner betrifft die vorliegende Erfindung ein Verfahren zum Entgasen von Zusatzwasser in einem Wasser-Dampf-Kreislauf in einem Dampfkraftwerk.The present invention relates to a system for feeding makeup water and preheating it into a water-steam cycle in a steam power plant. Furthermore, the present invention relates to a method for degassing make-up water in a water-steam cycle in a steam power plant.
Bei der Auskopplung von Prozessdampf-/wärme in Dampfkraftwerken muss aufgrund von Leckagen und Verlusten von Prozessdampf/-kondensat der Wasser-Dampf-Kreislauf mittels der kontinuierlichen Zuführung von Zusatzwasser nachgefüllt werden. Das Zusatzwasser ist in der Regel aufbereitet, aber nicht entgast. Beispielsweise enthält das Zusatzwasser gelöste Fremdgase, die in einem Entgaser des Dampfkraftprozesses wieder ausgetrieben werden müssen. Um den Prozesswirkungsgrad zu steigern muss das Zusatzwasser vor dem Eintritt in den Entgaser vorgewärmt werden.When decoupling process steam / heat in steam power plants, the water-steam cycle must be refilled by means of the continuous supply of make-up water due to leaks and losses of process steam / condensate. The make-up water is usually treated, but not degassed. For example, the additional water contains dissolved foreign gases, which must be expelled again in a degasser of the steam power process. In order to increase the process efficiency, the additional water must be preheated before entering the degasser.
Derzeit wird das Zusatzwasser (auch Make-Up-Water genannt), beispielsweise einer herkömmlichen Entgasungsvorrichtung, direkt in den Entgaser eingespeist. Dies ist technisch einfach und weniger aufwändig, jedoch energetisch die ungünstigste Variante.Currently, the make-up water (also called makeup water), for example, a conventional degassing, fed directly into the degasser. This is technically simple and less expensive, but energetically the least favorable variant.
Ferner kann das Zusatzwasser direkt in einen Turbinenkondensator oder in einen Niederdruckvorwärmer eingespeist werden. Diese Variante kann allerdings nur für kleinere Mengen Zusatzwasser angewendet werden.Furthermore, the make-up water can be fed directly into a turbine condenser or into a low-pressure preheater. However, this variant can only be used for smaller amounts of make-up water.
In
Es ist eine Aufgabe der vorliegenden Erfindung, energie- und kosteneffizient Zusatzwasser für einen Wasser-Dampf-Kreislauf eines Dampfkraftwerks zu entgasen.It is an object of the present invention to degas energy and cost efficient make-up water for a water-steam cycle of a steam power plant.
Diese Aufgabe wird mit einem System zum Zuführen von Zusatzwasser über einen extra Kondensat-Zusatzwasser-Vorwärmer eines Wasser-Dampf-Kreislaufs in einem Dampfkraftwerk und mit einem Verfahren zum Entgasen von Zusatzwasser in einem nachgeschalteten Entgaser eines Wasser-Dampf-Kreislaufs in einem Dampfkraftwerk gemäß den unabhängigen Ansprüchen gelöst.This object is achieved with a system for supplying makeup water via an extra condensate make-up water heater of a water-steam cycle in a steam power plant and with a method for degassing make-up water in a downstream degasser of a water-steam cycle in a steam power plant according to the solved independent claims.
Gemäß einem ersten Aspekt der vorliegenden Erfindung wird ein System zum Zuführen von Zusatzwasser für einen Vorwärmer und/oder Versampfer eines Wasser-Dampf-Kreislaufs in einem Dampfkraftwerk beschrieben. Das System weist einen Kondensator zum Kondensieren von Wasserdampf zu Wasser, eine Entgasungsvorrichtung zum Entgasen von Wasser, eine Zuführleitung zum Zuführen von Zusatzwasser und einen Wärmetauscher auf.According to a first aspect of the present invention, a system for supplying make-up water to a preheater and / or evaporator of a water-steam cycle in a steam power plant is described. The system comprises a condenser for condensing water vapor to water, a degassing device for degassing water, a supply line for supplying additional water and a heat exchanger.
Der Kondensator zum Kondensieren von Wasserdampf zu Wasser (zur besseren Unterscheidbarkeit im Folgenden als "Kondensat" bezeichnet) ist mit Wasserdampf aus einer Turbinenanlage des Dampfkraftwerks speisbar. Die Entgasungsvorrichtung zum Entgasen von Wasser ist mit dem Kondensator derart gekoppelt, dass ein erster Anteil des Kondensats der Entgasungsvorrichtung zuführbar ist. Der Wärmetauscher ist mit dem Kondensator derart gekoppelt, dass ein zweiter Anteil des Kondensats dem Wärmetauscher zuführbar ist, wobei der Wärmetauscher mit einer Zuführleitung derart gekoppelt ist, dass Zusatzwasser dem Wärmetauscher zuführbar ist. Der Wärmetauscher ist derart eingerichtet, dass mittels des zweiten Anteils des Kondensats das Zusatzwasser erwärmbar ist. Der Wärmetauscher ist mit der Entgasungsvorrichtung derart gekoppelt, dass das erwärmte Zusatzwasser der Entgasungsvorrichtung zuführbar ist.The condenser for condensing water vapor to water (for better distinguishability hereinafter referred to as "condensate") can be fed with steam from a turbine plant of the steam power plant. The degassing device for degassing water is coupled to the condenser such that a first portion of the condensate can be fed to the degassing device. The heat exchanger is coupled to the condenser such that a second portion of the condensate can be fed to the heat exchanger, wherein the heat exchanger is coupled to a feed line such that make-up water can be fed to the heat exchanger. The heat exchanger is set up such that the additional water can be heated by means of the second portion of the condensate. The heat exchanger is coupled to the degassing device in such a way that the heated additional water can be fed to the degassing device.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zum Entgasen von Zusatzwasser für einen Verdampfer eines Wasser-Dampf-Kreislaufs in einem Dampfkraftwerk beschrieben.According to a further aspect of the present invention, a method for degassing make-up water for an evaporator of a water-steam cycle in a steam power plant is described.
