[go: up one dir, main page]

EP2962096A1 - Method for detecting temporally varying thermomechanical stresses and/or stress gradients over the wall thickness of metal bodies - Google Patents

Method for detecting temporally varying thermomechanical stresses and/or stress gradients over the wall thickness of metal bodies

Info

Publication number
EP2962096A1
EP2962096A1 EP14709875.0A EP14709875A EP2962096A1 EP 2962096 A1 EP2962096 A1 EP 2962096A1 EP 14709875 A EP14709875 A EP 14709875A EP 2962096 A1 EP2962096 A1 EP 2962096A1
Authority
EP
European Patent Office
Prior art keywords
temperature
ultrasonic
eddy current
voltage
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14709875.0A
Other languages
German (de)
French (fr)
Other versions
EP2962096B1 (en
Inventor
Iris Altpeter
Ralf TSCHUNKY
Hans-Georg Herrmann
Jochen Kurz
Gerd Dobmann
Gerhard HÜBSCHEN
Steffen Bergholz
Jürgen Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Framatome GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Areva GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Areva GmbH filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to SI201431392T priority Critical patent/SI2962096T1/en
Publication of EP2962096A1 publication Critical patent/EP2962096A1/en
Application granted granted Critical
Publication of EP2962096B1 publication Critical patent/EP2962096B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/25Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
    • G01L1/255Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons using acoustic waves, or acoustic emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0025Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/023Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil
    • G01N27/025Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil a current being generated within the material by induction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Definitions

  • the present invention relates to a method for detecting temporally variable thermomechanical tensions and / or stress gradients over the wall thickness of metallic bodies, in particular of pipelines, in which a surface temperature is measured at at least one measuring point on an outer surface of the body, from which a temperature profile between the inner surface and the outer surface is determined.
  • thermo-mechanical stresses and / or voltage gradients are of great importance, above all, for pipelines of nuclear, conventional and solar thermal power plants, of chemical plants or of wind power plants, because of the temporal change of the voltages or voltage gradients, also as
  • Voltage time series referred to fatigue states of the respective component can be closed.
  • Components are responsible, however, usually occur on the inner surface of the pipes or subsequent components, for example. By rapid changes in temperature of the flowing medium in the pipeline, so that a direct measurement technically not possible or only with disproportionate effort is feasible.
  • the local stress is calculated by measuring the surface temperature via a finite element method. With such a technique, however, certain fast stress sequences, the example.
  • Hot flows can occur in the pipeline, and cause the highly cyclic temperature changes on the inner surface of the pipeline, measured no longer detected and therefore not be evaluated.
  • high-frequency mixing operations can also lead to high fatigue loads through to wall-penetrating cracks during operation due to the relevant frequency of occurrence low stress amplitudes.
  • WO 2011/138027 Al a method for non-destructive material examination is known, with the workpieces that are exposed to high mechanical and thermal stresses, for example. Pipelines in power plants, chemical plants or refineries, with respect to occurring due to stress
  • Ultrasonic transducers used in a separate transceiver arrangement to irradiate polarized ultrasonic waves in the workpiece and to measure the transit times and amplitudes of the ultrasonic waves in both pulse-echo technology and in sound transmission technology. Also eddy current impedance measurements are included
  • WO 2004/109222 A2 describes a method for detecting metallic material characteristics
  • US 5,570,900 A describes a method for the determination of stresses on a workpiece by means of electromagnetic ultrasonic transducers. In this document, it is essentially about the mechanical construction of the measuring device, with the
  • Ultrasonic transducer is attached to the workpiece.
  • the object of the present invention is to provide a method for detecting time-varying thermo-mechanical stresses and / or
  • Voltage gradient across the wall thickness of metallic bodies, in particular of pipes, specify, with which even rapid changes in voltage across the wall thickness can be detected from the inside of the body from the outer surface.
  • thermo-mechanical stresses and / or stress gradients across the wall thickness (over the cross-section of the body or over the thickness of the pipe wall) of metallic bodies two different measurement methods are combined.
  • the surface temperature on the outer surface of the body is measured, from which a temperature gradient between the inner surface and the outer surface is determined.
  • measurements are made on at least one measuring point on the
  • Determination of the voltages and / or voltage gradients required information is obtained from a combination of the information obtained from the temperature measurement with the measurement data obtained with the electromagnetic ultrasonic transducers.
  • the voltages and / or voltage gradients are preferably determined by evaluating ultrasonic transit time, amplitude and / or eddy current impedance measurements in conjunction with the temperature measurements.
  • the use of electromagnetic ultrasonic transducers has the advantage that it also pipes under operating conditions, eg. At temperatures above 200 ° C, at radiation stresses or at high
  • electromagnetic ultrasonic transducers offer the possibility of a rapid
  • Measurement data acquisition also to detect rapid voltage changes, for example caused by sudden changes in temperature inside the body.
  • the ultrasonic transit time, amplitude measurements and / or eddy current Impedance measurements have the advantage that it also not directly accessible stresses on the
  • Inner surface of the body can be detected.
  • the ultrasonic transit time, amplitude measurement can be carried out in separate transmitter-receiver arrangement or in pulse-echo technique or in a combination of both techniques. Furthermore, the transmission and reception amplitude can also be logged and thus used as an additional variable in the evaluation.
  • the additional measurement with electromagnetic ultrasonic transducers in particular with the ultrasonic transit time, amplitude and / or eddy current impedance measurements carried out, closes the gap with respect to rapid voltage changes in the current purely temperature-based monitoring methods of pipelines.
  • Voltages or voltage gradients are used as a layer model.
  • this layer model the stresses or stress gradients over the wall thickness of the pipeline are determined iteratively-numerically.
  • the model is calibrated in advance by measuring known realistic stresses defined with the entire measuring system and recording and archiving the acquired data. in the
  • the layer model provides as output variables both layer-specific voltage profiles as well as layer-specific ultrasonic transit times, amplitudes and eddy current impedances that are temperature-compensated.
  • it is concluded from the measured ultrasonic transit times, amplitudes and eddy current impedances in the individual layers to the respective voltage.
  • an iterative optimization of the layer model is required. For optimization, two different approaches can be used.
  • the first approach is based on a pattern recognition approach that allows conclusions to be drawn about the stresses in the individual layers with the help of similarity considerations.
  • Eddy current impedance quantities are linked via algorithms that correlate the layer-related data and thus span a test space from the rail-related variables.
  • This multi-dimensional test space is in the optimization phase or at The calibration is iteratively spanned and then serves to evaluate the real measurements in terms of their similarity in the spatial dimensions.
  • the second approach is a physical approach. This presupposes the knowledge or determination of the acoustoelastic constants of the tube material at different operating temperatures and the electrical conductivities and
  • Layer model based on physical laws or on a pattern recognition approach consists in the higher measuring speed as well as the immediate availability of information about the entire thickness of the pipe wall. Furthermore, the iterative optimization allows the use of temporally preceding measurement data (history of the measurements) and measurement data at the time of evaluation (ultrasound and
  • the stresses or stress gradients on the tube inner wall are obtained, which corresponds to the innermost layer of the layer model.
  • Different arrangements and configurations of the transducers are possible for the measurements with the electromagnetic ultrasonic transducers.
  • different combination transducers can be used as electromagnetic ultrasonic transducers,
  • RF coil consisting of at least one RF coil and an electromagnet or one or more permanent magnets
  • the RF coil can be used both for transmitting and / or receiving the electromagnetically excited ultrasound and for eddy current impedance measurement.
  • combination transducers consist of at least two HF coils and one electromagnet or two RF coils and one or more permanent magnets.
  • An RF coil is used to transmit and / or receive the electromagnetically excited ultrasound and the other RF coil as a separate
  • the eddy current excitation can be done with the same pulse as the generation of the ultrasonic wave or via a separate eddy current generator. Suitable ultrasonic transducers are known to those skilled in the art.
  • At least two electromagnetic ultrasonic transducers are used at each measuring point, which operate with different polarization directions in the pulse-echo mode.
  • the RF coil used in these converters both as a transmitting and as a receiving coil.
  • the transducers are designed and arranged so that they radiate perpendicularly to each other linearly polarized transverse waves perpendicular to the tube.
  • the transverse wave of the one ultrasonic transducer is in the axial direction of Pipe and the other polarized in the circumferential direction of the tube. In this way, those in these
  • two pairs of further electromagnetic ultrasonic transducers are used in separate transmit-receive arrangement at the respective measuring point.
  • one transducer acts as a transmitter and the other as a receiver.
  • These converters can be used with two different wave types
  • Transition work both with Rayleigh and with horizontally polarized transverse waves.
  • the two pairs of these additional electromagnetic ultrasonic transducers are operated to detect the voltage in the tube wall with two mutually oriented by 90 ° polarizations, preferably in the axial direction and in the circumferential direction of the tube. They are arranged crosswise for this purpose.
  • a horizontally polarized wave also a plate wave (SH / Lamb plate wave) can be used.
  • SH / Lamb plate wave For vertical irradiation, it is also possible to use radially polarized waves.
  • the ultrasonic transducers also referred to as
  • Designated probes are preferably mounted in a belt over the circumference of the tube. The closer this test head assembly is placed on the pipe along the circumference is, the higher the lateral resolution for the determination of the voltage along the pipe circumference.
  • test belts with combination transducers for additional redundancies at the same time.
  • test head or converter types for each belt
  • combination transducers with electromagnets are used, with which the hysteresis is controlled by the overlay permeability
  • Ultrasonic probes at a measuring point according to an embodiment of the proposed method; 2 shows examples of the distribution of the test heads or measuring points over the circumference of a pipe;
  • Fig. 3 is a schematic representation of
  • Fig. 5 shows another example of the structure
  • test head for generating a perpendicular einschallenden linearly polarized transversal wave
  • FIG. 6 shows an example of the structure of a test head for generating a Rayleigh wave
  • FIG. 7 shows an example of the construction of a test head for generating a horizontally polarized transverse wave.
  • FIGS. 1 a and 1 b show two different arrangement possibilities at the corresponding measuring point.
  • the temperature sensor 2 used for simultaneous measurement of the temperature of the outer surface at this measuring point is also schematically indicated in the figure. This temperature sensor, for example in the form of thermocouples, can also be integrated into the probes. Furthermore, several temperature sensors 2 can be present at each measuring point. Of course, the temperature measurement can also be carried out immediately before or after the measurement with the ultrasonic probes.
  • Ultrasonic and / or eddy current measurements can be used. These are separate transmit-receive arrangements with separate transmit and receive transducers 3a, 3b, 4a, 4b and integrated transmit-receive arrangements 5, 6, which operate in pulse-echo mode. With the separate transmit and receive transducers 3a, 3b, 4a, 4b and integrated transmit-receive arrangements 5, 6, which operate in pulse-echo mode. With the separate transmit and receive transducers 3a, 3b, 4a, 4b and integrated transmit-receive arrangements 5, 6, which operate in pulse-echo mode. With the separate transmit and
  • Reception transducers 3a, 3b and 4a, 4b can be generated either Rayleigh waves or horizontally polarized transverse waves in the axial direction of the pipe wall. These probes work in transmission, the ultrasonic waves from the transmitter 3a, 4a,
  • the RF coil serves both to transmit the ultrasonic signals and to receive those reflected at the tube inner wall
  • the one transducer 5 generates linearly polarized in the circumferential direction of the tube
  • Transverse waves the other transducer 6 linearly in the axial direction of the tube polarized transverse waves.
  • the eddy current impedance measurement can be performed in
  • Combination converters are used, in which an additional RF coil for the eddy current impedance measurement is provided.
  • Figures la and lb show different orientations or arrangements of the probes used, as in the present
  • FIG. 1c again shows, by way of example, a section through the tube with the appropriately placed test heads.
  • the probes are preferably used like a belt at different measuring points on the outer wall of the tube, as is schematically indicated by the arrow in the figure lc.
  • FIG. 2 shows possible distributions of the positions of the measuring points or of the positions of the test head arrangements 7 shown in FIG. 1 over the circumference of a tube 1. The more densely the cross-shaped test head arrangements 7 are placed along the circumference of the tube, the higher the lateral
  • FIG. 2 shows by way of example four in the left partial illustration
  • cross-shaped arrangement of the probes shown in Figure 1 can also be simplified by applying to the separate transmission-reception arrangements with the probes 3a, 3b, 4a, 4b
  • FIG. 3 schematically shows the procedure for determining the stresses or stress gradients on the inner side of the tube on the basis of a layer model.
  • layer model 9 the pipe wall is subdivided into different layers, as indicated in the figure.
  • Model input quantities 8 serve the measured eddy current impedances, the measured ultrasonic running times, amplitudes, the temperature profile determined from the temperature measurement and the voltage profile determined from the temperature measurement.
  • the layer model 9 then supplies as model output variables 10 layer-related eddy current impedances, layer-related ultrasound propagation times, amplitudes and a layer-related voltage profile, wherein the voltage curve at the innermost layer of the layer model corresponds to the voltages or voltage gradients on the inside of the tube.
  • FIGS. 4 to 7 show examples of ultrasonic transducers or probes, as can be used in the proposed method.
  • FIG. 4 shows an example of the construction of a vertical sonic transducer which generates linearly polarized transverse waves.
  • the transducer has a magnet 11 over an RF coil 12.
  • the magnet can be both a Permanent magnets - as shown in the figure - act as well as an electromagnet.
  • Tube wall generated as indicated in the figure.
  • About the AC voltage at the recognizable in the illustrated cross-section RF coil 12 is in the
  • Tube wall excited an ultrasonic wave whose
  • Propagation direction 15 in the figure also carries
  • an additional concentrator 13 for amplifying the static magnetic field can also be used between the RF coil 12 and the magnet 11.
  • FIG. 1 An alternative embodiment of such an ultrasonic transducer for perpendicular insonification of a linearly polarized transverse wave is shown in FIG.
  • two magnets 11 are inserted over the RF coil 12.
  • FIG. 6 shows an example of the construction of an electromagnetic ultrasonic transducer with which
  • a meandering RF coil 11 is used, which can be seen in the right part of the figure in plan view.
  • the propagation direction 15 of the ultrasonic wave and the oscillation direction 14 of the ultrasonic wave are also indicated in the figure.
  • FIG. 7 An example of an ultrasonic transducer for generating a horizontally polarized transverse wave is shown in FIG. 7.
  • Permanent magnets 11 are used with alternating polarity in periodic arrangement, as can be seen from the figure.
  • An ultrasonic wave is then generated via the RF coil 12 underneath, whose propagation direction 15 along the pipe surface is again shown schematically in the figure.
  • an eddy current impedance measurement can be realized at different frequencies and thus different penetration depths into the pipeline.
  • the eddy current impedance measurement can be carried out with the RF coil of the transducer also used for ultrasound generation.
  • a separate RF coil for such eddy current measurement at the converter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

