[go: up one dir, main page]

EP2986835B1 - Method and device for controlling a volume regulation valve - Google Patents

Method and device for controlling a volume regulation valve Download PDF

Info

Publication number
EP2986835B1
EP2986835B1 EP14711192.6A EP14711192A EP2986835B1 EP 2986835 B1 EP2986835 B1 EP 2986835B1 EP 14711192 A EP14711192 A EP 14711192A EP 2986835 B1 EP2986835 B1 EP 2986835B1
Authority
EP
European Patent Office
Prior art keywords
control valve
quantity control
pressure
current
holding current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14711192.6A
Other languages
German (de)
French (fr)
Other versions
EP2986835A1 (en
Inventor
Uwe Richter
Rainer Wilms
Joerg Kuempel
Matthias Maess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2986835A1 publication Critical patent/EP2986835A1/en
Application granted granted Critical
Publication of EP2986835B1 publication Critical patent/EP2986835B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • F02D1/08Transmission of control impulse to pump control, e.g. with power drive or power assistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/367Pump inlet valves of the check valve type being open when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/368Pump inlet valves being closed when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0265Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D2001/0085Arrangements using fuel pressure for controlling fuel delivery in quantity or timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • F02D1/08Transmission of control impulse to pump control, e.g. with power drive or power assistance
    • F02D2001/082Transmission of control impulse to pump control, e.g. with power drive or power assistance electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2700/00Mechanical control of speed or power of a single cylinder piston engine
    • F02D2700/02Controlling by changing the air or fuel supply
    • F02D2700/0269Controlling by changing the air or fuel supply for air compressing engines with compression ignition
    • F02D2700/0282Control of fuel supply