Dampfkraftwerke werden heutzutage häufig zur Erzeugung von elektrischer Energie eingesetzt. Der zum Betrieb der Dampfturbine notwendige Wasserdampf wird in einem Dampfkessel aus zuvor gereinigtem und aufbereitetem Wasser erzeugt. Durch weiteres Erwärmen des Dampfes im Überhitzer nimmt die Temperatur und das spezifische Volumen des Dampfes zu. Vom Dampfkessel aus strömt der Dampf über Rohrleitungen in eine Dampfturbinenanlage, wo er einen Anteil seiner zuvor aufgenommenen Energie als Bewegungsenergie an die Turbinenanlage abgibt. An die Turbine ist ein Generator angekoppelt, der die mechanische Leistung in elektrische Leistung umwandelt. Danach strömt der entspannte und abgekühlte Dampf in den Kondensator, wo er durch Wärmeübertragung an die Umgebung (z.B. Frischwasser aus einem Fluß) kondensiert und sich als flüssiges Wasser an der tiefsten Stelle des Kondensators sammelt. Dieses Wasser wird als Kondensat bezeichnet. Über die Kondensatpumpen und Vorwärmer bzw. Erwärmungsvorrichtungen hindurch wird das Wasser z.B. in einen Speisewasserbehälter zwischengespeichert und dann über eine weitere Kondensatpumpe erneut dem Dampfkessel bzw. dem Verdampfer zugeführt.Steam power plants are nowadays often used to generate electrical energy. The power required to operate the steam turbine, steam is generated in a boiler from previously cleaned and treated water. By further heating the steam in the superheater , the temperature and the specific volume of the steam increase. From the boiler of the steam through pipes flows into a steam turbine plant, where it gives a portion of its previously recorded energy as kinetic energy to the turbine plant. To the turbine, a generator is coupled, which converts the mechanical power into electrical power. Thereafter, the expanded and cooled steam flows into the condenser where it is condensed by heat transfer to the environment (for example, fresh water from a river), and accumulates as liquid water at the lowest point of the capacitor. This water is called condensate. About the condensate pumps and preheaters or heating devices through the water is temporarily stored, for example, in a feedwater tank and then fed via another condensate pump again the steam boiler or the evaporator.
Bevor das Wasser in dem Speisewasserbehälter zwischengespeichert wird und entsprechend dem Verdampfer zugeführt wird, wird das Wasser der Entgasungsvorrichtung zugeführt, um schädliche Gase, wie z.B. korrosiven Sauerstoff oder Kohlendioxid weitgehend zu entfernen.Before the water is temporarily stored in the feed water tank and supplied corresponding to the evaporator, the water is supplied to the degassing apparatus to remove harmful gases such as e.g. largely remove corrosive oxygen or carbon dioxide.
Die Entgasungsvorrichtung gemäß der vorliegenden Erfindung kann mittels einer thermischen Entgasungsmethode oder mittels einer chemischen Entgasungsmethode arbeiten. Bei der thermischen Entgasungsmethode wird der Entgasungsvorrichtung thermische Energie, zum Beispiel aus Anzapfdampf (aus dem Mitteldruckbereich) der Turbinenanlage, zugeführt, sodass das Wasser in der Entgasungsvorrichtung "aufgekocht" und somit erwärmt wird. Hierdurch werden die schädlichen Gase, wie Sauerstoff und Kohlendioxid, weitgehend entfernt. Für die Entgasung wird der physikalische Umstand genutzt, dass mit zunehmender Temperatur die Löslichkeit von Gasen in Flüssigkeiten sinkt.The degassing apparatus according to the present invention may operate by a thermal degassing method or by a chemical degassing method. In the thermal degassing method, the degassing device is supplied with thermal energy, for example from bleed steam (from the medium-pressure region) of the turbine system, so that the water in the degassing device is "boiled up" and thus heated. As a result, the harmful gases, such as oxygen and carbon dioxide, are largely removed. For the degassing the physical circumstance is used that with increasing temperature the solubility of gases in liquids decreases.
Der Entgasungsvorrichtung wird gemäß der vorliegenden Erfindung Kondensat aus dem Kondensator einerseits und Zusatzwasser, welches zuvor in dem Wärmetauscher erwärmt wurde, zugeführt. Das Zusatzwasser ist notwendig, da im Wasser-Dampf-Kreislauf Wasser, bzw. Wasserdampf, aufgrund von Leckagen aus dem Wasser-Dampf-Kreislauf entweicht. Die betrifft insbesondere Anlagen mit externen Wärmeverbrauchern, also Anlagen mit einer Prozessdampfauskopplung.The degassing device according to the present invention condensate from the one hand and additional water, which was previously heated in the heat exchanger, fed. The additional water is necessary because in the water-steam cycle water, or water vapor escapes due to leaks from the water-steam cycle. This relates in particular to plants with external heat consumers, ie plants with a process steam extraction.
Gemäß der vorliegenden Erfindung wird ein Wärmetauscher bereitgestellt, welcher einerseits den zweiten Anteil des Kondensats erhält. Ferner wird dem Wärmetauscher über eine Zuführleitung eine gewünschte Menge an Zusatzwasser hinzugefügt. Der Wärmetauscher ist eingerichtet, mittels der Wärme des zweiten Anteils des Kondensates das Zusatzwasser auf eine gewünschte Temperatur zu erwärmen. Das erwärmte Zusatzwasser wird anschließend (insbesondere direkt) der Entgasungsvorrichtung zugeführt.According to the present invention, a heat exchanger is provided, which on the one hand receives the second portion of the condensate. Furthermore, a desired amount of make-up water is added to the heat exchanger via a supply line. The heat exchanger is set up, by means of the heat of the second portion of the condensate, the additional water to a to heat desired temperature. The heated additional water is then fed (in particular directly) to the degassing device.