The present invention relates to a method for detecting temporally varying thermomechanical stresses and/or stress gradients over the wall thickness of metal bodies (1), in particular pipelines. In the method, the temperature on the outer surface of the body (1) is measured in order to determine a temperature progression and stress progression therefrom. In addition, electromagnetic ultrasonic transducers (3-6) are used at at least one measuring point on the outer surface in order to determine the progression of the stresses and/or stress gradients over time over the wall thickness of the body (1) in conjunction with the result of the temperature measurement. The method allows the fatigue monitoring of pipelines even in the event of rapid stress changes.

Description

Verfahren zur Erfassung zeitlich veränderlicher thermomechanischer Spannungen und/oder Spannungsgradienten über die Wanddicke von metallischen  Method for detecting time-varying thermo-mechanical stresses and / or stress gradients over the wall thickness of metallic

Körpern  bodies

Technisches Anwendungsgebiet Technical application

Die vorliegende Erfindung betrifft ein Verfahren zur Erfassung zeitlich veränderlicher thermomechani- scher Spannungen und/oder Spannungsgradienten über die Wanddicke von metallischen Körpern, insbesondere von Rohrleitungen, bei dem eine Oberflächentemperatur an mindestens einer essstelle an einer Außenoberfläche des Körpers gemessen wird, aus der ein Temperaturverlauf zwischen der Innenfläche und der Außenoberfläche ermittelt wird.  The present invention relates to a method for detecting temporally variable thermomechanical tensions and / or stress gradients over the wall thickness of metallic bodies, in particular of pipelines, in which a surface temperature is measured at at least one measuring point on an outer surface of the body, from which a temperature profile between the inner surface and the outer surface is determined.

Die Erfassung zeitlich veränderlicher thermo- mechanischer Spannungen und/oder Spannungsgradienten ist vor allem an Rohrleitungen von kerntechnischen, konventionellen und solarthermischen Kraftwerken, von chemischen Anlagen oder auch von Windkraftanlagen von großer Bedeutung, da aus der zeitlichen Veränderung der Spannungen bzw. Spannungsgradienten, auch als The detection of time-varying thermo-mechanical stresses and / or voltage gradients is of great importance, above all, for pipelines of nuclear, conventional and solar thermal power plants, of chemical plants or of wind power plants, because of the temporal change of the voltages or voltage gradients, also as

Spannungs-Zeitreihen bezeichnet, auf Ermüdungszustände der jeweiligen Komponente geschlossen werden kann. Die MaximalSpannungen, die für eine Alterung der Voltage time series referred to fatigue states of the respective component can be closed. The maximum voltages required for aging

Komponenten verantwortlich sind, treten jedoch in der Regel an der Innenoberfläche der Rohrleitungen bzw. anschließenden Komponenten auf, bspw. durch schnelle Temperaturänderungen des in der Rohrleitung fließenden Mediums, so dass eine direkte Messung technisch nicht möglich bzw. nur mit unverhältnismäßig großem Aufwand machbar ist. Components are responsible, however, usually occur on the inner surface of the pipes or subsequent components, for example. By rapid changes in temperature of the flowing medium in the pipeline, so that a direct measurement technically not possible or only with disproportionate effort is feasible.

Stand der Technik State of the art

Für die Überwachung von Rohrleitungen oder anderen Körpern auf Ermüdungserscheinungen ist es bspw. aus J. Rudolph et al . , „AREVA Fatigue Concept - A Three Stage Approach to the Fatigue Assessment of Power Plant Components" in: „Nuclear Power Plants", edited by Dr. For the monitoring of pipes or other bodies for signs of fatigue, it is known, for example, from J. Rudolph et al. , "AREVA Fatigue Concept - A Three Stage Approach to the Fatigue Assessment of Power Plant Components" in: "Nuclear Power Plants", edited by Dr. med.

Soon Heung Chang, KAIST Department of Nuclear & Quantum Engineering, South Korea, Publisher: InTech, March 21, 2012, Seiten 293 bis 316 bekannt, über die Messung der Oberflächentemperatur an der Außenoberfläche der Soon Heung Chang, KAIST Department of Nuclear & Quantum Engineering, South Korea, Publisher: InTech, March 21, 2012, pages 293 to 316 known about measuring the surface temperature on the outside surface of the

Rohrleitungen auf die Spannungs-Zeitreihen in den beanspruchten Bauteilen zurückzuschließen. Dabei wird aus der Messung der Oberflächentemperatur über eine Finite Elemente Methode die lokale Spannung berechnet . Mit einer derartigen Technik können allerdings bestimmte schnelle Beanspruchungsfolgen, die bspw. Recognize piping on the voltage time series in the claimed components. The local stress is calculated by measuring the surface temperature via a finite element method. With such a technique, however, certain fast stress sequences, the example.

durch instationäre Mischvorgänge von Kalt- und by transient mixing of cold and

Heißströmungen in der Rohrleitung entstehen können, und die hochzyklische Temperaturänderungen an der Innen- Oberfläche der Rohrleitung verursachen, messprinzip- bedingt nicht mehr erfasst und somit nicht bewertet werden. Derartige hochfrequente Mischvorgänge können jedoch aufgrund der relevanten Auftretenshäufigkeit geringer Beanspruchungsamplituden ebenfalls zu hohen Ermüdungsbeanspruchungen bis hin zu wanddurchdringenden Rissen während des Betriebes führen. Aus der WO 2011/138027 AI ist ein Verfahren zur zerstörungsfreien Materialuntersuchung bekannt, mit dem Werkstücke, die hohen mechanischen und thermischen Beanspruchungen ausgesetzt werden, bspw. Rohrleitungen in Kraftwerken, Chemieanlagen oder Raffinerien, hinsichtlich auftretender beanspruchungsbedingter Hot flows can occur in the pipeline, and cause the highly cyclic temperature changes on the inner surface of the pipeline, measured no longer detected and therefore not be evaluated. However, such high-frequency mixing operations can also lead to high fatigue loads through to wall-penetrating cracks during operation due to the relevant frequency of occurrence low stress amplitudes. From WO 2011/138027 Al a method for non-destructive material examination is known, with the workpieces that are exposed to high mechanical and thermal stresses, for example. Pipelines in power plants, chemical plants or refineries, with respect to occurring due to stress

ErmüdungsSchädigungen untersucht werden können. Bei diesem Verfahren werden zwei elektromagnetische Fatigue damage can be investigated. In this process, two electromagnetic

Ultraschallwandler in einer getrennten Sende-Empfangs- Anordnung eingesetzt, um polarisierte Ultraschallwellen in das Werkstück einzustrahlen und Laufzeiten sowie Amplituden der Ultraschallwellen sowohl in Puls -Echo- Technik als auch in Durchschallungstechnik zu messen. Auch Wirbelstromimpedanz -Messungen werden dabei Ultrasonic transducers used in a separate transceiver arrangement to irradiate polarized ultrasonic waves in the workpiece and to measure the transit times and amplitudes of the ultrasonic waves in both pulse-echo technology and in sound transmission technology. Also eddy current impedance measurements are included

durchgeführt, um diese Messgrößen mit entsprechenden Referenzdaten zu vergleichen. Durch den Vergleich mit den Referenzdaten können dann mögliche Änderungen in der Mikrostruktur der Wandung des Werkstücks erkannt werden. Das dort beschriebene Verfahren ermöglicht jedoch nicht die Erfassung zeitlich veränderlicher thermomechanischer Spannungsgradienten über die performed to compare these measures with corresponding reference data. By comparison with the reference data then possible changes in the microstructure of the wall of the workpiece can be detected. However, the method described there does not allow the detection of time-varying thermo-mechanical stress gradients over the

Wanddicke von Rohrleitungen. Wall thickness of pipelines.