Definitions

  • the invention relates to a method for controlling a quantity control valve of a high-pressure pump according to the preamble of claim 1.
  • the invention further relates to a computer program, an electrical storage medium and a control and regulating device.
  • the DE 101 48 218 A1 describes a method for operating a fuel injection system using a quantity control valve.
  • the known quantity control valve is implemented as a solenoid valve electromagnetically actuated by a solenoid coil with a magnet armature and associated travel limit stops.
  • Such quantity control valves are known on the market which are closed when the solenoid coil is de-energized.
  • the solenoid coil is controlled with a constant voltage or a clocked voltage (pulse width modulation - "PWM”), whereby the current in the solenoid coil increases in a characteristic manner. After the voltage is switched off, the current drops again in a characteristic manner, whereby the quantity control valve closes.
  • Solenoid valves are also known which are open when the coil is energized. The procedure for these solenoid valves is similar, whereby the solenoid valve opens when the voltage is switched off and the current drops in a characteristic manner.
  • the electromagnetic actuating device is energized again in a pulsed manner shortly before the end of the opening movement. This current pulse exerts a braking force on the armature before it even comes into contact with the stop. The braking force reduces the speed, which reduces the impact noise.
  • a high-pressure pump In modern direct-injection engine systems with demand-controlled fuel delivery, a high-pressure pump is used to generate the necessary fuel pressure.
  • the high-pressure pump is operated in a quantity-controlled manner; the pump delivery rate can be set from 0 to 100% using a quantity control valve (MSV).
  • MSV quantity control valve
  • the control of this quantity control valve is particularly important because the switching process of the MSV must take place in a very short time and despite high magnetic forces due to the high speed and the associated high control frequency, without the stroke-to-stroke fluctuations and thus the delivery rate fluctuations becoming too great. This would lead to poor rail pressure quality.
  • very high demands are placed on the noise development of the high-pressure pump. For this reason, numerous control concepts have already been developed to reduce the impact dynamics and thus reduce the acoustic level. Both the pulling movement and the falling movement of the switching magnet are slowed down.
  • the quantity control valve is kept closed beyond the top dead center by the pressure in the delivery chamber of the high-pressure pump. When the delivery chamber pressure drops, the quantity control valve falls back to its original, currentless open position, driven by spring force and without braking.
  • the quantity control valve is supplied with a holding current beyond the top dead center, so that the MSV does not drop directly. Only after the pressure in the delivery chamber has dropped is the current reduced in a characteristic way, so that the quantity control valve drops during this low current supply and falls back to the currentless open position. The movement is slowed down by counter-induction and the current through the quantity control valve, and the impact on the stop occurs much more slowly and therefore more quietly.
  • the holding current should be known as precisely as possible so that the currents for holding and starting the movement can be set as precisely as possible.
  • the current supply must end before the following bottom dead center so that the next conveying process is not disrupted.
  • the problem is that if the current is too low, the CSS process only brings about slight acoustic improvements, while if the current is too high, there is no improvement or it can even lead to an acoustic deterioration and an increase in rail pressure. This is because if the current is too high, the quantity control valve remains closed and does not open.
  • the DE 10 2008 054 702 A1 A solenoid valve is already known which is designed as a normally open solenoid valve.
  • the coil is energized in a phase which begins approximately in the middle between a bottom dead center and a top dead center and ends at the top dead center. It is intended that in the adaptation method disclosed therein the aforementioned current in the coil is reduced in order to detect or not detect a drop in pressure in the course of a large number of successive reductions. in this case, the emission of audible sound that occurs when the solenoid valve closes when the internal combustion engine is operating is at least partially reduced.
  • the coil of the solenoid valve is energized according to a target value for the current in the coil in order to close it to supply fuel to the high-pressure pump.
  • the target value for the current in the coil is reduced from a predetermined first current target value to a predetermined second current target value in such a way that the emission of audible sound that occurs when the solenoid valve closes when the internal combustion engine is operating is at least partially reduced.
  • the invention relates to a quantity control valve with an electromagnetic actuating device which, when actuated with a first actuation value for the holding current, assumes a closed state and the actuation with a second actuation value enables the quantity control valve to assume an open state.
  • This limit holding current is determined by setting a control value for the holding current in one step, at which the quantity control valve opens when the pressure has dropped, and the current supply to the quantity control valve is extended beyond the bottom dead center of the high-pressure pump, whereby no pressure increase occurs in the fuel rail, and the holding current is successively incremented from delivery to delivery and the current supply is extended beyond the bottom dead center of the high-pressure pump with each delivery, wherein, when the quantity control valve remains closed during a delivery stroke which begins after the bottom dead centre of the high pressure pump and a pressure increase occurs, a current value before the last increment is used as a limit holding current, wherein the limit holding current is determined based on the control signal at which the pressure increase occurs by using the current value before a last increment as a limit holding current.
  • the current level, or the current supply to the quantity control valve pre-controlled by a PWM signal is adapted to the specimen tolerances in such a way that the CSS method for acoustic improvement functions optimally.
  • the limit holding current is determined based on a fuel pressure signal. Since the fuel pressure signal is evaluated, no further sensors are required. Furthermore, this signal is available with sufficient accuracy.
  • a pressure increase can be easily detected if the current supply to the quantity control valve is extended beyond the bottom dead center.
  • a fuel injection system contributes to Figure 1 overall the reference number 10. It comprises an electric fuel pump 12, with which fuel is pumped from a fuel tank 14 to a high-pressure pump 16.
  • the high-pressure pump 16 compresses the fuel to a very high pressure and pumps it further into a fuel rail 18.
  • injectors 20 are connected to this, which inject the fuel into the combustion chambers assigned to them.
  • the pressure in the fuel rail 18 is detected by a pressure sensor 22.
  • the high-pressure pump 16 is a piston pump with a delivery piston 24, which can be set in a back and forth movement (double arrow 26) by a camshaft (not shown).
  • the delivery piston 24 delimits a delivery chamber 28, which can be connected to the outlet of the electric fuel pump 12 via a quantity control valve 30.
  • the delivery chamber 28 can also be connected to the fuel rail 18 via an outlet valve 32.
  • the quantity control valve 30 comprises, for example, an electromagnetic actuating device 34 which, when energized, works against the force of a spring 36.
  • the quantity control valve 30 is open when de-energized; when energized, it has the function of a normal inlet check valve.
  • the high pressure pump 16 and the quantity control valve 30 operate as follows (see Figure 2 ): In Figure 2 At the top, a stroke of the piston 34 and below it a control signal are plotted over time. The control signal is designated with the reference symbol "A". The value of the control signal is between a first control value, which is in Figure 2 marked with "0" and a second control value, which is Figure 2 is marked with "1". For example, the first control value corresponds to the de-energized state of the electromagnetic
  • Actuating device 34 and the second value the energized state are assumed.
  • the high-pressure pump 16 is shown schematically in various operating states.
  • the solenoid coil 44 is de-energized, whereby the actuating plunger 48 is pressed against the valve element 38 by the spring 36 and moves this into its open position.
  • fuel can flow from the electric fuel pump 12 into the delivery chamber 28.
  • the delivery stroke of the delivery piston 24 begins. This is in Figure 2 shown in the middle.
  • the magnetic coil 44 is still de-energized, as a result of which the quantity control valve 30 is still forcibly open.
  • the fuel is expelled from the feed piston 24 via the open quantity control valve 30 to the electric fuel pump 12.
  • the outlet valve 32 remains closed. Fuel is not fed into the fuel rail 18.
  • the magnetic coil 44 is energized, as a result of which the actuating plunger 48 is pulled away from the valve element 38. It should be noted at this point that the course of the energization of the magnetic coil 44 is only shown schematically in Figure 2. It should be noted that the actual coil current is not constant, but due to mutual induction effects may simulate the course of typical transient processes. With a pulse-width modulated control voltage, the coil current is also wave-like or spike-like.
  • the amount of fuel delivered by the high-pressure pump 16 to the fuel rail 18 is influenced.
  • the time t1 is controlled by a control and regulating device 54 ( Figure 1 ) so that an actual pressure in the fuel rail 18 corresponds as closely as possible to a target pressure.
  • signals supplied by the pressure sensor 22 are processed in the control and regulating device 54.
  • a temporarily falling signal curve 56 is generated, by which the movement speed of the actuating plunger 48 is reduced before it hits the first stop 50.
  • the control signal is brought to the first control value.
  • This second falling signal curve 58 can be provided, for example, by a rapid extinguishing of the coil current of the electromagnetic actuating device 34.
  • Figure 3 shows an exemplary time profile 100 of the control signal designated "A" and the time profile 102 of the state of the quantity control valve 30 designated “Z".
  • the value of the control signal is increased from the second control value 64 to the first control value 66.
  • the quantity control valve 30 changes from the open state 60 to the closed state 62 and closes at time 104.
  • the quantity control valve 30 remains closed. Due to the pressure in the delivery chamber 28, which keeps the quantity control valve 30 closed, the control signal can assume the second control value 64 during a period 108, i.e., be de-energized, for example.
  • the holding current can also be maintained during the period 108 by applying the first control value.
  • the value of the control signal is raised again to the first control value 66. Starting at time 82, control is again carried out.
  • the value of the control signal is specified at the time at which the pressure in the delivery chamber 28 has dropped so far that it no longer holds the quantity control valve 30 in the closed state 62, starting from a limit holding current.
  • the limit holding current is the holding current at which the quantity control valve remains in its closed state after a previous current supply. If a higher current than the limit holding current is selected, the quantity control valve remains closed. If a lower current is selected, the quantity control valve opens.
  • the current In order to detect whether the current currently being output is above or below the limit holding current, the current is extended beyond the bottom dead center of the high-pressure pump. If the quantity control valve is still activated because the current is above the limit holding current, the high-pressure pump is fully discharged. This full discharge can be easily detected by the pressure increase in the rail using the rail pressure sensor. If the limit holding current is not reached, there is no discharge and no pressure increase.
  • the extended current is gradually increased from delivery to delivery until a pressure increase is detected.
  • the limit holding current associated with the quantity control valve example currently present is recorded under the respective boundary conditions.
  • the extended flow starting from a flow level at which the quantity control valve remains closed, is successively reduced from delivery to delivery until a pressure drop is detected.
  • the adaptation process starts in a first step 300.
  • the subsequent query 305 checks whether the activation conditions for the adaptation are met.
  • the switch-on conditions should ensure the most uniform boundary conditions possible for the adaptation process. Therefore, the adaptation is only carried out in a certain speed range, vehicle speed range, battery voltage range, rail pressure range, load range, temperature range, preferably when the engine is idling but also when driving at a steady slow speed.
  • the target pressure specification for the rail pressure must also not change.
  • a starting value for the holding current is set. Furthermore, the current supply is extended beyond the bottom dead center of the high-pressure pump. This ensures that the quantity control valve remains closed with appropriate current supply until the next delivery stroke, which begins after the bottom dead center. If the quantity control valve is supplied with a current value above the limit holding current, it remains closed and pressure builds up. If the quantity control valve is supplied with a current value below the limit holding current, the quantity control valve can open when the pressure has dropped.
  • the starting value is preferably specified so that the quantity control valve opens when the pressure has dropped.
  • step 315 the current value is incremented by a certain value.
  • step 320 the rail pressure in the high-pressure area after the high-pressure pump is recorded.
  • the subsequent query 325 checks whether the rail pressure has increased. For example, it is checked whether the gradient of the rail pressure is greater than a threshold value. Or it is checked whether the rail pressure has increased by more than a threshold value since the last recording.
  • step 330 follows.
  • the adaptation ends in step 330.
  • the current value or the current value before the last increment, is used as the limit holding current.
  • a value calculated from the two values, in particular the average of these two values can be used as the limit holding current.
  • step 335 the parameters for the CSS current supply are determined, starting from the limit holding current. Furthermore, the duration of the current supply is reset to the normal value.
  • the method ends in the subsequent step 340.
  • This limit holding current is then used for the correct CSS control by calculating or correcting the current supply of the CSS process depending on this detected limit holding current.
  • the holding current before the CSS phase which corresponds to the period before the discharge chamber pressure drops, is selected with a suitable increase compared to the determined limit holding current so that the quantity control valve is reliably kept closed.
  • the current value for the desired drop to the open position of the quantity control valve is selected, for example, with a current reduced by a suitable amount compared to the determined limit holding current. This is intended on the one hand to ensure that the quantity control valve is reliably held until the start of movement is to be initiated and on the other hand to achieve the maximum braking effect of the current during the movement of the quantity control valve.
  • the current is selected to be just below the holding current required for the specimen.
  • the characterization of the respective quantity control valve specimen obtained with the adaptation method can not only be used to improve the CSS method. An additional use would be to determine the limit holding current in the context of normal control in order to reduce the effective current level and the power loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren zur Ansteuerung eines Mengensteuerventils einer Hochdruckpumpe nach dem Oberbegriff des Anspruchs 1. Gegenstand der Erfindung sind ferner ein Computerprogramm, ein elektrisches Speichermedium sowie eine Steuer- und Regeleinrichtung.The invention relates to a method for controlling a quantity control valve of a high-pressure pump according to the preamble of claim 1. The invention further relates to a computer program, an electrical storage medium and a control and regulating device.

Die DE 101 48 218 A1 beschreibt ein Verfahren zum Betreiben eines Kraftstoffeinspritzsystems unter Nutzung eines Mengensteuerventils. Das bekannte Mengensteuerventil ist als ein durch eine Magnetspule elektromagnetisch betätigtes Magnetventil mit einem Magnetanker und zugeordneten Wegbegrenzungsanschlägen realisiert. Vom Markt her bekannt sind solche Mengensteuerventile, welche im stromlosen Zustand der Magnetspule geschlossen sind. In diesem Fall wird zum Öffnen des Mengensteuerventils die Magnetspule mit einer konstanten Spannung oder einer getakteten Spannung (Pulsweitenmodulation - "PWM") angesteuert, wodurch der Strom in der Magnetspule in charakteristischer Weise ansteigt. Nach dem Abschalten der Spannung fällt der Strom wiederum in charakteristischer Weise ab, wodurch das Mengensteuerventil schließt. Ebenfalls sind Magnetventile bekannt, die im bestromten Zustand der Spule offen sind. Bei diesen Magnetventilen wird entsprechend verfahren, wobei beim Abschalten der Spannung und dem charakteristischen Abfallen des Stroms das Magnetventil öffnet.The DE 101 48 218 A1 describes a method for operating a fuel injection system using a quantity control valve. The known quantity control valve is implemented as a solenoid valve electromagnetically actuated by a solenoid coil with a magnet armature and associated travel limit stops. Such quantity control valves are known on the market which are closed when the solenoid coil is de-energized. In this case, to open the quantity control valve, the solenoid coil is controlled with a constant voltage or a clocked voltage (pulse width modulation - "PWM"), whereby the current in the solenoid coil increases in a characteristic manner. After the voltage is switched off, the current drops again in a characteristic manner, whereby the quantity control valve closes. Solenoid valves are also known which are open when the coil is energized. The procedure for these solenoid valves is similar, whereby the solenoid valve opens when the voltage is switched off and the current drops in a characteristic manner.