Der Wärmetauscher gemäß der vorliegenden Erfindung ist insbesondere ein Kondensat/Zusatzwasser-Wärmetauscher. Dies bedeutet, dass das wärmeabgebende Fluid (hier der zweite Anteil des Wassers bzw. des Kondensats) seinen Aggregatzustand nicht ändert und flüssig bleibt, und auch das wärmeaufnehmende Fluid (hier das Zusatzwasser) flüssig bleibt und seinen Aggregatzustand nicht ändert. Daraus ergibt sich eine, im Vergleich zu kondensierenden Wärmetauschern, sehr kompakte Bauform des Wärmetauschers.The heat exchanger according to the present invention is in particular a condensate / make-up water heat exchanger. This means that the heat-emitting fluid (here the second portion of the water or the condensate) does not change its state of aggregation and remains liquid, and also the heat-absorbing fluid (here the make-up water) remains liquid and does not change its state of aggregation. This results in a very compact design of the heat exchanger compared to condensing heat exchangers.
Da das Zusatzwasser in einem separaten Wärmetauscher mittels der Wärme eines zweiten Anteils des Kondensates aus dem Kondensator erwärmt wird und anschließend in dem erwärmten Zustand direkt der Entgasungsvorrichtung zugeführt wird, ist das erfindungsgemäßen System energetisch sehr effizient.Since the make-up water is heated in a separate heat exchanger by means of the heat of a second portion of the condensate from the condenser and then fed directly to the degassing device in the heated state, the system according to the invention is energetically very efficient.
Ferner wird das Zusatzwasser, welches schädliche Gase enthalten kann, erst in der Entgasungsvorrichtung mit dem ersten Anteil des Kondensats gemischt. Dadurch ist es möglich, dass die Vorrichtungen (zum Beispiel Erwärmungsvorrichtungen und Kondensatpumpen) sowie die Rohrleitungen, welche zwischen dem Kondensator und der Entgasungsvorrichtung vorliegen können, nicht zwangsläufig aus korrosionsbeständigem Edelstahl ausgeführt werden müssen, da diese Vorrichtungen und Rohrleitungen nicht mit dem korrosiven Zusatzwasser in Kontakt kommen. Somit können mit dem System gemäß der vorliegenden Erfindung neben der äußerst energieeffizienten Ausbildung zudem günstigere Materialien für die Vorrichtungen und Rohrleitungen zwischen dem Kondensator und der Entgasungsvorrichtung eingesetzt werden.Furthermore, the make-up water, which may contain harmful gases, first mixed in the degassing with the first portion of the condensate. Thereby, it is possible that the devices (for example, heating devices and condensate pumps) as well as the piping which may be present between the condenser and the degassing device need not necessarily be made of corrosion-resistant stainless steel, since these devices and pipelines do not come into contact with the corrosive makeup water come. Thus, in addition to the extremely energy-efficient design, the system according to the present invention can also use cheaper materials for the devices and pipelines between the condenser and the degassing device.
Der zweite Anteil des Kondensats kann mindestens um die Hälfte kleiner sein als der erste Anteil des Wassers. Der zweite Anteil des Kondensats wird von dem Gesamtanteil des Kondensats insbesondere erst nach dem Kondensator und nach zumindest einer Erwärmungsvorrichtung abgezweigt, so dass der zweite Anteil von Wasser bereits mittels einer Erwärmungsvorrichtung erwärmt wurde, bevor der zweite Anteil des Wassers dem Wärmetauscher zugeführt wird.The second portion of the condensate may be at least half smaller than the first portion of the water. The second part of the condensate is the total amount of condensate in particular only after the condenser and after at least one heating device branched off, so that the second portion of water has already been heated by means of a heating device, before the second portion of the water is supplied to the heat exchanger.
Gemäß einer weiteren beispielhaften Ausführungsform ist der Wärmetauscher derart mit der Entgasungsvorrichtung gekoppelt, dass der zweite Anteil des Kondensats nach Durchströmen des Wärmetauschers der Entgasungsvorrichtung Kondensats ist. Somit wird beispielsweise der zweite Anteil des Wassers mit dem Zusatzwasser vermischt und somit eine mittlere Temperatur zwischen dem zweiten Anteil des Wassers und dem Zusatzwasser eingestellt. Das Zusatzwasser wird somit ebenfalls erwärmt. Das Gemisch aus dem zweiten Anteil des Kondensats und dem Zusatzwasser wird anschließend in der Entgasungsvorrichtung mit dem ersten Anteil des Wassers gemischt.According to a further exemplary embodiment, the heat exchanger is coupled to the degassing device such that the second portion of the condensate is condensate after flowing through the heat exchanger of the degassing device. Thus, for example, the second portion of the water is mixed with the make-up water and thus set an average temperature between the second portion of the water and the make-up water. The make-up water is thus also heated. The mixture of the second portion of the condensate and the make-up water is then mixed in the degassing device with the first portion of the water.