Die WO 2004/109222 A2 beschreibt ein Verfahren zur Erfassung von Materialcharakteristiken metallischenWO 2004/109222 A2 describes a method for detecting metallic material characteristics

Körper, insbesondere von Eisenbahnschienen, bei dem mit elektromagnetischen Ultraschallwandlern Messungen durchgeführt werden, um die Materialcharakteristik, insbesondere die Spannung, Dichte oder Steifheit des Materials, zu bestimmen. Zusätzlich wird die Temperatur an der Messstelle gemessen, um die Ultraschallmessungen aufgrund eventueller Temperatureffekte zu korrigieren. Die US 5,570,900 A beschreibt ein Verfahren zur Bestimmung von Spannungen an einem Werkstück mit Hilfe von elektromagnetischen Ultraschallwandlern. Bei dieser Druckschrift geht es im Wesentlichen um die mechanische Konstruktion der Messeinrichtung, mit der der Body, in particular railroad tracks, in which measurements are carried out with electromagnetic ultrasonic transducers in order to determine the material characteristics, in particular the stress, density or stiffness of the material. In addition, the temperature at the measuring point is measured in order to correct the ultrasonic measurements due to possible temperature effects. US 5,570,900 A describes a method for the determination of stresses on a workpiece by means of electromagnetic ultrasonic transducers. In this document, it is essentially about the mechanical construction of the measuring device, with the

Ultraschallwandler an das Werkstück angesetzt wird.  Ultrasonic transducer is attached to the workpiece.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur Erfassung zeitlich veränder- licher thermomechanischer Spannungen und/oder The object of the present invention is to provide a method for detecting time-varying thermo-mechanical stresses and / or

Spannungsgradienten über die Wanddicke von metallischen Körpern, insbesondere von Rohrleitungen, anzugeben, mit dem auch schnelle Spannungsänderungen über die Wanddicke ausgehend vom Inneren des Körpers von der Außen- Oberfläche aus erfasst werden können.  Voltage gradient across the wall thickness of metallic bodies, in particular of pipes, specify, with which even rapid changes in voltage across the wall thickness can be detected from the inside of the body from the outer surface.

Darstellung der Erfindung Presentation of the invention

Die Aufgabe wird mit dem Verfahren nach Patent- anspruch 1 gelöst. Vorteilhafte Ausgestaltungen des The object is achieved by the method according to patent claim 1. Advantageous embodiments of the

Verfahrens sind Gegenstand der abhängigen Patentansprüche oder lassen sich der nachfolgenden Method are the subject of the dependent claims or can be the following

Beschreibung sowie den Ausführungsbeispielen entnehmen. Bei dem vorgeschlagenen Verfahren zur Erfassung zeitlich veränderlicher thermomechanischer Spannungen und/oder Spannungsgradienten über die Wanddicke (über den Querschnitt des Körpers bzw. über die Dicke der Rohrleitungswand) von metallischen Körpern werden zwei unterschiedliche Messverfahren kombiniert. Zum einen wird die Oberflächentemperatur an der Außenoberfläche des Körpers gemessen, aus der ein Temperaturverlauf zwischen der Innenfläche und der Außenoberfläche ermittelt wird. Zum anderen werden zusätzlich zu dieser Messung mit elektromagnetischen Ultraschallwandlern Messungen an mindestens einer Messstelle an der Description and the exemplary embodiments. In the proposed method for detecting time-varying thermo-mechanical stresses and / or stress gradients across the wall thickness (over the cross-section of the body or over the thickness of the pipe wall) of metallic bodies, two different measurement methods are combined. On the one hand, the surface temperature on the outer surface of the body is measured, from which a temperature gradient between the inner surface and the outer surface is determined. On the other hand, in addition to this measurement with electromagnetic ultrasonic transducers, measurements are made on at least one measuring point on the

Außenoberfläche durchgeführt, um über die gemessene Temperatur und den daraus ermittelten Temperaturverlauf aus den zusätzlichen Messungen den zeitlichen Verlauf der Spannungen und/oder Spannungsgradienten über die Wanddicke des Körpers zu bestimmen. Die für die Outside surface performed to determine the time course of the voltages and / or voltage gradients across the wall thickness of the body on the basis of the measured temperature and the temperature profile determined therefrom from the additional measurements. The for the

Bestimmung der Spannungen und/oder Spannungsgradienten erforderlichen Informationen werden dabei aus einer Kombination der aus der Temperaturmessung erhaltenen Informationen mit den Messdaten erhalten, die mit den elektromagnetischen Ultraschallwandlern gewonnen werden. Die Spannungen und/oder Spannungsgradienten werden vorzugsweise durch Auswertung von Ultraschall- Laufzeit-, -Amplituden- und/oder Wirbelstromimpedanz - Messungen in Verbindung mit den Temperaturmessungen bestimmt. Der Einsatz elektromagnetischer Ultraschallwandler hat den Vorteil, dass damit auch Rohrleitungen unter Betriebsbedingungen, bspw. bei Temperaturen über 200° C, bei Strahlungsbeanspruchungen oder bei hohen Determination of the voltages and / or voltage gradients required information is obtained from a combination of the information obtained from the temperature measurement with the measurement data obtained with the electromagnetic ultrasonic transducers. The voltages and / or voltage gradients are preferably determined by evaluating ultrasonic transit time, amplitude and / or eddy current impedance measurements in conjunction with the temperature measurements. The use of electromagnetic ultrasonic transducers has the advantage that it also pipes under operating conditions, eg. At temperatures above 200 ° C, at radiation stresses or at high

Betriebsdrücken innerhalb der Körper vermessen werden können. Insbesondere bieten elektromagnetische Ultraschallwandler die Möglichkeit, durch eine rasche Operating pressures within the body can be measured. In particular, electromagnetic ultrasonic transducers offer the possibility of a rapid

Messdatenerfassung auch schnelle Spannungsänderungen, bspw. verursacht durch plötzlich auftretende Temperaturänderungen im Inneren der Körper, zu erfassen. Measurement data acquisition also to detect rapid voltage changes, for example caused by sudden changes in temperature inside the body.

Hiermit lassen sich High Cycle Fatigue (HCF)  This allows High Cycle Fatigue (HCF)

Beanspruchungskollektive prinzipiell identifizieren und bewerten. Die hierbei durchgeführten Ultraschalllaufzeit-, -Amplituden-Messungen und/oder Wirbelstrom- impedanz-Messungen haben den Vorteil, dass damit auch nicht direkt zugängliche Beanspruchungen an der Principally identify and evaluate load collectives. The ultrasonic transit time, amplitude measurements and / or eddy current Impedance measurements have the advantage that it also not directly accessible stresses on the

Innenoberfläche der Körper erfasst werden können. Die Ultraschall-Laufzeit-, -Amplituden-Messung kann dabei in getrennter Sender-Empfänger-Anordnung oder in Puls- Echo-Technik oder in einer Kombination beider Techniken durchgeführt werden. Weiterhin kann auch die Sende- und Empfangsamplitude mitprotokolliert und damit als zusätzliche Größe bei der Auswertung verwendet werden. Inner surface of the body can be detected. The ultrasonic transit time, amplitude measurement can be carried out in separate transmitter-receiver arrangement or in pulse-echo technique or in a combination of both techniques. Furthermore, the transmission and reception amplitude can also be logged and thus used as an additional variable in the evaluation.

Bei dem vorliegenden Verfahren wird somit durch die zusätzliche Messung mit elektromagnetischen Ultraschallwandlern, insbesondere mit den damit durchgeführten Ultraschall-Laufzeit-, -Amplituden- und/oder Wirbelstromimpedanz-Messungen, die Lücke hinsichtlich schneller Spannungsänderungen in den derzeitigen rein temperaturbasierten Überwachungsmethoden von Rohrleitungen geschlossen. In Kombination mit der Thus, in the present method, the additional measurement with electromagnetic ultrasonic transducers, in particular with the ultrasonic transit time, amplitude and / or eddy current impedance measurements carried out, closes the gap with respect to rapid voltage changes in the current purely temperature-based monitoring methods of pipelines. In combination with the

Temperaturüberwachung erweitern diese elektro- magnetischen Ultraschallprüfmethoden die Aussagefähigkeit bekannter Ermüdungsüberwachungssysteme . Es lassen sich damit auch bisher nicht zu erfassende hochfrequente ermüdungsrelevante Beanspruchungs-Zeit- Funktionen (Spannungs-Zeitreihen) registrieren. Damit können Rückschlüsse auf ermüdungsrelevante Beanspruchungen und somit auf den zeitlichen Verlauf des Ermüdungszustandes des jeweiligen Körpers bzw. Rohres gezogen werden. Durch den Einsatz elektromagnetischer Ultraschallwandler lassen sich Ultraschall-Laufzeit-, - Amplituden- und Wirbelstromimpedanz-Messungen in einerTemperature monitoring, these electromagnetic ultrasonic testing methods extend the informative value of well-known fatigue monitoring systems. Thus, it is also possible to register hitherto unrecognizable high-frequency fatigue-relevant load-time functions (voltage time series). Thus, conclusions can be drawn on fatigue-relevant stresses and thus on the time course of the state of fatigue of the respective body or pipe. By the use of electromagnetic ultrasonic transducers, ultrasonic transit time, - amplitude and eddy current impedance measurements can be in one

Sensorik bzw. einem Prüfköpf kombinieren. Bei dem vorgeschlagenen Verfahren wird ausgenutzt, dass die aus der Temperaturmessung gewonnenen Daten, insbesondere der daraus ableitbare Temperatur- und Spannungsverlauf über der Wanddicke des Körpers, genutzt werden können, um aus den Messdaten der Combine sensors or a test head. In the proposed method is exploited that the data obtained from the temperature measurement, in particular the derivable temperature and voltage curve over the wall thickness of the body can be used to from the measured data of the

Ultraschall- bzw. Wirbelstrommessungen die Spannungen oder Spannungsgradienten über die Wanddicke des  Ultrasonic or eddy current measurements the voltages or voltage gradients across the wall thickness of the

Körpers, insbesondere bei hochfrequenten Spannungs- änderungen, zu bestimmen. Ohne die zusätzlichen Body, especially in high-frequency voltage changes to determine. Without the additional

Informationen aus der Temperaturmessung wäre dies nicht mit der vorliegenden Genauigkeit möglich, da der Information from the temperature measurement, this would not be possible with the present accuracy, since the

Temperatureinfluss auf die Ultraschall- und Wirbelstromimpedanz-Messdaten kompensiert werden muss, um die Genauigkeit zu erhalten. Temperature influence on the ultrasonic and eddy current impedance measurement data must be compensated to maintain the accuracy.