Um bei dem in der DE 101 48 218 A1 gezeigten stromlos geschlossenen Ventil zu verhindern, dass der Anker während der Öffnungsbewegung des Mengensteuerventils mit voller Geschwindigkeit am Anschlag anschlägt, was zu einer deutlichen Geräuschentwicklung führen könnte, wird die elektromagnetische Betätigungseinrichtung kurz vor dem Ende der Öffnungsbewegung nochmals impulsartig bestromt. Durch diesen Stromimpuls wird eine Bremskraft auf den Anker ausgeübt, noch bevor dieser den Anschlag kontaktiert. Durch die Bremskraft wird die Geschwindigkeit reduziert, wodurch das Anschlaggeräusch vermindert wird.To be able to DE 101 48 218 A1 To prevent the armature from hitting the stop during the opening movement of the quantity control valve at full speed, which could lead to significant noise, the electromagnetic The actuating device is energized again in a pulsed manner shortly before the end of the opening movement. This current pulse exerts a braking force on the armature before it even comes into contact with the stop. The braking force reduces the speed, which reduces the impact noise.

Bei modernen direkteinspritzenden Motorsystemen mit bedarfsgeregelter Kraftstoffförderung wird eine Hochdruckpumpe zur Erzeugung des notwendigen Kraftstoffdrucks eingesetzt. Die Hochdruckpumpe wird dabei mengengeregelt betrieben, dazu kann die Fördermenge der Pumpe über ein Mengensteuerventil (MSV) von 0 bis 100% gestellt werden. Der Ansteuerung dieses Mengensteuerventils kommt besondere Bedeutung zu, da der Schaltvorgang des MSV aufgrund der hohen Drehzahl und der damit verbundenen hohen Ansteuerfrequenz in sehr kurzer Zeit und trotz hoher Magnetkräfte stattfinden muss, ohne dass die Hub-zu-Hub-Schwankungen und damit die Fördermengenschwankungen zu groß werden. Diese würde zu einer mangelnden Raildruckqualität führen. Andererseits werden bei geringen Motordrehzahlen sehr hohe Anforderungen an die Geräuschentwicklung der Hochdruckpumpe gestellt. Aus diesem Grund wurden bereits zahlreiche Ansteuerkonzepte zur Verringerung der Anschlagdynamik und damit zur Verringerung des akustischen Niveaus entwickelt. Dabei wird sowohl die Anzugsbewegung als auch die abfallende Bewegung des Schaltmagneten verlangsamt.In modern direct-injection engine systems with demand-controlled fuel delivery, a high-pressure pump is used to generate the necessary fuel pressure. The high-pressure pump is operated in a quantity-controlled manner; the pump delivery rate can be set from 0 to 100% using a quantity control valve (MSV). The control of this quantity control valve is particularly important because the switching process of the MSV must take place in a very short time and despite high magnetic forces due to the high speed and the associated high control frequency, without the stroke-to-stroke fluctuations and thus the delivery rate fluctuations becoming too great. This would lead to poor rail pressure quality. On the other hand, at low engine speeds, very high demands are placed on the noise development of the high-pressure pump. For this reason, numerous control concepts have already been developed to reduce the impact dynamics and thus reduce the acoustic level. Both the pulling movement and the falling movement of the switching magnet are slowed down.

Aus der DE 10 2009 046 825 A1 ist ein Ansteuerkonzept für ein Mengensteuerventil beschrieben, das auch als "Current Soft Stop" (CSS) bezeichnet wird.From the DE 10 2009 046 825 A1 A control concept for a quantity control valve is described, which is also called "Current Soft Stop" (CSS).

Normalerweise wird das Mengensteuerventil über den oberen Totpunkt hinaus durch den Druck im Förderraum der Hochdruckpumpe geschlossen gehalten. Wenn der Förderraumdruck abfällt, fällt das Mengensteuerventil federkraftgetrieben und ungebremst in die ursprüngliche, stromlose offene Lage zurück. Bei dem CSS-Verfahren wird das Mengensteuerventil über den oberen Totpunkt hinaus mit einem Haltestrom versorgt, so dass das MSV noch nicht direkt abfällt. Erst nach dem Druckabbau im Förderraum wird der Strom in charakteristischer Weise abgesenkt, so dass das Mengensteuerventil während dieser geringen Bestromung abfällt und in die stromlos offene Lage zurückfällt. Durch die Gegeninduktion und den Strom durch das Mengensteuerventil wird die Bewegung dabei gebremst und das Auftreffen am Anschlag erfolgt wesentlich weniger schnell und damit leiser. Der Haltestrom sollte möglichst genau bekannt sein, damit die Ströme zum Halten und zum Bewegungsbeginn möglichst genau eingestellt werden können. Die Bestromung muss vor dem folgenden unteren Totpunkt wieder zu Ende sein, damit der nächste Fördervorgang nicht gestört wird.Normally, the quantity control valve is kept closed beyond the top dead center by the pressure in the delivery chamber of the high-pressure pump. When the delivery chamber pressure drops, the quantity control valve falls back to its original, currentless open position, driven by spring force and without braking. In the CSS process, the quantity control valve is supplied with a holding current beyond the top dead center, so that the MSV does not drop directly. Only after the pressure in the delivery chamber has dropped is the current reduced in a characteristic way, so that the quantity control valve drops during this low current supply and falls back to the currentless open position. The movement is slowed down by counter-induction and the current through the quantity control valve, and the impact on the stop occurs much more slowly and therefore more quietly. The holding current should be known as precisely as possible so that the currents for holding and starting the movement can be set as precisely as possible. The current supply must end before the following bottom dead center so that the next conveying process is not disrupted.

Problematisch ist der Umstand, dass bei zu geringem Strom das CSS-Verfahren nur geringe akustische Verbesserungen bringt, während zu hohe Ströme keine Verbesserung bzw. sogar eine akustische Verschlechterung und einen Raildruckanstieg bewirken können. Das beruht darauf, dass bei zu hohen Strömen das Mengensteuerventil geschlossen bleibt und nicht öffnet.The problem is that if the current is too low, the CSS process only brings about slight acoustic improvements, while if the current is too high, there is no improvement or it can even lead to an acoustic deterioration and an increase in rail pressure. This is because if the current is too high, the quantity control valve remains closed and does not open.

Da die Exemplarstreuung in der Bedatung des Stromes berücksichtigt werden muss, wäre unter diesen Voraussetzungen die Wirkung eingeschränkt, da üblicherweise derart bedatet wird, dass das Mengensteuerventil sicher öffnet. Das heißt, es würde ein eher zu niedriger Strom gewählt. Bei diesem niedrigen Strom ergibt sich dann gegebenenfalls nur eine geringe akustische Verbesserung.Since the variation between individual units must be taken into account when setting the current, the effect would be limited under these conditions, since the current is usually set in such a way that the quantity control valve opens safely. This means that a current that is too low would be selected. At this low current, there may only be a slight improvement in the acoustics.