Gemäß einer weiteren beispielhaften Ausführungsform kann der Wärmetauscher auch derart mit dem Kondensator gekoppelt sein, dass der zweite Anteil des Kondensats nach Durchströmen des Wärmetauschers erneut dem Kondensator zuführbar ist. Dadurch kann der zweite Anteil des Kondensats erneut mit dem Wasser in dem Kondensator gemischt werden und anschließend erneut dem Wasser-Dampf-Prozess zugeführt werden. Insbesondere wird der zweite Anteil des Kondensats nach Durchströmen des Wärmetauschers in einer weiteren beispielhaften Ausführungsform der Erfindung nach dem Kondensator und vor der Erwärmungsvorrichtung eingespeist und mit dem Gesamtanteil des Wassers aus dem Kondensator gemischt.According to a further exemplary embodiment, the heat exchanger may also be coupled to the condenser such that the second portion of the condensate can be supplied to the condenser again after flowing through the heat exchanger. Thereby, the second portion of the condensate can be mixed again with the water in the condenser and then re-supplied to the water-steam process. In particular, in a further exemplary embodiment of the invention, the second portion of the condensate, after flowing through the heat exchanger, is fed to the condenser and before the heating device and mixed with the total proportion of water from the condenser.
Gemäß einer weiteren beispielhaften Ausführungsform weist das System die Erwärmungsvorrichtung zum Erwärmen des Wassers auf. Die Erwärmungsvorrichtung ist derart an den Kondensator gekoppelt, dass das Kondensat der Erwärmungsvorrichtung zuführbar ist. Die Erwärmungsvorrichtung ist mit der Entgasungsvorrichtung derart gekoppelt, dass das erwärmte Wasser, bzw. zumindest der erste Anteil des Kondensats, der Entgasungsvorrichtung zuführbar ist.According to another exemplary embodiment, the system comprises the heating device for heating the water. The heating device is coupled to the condenser such that the condensate can be fed to the heating device. The heating device is coupled to the degassing device such that the heated water, or at least the first portion of the condensate, the degassing device can be fed.
Gemäß einer weiteren beispielhaften Ausführungsform ist die Erwärmungsvorrichtung derart eingerichtet, dass die Erwärmungsvorrichtung zum Erwärmen des Wassers mit Wasserdampf aus der Turbinenanlage, insbesondere aus einem Niederdruckbereich der Turbinenanlage, des Dampfkraftwerks speisbar ist. Mit anderen Worten wird Anzapfdampf aus der Turbinenanlage entnommen, um die thermische Energie des Anzapfdampfs für die Erwärmung des Wassers nach dem Kondensator zu nutzen. Der Mitteldruckbereich der Turbinenanlage ist insbesondere ein Bereich, welcher nahe der letzten Turbinenstufe der Turbinenanlage vorliegt, indem der Wasserdampf noch eine relativ hohe thermische Energie jedoch einen niedrigeren Druck aufweist.According to a further exemplary embodiment, the heating device is set up such that the heating device can be fed with water vapor from the turbine system, in particular from a low-pressure region of the turbine system, of the steam power plant for heating the water. In other words, bleed steam is taken from the turbine plant to use the thermal energy of the bleed steam to heat the water after the condenser. In particular, the medium-pressure region of the turbine system is an area which is close to the last turbine stage of the turbine system in that the steam still has a relatively high thermal energy but a lower pressure.
Gemäß einer weiteren beispielhaften Ausführungsform ist die Erwärmungsvorrichtung zwischen dem Kondensator und dem Wärmetauscher derart gekoppelt, dass der zweite Anteil des Kondensats nach dem Erwärmen des Zusatzwassers in der Erwärmungsvorrichtung abzweigbar ist und dem Wärmetauscher zuführbar ist.According to a further exemplary embodiment, the heating device is coupled between the condenser and the heat exchanger such that the second portion of the condensate can be branched off after heating the make-up water in the heating device and can be fed to the heat exchanger.
Gemäß einer weiteren beispielhaften Ausführungsform ist die Entgasungsvorrichtung derart eingerichtet, dass die Entgasungsvorrichtung zum Entgasen des Wassers (das heißt dem ersten Anteil des Kondensats und dem im Wärmetauscher erwärmten Zusatzwasser) mit Wasserdampf aus der Turbinenanlage, insbesondere aus dem Niederdruckbereich und/oder dem Mitteldruckbereich der Turbinenanlage, des Dampfkraftwerks speisbar ist.According to a further exemplary embodiment, the degassing device is set up such that the degassing device for degassing the water (that is, the first portion of the condensate and the additional water heated in the heat exchanger) with water vapor from the turbine system, in particular from the low-pressure region and / or the medium-pressure region of the turbine plant , the steam power plant is fed.
Gemäß einer weiteren beispielhaften Ausführungsform weist das System ferner eine Kondensatpumpe auf, welche zur Druckerhöhung des Wassers zwischen dem Kondensator und der Entgasungsvorrichtung angeordnet ist.According to a further exemplary embodiment, the system further comprises a condensate pump, which is arranged to increase the pressure of the water between the condenser and the degassing device.
Mit der vorliegenden Erfindung wird das Zusatzwasser erst in der Entgasungsvorrichtung mit dem Kondensat gemischt. Um keine Wirkungsgradeinbußen durch fehlende Vorwärmung hinnehmen zu müssen, wird das Zusatzwasser in dem Kondensat/Zusatzwasser-Wärmetauscher durch einen Teilstrom (den zweiten Anteil) des in den Niederdruckvorwärmern (Erwärmungsvorrichtungen) bereits vorgewärmten zweiten Anteils des Kondensats erhitzt. Der zur Erhitzung genutzte zweite Anteil des Kondensats kann einer beliebigen Vielzahl an vorgeschalteten Niederdruckvorwärmern entnommen werden und dann in einem oder mehreren Kondensat/Zusatzwasser-Wärmetauschern zur Vorwärmung des Zusatzwassers verwendet werden. Energetisch sinnvoll ist die Entnahme des zweiten Anteils des Wassers (d.h. des Vorwärmkondensates) zwischen der letzten Erwärmungsvorrichtung (Niederdruckvorwärmer) und der Entgasungsvorrichtung. Der zur Vorwärmung genutzte zweite Anteil des Wassers (Kondensats) wird nach der Abkühlung im Kondensat/Zusatzwasser-Wärmetauscher in einer beispielhaften Ausführungsform wieder dem Turbinenkondensator zugeleitet.With the present invention, the make-up water is mixed with the condensate only in the degassing device. No To suffer loss of efficiency due to lack of preheating, the make-up water is heated in the condensate / make-up water heat exchanger by a partial flow (the second portion) of the already pre-heated in Niederdruckvorwärmern (heating devices) second portion of the condensate. The used for heating second portion of the condensate can be removed from any number of upstream Niederdruckvorwärmern and then used in one or more condensate / additional water heat exchangers for preheating the make-up water. Energetically useful is the removal of the second portion of the water (ie the preheating condensate) between the last heating device (low pressure preheater) and the degassing. The used for preheating the second portion of the water (condensate) is fed to the turbine condenser after cooling in the condensate / additional water heat exchanger in an exemplary embodiment again.