Im Folgenden werden das Verfahren sowie dessen Ausgestaltungen anhand der Vermessung bzw. Überwachung von Rohrleitungen erläutert. Diese Erläuterungen lassen sich jedoch ohne weiteres auch auf andere Körper übertragen. In the following, the method and its embodiments will be explained on the basis of the measurement or monitoring of pipelines. However, these explanations can be readily applied to other bodies as well.

Vorzugsweise wird für die Bestimmung der Preferably, for the determination of the

Spannungen bzw. Spannungsgradienten ein Schichtmodell eingesetzt. Mit diesem Schichtmodell werden iterativ- nummerisch die Spannungen bzw. Spannungsgradienten über der Wanddicke der Rohrleitung ermittelt. Das Modell wird dabei unter Nutzung der Temperaturmessdaten und der daraus gewonnenen Informationen vorab kalibriert, indem mit dem gesamten Messsystem definierte bekannte realistische Beanspruchungen vermessen werden und die gewonnen Daten erfasst und archiviert werden. Im Voltages or voltage gradients are used as a layer model. With this layer model, the stresses or stress gradients over the wall thickness of the pipeline are determined iteratively-numerically. Using the temperature measurement data and the information obtained, the model is calibrated in advance by measuring known realistic stresses defined with the entire measuring system and recording and archiving the acquired data. in the

Einzelnen werden dazu als Modelleingangsgrößen die aus der Temperaturmessung nummerisch ermittelten Temperatur- und Spannungsverläufe über der Wanddicke der Rohrleitung, die in den verschiedenen Schichten als stückweise konstant approximiert werden, sowie die temperaturkorrigierten Ultraschall-Laufzeiten, -Ampli- tuden und Wirbelstromimpedanzen genutzt. Individuals are used as model input variables that are numerically determined from the temperature measurement Temperature and voltage profiles over the wall thickness of the pipeline, which are approximated in the various layers as a piecewise constant, and the temperature-corrected ultrasonic transit times, -Ampli- tuden and eddy current impedances used.

Das Schichtmodell liefert als Ausgangsgrößen sowohl schichtspezifische Spannungsverläufe als auch schichtspezifische Ultraschall-Laufzeiten, -Amplituden und Wirbelstromimpedanzen, die temperaturkompensiert sind. Um im Anwendungsfall schnell den Spannungsverlauf in der Rohrleitungswand bestimmen zu können, wird aus den gemessenen Ultraschall-Laufzeiten, -Amplituden und Wirbelstromimpedanzen in den einzelnen Schichten auf die jeweilige Spannung geschlossen. Um diesen Zusammenhang zwischen den Spannungen in den Schichten und den schichtspezifischen Ultraschall-Laufzeiten, -Amplituden- und Wirbelstromimpedanzwerten zu ermitteln, bedarf es einer iterativen Optimierung des Schicht- modells. Zur Optimierung können zwei unterschiedliche Vorgehensweisen angewendet werden. The layer model provides as output variables both layer-specific voltage profiles as well as layer-specific ultrasonic transit times, amplitudes and eddy current impedances that are temperature-compensated. In order to be able to quickly determine the voltage profile in the pipe wall in the application, it is concluded from the measured ultrasonic transit times, amplitudes and eddy current impedances in the individual layers to the respective voltage. In order to determine this relationship between the stresses in the layers and the layer-specific ultrasonic transit times, amplitude and eddy current impedance values, an iterative optimization of the layer model is required. For optimization, two different approaches can be used.

Die erste Vorgehensweise beruht auf einem Mustererkennungsansatz, der mit Hilfe von Ähnlichkeits- betrachtungen Rückschlüsse auf die Spannungen in den einzelnen Schichten zulässt. Hierbei werden die The first approach is based on a pattern recognition approach that allows conclusions to be drawn about the stresses in the individual layers with the help of similarity considerations. Here are the

schichtbezogenen Spannungsverläufe mit den schichtbezogenen Ultraschall-Laufzeit-, -Amplituden- und Layer-related voltage curves with the layer-related ultrasonic transit time, amplitude and

Wirbelstromimpedanz -Größen über Algorithmen verknüpft, die die schichtbezogenen Daten miteinander in Relation bringen und somit einen Prüfgrößenraum aus den schient- bezogenen Größen aufspannen. Dieser mehrdimensionale Prüfgrößenraum wird in der Optimierungsphase bzw. bei der Kalibrierung iterativ aufgespannt und dient im Anschluss dazu, die realen Messungen bezüglich ihrer Ähnlichkeit in den Raumdimensionen zu bewerten. Bei der zweiten Vorgehensweise handelt es sich um einen physikalischen Ansatz. Dieser setzt die Kenntnis bzw. Ermittlung der akustoelastischen Konstanten des Rohrmaterials bei verschiedenen Betriebstemperaturen und die elektrischen Leitfähigkeiten voraus und Eddy current impedance quantities are linked via algorithms that correlate the layer-related data and thus span a test space from the rail-related variables. This multi-dimensional test space is in the optimization phase or at The calibration is iteratively spanned and then serves to evaluate the real measurements in terms of their similarity in the spatial dimensions. The second approach is a physical approach. This presupposes the knowledge or determination of the acoustoelastic constants of the tube material at different operating temperatures and the electrical conductivities and

gestattet es, hieraus den Spannungszustand für jede Schicht durch iterative Anpassung des Modells zu ermitteln, indem die temperaturkompensierten Ultraschall-Laufzeiten mit den ebenfalls temperaturkompensierten akustoelastischen Konstanten verrechnet werden und gegebenenfalls noch die Ultraschallamplituden und Wirbelstromimpedanzen zusätzlich verwendet werden. makes it possible to determine the stress state for each layer from this by iterative adaptation of the model by calculating the temperature-compensated ultrasonic transit times with the likewise temperature-compensated acoustoelastic constants and possibly additionally using the ultrasonic amplitudes and eddy current impedances.

Der Vorteil der iterativen Optimierung des The benefit of iterative optimization of the

Schichtmodells basierend auf physikalischen Gesetz- mäßigkeiten bzw. auf einem Mustererkennungsansatz besteht in der höheren Messgeschwindigkeit sowie der sofortigen Verfügbarkeit von Informationen über die gesamte Dicke der Rohrwand. Des Weiteren ermöglicht die iterative Optimierung die Verwendung von zeitlich vorhergehenden Messdaten (Historie der Messungen) und Messdaten zum Auswertezeitpunkt (Ultraschall und Layer model based on physical laws or on a pattern recognition approach consists in the higher measuring speed as well as the immediate availability of information about the entire thickness of the pipe wall. Furthermore, the iterative optimization allows the use of temporally preceding measurement data (history of the measurements) and measurement data at the time of evaluation (ultrasound and

Wirbelstromgrößen sowie die momentane Temperatur an der Außenwand) zur Genauigkeitssteigerung des Modells. Eddy current variables and the current temperature on the outer wall) to increase the accuracy of the model.

Insbesondere werden durch Einsatz dieses Schichtmodells auch die Spannungen bzw. Spannungsgradienten an der Rohrinnenwand gewonnen, die der innersten Schicht des Schichtmodells entspricht. Für die Messungen mit den elektromagnetischen Ultraschallwandlern sind unterschiedliche Anordnungen und Ausgestaltungen der Wandler möglich. Prinzipiell lassen sich als elektromagnetische Ultraschallwandler unterschiedliche Kombinationswandler einsetzen, In particular, by using this layer model, the stresses or stress gradients on the tube inner wall are obtained, which corresponds to the innermost layer of the layer model. Different arrangements and configurations of the transducers are possible for the measurements with the electromagnetic ultrasonic transducers. In principle, different combination transducers can be used as electromagnetic ultrasonic transducers,

beispielsweise bestehend aus mindestens einer HF-Spule und einem Elektromagneten oder einem oder mehreren Permanentmagneten, wobei die HF-Spule sowohl zum Senden und/oder Empfangen des elektromagnetisch angeregten Ultraschalls als auch zur Wirbelstromimpedanzmessung verwendet werden kann. Weiterhin lassen sich beispielsweise auch Kombinationswandler einsetzen, die aus mindestens zwei HF-Spulen und einem Elektromagneten bzw. zwei HF-Spulen und einem oder mehreren Permanent- magneten bestehen. Eine HF-Spule wird dabei zum Senden und/oder Empfangen des elektromagnetisch angeregten Ultraschalls und die andere HF-Spule als separate For example, consisting of at least one RF coil and an electromagnet or one or more permanent magnets, wherein the RF coil can be used both for transmitting and / or receiving the electromagnetically excited ultrasound and for eddy current impedance measurement. Furthermore, it is also possible, for example, to use combination transducers which consist of at least two HF coils and one electromagnet or two RF coils and one or more permanent magnets. An RF coil is used to transmit and / or receive the electromagnetically excited ultrasound and the other RF coil as a separate

Wirbelstromspule benutzt. Die Wirbelstromanregung kann mit demselben Impuls wie die Erzeugung der Ultraschall- welle oder auch über einen separaten Wirbelstromgenerator erfolgen. Geeignete Ultraschallwandler sind dem Fachmann aus dem Stand der Technik bekannt . Used eddy current coil. The eddy current excitation can be done with the same pulse as the generation of the ultrasonic wave or via a separate eddy current generator. Suitable ultrasonic transducers are known to those skilled in the art.