Aus der WO 2010/066663 A1 ist ein Verfahren bekannt, bei dem ein Adoptionsverfahren angewendet wird, bei dem eine Abweichung eines Istdrucks im Kraftstoffrail von einem Solldruck herangezogen werden kann. Die dort offenbarte Bestromung im Zusammenhang mit der Adaption endet nach dem oberen Totpunkt und weit vor dem unteren Totpunkt der Hochdruckpumpe. Die Bestromung der elektromagnetischen Betätigungseinrichtung wird so weit abgesenkt, dass das Mengensteuerventil nicht mehr schließt und es daher zu einem Druckabfall oder sogar zu einem Druckzusammenbruch im Kraftstoffrail kommt.From the WO 2010/066663 A1 A method is known in which an adoption process is used in which a deviation of an actual pressure in the fuel rail from a target pressure can be used. The current supply disclosed there in connection with the adaptation ends after the top dead center and well before the bottom dead center of the high-pressure pump. The current supply to the electromagnetic actuating device is reduced so far that the quantity control valve no longer closes and therefore a pressure drop or even a pressure collapse occurs in the fuel rail.

Ferner ist aus der DE 10 2008 054 702 A1 ein Magnetventil vorbekannt, das als stromlos offenes Magnetventil aufgebaut ist. Eine Bestromung der Spule erfolgt in einer Phase, die in etwa mittig zwischen einem unteren Totpunkt und einem oberen Totpunkt beginnt und zum oberen Totpunkt beendet ist. Es ist vorgesehen, dass in dem dort offenbarten Adaptionsverfahren der eben erwähnte Strom in der Spule abgesenkt wird, um im Rahmen einer Vielzahl aufeinanderfolgender Absenkungen einen Druckeinbruch feststellen oder nicht festzustellen. Es soll dabei eine Abstrahlung hörbaren Schalls, der beim Schließen des Magnetventils im Betrieb der Brennkraftmaschine entsteht, zumindest teilweise reduziert werden. Die Spule des Magnetventils wird gemäß einer Sollgröße für den Strom in der Spule bestromt, um dieses zum Zuleiten von Kraftstoff zur Hochdruckpumpe zu schließen. Die Sollgröße für den Strom in der Spule wird beim Schließen des Magnetventils von einem vorgegebenen ersten Strom-Sollwert derart auf einen vorgegebenen zweiten Strom-Sollwert abgesenkt, dass eine Abstrahlung hörbaren Schalls, der beim Schließen des Magnetventils im Betrieb der Brennkraftmaschine entsteht, zumindest teilweise reduziert wird.Furthermore, the DE 10 2008 054 702 A1 A solenoid valve is already known which is designed as a normally open solenoid valve. The coil is energized in a phase which begins approximately in the middle between a bottom dead center and a top dead center and ends at the top dead center. It is intended that in the adaptation method disclosed therein the aforementioned current in the coil is reduced in order to detect or not detect a drop in pressure in the course of a large number of successive reductions. in this case, the emission of audible sound that occurs when the solenoid valve closes when the internal combustion engine is operating is at least partially reduced. The coil of the solenoid valve is energized according to a target value for the current in the coil in order to close it to supply fuel to the high-pressure pump. When the solenoid valve closes, the target value for the current in the coil is reduced from a predetermined first current target value to a predetermined second current target value in such a way that the emission of audible sound that occurs when the solenoid valve closes when the internal combustion engine is operating is at least partially reduced.

Offenbarung der Erfindungdisclosure of the invention

Die Erfindung betrifft ein Mengensteuerventil mit einer elektromagnetischen Betätigungseinrichtung, die bei bestromender Ansteuerung mit einem ersten Ansteuerungswert für den Haltestrom einen geschlossenen Zustand einnimmt und die Ansteuerung mit einem zweiten Ansteuerungswert dem Mengensteuerventil ermöglicht, einen geöffneten Zustand einzunehmen.The invention relates to a quantity control valve with an electromagnetic actuating device which, when actuated with a first actuation value for the holding current, assumes a closed state and the actuation with a second actuation value enables the quantity control valve to assume an open state.

Dadurch, dass ein grenzwertiger Haltestrom ermittelt wird, bei dem das Mengensteuerventil beim unteren Totpunkt der Hochdruckpumpe noch in seinem geschlossenen Zustand verbleibt, ist eine wesentlich verbesserte Ansteuerung möglich, bei der das akustische Verhalten deutlich verbessert ist.By determining a limiting holding current at which the quantity control valve remains in its closed state at the bottom dead center of the high-pressure pump, a significantly improved control is possible, with the acoustic behavior being significantly improved.

Da die Eigenschaften des Mengensteuerventils von Exemplar zu Exemplar unterschiedlich sind, ergibt sich eine effektive Minderung des Anschlaggeräuschs, wenn bei der Bestromung Exemplareigenschaften, wie der grenzwertige Haltestrom, berücksichtigt werden.Since the properties of the quantity control valve vary from model to model, an effective reduction in the impact noise is achieved if model properties, such as the limit holding current, are taken into account during the current supply.

Dieser grenzwertige Haltestrom wird dadurch ermittelt, dass in einem Schritt ein Ansteuerungswert für den Haltestrom gesetzt wird, bei dem das Mengensteuerventil öffnet, wenn der Druck abgefallen ist, und die Bestromung des Mengensteuerventils über den unteren Totpunkt der Hochdruckpumpe verlängert wird, wobei kein Druckanstieg im Kraftstoffrail erfolgt, und der Haltestrom sukzessive von Förderung zu Förderung inkrementiert wird und die Bestromung bei jeder Förderung über den unteren Totpunkt der Hochdruckpumpe verlängert wird, wobei dann, wenn das Mengensteuerventil bei einem Förderhub, der nach dem unteren Totpunkt der Hochdruckpumpe beginnt, geschlossen bleibt und ein Druckanstieg erfolgt, ein Stromwert vor der letzten Inkremation als grenzwertiger Haltestrom verwendet wird, wobei der grenzwertige Haltestrom, ausgehend von dem Ansteuerungssignal, bei dem der Druckanstieg erfolgt, bestimmt wird, indem der Stromwert vor einer letzten Inkrementation als grenzwertiger Haltestrom verwendet wird.This limit holding current is determined by setting a control value for the holding current in one step, at which the quantity control valve opens when the pressure has dropped, and the current supply to the quantity control valve is extended beyond the bottom dead center of the high-pressure pump, whereby no pressure increase occurs in the fuel rail, and the holding current is successively incremented from delivery to delivery and the current supply is extended beyond the bottom dead center of the high-pressure pump with each delivery, wherein, when the quantity control valve remains closed during a delivery stroke which begins after the bottom dead centre of the high pressure pump and a pressure increase occurs, a current value before the last increment is used as a limit holding current, wherein the limit holding current is determined based on the control signal at which the pressure increase occurs by using the current value before a last increment as a limit holding current.

Durch die erfindungsgemäße Ansteuerung und Adaption wird das Stromniveau, beziehungsweise die durch ein PWM-Signal vorgesteuerte Bestromung des Mengensteuerventils, so an die Exemplartoleranzen angepasst, dass das Verfahren CSS zur akustischen Verbesserung optimal funktioniert.Through the control and adaptation according to the invention, the current level, or the current supply to the quantity control valve pre-controlled by a PWM signal, is adapted to the specimen tolerances in such a way that the CSS method for acoustic improvement functions optimally.

Besonders vorteilhaft ist es, wenn der grenzwertige Haltestrom, ausgehend von einem Kraftstoffdrucksignal, ermittelt wird. Da das Kraftstoffdrucksignal ausgewertet wird, werden keine weiteren Sensoren benötigt. Ferner steht dieses Signal mit ausreichender Genauigkeit zur Verfügung.It is particularly advantageous if the limit holding current is determined based on a fuel pressure signal. Since the fuel pressure signal is evaluated, no further sensors are required. Furthermore, this signal is available with sufficient accuracy.

Ein Druckanstieg kann einfach dadurch erkannt werden, wenn die Bestromung des Mengensteuerventils über den unteren Totpunkt hinaus verlängert wird.A pressure increase can be easily detected if the current supply to the quantity control valve is extended beyond the bottom dead center.