Der zur Vorwärmung des Zusatzwassers abgezweigte zweite Anteil des Kondensatmassenstroms wird durch energetisch niederwertigen Anzapfdampf z.B. aus dem Entspannungsverlauf der Dampfturbinenanlage vorgewärmt. Mit der vorliegenden Erfindung kann ein höherer Gesamtwirkungsgrad durch Nutzung von energetisch niederwertigem Niederdruck-Anzapf-/Entnahmedampf aus dem Entspannungsverlauf der Dampfturbinenanlage erzielt werden.The second portion of the condensate mass flow diverted to preheat the make-up water is separated by low-energy bleed steam, e.g. preheated from the relaxation process of the steam turbine plant. With the present invention, a higher overall efficiency can be achieved by using low-energy low-pressure tapping / extraction steam from the relaxation process of the steam turbine plant.
Ferner entfällt die Ausführung der mit dem unentgasten Zusatzwasser in Kontakt kommenden genutzten Niederdruckvorwämers aus korrosionsfreiem Stahl (z.B. Edelstahl).Furthermore, the design of the low-pressure pre-screen used in non-degassed make-up water of stainless steel (e.g., stainless steel) is eliminated.
Zudem entfällt z.B. die Notwendigkeit einer Mischung des Zusatzwassers mit dem Wasser/Kondensat in einem separaten Kondensattank. Die Kondensatpumpe nach dem Kondensator pumpt somit ausschließlich den Gesamtanteil des Wassers (Kondensat), welches bereits entgast und somit weniger korrosiv wirkt.In addition, for example, eliminates the need for mixing the make-up water with the water / condensate in a separate condensate tank. The condensate pump after the condenser pumps thus exclusively the total amount of water (condensate), which is already degassed and thus less corrosive.
Durch das oben beschriebene System wird es auch wirtschaftlich sinnvoll, die Vorwärmung des Zusatzwassers über Abgaswärmetauscher in Verbindung mit dem zusätzlichen Kondensat/Zusatzwasserwärmetauscher zu kombinieren. Dies wird ermöglicht, weil die Abgasheizflächen (in diesem Fall z.B. als Economizer im Abgaskanal von Müllverbrennungsanlagen oder kombinierten Gas- und Dampfkraftwerken installiert) nicht von unentgastem Wasser durchströmt werden. Zudem kann durch die nachgeschaltete Vorwärmung des Zusatzwassers mittels des Teilstromes des Kondensates die komplizierte Ausführung der Heizflächen der Economizer in Sonderstählen (hitze- und korrosionsbeständig) entfallen.By the system described above, it also makes economic sense to combine the preheating of the additional water via exhaust gas heat exchanger in conjunction with the additional condensate / additional water heat exchanger. This is made possible because the exhaust gas heating surfaces (in this case, for example, installed as an economizer in the exhaust duct of waste incineration plants or combined gas and steam power plants) are not flowed through by de-aerated water. In addition, by the subsequent preheating of the additional water by means of the partial flow of the condensate, the complicated design of the heating surfaces of the economizer in special steel (heat and corrosion resistant) omitted.
Im Vergleich zu herkömmlichen Systemen kann der Anlagenaufwand reduziert werden und z.B. ein Maschinenhaus in seiner Grundfläche kleiner ausgeführt werden, weil die zusätzlich installierten Vorwärmer für die Erwärmung des Zusatzwassers entfallen können (diese werden besonders bei großen Zusatzwassermengen notwendig). In der Folge sinken die Kosten für die Kraftwerkskomponenten erheblich. Weiterhin kann ein sehr großer Zusatzwasser-Massenstrom verarbeitet werden. Dieser Zusatzwasser-Massenstrom kann die Kondensatmenge um mehr als das Doppelte übersteigen.Compared to conventional systems, the cost of equipment can be reduced and reduced e.g. a machine house in its base area are made smaller, because the additional installed preheater for the heating of the additional water can be omitted (these are necessary especially for large additional amounts of water). As a result, the costs for the power plant components decrease considerably. Furthermore, a very large additional water mass flow can be processed. This additional water mass flow can exceed the amount of condensate by more than double.
Es wird darauf hingewiesen, dass die hier beschriebenen Ausführungsformen lediglich eine beschränkte Auswahl an möglichen Ausführungsvarianten der Erfindung darstellen. So ist es möglich, die Merkmale einzelner Ausführungsformen in geeigneter Weise miteinander zu kombinieren, so dass für den Fachmann mit den hier expliziten Ausführungsvarianten eine Vielzahl von verschiedenen Ausführungsformen als offensichtlich offenbart anzusehen sind.It should be noted that the embodiments described herein represent only a limited selection of possible embodiments of the invention. Thus, it is possible to suitably combine the features of individual embodiments with one another, so that for the person skilled in the art with the variants of embodiment that are explicit here, a multiplicity of different embodiments are to be regarded as obviously disclosed.