Besonders vorteilhaft werden wenigstens zwei elektromagnetische Ultraschallwandler an jeder Messstelle eingesetzt, die mit unterschiedlichen Polarisationsrichtungen im Puls -Echo-Betrieb arbeiten. Die HF-Spule dient bei diesen Wandlern sowohl als Sende- als auch als Empfangsspule. Die Wandler sind so ausge- bildet bzw. angeordnet, dass sie senkrecht zueinander linear polarisierte Transversalwellen senkrecht in das Rohr einstrahlen. Vorzugsweise ist die Transversalwelle des einen Ultraschallwandlers in axialer Richtung des Rohrs und die andere in Umfangsrichtung des Rohrs polarisiert. Auf diese Weise können die in diesen Particularly advantageous at least two electromagnetic ultrasonic transducers are used at each measuring point, which operate with different polarization directions in the pulse-echo mode. The RF coil used in these converters both as a transmitting and as a receiving coil. The transducers are designed and arranged so that they radiate perpendicularly to each other linearly polarized transverse waves perpendicular to the tube. Preferably, the transverse wave of the one ultrasonic transducer is in the axial direction of Pipe and the other polarized in the circumferential direction of the tube. In this way, those in these

Richtungen erzeugten unterschiedlichen Spannungen optimal erfasst werden. Directions generated different voltages are optimally detected.

Vorzugsweise werden zusätzlich zwei Paare weiterer elektromagnetischer Ultraschallwandler in getrennter Sende-Empfangs-Anordnung an der jeweiligen Messstelle eingesetzt. Bei diesen Paaren dient ein Wandler als Sender und der andere als Empfänger. Diese Wandler können mit zwei unterschiedlichen Wellentypen in Preferably, in addition two pairs of further electromagnetic ultrasonic transducers are used in separate transmit-receive arrangement at the respective measuring point. In these pairs, one transducer acts as a transmitter and the other as a receiver. These converters can be used with two different wave types

Durchschallung arbeiten, sowohl mit Rayleigh- als auch mit horizontal polarisierten Transversalwellen. Die beiden Paare dieser zusätzlichen elektromagnetischen Ultraschallwandler werden zur Erfassung der Spannung in der Rohrwand mit zwei um 90° zueinander orientierten Polarisationen, vorzugsweise in axialer Richtung und in Umfangsrichtung des Rohrs, betrieben. Sie sind hierzu kreuzförmig angeordnet. Transition work, both with Rayleigh and with horizontally polarized transverse waves. The two pairs of these additional electromagnetic ultrasonic transducers are operated to detect the voltage in the tube wall with two mutually oriented by 90 ° polarizations, preferably in the axial direction and in the circumferential direction of the tube. They are arranged crosswise for this purpose.

Es besteht auch die Möglichkeit, anders polarisierte Ultraschallwellen in die Rohrwandung einzustrahlen. So kann bspw. bei kleineren Wandstärken anstelle der Rayleigh-Welle oder der streifend It is also possible to irradiate differently polarized ultrasonic waves into the tube wall. Thus, for example, with smaller wall thicknesses instead of the Rayleigh wave or the grazing

eingeschallten horizontal polarisierten Welle auch eine Plattenwelle (SH/Lamb-Plattenwelle) verwendet werden. Für die senkrechte Einstrahlung ist es auch möglich, radial polarisierte Wellen zu nutzen. Die Ultraschallwandler, im Folgenden auch alsa horizontally polarized wave also a plate wave (SH / Lamb plate wave) can be used. For vertical irradiation, it is also possible to use radially polarized waves. The ultrasonic transducers, also referred to as

Prüfköpfe bezeichnet, werden vorzugsweise gurtartig über den Umfang des Rohres angebracht . Je dichter diese Prüfköpfanordnung am Rohr entlang des Umfangs platziert wird, desto höher ist die laterale Auflösung für die Spannungsbestimmung entlang des Rohrumfangs. Designated probes are preferably mounted in a belt over the circumference of the tube. The closer this test head assembly is placed on the pipe along the circumference is, the higher the lateral resolution for the determination of the voltage along the pipe circumference.

Es können auch gleichzeitig mehrere Prüfgurte mit Kombinationswandlern für zusätzliche Redundanzen eingesetzt werden. Auch eine Variation der Prüfköpf - bzw. Wandlertypen für jeden Gurt bringt eine It is also possible to use several test belts with combination transducers for additional redundancies at the same time. There is also a variation of the test head or converter types for each belt

zusätzliche Redundanz. Durch die Nutzung der Daten unterschiedlicher Prüfköpftypen, unterschiedlicher Wellentypen und/oder unterschiedlicher Messfrequenzen können zusätzliche Informationen gewonnen werden. additional redundancy. By using the data of different test head types, different wave types and / or different measuring frequencies, additional information can be obtained.

In einer weiteren Ausgestaltung, die bei ferro- magnetischem Material der Rohrleitung zum Einsatz kommen kann, werden Kombinationswandler mit Elektromagneten eingesetzt, mit denen die Hysterese durchgesteuert wird, um die Überlagerungspermeabilität In a further embodiment, which can be used in the case of ferromagnetic material of the pipeline, combination transducers with electromagnets are used, with which the hysteresis is controlled by the overlay permeability

(Auswertung der Permeabilität bei definierten Arbeits - punkten bzw. Magnetfeldern) und/oder die dynamische Magnetostriktion (Auswertung der Ultraschallamplitude bei definierten Arbeitspunkten bzw. Magnetfeldern) als zusätzliche oberflächennahe Größe messen zu können. (Evaluation of the permeability at defined operating points or magnetic fields) and / or the dynamic magnetostriction (evaluation of the ultrasonic amplitude at defined operating points or magnetic fields) to be able to measure as an additional near-surface size.

Kurze Beschreibung der Zeichnungen Brief description of the drawings

Das vorgeschlagene Verfahren wird nachfolgend anhand eines Ausführungsbeispiels in Verbindung mit den Zeichnungen nochmals näher erläutert. Hierbei zeigen: Fig. 1 zwei Beispiele für die Anordnung der  The proposed method will be explained in more detail using an exemplary embodiment in conjunction with the drawings. 1 shows two examples of the arrangement of

Ultraschall-Prüfköpfe an einer Messstelle gemäß einer Ausgestaltung des vorgeschlagenen Verfahrens ; Fig. 2 Beispiele für die Verteilung der Prüf- köpfe bzw. Messstellen über den Umfang eines Rohrs; Ultrasonic probes at a measuring point according to an embodiment of the proposed method; 2 shows examples of the distribution of the test heads or measuring points over the circumference of a pipe;

Fig. 3 eine schematische Darstellung der  Fig. 3 is a schematic representation of

Bestimmung der Spannungen bzw.  Determination of the voltages or

Spannungsgradienten über ein  Voltage gradients over

Schichtmodell einer Rohrleitung;  Layer model of a pipeline;

Fig. 4 ein Beispiel für einen Aufbau eines der  4 shows an example of a structure of one of

Prüfköpfe zur Erzeugung einer senkrecht einschallenden linear polarisierten Test heads for generating a perpendicular einschallenden linearly polarized

Transversalwelle ; Transverse wave;

Fig. 5 ein weiteres Beispiel für den Aufbau  Fig. 5 shows another example of the structure

eines Prüfkopfes zur Erzeugung einer senkrecht einschallenden linear polari- sierten Transversalwelle;  a test head for generating a perpendicular einschallenden linearly polarized transversal wave;

Fig. 6 ein Beispiel für den Aufbau eines Prüf- kopfes zur Erzeugung einer Rayleigh- welle; und  6 shows an example of the structure of a test head for generating a Rayleigh wave; and

Fig. 7 ein Beispiel für den Aufbau eines Prüf- köpfes zur Erzeugung einer horizontal polarisierten Transversalwelle.  7 shows an example of the construction of a test head for generating a horizontally polarized transverse wave.

Wege zur Ausführung der Erfindung Ways to carry out the invention

Bei dem vorgeschlagenen Verfahren wird die  In the proposed method, the

bekannte Temperaturmessung zur Ermüdungsüberwachung an einer Rohrleitung mit der Messung von Ultraschall- Laufzeiten, -Amplituden- und/oder Wirbelstromimpedanzen in der Rohrleitungswand kombiniert, die mit elektromag- netischen Ultraschallwandlern durchgeführt wird. Die Messstellen an der Außenseite des Rohres werden dabei je nach Bedarf gewählt. Figur 1 zeigt in schematischer Darstellung einen Abschnitt eines Rohres 1, an dessen Außenseite eine Prüfköpfanordnung für die Durchführung der Ultraschall-Laufzeit-, -Amplituden- und Wirbelstromimpedanz-Messungen dargestellt ist. Die Figuren la und lb zeigen hierbei zwei unterschiedliche Anord- nungsmöglichkeiten an der entsprechenden Messstelle. Der eingesetzte Temperatursensor 2 zur gleichzeitigen Messung der Temperatur der Außenoberfläche an dieser Messstelle ist in der Figur ebenfalls schematisch angedeutet. Dieser Temperatursensor, bspw. in Form von Thermoelementen, kann auch in die Prüfköpfe integriert sein. Weiterhin können auch mehrere Temperatursensoren 2 an jeder Messstelle vorhanden sein. Die Temperaturmessung kann selbstverständlich auch unmittelbar vor oder nach der Messung mit den Ultraschallprüfköpfen erfolgen. known temperature measurement for fatigue monitoring on a pipeline combined with the measurement of ultrasonic transit times, amplitude and / or eddy current impedances in the pipe wall, which is carried out with electromagnetic ultrasonic transducers. The measuring points on the outside of the tube are chosen as needed. Figure 1 shows a schematic representation of a portion of a pipe 1, at the Outside a Prüfköpfanordnung for performing the ultrasonic transit time, amplitude and eddy current impedance measurements is shown. FIGS. 1 a and 1 b show two different arrangement possibilities at the corresponding measuring point. The temperature sensor 2 used for simultaneous measurement of the temperature of the outer surface at this measuring point is also schematically indicated in the figure. This temperature sensor, for example in the form of thermocouples, can also be integrated into the probes. Furthermore, several temperature sensors 2 can be present at each measuring point. Of course, the temperature measurement can also be carried out immediately before or after the measurement with the ultrasonic probes.