Nachfolgend werden Ausführungsformen der Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen:

  • Figur 1 eine schematische Darstellung eines Kraftstoffeinspritzsystems einer Brennkraftmaschine mit einer Hochdruckpumpe und einem Mengensteuerventil;
  • Figur 2 eine schematische Darstellung des Zusammenhangs zwischen dem Ansteuersignal und dem Zustand des Mengensteuerventils;
  • Figur 3 eine zweite schematische Darstellung des zeitlichen Verlaufs des Ansteuersignals und des zeitlichen Verlaufs des Zustands des Mengensteuerventils;
  • Figur 4 ein Flussdiagramm zur Verdeutlichung der erfindungsgemäßen Vorgehensweise.
Embodiments of the invention are explained in more detail below with reference to the accompanying drawings. In the drawings:
  • Figure 1 a schematic representation of a fuel injection system of an internal combustion engine with a high-pressure pump and a quantity control valve;
  • Figure 2 a schematic representation of the relationship between the control signal and the state of the quantity control valve;
  • Figure 3 a second schematic representation of the temporal course of the control signal and the temporal course of the state of the quantity control valve;
  • Figure 4 a flow chart to illustrate the procedure according to the invention.

Ein Kraftstoffeinspritzsystem trägt in Figur 1 insgesamt das Bezugszeichen 10. Es umfasst eine elektrische Kraftstoffpumpe 12, mit der Kraftstoff aus einem Kraftstofftank 14 zu einer Hochdruckpumpe 16 gefördert wird. Die Hochdruckpumpe 16 verdichtet den Kraftstoff auf einen sehr hohen Druck und fördert ihn weiter in ein Kraftstoffrail 18. An dieses sind mehrere Injektoren 20 angeschlossen, die den Kraftstoff in ihnen zugeordnete Brennräume einspritzen. Der Druck im Kraftstoffrail 18 wird von einem Drucksensor 22 erfasst.A fuel injection system contributes to Figure 1 overall the reference number 10. It comprises an electric fuel pump 12, with which fuel is pumped from a fuel tank 14 to a high-pressure pump 16. The high-pressure pump 16 compresses the fuel to a very high pressure and pumps it further into a fuel rail 18. Several injectors 20 are connected to this, which inject the fuel into the combustion chambers assigned to them. The pressure in the fuel rail 18 is detected by a pressure sensor 22.

Bei der Hochdruckpumpe 16 handelt es sich um eine Kolbenpumpe mit einem Förderkolben 24, der von einer nicht gezeigten Nockenwelle in eine Hin- und Herbewegung (Doppelpfeil 26) versetzt werden kann. Der Förderkolben 24 begrenzt einen Förderraum 28, der über ein Mengensteuerventil 30 mit dem Auslass der elektrischen Kraftstoffpumpe 12 verbunden werden kann. Über ein Auslassventil 32 kann der Förderraum 28 ferner mit dem Kraftstoffrail 18 verbunden werden.The high-pressure pump 16 is a piston pump with a delivery piston 24, which can be set in a back and forth movement (double arrow 26) by a camshaft (not shown). The delivery piston 24 delimits a delivery chamber 28, which can be connected to the outlet of the electric fuel pump 12 via a quantity control valve 30. The delivery chamber 28 can also be connected to the fuel rail 18 via an outlet valve 32.

Das Mengensteuerventil 30 umfasst beispielsweise eine elektromagnetische Betätigungseinrichtung 34, die im bestromten Zustand gegen die Kraft einer Feder 36 arbeitet. In der Form des Ausführungsbeispiels ist das Mengensteuerventil 30 im stromlosen Zustand offen, im bestromten Zustand hat es die Funktion eines normalen Einlass-Rückschlagventils.The quantity control valve 30 comprises, for example, an electromagnetic actuating device 34 which, when energized, works against the force of a spring 36. In the form of the exemplary embodiment, the quantity control valve 30 is open when de-energized; when energized, it has the function of a normal inlet check valve.

Die Hochdruckpumpe 16 und das Mengensteuerventil 30 arbeiten folgendermaßen (siehe Figur 2):
In Figur 2 sind oben ein Hub des Kolbens 34 und darunter ein Ansteuersignal über der Zeit aufgetragen. Das Ansteuersignal ist mit dem Bezugszeichen "A" bezeichnet. Der Wert des Ansteuersignals befindet sich zwischen einem ersten Ansteuerwert, der in Figur 2 mit "0" bezeichnet ist, und einem zweiten Ansteuerwert, der in Figur 2 mit "1" bezeichnet ist. Beispielsweise entspricht der erste Ansteuerwert dem unbestromten Zustand der elektromagnetischen
The high pressure pump 16 and the quantity control valve 30 operate as follows (see Figure 2 ):
In Figure 2 At the top, a stroke of the piston 34 and below it a control signal are plotted over time. The control signal is designated with the reference symbol "A". The value of the control signal is between a first control value, which is in Figure 2 marked with "0" and a second control value, which is Figure 2 is marked with "1". For example, the first control value corresponds to the de-energized state of the electromagnetic

Betätigungseinrichtung 34 und der zweite Wert dem bestromten Zustand. Im Folgenden wird von diesem Ausführungsbeispiel ausgegangen.Actuating device 34 and the second value the energized state. In the following, this embodiment is assumed.

Außerdem ist die Hochdruckpumpe 16 in verschiedenen Betriebszuständen schematisch gezeigt. Während eines Saughubs (linke Darstellung in Figur 2) ist die Magnetspule 44 stromlos, wodurch der Betätigungsstößel 48 durch die Feder 36 gegen das Ventilelement 38 gedrückt wird und dieses in seine geöffnete Stellung bewegt. Auf diese Weise kann Kraftstoff von der elektrischen Kraftstoffpumpe 12 in den Förderraum 28 strömen. Nach dem Erreichen des unteren Totpunktes UT beginnt der Förderhub des Förderkolbens 24. Dies ist in Figur 2 in der Mitte dargestellt. Die Magnetspule 44 ist weiter stromlos, wodurch das Mengensteuerventil 30 weiterhin zwangsweise geöffnet ist. Der Kraftstoff wird vom Förderkolben 24 über das geöffnete Mengensteuerventil 30 zur elektrischen Kraftstoffpumpe 12 ausgestoßen. Das Auslassventil 32 bleibt geschlossen. Eine Förderung in das Kraftstoffrail 18 findet nicht statt. Zu einem Zeitpunkt t1 wird die Magnetspule 44 bestromt, wodurch der Betätigungsstößel 48 vom Ventilelement 38 weggezogen wird. Dabei sei an dieser Stelle darauf hingewiesen, dass in Figur 2 der Verlauf der Bestromung der Magnetspule 44 nur schematisch dargestellt ist. Es sei angemerkt, dass der tatsächliche Spulenstrom nicht konstant, sondern aufgrund von Gegeninduktionseffekten unter Umständen den Verlauf von typischen Einschwingvorgängen nachbildet. Bei einer pulsweitenmodulierten Ansteuerspannung ist darüber hinaus der Spulenstrom wellen- bzw. zackenförmig.In addition, the high-pressure pump 16 is shown schematically in various operating states. During a suction stroke (left illustration in Figure 2 ), the solenoid coil 44 is de-energized, whereby the actuating plunger 48 is pressed against the valve element 38 by the spring 36 and moves this into its open position. In this way, fuel can flow from the electric fuel pump 12 into the delivery chamber 28. After reaching the bottom dead center UT, the delivery stroke of the delivery piston 24 begins. This is in Figure 2 shown in the middle. The magnetic coil 44 is still de-energized, as a result of which the quantity control valve 30 is still forcibly open. The fuel is expelled from the feed piston 24 via the open quantity control valve 30 to the electric fuel pump 12. The outlet valve 32 remains closed. Fuel is not fed into the fuel rail 18. At a time t1, the magnetic coil 44 is energized, as a result of which the actuating plunger 48 is pulled away from the valve element 38. It should be noted at this point that the course of the energization of the magnetic coil 44 is only shown schematically in Figure 2. It should be noted that the actual coil current is not constant, but due to mutual induction effects may simulate the course of typical transient processes. With a pulse-width modulated control voltage, the coil current is also wave-like or spike-like.