Im Folgenden werden zur weiteren Erläuterung und zum besseren Verständnis der vorliegenden Erfindung Ausführungsbeispiele unter Bezugnahme auf die beigefügten Figuren näher beschrieben.
-
Fig. 1 zeigt eine schematische Darstellung eines Systems zum Zuführen von Zusatzwasser in einem Wasser-Dampf-Kreislauf eines Dampfkraftwerks gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung, und -
Fig. 2 zeigt ein herkömmliches System zum Zuführen von Zusatzwasser in einem Wasser-Dampf-Kreislauf eines Dampfkraftwerks.
-
Fig. 1 shows a schematic representation of a system for supplying make-up water in a water-steam cycle of a steam power plant according to an exemplary embodiment of the present invention, and -
Fig. 2 shows a conventional system for supplying make-up water in a water-steam cycle of a steam power plant.
Gleiche oder ähnliche Komponenten sind in den Figuren mit gleichen Bezugsziffern versehen. Die Darstellungen in den Figuren sind schematisch und nicht maßstäblich.The same or similar components are provided in the figures with the same reference numerals. The illustrations in the figures are schematic and not to scale.
Insbesondere wird das erwärmte Zusatzwasser direkt nach dem Wärmetauscher 102 in die Erwärmungsvorrichtung 109 eingespeist und erst in der Erwärmungsvorrichtung 109 mit dem ersten Anteil bzw. ersten Massenstroms m1 des Kondensats des Kondensators 101 vermischt.In particular, the heated additional water is fed directly after the
Der Wärmetauscher 102 kann derart mit der Entgasungsvorrichtung 109 gekoppelt sein, dass der zweite Anteil (bzw. ein zweiter Massenstrom m2) des Kondensats nach Durchströmen des Wärmetauschers 102 der Entgasungsvorrichtung 109 zuführbar ist. Alternativ kann, wie in
Zwischen dem Kondensator 101 und der Entgasungsvorrichtung 109 kann zumindest eine Erwärmungsvorrichtung 106 oder beispielsweise eine weitere Vielzahl von weiteren Erwärmungsvorrichtungen 108 gekoppelt werden. Die Erwärmungsvorrichtungen 106, 108 erwärmen den gesamten Massenstrom des Wassers, welches aus dem Kondensator 101 in Richtung Entgasungsvorrichtung 109 strömt. Wie in
Die Erwärmungsvorrichtungen 106, 108 können derart eingerichtet sein, dass die Erwärmungsvorrichtungen 106, 108 zum Erwärmen des Kondensats mit Wasserdampf (Abzapfdampf) aus der Turbinenanlage 105, insbesondere aus einem Niederdruckbereich der Turbinenanlage 105, des Dampfkraftwerks speisbar sind.The
Die Entgasungsvorrichtung 109 ist derart eingerichtet, dass die Entgasungsvorrichtung 109 zum Entgasen des Wassers mit Wasserdampf aus der Turbinenanlage 105, insbesondere aus einem Niederdruckbereich der Turbinenanlage 105, des Dampfkraftwerks speisbar ist.The
Ferner kann stromaufwärts oder stromabwärts der Erwärmungsvorrichtungen 106, 108 eine Kondensatpumpe 104 gekoppelt werden, um den Druck des Gesamtmassenstroms des Wassers nach dem Kondensator 101 zu erhöhen.Further, upstream or downstream of the
Ergänzend ist darauf hinzuweisen, dass "umfassend" keine anderen Elemente oder Schritte ausschließt und "eine" oder "ein" keine Vielzahl ausschließt. Ferner sei darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden ist, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.In addition, it should be noted that "encompassing" does not exclude other elements or steps, and "a" or "an" does not exclude a multitude. It should also be appreciated that features or steps described with reference to one of the above embodiments may also be used in combination with other features or steps of other embodiments described above. Reference signs in the claims are not to be considered as limiting.
Claims (9)
- System for feeding makeup water for an evaporator (107) of a water-steam circuit, the system comprising:a condenser (101) for condensing steam to form condensate,
wherein the condenser (101) can be supplied with steam from a turbine system (105),a degasification device (109) for degasifying condensate, wherein the degasification device (109) is coupled to the condenser (101) in such a way that a first portion of the condensate (101) can be fed to the degasification device (109),a feed line (103) for feeding in the makeup water, anda heat exchanger (102),characterized in that the heat exchanger (102) is coupled to the condenser (101) in such a way that a second portion of the condensate of the condenser (101) can be fed to the heat exchanger (102),
wherein the heat exchanger (102) is coupled to the feed line (103) in such a way that the makeup water can be fed to the heat exchanger (102),
wherein the heat exchanger (102) is configured in such a way that the makeup water can be heated by means of the second portion of the condensate of the condenser (101), and
wherein the heat exchanger (102) is coupled to the degasification device (109) in such a way that the heated makeup water can be fed to the degasification device (109). - System according to Claim 1, wherein the heat exchanger (102) is coupled to the degasification device (109) in such a way that the second portion of the condensate of the condenser (101) can be fed to the degasification device (109) after passing through the heat exchanger (102).