Aus der Figur 1 wird deutlich, dass unterschiedliche Ultraschallwandler bzw. Prüfköpfe für die From the figure 1 it is clear that different ultrasonic transducers or probes for the

Ultraschall- und/oder Wirbelstrommessungen eingesetzt werden können. Es handelt sich hierbei um getrennte Sende-Empfangs-Anordnungen mit getrennten Sende- und Empfangswandlern 3a, 3b, 4a, 4b und um integrierte Sende-Empfangs-Anordnungen 5, 6, die im Puls-Echo- Betrieb arbeiten. Mit den getrennten Sende- und Ultrasonic and / or eddy current measurements can be used. These are separate transmit-receive arrangements with separate transmit and receive transducers 3a, 3b, 4a, 4b and integrated transmit-receive arrangements 5, 6, which operate in pulse-echo mode. With the separate transmit and

Empfangswandlern 3a, 3b bzw. 4a, 4b können entweder Rayleigh-Wellen oder horizontal polarisierte Transversalwellen in axialer Richtung der Rohrwand erzeugt werden. Diese Prüfköpfe arbeiten in Durchschallung, wobei die Ultraschallwellen vom Sender 3a, 4a, Reception transducers 3a, 3b and 4a, 4b can be generated either Rayleigh waves or horizontally polarized transverse waves in the axial direction of the pipe wall. These probes work in transmission, the ultrasonic waves from the transmitter 3a, 4a,

abgestrahlt und nach Propagation in der Rohrwand in axialer Richtung des Rohrs vom jeweiligen Ultraschall- empfänger 3b, 4b wieder empfangen werden. Zur Erfassung der Spannung in der Rohrwand müssen hierbei jeweils zwei Paare aus Sendewandler 3a, 4a und Em fangswandler 3b, 4b mit um 90° zueinander orientierten Polarisationen - entlang der Rohrachse und im Umfangsriehtung des Rohrs - eingesetzt werden. Die beiden Prüfköpfpaare sind hierzu kreuzförmig angeordnet, wie dies aus den Figuren la und lb ersichtlich ist. Die beiden weiteren Ultraschallwandler 5, 6 sind integrierte Sende- und Empfangswandler, die linear polarisierte Transversal- wellen mit unterschiedlichen (zueinander senkrechten) Polarisationsrichtungen senkrecht in das Rohr radiated and after propagation in the tube wall in the axial direction of the tube by the respective ultrasonic receiver 3b, 4b are received again. To capture the voltage in the pipe wall in each case must two pairs of transmit transducers 3a, 4a and Em fangswandler 3b, 4b with 90 ° to each other oriented polarizations - along the tube axis and in the Umfangsriehtung of the tube - are used. The two Prüfköpfpaare are arranged cross-shaped, as can be seen from the figures la and lb. The two other ultrasonic transducers 5, 6 are integrated transceiver, the linearly polarized transversal waves with different (mutually perpendicular) polarization directions perpendicular to the tube

einstrahlen. Bei diesen Wandlern dient die HF-Spule sowohl zum Senden der Ultraschallsignale als auch zum Empfangen der an der Rohrinnenwand reflektierten radiate. In these transducers, the RF coil serves both to transmit the ultrasonic signals and to receive those reflected at the tube inner wall

Ultraschallsignale. Der eine Wandler 5 erzeugt dabei linear in Umfangsrichtung des Rohres polarisierte Ultrasound signals. The one transducer 5 generates linearly polarized in the circumferential direction of the tube

Transversalwellen, der andere Wandler 6 linear in axialer Richtung des Rohres polarisierte Transversal- wellen. Die Wirbelstromimpedanzmessung kann in Transverse waves, the other transducer 6 linearly in the axial direction of the tube polarized transverse waves. The eddy current impedance measurement can be performed in

bekannter Weise über die integrierten HF-Spulen known manner on the integrated RF coils

durchgeführt werden. Selbstverständlich können auchbe performed. Of course you can too

Kombinationswandler eingesetzt werden, bei denen eine zusätzliche HF-Spule für die Wirbelstromimpedanz- Messung vorgesehen ist. Die Figuren la und lb zeigen unterschiedliche Orientierungen bzw. Anordnungen der eingesetzten Prüfköpfe, wie sie beim vorliegenden Combination converters are used, in which an additional RF coil for the eddy current impedance measurement is provided. Figures la and lb show different orientations or arrangements of the probes used, as in the present

Verfahren eingesetzt werden können. Figur lc zeigt nochmals beispielhaft einen Schnitt durch das Rohr mit den entsprechend aufgesetzten Prüfköpfen. Die Prüfköpfe werden vorzugsweise gurtartig an unterschiedlichen Messstellen an der Außenwandung des Rohres eingesetzt, wie dies schematisch mit dem Pfeil in der Figur lc angedeutet ist. Figur 2 zeigt hierzu mögliche Verteilungen der Positionen der Messstellen bzw. der Positionen der in Figur 1 dargestellten Prüfköpfanordnungen 7 über den Umfang eines Rohres 1. Je dichter die kreuzförmigen Prüfköpfanordnungen 7 entlang des Umfangs des Rohres platziert werden, desto höher ist die laterale Method can be used. FIG. 1c again shows, by way of example, a section through the tube with the appropriately placed test heads. The probes are preferably used like a belt at different measuring points on the outer wall of the tube, as is schematically indicated by the arrow in the figure lc. FIG. 2 shows possible distributions of the positions of the measuring points or of the positions of the test head arrangements 7 shown in FIG. 1 over the circumference of a tube 1. The more densely the cross-shaped test head arrangements 7 are placed along the circumference of the tube, the higher the lateral

Auflösung entlang des Rohrumfangs. Figur 2 zeigt hierzu beispielhaft in der linken Teilabbildung vier Resolution along the pipe circumference. FIG. 2 shows by way of example four in the left partial illustration

verschiedene Verteilungen der Prüfköpfanordnungen 7 bzw. Messstellen an einem Rohr 1, die mit a) bis d) bezeichnet sind. Eine höhere Dichte der Messstellen bzw. Prüfköpfanordnungen 7 führt zu einer höheren various distributions of Prüfköpfanordnungen 7 and measuring points on a pipe 1, which are designated by a) to d). A higher density of the measuring points or Prüfköpfanordnungen 7 leads to a higher

Auflösung. Im rechten Teil der Figur ist eine derartige Anordnung nochmals im Schnitt durch das Rohr 1 Resolution. In the right part of the figure, such an arrangement is again in section through the tube. 1

dargestellt. Hierbei besteht auch die Möglichkeit, lediglich eine Hälfte oder auch nur ein Viertel des Rohres mit den Prüfköpfen zu belegen, falls eine symmetrische Beanspruchung des Rohrs vorliegt. Bei unsymmetrischer Beanspruchung sollten die Prüfköpfe über den gesamten Umfang des Rohres verteilt werden, wie in der Figur 2 angedeutet. Ist zu erwarten, dass es an der Rohrleitung entlang der Rohrachse zu inhomogenen Beanspruchungen kommt, so werden durch den Einsatz von mehreren Prüfköpfgurten entlang der Rohrachse auch diese inhomogenen Beanspruchungen detektiert. shown. In this case, it is also possible to occupy only a half or even a quarter of the tube with the probes, if a symmetrical stress of the tube is present. In asymmetric stress, the probes should be distributed over the entire circumference of the tube, as indicated in Figure 2. If it is to be expected that inhomogeneous stresses occur along the pipe axis along the pipe axis, then these inhomogeneous stresses are also detected by the use of several test head belts along the pipe axis.

Gegebenenfalls kann die in Figur 1 gezeigte kreuzförmige Anordnung der Prüfköpfe auch vereinfacht werden, indem auf die getrennten Sende-Empfangs- Anordnungen mit den Prüfköpfen 3a, 3b, 4a, 4b Optionally, the cross-shaped arrangement of the probes shown in Figure 1 can also be simplified by applying to the separate transmission-reception arrangements with the probes 3a, 3b, 4a, 4b

verzichtet wird. In diesem Fall können dann allerdings keine Informationen über lokale Spannungen entlang der Rohrachse gewonnen werden. Selbstverständlich ist es jedoch möglich, die relativen Spannungsänderungen über die Dicke der Rohrwand zu erfassen. is waived. In this case, however, no information about local stresses along the pipe axis can be obtained. Of course it is however, it is possible to detect the relative changes in tension across the thickness of the pipe wall.

Figur 3 zeigt schematisch die Vorgehensweise bei der Bestimmung der Spannungen bzw. Spannungsgradienten an der Rohrinnenseite auf Basis eines Schichtmodells. Bei diesem schematisch angedeuteten Schichtmodell 9 wird die Rohrwandung in verschiedene Schichten unterteilt, wie dies in der Figur angedeutet ist. Als FIG. 3 schematically shows the procedure for determining the stresses or stress gradients on the inner side of the tube on the basis of a layer model. In this schematically indicated layer model 9, the pipe wall is subdivided into different layers, as indicated in the figure. When

Modelleingangsgrößen 8 dienen die gemessenen Wirbelstromimpedanzen, die gemessenen UltraschallLaufzeiten, -Amplituden, der aus der Temperaturmessung ermittelte Temperaturverlauf und der aus der Temperaturmessung ermittelte Spannungsverlauf. Das Schichtmodell 9 liefert dann als Modellausgangsgrößen 10 schichtbezogene Wirbelstromimpedanzen, schichtbezogene Ultraschall-Laufzeiten, -Amplituden und einen schichtbezogenen Spannungsverlauf, wobei der Spannungsverlauf an der innersten Schicht des Schichtmodells den Spannungen bzw. Spannungsgradienten an der Innenseite des Rohres entspricht . Model input quantities 8 serve the measured eddy current impedances, the measured ultrasonic running times, amplitudes, the temperature profile determined from the temperature measurement and the voltage profile determined from the temperature measurement. The layer model 9 then supplies as model output variables 10 layer-related eddy current impedances, layer-related ultrasound propagation times, amplitudes and a layer-related voltage profile, wherein the voltage curve at the innermost layer of the layer model corresponds to the voltages or voltage gradients on the inside of the tube.

Die Figuren 4 bis 7 zeigen Beispiele für Ultraschallwandler bzw. Prüfköpfe wie sie bei dem vorge- schlagenen Verfahren eingesetzt werden können. DieFIGS. 4 to 7 show examples of ultrasonic transducers or probes, as can be used in the proposed method. The

Figuren zeigen, dass unterschiedliche Wandlertypen zur Ultraschall-Laufzeit, -Amplituden-Messung sowie auch zur Messung der Wirbelstromimpedanzen genutzt werden können. Figur 4 zeigt ein Beispiel für den Aufbau eines senkrecht einschallenden Ultraschallwandlers, der linear polarisierte Transversalwellen erzeugt. Der Wandler weist einen Magneten 11 über einer HF-Spule 12 auf. Bei dem Magneten kann es sich sowohl um einen Permanentmagneten - wie in der Figur dargestellt - als auch um einen Elektromagneten handeln. Durch den Figures show that different types of transducers can be used for ultrasonic transit time, amplitude measurement as well as for measuring eddy current impedances. FIG. 4 shows an example of the construction of a vertical sonic transducer which generates linearly polarized transverse waves. The transducer has a magnet 11 over an RF coil 12. The magnet can be both a Permanent magnets - as shown in the figure - act as well as an electromagnet. By the

Magneten wird ein statisches Magnetfeld Bo in der Magnets will be a static magnetic field Bo in the

Rohrwandung erzeugt, wie dies in der Figur angedeutet ist. Über die Wechselspannung an der im dargestellten Querschnitt erkennbaren HF-Spule 12 wird in der Tube wall generated, as indicated in the figure. About the AC voltage at the recognizable in the illustrated cross-section RF coil 12 is in the

Rohrwandung eine Ultraschallwelle angeregt, deren Tube wall excited an ultrasonic wave whose

Schwingungsrichtung bzw. Polarisation 14 und Vibration direction or polarization 14 and

Ausbreitungsrichtung 15 in der Figur ebenfalls Propagation direction 15 in the figure also

angedeutet sind. Wie im rechten Teil der Figur zu erkennen ist, kann zwischen der HF-Spule 12 und dem Magneten 11 auch ein zusätzlicher Konzentrator 13 zur Verstärkung des statischen Magnetfeldes eingesetzt werden. are indicated. As can be seen in the right-hand part of the figure, an additional concentrator 13 for amplifying the static magnetic field can also be used between the RF coil 12 and the magnet 11.