Durch eine Variation des Zeitpunktes t1 wird die von der Hochdruckpumpe 16 zum Kraftstoffrail 18 geförderte Kraftstoffmenge beeinflusst. Der Zeitpunkt t1 wird von einer Steuer- und Regeleinrichtung 54 (Figur 1) so festgelegt, dass ein Istdruck im Kraftstoffrail 18 möglichst genau einem Solldruck entspricht. Hierzu werden in der Steuer- und Regeleinrichtung 54 vom Drucksensor 22 gelieferte Signale verarbeitet.By varying the time t1, the amount of fuel delivered by the high-pressure pump 16 to the fuel rail 18 is influenced. The time t1 is controlled by a control and regulating device 54 ( Figure 1 ) so that an actual pressure in the fuel rail 18 corresponds as closely as possible to a target pressure. For this purpose, signals supplied by the pressure sensor 22 are processed in the control and regulating device 54.

Aufgrund des Drucks im Förderraum 28 legt sich das Ventilelement 38 an den Ventilsitz 42 an, das Mengensteuerventil 30 ist also geschlossen. Nun kann sich im Förderraum 28 ein Druck aufbauen, der zu einem Öffnen des Auslassventils 32 und zu einer Förderung in das Kraftstoffrail 18 führt. Dies ist in Figur 2 ganz rechts dargestellt. Kurz nach dem Erreichen des oberen Totpunktes OT des Förderkolbens 24 wird die Bestromung der Magnetspule 44 beendet, wodurch das Mengensteuerventil 30 wieder in seine zwangsweise geöffnete Position gelangt.Due to the pressure in the delivery chamber 28, the valve element 38 rests against the valve seat 42, thus the quantity control valve 30 is closed. Pressure can now build up in the delivery chamber 28, which leads to the outlet valve 32 opening and to a delivery into the fuel rail 18. This is in Figure 2 quite shown on the right. Shortly after reaching the top dead center TDC of the delivery piston 24, the current supply to the solenoid coil 44 is terminated, whereby the quantity control valve 30 returns to its forced open position.

Beim Beenden der Bestromung der Magnetspule 44 wird der Betätigungsstößel 48 gegen einen ersten Anschlag 50 bewegt. Um die Auftreffgeschwindigkeit am ersten Anschlag 50 zu reduzieren, wird ein zeitweise fallender Signalverlauf 56 erzeugt, durch die die Bewegungsgeschwindigkeit des Betätigungsstößels 48 vor dem Auftreffen auf den ersten Anschlag 50 reduziert wird. Während eines zweiten fallenden Signalverlaufs 58 wird das Ansteuersignal auf den ersten Ansteuerungswert gebracht. Dieser zweite fallende Signalverlauf 58 kann beispielsweise durch eine Schnelllöschung des Spulenstroms der elektromagnetischen Betätigungseinrichtung 34 gegeben sein.When the current supply to the magnetic coil 44 is terminated, the actuating plunger 48 is moved against a first stop 50. In order to reduce the impact speed at the first stop 50, a temporarily falling signal curve 56 is generated, by which the movement speed of the actuating plunger 48 is reduced before it hits the first stop 50. During a second falling signal curve 58, the control signal is brought to the first control value. This second falling signal curve 58 can be provided, for example, by a rapid extinguishing of the coil current of the electromagnetic actuating device 34.

Figur 3 zeigt einen beispielhaft gewählten zeitlichen Verlauf 100 des mit "A" bezeichneten Ansteuerungssignals und den zeitlichen Verlauf 102 des mit "Z" bezeichneten Zustands des Mengensteuerventils 30. Zum Zeitpunkt t1 wird der Wert des Ansteuerungssignals vom zweiten Ansteuerungswert 64 auf den ersten Ansteuerungswert 66 erhöht. Hierdurch geht das Mengensteuerventil 30 vom geöffneten Zustand 60 in den geschlossenen Zustand 62 über und schließt zum Zeitpunkt 104. Während einer Haltephase 106 bleibt das Mengensteuerventil 30 geschlossen. Bedingt durch den Druck im Förderraum 28, der das Mengensteuerventil 30 geschlossen hält, kann das Ansteuerungssignal während eines Zeitraums 108 den zweiten Ansteuerungswert 64 annehmen, also beispielsweise unbestromt sein. Bei einer weiteren Variante des Verfahrens kann der Haltestrom auch während der Zeitraums 108 weiter durch Anlagen des ersten Ansteuerungswertes gehalten werden. Vor dem Erreichen des oberen Totpunkts 120 des Förderkolbens 24 bzw. vor dem Öffnen 122 des Auslassventils 32 wird der Wert des Ansteuerungssignals wieder auf den ersten Ansteuerungswert 66 angehoben. Ab dem Zeitpunkt 82 erfolgt eine erneute Ansteuerung. Damit die Geräuschemissionen deutlich reduziert werden, wird erfindungsgemäß der Wert des Ansteuerungssignals zu dem Zeitpunkt, an dem der Druck im Förderraum 28 soweit abgefallen ist, dass er das Mengensteuerventil 30 nicht mehr im geschlossenen Zustand 62 hält, ausgehend von einem grenzwertigen Haltestrom, vorgegeben. Figure 3 shows an exemplary time profile 100 of the control signal designated "A" and the time profile 102 of the state of the quantity control valve 30 designated "Z". At time t1, the value of the control signal is increased from the second control value 64 to the first control value 66. As a result, the quantity control valve 30 changes from the open state 60 to the closed state 62 and closes at time 104. During a holding phase 106, the quantity control valve 30 remains closed. Due to the pressure in the delivery chamber 28, which keeps the quantity control valve 30 closed, the control signal can assume the second control value 64 during a period 108, i.e., be de-energized, for example. In a further variant of the method, the holding current can also be maintained during the period 108 by applying the first control value. Before reaching the top dead center 120 of the delivery piston 24 or before opening 122 of the outlet valve 32, the value of the control signal is raised again to the first control value 66. Starting at time 82, control is again carried out. In order to significantly reduce noise emissions, according to the invention the value of the control signal is specified at the time at which the pressure in the delivery chamber 28 has dropped so far that it no longer holds the quantity control valve 30 in the closed state 62, starting from a limit holding current.

Der grenzwertige Haltestrom ist der Haltestrom, bei dem das Mengensteuerventil bei einer vorherigen Bestromung in seinem geschlossenen Zustand bleibt. Wird ein höherer Strom als der grenzwertige Haltestrom gewählt, so bleibt das Mengensteuerventil geschlossen. Wird ein kleinerer Strom gewählt, so öffnet das Mengensteuerventil.The limit holding current is the holding current at which the quantity control valve remains in its closed state after a previous current supply. If a higher current than the limit holding current is selected, the quantity control valve remains closed. If a lower current is selected, the quantity control valve opens.

Um zu detektieren, ob der gerade ausgegebene Strom oberhalb oder unterhalb des grenzwertigen Haltestroms liegt, wird der Strom bis über den unteren Totpunkt der Hochdruckpumpe verlängert. Falls das Mengensteuerventil noch angezogen ist, weil der Strom oberhalb des grenzwertigen Haltestroms liegt, erfolgt eine Vollförderung der Hochdruckpumpe. Diese Vollförderung lässt sich durch den Druckanstieg im Rail mit dem Raildrucksensor leicht detektieren. Ist der grenzwertige Haltestrom unterschritten, so ergibt sich keine Förderung und kein Druckanstieg.In order to detect whether the current currently being output is above or below the limit holding current, the current is extended beyond the bottom dead center of the high-pressure pump. If the quantity control valve is still activated because the current is above the limit holding current, the high-pressure pump is fully discharged. This full discharge can be easily detected by the pressure increase in the rail using the rail pressure sensor. If the limit holding current is not reached, there is no discharge and no pressure increase.

Bei dem erfindungsgemäßen Verfahren wird, ausgehend von einem Stromniveau, bei dem das Mengensteuerventil sicher öffnet, der verlängerte Strom sukzessive von Förderung zu Förderung immer weiter angehoben, bis ein Druckanstieg detektiert wird. Dadurch wird der dem aktuell vorliegenden Mengensteuerventil- Exemplar zugehörige grenzwertige Haltestrom unter den jeweiligen Randbedingungen erfasst.In the method according to the invention, starting from a current level at which the quantity control valve opens reliably, the extended current is gradually increased from delivery to delivery until a pressure increase is detected. In this way, the limit holding current associated with the quantity control valve example currently present is recorded under the respective boundary conditions.