- System according to Claim 1,
wherein the heat exchanger (102) is coupled to the condenser (101) in such a way that the second portion of the condensate of the condenser (101) can be fed to the condenser (101) after passing through the heat exchanger (102). - System according to one of Claims 1 to 3, also comprising
a heating device (106) for heating the condensate of the condenser (101),
wherein the heating device (106) is coupled to the condenser (101) in such a way that the condensate of the condenser (101) can be fed to the heating device (106),
wherein the heating device (106) is coupled to the degasification device (109) in such a way that the heated condensate can be fed to the degasification device (109). - System according to Claim 4,
wherein the heating device (106) is configured in such a way that the heating device (106) for heating the condensate of the condenser (101) can be supplied with steam from the turbine system (105), in particular from a medium pressure range and/or low pressure range of the turbine system (105). - System according to Claim 4 or 5,
wherein the heating device (106) is coupled between the condenser (101) and the heat exchanger (102) in such a way that the second portion of the condensate can be tapped after the heating of the water of the condenser in the heating device (106) and can be fed to the heat exchanger (102). - System according to one of Claims 1 to 6,
wherein the degasification device (109) is configured in such a way that, in order to degasify the water, the degasification device (109) can be supplied with steam from the turbine system (105), in particular from a medium pressure range and/or low pressure range of the turbine system (105). - System according to one of Claims 1 to 7, also comprising
a condensate pump (104),
wherein, in order to increase the pressure of the condensate of the condenser (101), the condensate pump (104) is arranged between the condenser (101) and the degasification device (109) . - Method for degasifying makeup water for an evaporator of a water-steam circuit, the method comprisingcondensing a steam to form water by means of a condenser (101),
wherein the condenser (101) is supplied with steam from a turbine system (105),degasifying water by means of a degasification device (109),
wherein the degasification device (109) is coupled to the condenser (101) in such a way that a first portion of the water of the condenser (101) can be fed to the degasification device (109),
wherein the method is characterized byfeeding a second portion of the condensate of the condenser (101) to a heat exchanger (102),feeding makeup water from a feed line (103) to the heat exchanger (102),heating the makeup water by means of the second portion of the condensate of the condenser (101) in the heat exchanger (102), andfeeding the heated makeup water from the heat exchanger (102) to the degasification device (109).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13779573.8A EP2986910B1 (en) | 2013-07-05 | 2013-10-18 | System and method for preheating makeup water in steam power plants, with process steam outcoupling |
PL13779573T PL2986910T3 (en) | 2013-07-05 | 2013-10-18 | System and method for preheating makeup water in steam power plants, with process steam outcoupling |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13175367 | 2013-07-05 | ||
EP13779573.8A EP2986910B1 (en) | 2013-07-05 | 2013-10-18 | System and method for preheating makeup water in steam power plants, with process steam outcoupling |
PCT/EP2013/071814 WO2015000536A1 (en) | 2013-07-05 | 2013-10-18 | Method for preheating feed water in steam power plants, with process steam outcoupling |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2986910A1 EP2986910A1 (en) | 2016-02-24 |
EP2986910B1 true EP2986910B1 (en) | 2019-06-19 |
Family
ID=49447546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13779573.8A Active EP2986910B1 (en) | 2013-07-05 | 2013-10-18 | System and method for preheating makeup water in steam power plants, with process steam outcoupling |
Country Status (6)
Country | Link |
---|---|
US (1) | US9890948B2 (en) |
EP (1) | EP2986910B1 (en) |
CN (1) | CN105358909B (en) |
PL (1) | PL2986910T3 (en) |
RU (1) | RU2631182C2 (en) |
WO (1) | WO2015000536A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10118108B2 (en) | 2014-04-22 | 2018-11-06 | General Electric Company | System and method of distillation process and turbine engine intercooler |
US10024195B2 (en) * | 2015-02-19 | 2018-07-17 | General Electric Company | System and method for heating make-up working fluid of a steam system with engine fluid waste heat |
US10487695B2 (en) | 2015-10-23 | 2019-11-26 | General Electric Company | System and method of interfacing intercooled gas turbine engine with distillation process |
CN105351023B (en) * | 2015-12-11 | 2017-02-22 | 苟仲武 | Method and device for completely recycling condensed liquefied waste gas components and utilizing waste heat to generate power |
US10364979B2 (en) * | 2016-08-26 | 2019-07-30 | Daniel Steam, Inc. | Boiler feed tank energy recovery system |
CN106989433A (en) * | 2017-03-30 | 2017-07-28 | 德清县中能热电有限公司 | A kind of tide heat reservoir and tide heat supply method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012090778A1 (en) * | 2010-12-27 | 2012-07-05 | 三菱重工業株式会社 | Condensate flow rate control device for power-plant, and control method |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE524555A (en) | 1952-12-18 | 1900-01-01 | ||
AT374903B (en) | 1975-10-23 | 1984-06-12 | Waagner Biro Ag | DEVICE FOR MIXED DEGASSING OF LIQUIDS |
DE3579183D1 (en) * | 1984-03-23 | 1990-09-20 | Jericha Herbert | STEAM CIRCUIT FOR STEAM POWER PLANTS. |
US4660511A (en) * | 1986-04-01 | 1987-04-28 | Anderson J Hilbert | Flue gas heat recovery system |
RU2116559C1 (en) | 1996-02-20 | 1998-07-27 | Андрей Васильевич Мошкарин | Multi-stage evaporation plant of steam-gas recovery type |
EP1093836A1 (en) * | 1999-10-21 | 2001-04-25 | ABB (Schweiz) AG | Degassification system for a power station |
CN101115553B (en) | 2004-12-07 | 2011-11-16 | 华美化学有限公司 | Boiler feed water deaerator method and apparatus |
DE102005040380B3 (en) * | 2005-08-25 | 2006-07-27 | Gea Energietechnik Gmbh | Water vapor/exhaust steam condensation method for thermal power plant, involves supplying steam flow from condenser to deaerator in which feed water is heated by partial steam flow, parallel to heating of condensate in warming stage |