Eine alternative Ausgestaltung eines derartigen Ultraschallwandlers zur senkrechten Einschallung einer linear polarisierten Transversalwelle ist in Figur 5 dargestellt. In diesem Beispiel werden zwei Magnete 11 über der HF-Spule 12 eingesetzt. An alternative embodiment of such an ultrasonic transducer for perpendicular insonification of a linearly polarized transverse wave is shown in FIG. In this example, two magnets 11 are inserted over the RF coil 12.

Figur 6 zeigt ein Beispiel für den Aufbau eines elektromagnetischen Ultraschallwandlers, mit dem FIG. 6 shows an example of the construction of an electromagnetic ultrasonic transducer with which

Rayleigh-Wellen erzeugt werden. Bei diesem Wandler wird eine mäanderförmige HF-Spule 11 eingesetzt, die im rechten Teil der Figur in Draufsicht zu erkennen ist. Die Ausbreitungsrichtung 15 der Ultraschallwelle sowie die Schwingungsrichtung 14 der Ultraschallwelle sind in der Figur ebenfalls angedeutet. Rayleigh waves are generated. In this converter, a meandering RF coil 11 is used, which can be seen in the right part of the figure in plan view. The propagation direction 15 of the ultrasonic wave and the oscillation direction 14 of the ultrasonic wave are also indicated in the figure.

Ein Beispiel eines Ultraschallwandlers für die Erzeugung einer horizontal polarisierten Transversal - welle zeigt Figur 7. Bei diesem Ultraschallwandler werden Permanentmagnete 11 mit alternierender Polung in periodischer Anordnung eingesetzt, wie dies aus der Figur zu erkennen ist. Über die darunter liegende HF- Spule 12 wird dann eine Ultraschallwelle erzeugt, deren Ausbreitungsrichtung 15 entlang der Rohroberfläche wiederum in der Figur schematisch dargestellt ist. An example of an ultrasonic transducer for generating a horizontally polarized transverse wave is shown in FIG. 7. In this ultrasonic transducer Permanent magnets 11 are used with alternating polarity in periodic arrangement, as can be seen from the figure. An ultrasonic wave is then generated via the RF coil 12 underneath, whose propagation direction 15 along the pipe surface is again shown schematically in the figure.

Die Wandler der Figuren 4 bis 7 sind aus dem Stand der Technik bekannt, so dass an dieser Stelle nicht noch näher auf deren Aufbau und Funktionsweise eingegangen wird. The transducers of Figures 4 to 7 are known from the prior art, so that will not be discussed in more detail on their structure and operation at this point.

Mit jedem einzelnen der dargestellten Ultraschallwandler kann eine Wirbelstromimpedanz-Messung bei unterschiedlichen Frequenzen und somit unterschiedlichen Eindringtiefen in die Rohrleitung realisiert werden. Die Wirbelstromimpedanz-Messung kann dabei mit der auch für die Ultraschallerzeugung eingesetzten HF- Spule des Wandlers durchgeführt werden. Selbstverständlich ist es jedoch auch möglich, eine separate HF-Spule für eine derartige Wirbelstrommessung am Wandler anzuordnen. With each of the ultrasonic transducers shown, an eddy current impedance measurement can be realized at different frequencies and thus different penetration depths into the pipeline. The eddy current impedance measurement can be carried out with the RF coil of the transducer also used for ultrasound generation. Of course, it is also possible to arrange a separate RF coil for such eddy current measurement at the converter.

Bezugszeichenliste LIST OF REFERENCE NUMBERS

1 Rohrleitung 1 pipeline

2 Temperatursensor  2 temperature sensor

3a Ultraschallwandler (Sender)  3a ultrasonic transducer (transmitter)

3b Ultraschallwandler (Empfänger)  3b ultrasonic transducer (receiver)

4a Ultraschallwandler (Sender)  4a ultrasonic transducer (transmitter)

4b Ultraschallwandler (Empfänger)  4b ultrasonic transducer (receiver)

5 Ultraschallwandler (Sender/Empfänger) 5 ultrasonic transducers (transmitter / receiver)

6 Ultraschallwandler (Sender/Empfänger)6 ultrasonic transducers (transmitter / receiver)

7 Prüfkopfanordnung 7 probe assembly

8 Modelleingangsgrößen  8 model input sizes

9 Schichtmodell  9 shift model

10 Modellausgangsgrößen  10 model outputs

11 Magnet  11 magnet

12 HF-Spule  12 RF coil

13 Konzentrator  13 concentrator

14 Schwingungsrichtung/Polarisation  14 oscillation direction / polarization

15 Ausbreitungsrichtung der Ultraschallwelle  15 propagation direction of the ultrasonic wave

Claims

Patentansprüche claims Verfahren zur Erfassung zeitlich veränderlicher thermomechanischer Spannungen und/oder Spannungs- gradienten über die Wanddicke von metallischen Körpern (1) , insbesondere Rohrleitungen, Method for detecting temporally variable thermomechanical stresses and / or stress gradients across the wall thickness of metallic bodies (1), in particular pipelines, bei dem eine Temperatur an mindestens einer in which a temperature at least one Messstelle an einer Außenoberfläche des Körpers (1) gemessen wird und zusätzlich Messungen mit elektromagnetischen Ultraschallwandlern (3-6) im Bereich der Messstelle durchgeführt werden, um über die gemessene Temperatur aus den zusätzlichen Messungen die Spannungen und/oder Spannungs- gradienten über die Wanddicke der Körper (1) zu bestimmen, Measurement point is measured on an outer surface of the body (1) and in addition measurements with electromagnetic ultrasonic transducers (3-6) are carried out in the area of the measuring point to the tensions and / or voltage gradients over the wall thickness of the measured measurements of the additional measurements To determine body (1) wobei aus der gemessenen Temperatur ein where from the measured temperature Temperaturverlauf zwischen einer Innenfläche und der Außenoberfläche ermittelt und für die Temperature profile between an inner surface and the outer surface determined and for the Bestimmung der Spannungen und/oder Spannungs- gradienten über die Wanddicke der Körper (1) aus den zusätzlichen Messungen genutzt wird. Determining the voltages and / or voltage gradients over the wall thickness of the body (1) from the additional measurements is used. Verfahren nach Anspruch 1, Method according to claim 1, dadurch gekennzeichnet, characterized, dass mit den elektromagnetischen Ultraschall- Wandlern (3-6) Ultraschall-Laufzeit-, -Amplituden- und/oder Wirbelstromimpedanzmessungen durchgeführt werden, wobei die Spannungen und/oder ultrasonic ultrasound propagation, amplitude and / or eddy current impedance measurements are carried out with the electromagnetic ultrasonic transducers (3-6), the voltages and / or Spannungsgradienten durch Auswertung der Voltage gradients by evaluation of the Ultraschall-Laufzeit-, -Amplituden- und/oder Ultrasonic Runtime, Amplitude and / or Wirbelstromimpedanzmessungen in Verbindung mit der gemessenen Temperatur oder dem ermittelten Eddy current impedance measurements in conjunction with measured temperature or the determined Temperaturverlauf bestimmt werden. Temperature course can be determined. Verfahren nach Anspruch 2 , Method according to claim 2, dadurch gekennzeichnet, characterized, dass die Bestimmung der Spannungen und/oder that the determination of the voltages and / or Spannungsgradienten auf Basis eines Schichtmodells (9) der Wand des Körpers (1) erfolgt, das als Eingangsgrößen (8) den ermittelten Temperaturverlauf sowie einen daraus abgeleiteten Spannungs- verlauf sowie die gemessenen und temperaturkorrigierten Ultraschall-Laufzeiten, -Amplituden und Wirbelstromimpedanzen nutzt und als Voltage gradients on the basis of a layer model (9) of the wall of the body (1) takes place, which uses the determined temperature profile and a voltage curve derived therefrom as input variables (8) as well as the measured and temperature-corrected ultrasonic propagation times, amplitudes and eddy current impedances Ausgangsgrößen (10) schichtbezogene Ultraschall- Laufzeiten, -Amplituden, Wirbelstromimpedanzen und Spannungsverläufe liefert, wobei die Schicht- bezogenen Spannungsverläufe durch eine iterative Optimierung des Schichtmodells aus den schichtbezogenen Ultraschall-Laufzeiten, -Amplituden und Wirbelstromimpedanzen bestimmt werden. Output quantities (10) provides slice-related ultrasound propagation times, amplitudes, eddy current impedances and voltage profiles, the slice-related voltage profiles being determined by an iterative optimization of the slice model from the slice-related ultrasonic transit times, amplitudes and eddy current impedances. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, Method according to one of claims 1 to 3, characterized dass mit den elektromagnetischen Ultraschall- wandlern (5, 6) jeweils zwei senkrecht zueinander linear polarisierte Transversalwellen senkrecht in die Wand des Körpers (1) eingestrahlt werden, um Ultraschall-Laufzeiten und -Amplituden im Puls- Echo-Betrieb zu messen. that with the electromagnetic ultrasonic transducers (5, 6) in each case two perpendicular to each other linearly polarized transverse waves are irradiated perpendicularly into the wall of the body (1) to measure ultrasonic transit times and amplitudes in the pulse-echo mode. Verfahren nach Anspruch 4 , Method according to claim 4, dadurch gekennzeichnet, characterized, dass bei der Messung an einem Rohr als Körper (1) eine der Transversalwellen in axialer Richtung de Rohres und die andere in Umfangsrichtung des Rohres linear polarisiert ist. that when measuring on a pipe as a body (1) one of the transverse waves in the axial direction of the tube and the other in the circumferential direction of the tube is linearly polarized. Verfahren nach Anspruch 4 oder 5 , Method according to claim 4 or 5, dadurch gekennzeichnet, characterized, dass zusätzlich zwei Paare elektromagnetischer Ultraschallwandler (3-4) in getrennter Sende- Empfangs-Anordnung eingesetzt werden, die that in addition two pairs of electromagnetic ultrasonic transducers (3-4) are used in separate transmit-receive arrangement, the Rayleighwellen oder horizontal polarisierte Rayleigh waves or horizontally polarized Transversalwellen erzeugen, wobei die zwei Paare unter einem Winkel von 90° zueinander an der Messstelle angeordnet werden. Generate transverse waves, wherein the two pairs are arranged at an angle of 90 ° to each other at the measuring point. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, Method according to one of claims 1 to 6, characterized dass die elektromagnetischen Ultraschallwandler (3-6) an mehreren über die Außenoberfläche verteilten Messstellen eingesetzt werden. in that the electromagnetic ultrasonic transducers (3-6) are used at a plurality of measuring points distributed over the outer surface.
EP14709875.0A 2013-02-28 2014-02-20 Method for determination of temporally variable thermomechanical stresses and/or stress gradients along the wall thickness of metallic pieces Active EP2962096B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201431392T SI2962096T1 (en) 2013-02-28 2014-02-20 Method for determination of temporally variable thermomechanical stresses and/or stress gradients along the wall thickness of metallic pieces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013003500.7A DE102013003500B4 (en) 2013-02-28 2013-02-28 Method for detecting time-varying thermo-mechanical stresses and / or stress gradients across the wall thickness of metallic bodies
PCT/EP2014/000457 WO2014131499A1 (en) 2013-02-28 2014-02-20 Method for detecting temporally varying thermomechanical stresses and/or stress gradients over the wall thickness of metal bodies