Alternativ kann auch vorgesehen sein, dass der verlängerte Strom ausgehend von einem Stromniveau, bei dem das Mengensteuerventil geschlossen bleibt, sukzessiv von Förderung zu Förderung immer weiter abgesenkt wird, bis ein Druckabfall erkannt wird.Alternatively, it can also be provided that the extended flow, starting from a flow level at which the quantity control valve remains closed, is successively reduced from delivery to delivery until a pressure drop is detected.

Eine Ausführungsform der erfindungsgemäßen Vorgehensweise wird beispielhaft an Hand der Figur 4 beschrieben.An embodiment of the procedure according to the invention is exemplified by the Figure 4 described.

In einem ersten Schritt 300 startet das Adaptionsverfahren. Die nachfolgende Abfrage 305 überprüft, ob die Einschaltbedingen für die Adaption erfüllt sind.The adaptation process starts in a first step 300. The subsequent query 305 checks whether the activation conditions for the adaptation are met.

Die Einschaltbedingungen sollen möglichst gleichmäßige Randbedingungen für den Adaptionsvorgang sicherstellen. Deshalb wird die Adaption nur in einem bestimmten Drehzahlbereich, Fahrzeuggeschwindigkeitsbereich, Batteriespannungsbereich, Raildruckbereich, Lastbereich, Temperaturbereich durchgeführt, vorzugsweise im Leerlauf des Motors aber auch bei gleichmäßiger Langsamfahrt. Auch darf sich die Solldruckvorgabe des Raildrucks nicht ändern.The switch-on conditions should ensure the most uniform boundary conditions possible for the adaptation process. Therefore, the adaptation is only carried out in a certain speed range, vehicle speed range, battery voltage range, rail pressure range, load range, temperature range, preferably when the engine is idling but also when driving at a steady slow speed. The target pressure specification for the rail pressure must also not change.

Im anschließenden Schritt 310 wird ein Startwert für den Haltestrom gesetzt. Ferner wird die Bestromung über den unteren Totpunkt der Hochdruckpumpe verlängert. Dadurch wird erreicht, dass das Mengensteuerventil bei entsprechender Bestromung bis zum nächsten Förderhub, der nach dem unteren Totpunkt beginnt, geschlossen bleibt. Wird das Mengensteuerventil mit einem Stromwert über dem grenzwertigen Haltestrom bestromt, bleibt es in diesem Fall geschlossen und es erfolgt ein Druckaufbau. Wird das Mengensteuerventil mit einem Stromwert unter dem grenzwertigen Haltestrom bestromt, so kann das Mengensteuerventil öffnen, wenn der Druck abgefallen ist. Vorzugsweise wird der Startwert so vorgegeben, dass das Mengensteuerventil öffnet, wenn der Druck abgefallen ist.In the subsequent step 310, a starting value for the holding current is set. Furthermore, the current supply is extended beyond the bottom dead center of the high-pressure pump. This ensures that the quantity control valve remains closed with appropriate current supply until the next delivery stroke, which begins after the bottom dead center. If the quantity control valve is supplied with a current value above the limit holding current, it remains closed and pressure builds up. If the quantity control valve is supplied with a current value below the limit holding current, the quantity control valve can open when the pressure has dropped. The starting value is preferably specified so that the quantity control valve opens when the pressure has dropped.

Im Schritt 315 wird der Stromwert um einen bestimmten Wert inkrementiert. Im anschließenden Schritt 320 wird der Raildruck im Hochdruckbereich nach der Hochdruckpumpe erfasst.In step 315, the current value is incremented by a certain value. In the subsequent step 320, the rail pressure in the high-pressure area after the high-pressure pump is recorded.

Die sich anschließende Abfrage 325 überprüft, ob der Raildruck angestiegen ist. Hierzu wird beispielsweise überprüft, ob der Gradient des Raildrucks größer als ein Schwellenwert ist. Bzw. es wird überprüft, ob seit der letzten Erfassung der Raildruck um mehr als einen Schwellenwert angestiegen ist.The subsequent query 325 checks whether the rail pressure has increased. For example, it is checked whether the gradient of the rail pressure is greater than a threshold value. Or it is checked whether the rail pressure has increased by more than a threshold value since the last recording.

Ist dies nicht der Fall, das heißt es erfolgt kein Druckanstieg, so wird in Schritt 315 der Stromwert um einen bestimmten Wert inkrementiert. Wird in Schritt 325 ein Raildruckanstieg erkannt, so folgt Schritt 330.If this is not the case, i.e. there is no increase in pressure, the current value is incremented by a certain value in step 315. If a rail pressure increase is detected in step 325, step 330 follows.

In Schritt 330 endet die Adaption. Der aktuelle Stromwert, bzw. der Stromwert vor der letzten Inkrementation, wird als grenzwertiger Haltestrom verwendet. Alternativ kann auch ein aus den beiden Werten berechneter Wert, insbesondere der Mittelwert dieser beiden Werte, als grenzwertiger Haltestrom verwendet werden.The adaptation ends in step 330. The current value, or the current value before the last increment, is used as the limit holding current. Alternatively, a value calculated from the two values, in particular the average of these two values can be used as the limit holding current.

Im Schritt 335 werden die Parameter der für die CSS Bestromung, ausgehend von dem grenzwertigen Haltestrom, ermittelt. Ferner wird die Dauer der Bestromung auf den normalen Wert zurückgesetzt.In step 335, the parameters for the CSS current supply are determined, starting from the limit holding current. Furthermore, the duration of the current supply is reset to the normal value.

Im anschließenden Schritt 340 endet das Verfahren.The method ends in the subsequent step 340.

Dieser grenzwertige Haltestrom wird dann für die korrekte CSS Ansteuerung benutzt, indem die Bestromung des CSS-Verfahrens, abhängig von diesem erkannten grenzwertigen Haltestrom, berechnet oder korrigiert werden.This limit holding current is then used for the correct CSS control by calculating or correcting the current supply of the CSS process depending on this detected limit holding current.

Der Haltestrom vor der CSS Phase, dies entspricht dem Zeitraum vor dem Abfallen des Förderraumdrucks, wird mit einer geeigneten Erhöhung gegenüber dem ermittelten grenzwertigen Haltestrom gewählt, damit das Mengensteuerventil zuverlässig geschlossen gehalten wird. Der Stromwert für das gewollte Abfallen in die offene Lage des Mengensteuerventils wird beispielsweise mit einem um einen geeigneten Betrag verringerten Strom gegenüber dem ermittelten grenzwertigen Haltestrom gewählt. Damit soll einerseits erreicht werden, dass das Mengensteuerventil zuverlässig gehalten wird bis der Bewegungsbeginn eingeleitet werden soll und andererseits die maximale Bremswirkung des Stroms während der Bewegung des Mengensteuerventils erreicht wird. In dieser Phase wird der Strom knapp unter dem für das Exemplar notwendigen Haltestrom gewählt.The holding current before the CSS phase, which corresponds to the period before the discharge chamber pressure drops, is selected with a suitable increase compared to the determined limit holding current so that the quantity control valve is reliably kept closed. The current value for the desired drop to the open position of the quantity control valve is selected, for example, with a current reduced by a suitable amount compared to the determined limit holding current. This is intended on the one hand to ensure that the quantity control valve is reliably held until the start of movement is to be initiated and on the other hand to achieve the maximum braking effect of the current during the movement of the quantity control valve. In this phase, the current is selected to be just below the holding current required for the specimen.

Die mit dem Adaptionsverfahren erlangte Charakterisierung des jeweiligen Mengensteuerventil-Exemplars kann nicht nur für eine Verbesserung des CSS-Verfahrens verwendet werden. Eine zusätzliche Verwendung wäre im Rahmen der Normalansteuerung die Bestimmung des grenzwertigen Haltestroms zur Verringerung des effektiven Stromniveaus sowie der Verlustleistung.The characterization of the respective quantity control valve specimen obtained with the adaptation method can not only be used to improve the CSS method. An additional use would be to determine the limit holding current in the context of normal control in order to reduce the effective current level and the power loss.