US8739510B2 (en) * | 2010-10-28 | 2014-06-03 | General Electric Company | Heat exchanger for a combined cycle power plant |
BR112013019720B1 (en) * | 2011-02-07 | 2021-09-14 | Krishna Moorthy Palanisamy | METHOD AND DEVICE FOR THE PRODUCTION AND USE OF THERMAL ENERGY IN A COMBINED HEAT AND ENERGY PLANT |
ITMI20120221A1 (en) * | 2012-02-15 | 2013-08-16 | Falck Renewables Spa | PLANT AND METHOD FOR INCREASING EFFICIENCY IN THE PRODUCTION OF ELECTRICITY |
CN202973063U (en) | 2012-12-07 | 2013-06-05 | 浙江华建尼龙有限公司 | Boiler feed water deoxidization degassing device |
CN104919263A (en) * | 2013-01-21 | 2015-09-16 | 玛齐热能系统有限公司 | Dual end plate subcooling zone for a feedwater heater |
-
2013
- 2013-10-18 CN CN201380078041.6A patent/CN105358909B/en active Active
- 2013-10-18 RU RU2016103736A patent/RU2631182C2/en not_active IP Right Cessation
- 2013-10-18 EP EP13779573.8A patent/EP2986910B1/en active Active
- 2013-10-18 WO PCT/EP2013/071814 patent/WO2015000536A1/en active Application Filing
- 2013-10-18 PL PL13779573T patent/PL2986910T3/en unknown
- 2013-10-18 US US14/898,140 patent/US9890948B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012090778A1 (en) * | 2010-12-27 | 2012-07-05 | 三菱重工業株式会社 | Condensate flow rate control device for power-plant, and control method |
Also Published As
Publication number | Publication date |
---|---|
RU2016103736A (en) | 2017-08-10 |
PL2986910T3 (en) | 2019-12-31 |
CN105358909B (en) | 2017-10-24 |
CN105358909A (en) | 2016-02-24 |
WO2015000536A1 (en) | 2015-01-08 |
RU2631182C2 (en) | 2017-09-19 |
US20160138798A1 (en) | 2016-05-19 |
EP2986910A1 (en) | 2016-02-24 |
US9890948B2 (en) | 2018-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2986910B1 (en) | System and method for preheating makeup water in steam power plants, with process steam outcoupling | |
DE69916099T2 (en) | KOMBIKRAFTWERK WITH IMPROVED COOLING AND OPERATING PROCESS THEREFOR | |
DE68926220T2 (en) | Process and device for generating steam power | |
DE112016003348B4 (en) | WATER SUPPLY SYSTEM, WATER SUPPLY PROCESS, AND STEAM GENERATING SYSTEM PROVIDED WITH WATER SUPPLY SYSTEM | |
DE19513285A1 (en) | Turbine drive for boiler feed pump / feed water pipe system | |
EP2187051A1 (en) | Method and device for intermediate heating in a solar thermal power plant with indirect steam | |
DE102010060064A1 (en) | Method for increasing the power output of a gas and steam combined cycle power plant during selected operating periods | |
EP3140519A1 (en) | Method and arrangement for operating a steam turbine plant in combination with thermal water treatment | |
DE102009013570A1 (en) | Power plant comprises a steam generator, a steam turbine, a steam pipe that connects a steam outlet of the steam generator with an inlet of the steam turbine, a recirculation line, and heat exchangers | |
EP1425079B1 (en) | Method and device for thermal de-gassing of the active substance of a two-phase process | |
DE102010063239A1 (en) | Method for heat generation from exhaust air of paper-, cardboard-, tissue- or pulp production machine, involves conveying hot water as feed water to steam generator of power station and as steam over steam turbine | |
WO2014048742A2 (en) | Gas and steam turbine system having feed-water partial-flow degasser | |
EP2122165B1 (en) | Method and a device for the generation of steam in steam power plants, wherein cold condensate and/or combustion air is preheated before the generation of steam | |
WO2015067398A2 (en) | Steam power plant with a liquid-cooled generator | |
EP3060767B1 (en) | Device and method for an orc process with multi-stage expansion | |
EP2959120B1 (en) | Condensate preheater for a waste-heat steam generator | |
EP2746543B1 (en) | Lubrication of expansion machines | |
DE102010050090A1 (en) | Steam system comprises low pressure degasser for degassing feed water, low pressure steam rail, whose operating pressure is at second pressure level, and high pressure steam rail, whose operating pressure is at third pressure level | |
DE102016220634A1 (en) | Waste heat power plant with gradual heat supply | |
EP3467378B1 (en) | Waste heat installation for hot water generation and method for operating same | |
DE60217476T2 (en) | Air cooling system and method for a combined cycle power plant | |
EP3224541B1 (en) | Waste heat steam generator | |
DE202012007723U1 (en) | Device for optimizing the internal efficiency of an Organic Rankine process by means of a recuperator intermediate circuit | |
EP3472515B1 (en) | Vertical heat recovery steam generator | |
DE102013205053B4 (en) | Method for operating a power plant having a water-steam cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151117 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170731 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F22D 1/34 20060101ALI20190108BHEP Ipc: F01K 7/44 20060101ALI20190108BHEP Ipc: B01D 19/00 20060101ALI20190108BHEP Ipc: B01D 5/00 20060101ALI20190108BHEP Ipc: F22D 1/50 20060101AFI20190108BHEP Ipc: F01K 9/00 20060101ALI20190108BHEP Ipc: F01K 7/40 20060101ALI20190108BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190206 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013013036 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1146006 Country of ref document: AT Kind code of ref document: T Effective date: 20190715 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190919 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190920 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013013036 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191018 |
|
26N | No opposition filed |
Effective date: 20200603 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191018 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191018 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1146006 Country of ref document: AT Kind code of ref document: T Effective date: 20191018 Ref country code: DE Ref legal event code: R081 Ref document number: 502013013036 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131018 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190619 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240926 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241029 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241025 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20241003 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241022 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20241101 Year of fee payment: 12 |