Claims (6)

  1. Method for actuating a quantity control valve (30) of a high-pressure pump which delivers compressed fuel to a fuel rail (18) and a pressure in the fuel rail (18) is detected by a pressure sensor (22), wherein the quantity control valve (30) has an electromagnetic operating device (34) and the quantity control valve (30), with energizing actuation with a first actuation value (66) for the holding current, assumes a closed state (62) and actuation with a second actuation value (64) enables the quantity control valve (30) to assume an open state (60), wherein a borderline holding current of the quantity control valve (30), at which the quantity control valve (30) remains in its closed state, is determined by an adaptation method, characterized in that this borderline holding current is determined in that, in a step (310), an actuation value for the holding current, at which the quantity control valve (30) opens, is set when the pressure has dropped, and the energization of the quantity control valve (30) is extended beyond the bottom dead centre of the high-pressure pump, there being no increase in pressure in the fuel rail (18), and the holding current is gradually incremented from delivery to delivery, and the energization is extended beyond the bottom dead centre of the high-pressure pump with each delivery, wherein, when the quantity control valve (30) remains closed during a delivery stroke which starts after the bottom dead centre of the high-pressure pump and there is an increase in pressure, a current value before the last increment is used as the borderline holding current, the borderline holding current being determined on the basis of the actuation signal with which the increase in pressure takes place.
  2. Method according to Claim 1, characterized in that the actuation value which is applied to the quantity control valve (30) after the top dead centre is specified on the basis of the borderline holding current.
  3. Method according to either of Claims 1 and 2, characterized in that the adaptation is carried out during idling of the internal combustion engine.
  4. Open-loop and/or closed-loop control device (54) for a fuel injection system (10), characterized in that it comprises means for carrying out a method according to any of Claims 1 to 3.
  5. Computer program, characterized in that it is programmed to carry out a method according to any of Claims 1 to 3 when it is programmed on an open-loop and/or closed-loop control device (54) according to Claim 4.
  6. Electrical storage medium for an open-loop and/or closed-loop control device (54) of a fuel injection system (10), characterized in that a computer program according to Claim 5 is stored on it.
EP14711192.6A 2013-04-15 2014-03-12 Method and device for controlling a volume regulation valve Active EP2986835B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013206674.0A DE102013206674A1 (en) 2013-04-15 2013-04-15 Method and device for controlling a quantity control valve
PCT/EP2014/054792 WO2014170068A1 (en) 2013-04-15 2014-03-12 Method and device for controlling a volume regulation valve

Publications (2)

Publication Number Publication Date
EP2986835A1 EP2986835A1 (en) 2016-02-24
EP2986835B1 true EP2986835B1 (en) 2025-01-22

Family

ID=50336286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14711192.6A Active EP2986835B1 (en) 2013-04-15 2014-03-12 Method and device for controlling a volume regulation valve

Country Status (7)

Country Link
US (1) US9714632B2 (en)
EP (1) EP2986835B1 (en)
KR (1) KR102114914B1 (en)
CN (1) CN105102795B (en)
DE (1) DE102013206674A1 (en)
RU (1) RU2651266C2 (en)
WO (1) WO2014170068A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3249213B1 (en) * 2015-01-21 2020-01-08 Hitachi Automotive Systems, Ltd. High-pressure fuel supply device for internal combustion engine
DE102016219956B3 (en) * 2016-10-13 2017-08-17 Continental Automotive Gmbh Method for adjusting a damping flow of an intake valve of a motor vehicle high-pressure injection system, and control device, high-pressure injection system and motor vehicle
DE102016219954B3 (en) * 2016-10-13 2018-01-25 Continental Automotive Gmbh Method for checking a pressure sensor of a high-pressure injection system, control device, high-pressure injection system and motor vehicle
EP3346121B1 (en) * 2017-01-10 2019-09-11 Continental Automotive GmbH Magnetic valve for a fuel injection system and high pressure fuel pump
DE102017204482A1 (en) * 2017-03-17 2018-09-20 Robert Bosch Gmbh Method for operating a high-pressure pump

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9420617D0 (en) * 1994-10-13 1994-11-30 Lucas Ind Plc Drive circuit
DE19648690A1 (en) * 1996-11-25 1998-05-28 Bosch Gmbh Robert Fuel injection system
JP4123729B2 (en) * 2001-03-15 2008-07-23 株式会社日立製作所 Control method of fuel supply device
DE10148218B4 (en) 2001-09-28 2005-08-25 Robert Bosch Gmbh Method for operating an internal combustion engine, computer program, control and / or regulating device, and fuel system for an internal combustion engine
DE102004019152B4 (en) * 2004-04-21 2007-05-31 Robert Bosch Gmbh Method for operating a solenoid valve for quantity control
DE102004044450B3 (en) * 2004-09-14 2006-04-06 Siemens Ag Method and device for idle detection of injectors
DE102005056210A1 (en) 2005-11-25 2007-05-31 Robert Bosch Gmbh Electrical current cycle control for electromagnetic actuator to provide safe closing of hydraulic valve in automobile braking system
DE102007035316B4 (en) * 2007-07-27 2019-12-24 Robert Bosch Gmbh Method for controlling a solenoid valve of a quantity control in an internal combustion engine
DE102009026690A1 (en) * 2008-06-04 2009-12-10 DENSO CORPORATION, Kariya-shi The fuel feeding apparatus
DE102008054512B4 (en) * 2008-12-11 2021-08-05 Robert Bosch Gmbh Method for operating a fuel injection system of an internal combustion engine
DE102008054702A1 (en) * 2008-12-16 2010-06-17 Robert Bosch Gmbh Method for controlling a solenoid valve of a quantity control in an internal combustion engine
DE102009046825A1 (en) 2009-11-18 2011-05-19 Robert Bosch Gmbh Method and device for controlling a quantity control valve
US8662056B2 (en) * 2010-12-30 2014-03-04 Delphi Technologies, Inc. Fuel pressure control system and method having a variable pull-in time interval based pressure
DE102012208614A1 (en) * 2012-05-23 2013-11-28 Robert Bosch Gmbh Method for operating a fuel system for an internal combustion engine

Also Published As

Publication number Publication date
CN105102795B (en) 2018-05-18
EP2986835A1 (en) 2016-02-24
CN105102795A (en) 2015-11-25
RU2651266C2 (en) 2018-04-19
WO2014170068A1 (en) 2014-10-23
DE102013206674A1 (en) 2014-10-16
RU2015148817A (en) 2017-05-19
KR20150141959A (en) 2015-12-21
US20160076501A1 (en) 2016-03-17
KR102114914B1 (en) 2020-05-25
US9714632B2 (en) 2017-07-25

Similar Documents

Publication Publication Date Title
DE102008054512B4 (en) Method for operating a fuel injection system of an internal combustion engine
EP2376762B1 (en) Method for operating a fuel injection system of an internal combustion engine
EP2379868B1 (en) Method for controlling a magnetic valve of a rate control in an internal combustion engine
DE102007035316B4 (en) Method for controlling a solenoid valve of a quantity control in an internal combustion engine
EP2386021B1 (en) Method for operation of a fuel injection system
EP2986835B1 (en) Method and device for controlling a volume regulation valve
WO2005103469A9 (en) Method for operating a solenoid valve for quantity control
DE102012211798B4 (en) Method for actuating a switching element of a valve device
EP2724011B1 (en) Method and apparatus for controlling a fuel supply pump of an internal combustion engine
EP2783093A1 (en) Method for actuating a solenoid valve, and computer program and control and/or regulating device
EP2852748B1 (en) Method for operating a fuel system for an internal combustion engine
EP2501917B1 (en) Method and device for controlling a metering control valve
EP2501916B1 (en) Method and device for actuating an amount control valve
DE102016219141A1 (en) Method for operating an electric suction valve for a high-pressure pump
EP3507474A1 (en) Method for controlling an electromagnetically controllable inlet valve
DE102020216085A1 (en) Method for controlling a solenoid valve of a fuel injector
DE102016208197A1 (en) Method for driving a solenoid valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20151116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210324

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 63/02 20060101ALI20240812BHEP

Ipc: F02M 59/36 20060101ALI20240812BHEP

Ipc: F02D 41/38 20060101ALI20240812BHEP

Ipc: F02D 41/20 20060101AFI20240812BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240924

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014016901

Country of ref document: DE