Publications (2)

Publication Number Publication Date
EP2962096A1 true EP2962096A1 (en) 2016-01-06
EP2962096B1 EP2962096B1 (en) 2019-08-28

Family

ID=50277177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14709875.0A Active EP2962096B1 (en) 2013-02-28 2014-02-20 Method for determination of temporally variable thermomechanical stresses and/or stress gradients along the wall thickness of metallic pieces

Country Status (10)

Country Link
US (1) US9903840B2 (en)
EP (1) EP2962096B1 (en)
JP (1) JP6362625B2 (en)
CN (1) CN105229460B (en)
CA (1) CA2920314C (en)
DE (1) DE102013003500B4 (en)
ES (1) ES2750601T3 (en)
RU (1) RU2649220C2 (en)
SI (1) SI2962096T1 (en)
WO (1) WO2014131499A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11525809B2 (en) 2020-12-04 2022-12-13 Perceptive Sensor Technologies, Inc. Apparatus, system, and method for the detection of objects and activity within a container
US11525743B2 (en) 2020-12-04 2022-12-13 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
US11536696B2 (en) 2020-12-04 2022-12-27 Perceptive Sensor Technologies, Inc. In-wall multi-bounce material property detection and acoustic signal amplification
US11549839B2 (en) 2020-12-04 2023-01-10 Perceptive Sensor Technologies, Inc. Systems and methods for determining floating roof level tilt and characterizing runoff
US11585690B2 (en) 2020-12-04 2023-02-21 Perceptive Sensor Technologies, Inc. Multi-path acoustic signal improvement for material detection
US11604294B2 (en) 2020-12-04 2023-03-14 Perceptive Sensor Technologies, Inc. Determining layer characteristics in multi-layered environments
US11729537B2 (en) 2020-12-02 2023-08-15 Perceptive Sensor Technologies, Inc. Variable angle transducer interface block
US11788904B2 (en) 2020-12-04 2023-10-17 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
US11860014B2 (en) 2022-02-11 2024-01-02 Perceptive Sensor Technologies, Inc. Acoustic signal detection of material composition in static and dynamic conditions
US11940420B2 (en) 2022-07-19 2024-03-26 Perceptive Sensor Technologies, Inc. Acoustic signal material identification with nanotube couplant
US11946905B2 (en) 2020-12-30 2024-04-02 Perceptive Sensor Technologies, Inc. Evaluation of fluid quality with signals
US11994494B2 (en) 2020-12-04 2024-05-28 Perceptive Sensor Technologies, Inc. Multi-bounce acoustic signal material detection

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015226311A1 (en) * 2015-12-21 2017-06-22 BestSensAG Monitoring of mechanical seal
FR3087270A1 (en) * 2018-10-16 2020-04-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD AND DEVICE FOR CONTROLLING THE QUALITY OF A BED OF POWDERS IN ADDITIVE MANUFACTURING PROCESSES
DE102019206993B4 (en) * 2019-05-14 2021-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procedure for non-destructive testing on walls running around the circumference of components
CN110108402B (en) * 2019-05-20 2021-08-06 北京工业大学 A Nonlinear Lamb Wave Mixing Method for Stress Distribution Measurement in Thin Metal Plates
US11231311B2 (en) 2019-05-31 2022-01-25 Perceptive Sensor Technologies Llc Non-linear ultrasound method and apparatus for quantitative detection of materials
CN110828011B (en) * 2019-11-04 2021-11-23 广东核电合营有限公司 Nuclear power plant pipeline thermal fatigue monitoring system
CN111751032B (en) * 2020-06-30 2021-08-31 中国石油天然气集团有限公司 Ultrasonic method stress measurement method based on array probe
CN112326782B (en) * 2020-11-06 2022-06-21 爱德森(厦门)电子有限公司 A kind of eddy current and acoustic impedance detection sensor and its making method
CN112903157B (en) * 2021-01-19 2021-11-09 吉林大学 Stress monitoring method of circular tube type structure based on longitudinal mode ultrasonic guided waves
CN112945476B (en) * 2021-02-09 2022-08-16 马丽娟 Small pressure container trace gas leakage emergency ultrasonic detection system and method
CN113137912B (en) * 2021-06-01 2022-08-02 中国石油大学(华东) Pipeline deformation analysis method based on magnetic structure coupling
DE102021128132B3 (en) 2021-10-28 2022-06-30 Framatome Gmbh Monitoring system for monitoring mechanical fatigue of a metal pipe of a power plant, power plant, use and associated method
CN114878041B (en) * 2022-05-06 2023-09-01 中国石油大学(华东) Method for measuring stress of in-service oil and gas pipeline by using bidirectional ultrasonic probe
CN117269326B (en) * 2023-09-27 2024-11-22 哈尔滨工业大学 An ultrasonic stress measurement method with temperature detection

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892914A (en) * 1958-07-02 1959-06-30 Magnetic Heating Corp Methods and apparatus for butt welding
SU1126866A1 (en) * 1983-02-11 1984-11-30 Институт металлофизики АН УССР Ultrasonic method of checking macro stresses in articles
JPS61133857A (en) * 1984-12-05 1986-06-21 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for diagnosing corrosion of underground pipeline
SU1545950A3 (en) * 1985-05-15 1990-02-23 Политехника-Варшавска (Инопредприятие) Method of assessing the wear of structural steel in service
JPS6271855A (en) * 1985-09-26 1987-04-02 Toshiba Corp Defect detecting method for turbine rotor
JPH0676998B2 (en) * 1988-04-23 1994-09-28 株式会社酒井鉄工所 Precise measurement of ultrasonic round trip time by pulse reflection method
SU1564529A1 (en) * 1988-06-14 1990-05-15 Предприятие П/Я Р-6521 Ultrasonic method of measuring mechanical stresses in articles
JPH0278951A (en) * 1988-09-15 1990-03-19 Toshiba Corp Measuring instrument for elastic coefficient
JPH02103430A (en) * 1988-10-13 1990-04-16 Unyusho Senpaku Gijutsu Kenkyusho Method and apparatus for evaluating thermal stress distribution of specimen using ultrasonic tomography
SU1682909A1 (en) * 1989-01-04 1991-10-07 Киевский государственный педагогический институт им.А.М.Горького Ultrasonic device for kinematic studies of media
JPH02248824A (en) * 1989-03-22 1990-10-04 Sumitomo Metal Ind Ltd Residual stress measuring device
JPH03219023A (en) * 1990-01-24 1991-09-26 Hitachi Ltd Method and apparatus for strengthening pressure proof of metal-made hollow structure, and pressure proof hollow structure made with this method and method for using the same under pressure proof condition
US5172591A (en) * 1990-08-20 1992-12-22 Atlantic Richfield Company Oil well sucker rod load measurement
JPH05164631A (en) * 1991-12-13 1993-06-29 Suzuki Motor Corp Method and apparatus for measuring stress
US5750900A (en) * 1996-09-09 1998-05-12 Sonicforce, L.L.C. Acoustic strain gauge and assembly and method for measuring strain
JP3520440B2 (en) * 1998-03-12 2004-04-19 作治 藏田 Method of using the entire pipeline in underground objects and structures as a comprehensive crisis prediction warning sensor and a comprehensive crisis prediction disaster prevention monitoring system
JP4083382B2 (en) * 2000-12-11 2008-04-30 日本核燃料開発株式会社 Method for measuring hydrogen concentration in members for nuclear fuel assemblies
US7082833B2 (en) * 2003-06-06 2006-08-01 Luna Innovations Method and apparatus for determining and assessing a characteristic of a material
WO2007004303A1 (en) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing
JP4881212B2 (en) * 2007-04-13 2012-02-22 株式会社東芝 Material thickness monitoring system and material thickness measuring method
CN101281171B (en) * 2008-05-21 2010-11-03 钢铁研究总院 System and method for detecting high speed wire rod electromagnetic ultrasonic guide wave
JP2010236892A (en) 2009-03-30 2010-10-21 Toshiba Corp Ultrasonic stress measuring apparatus and ultrasonic stress measuring method
CN101710105B (en) * 2009-09-24 2011-03-30 山东大学 Acoustic Emission Determination Method for Defects of Multilayer Wrapped Containers
DE102010019477A1 (en) * 2010-05-05 2011-11-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for nondestructive material examination by means of ultrasound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014131499A1 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11729537B2 (en) 2020-12-02 2023-08-15 Perceptive Sensor Technologies, Inc. Variable angle transducer interface block
US11525809B2 (en) 2020-12-04 2022-12-13 Perceptive Sensor Technologies, Inc. Apparatus, system, and method for the detection of objects and activity within a container
US11525743B2 (en) 2020-12-04 2022-12-13 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
US11536696B2 (en) 2020-12-04 2022-12-27 Perceptive Sensor Technologies, Inc. In-wall multi-bounce material property detection and acoustic signal amplification
US11549839B2 (en) 2020-12-04 2023-01-10 Perceptive Sensor Technologies, Inc. Systems and methods for determining floating roof level tilt and characterizing runoff
US11585690B2 (en) 2020-12-04 2023-02-21 Perceptive Sensor Technologies, Inc. Multi-path acoustic signal improvement for material detection
US11604294B2 (en) 2020-12-04 2023-03-14 Perceptive Sensor Technologies, Inc. Determining layer characteristics in multi-layered environments
US11788904B2 (en) 2020-12-04 2023-10-17 Perceptive Sensor Technologies, Inc. Acoustic temperature measurement in layered environments
US11994494B2 (en) 2020-12-04 2024-05-28 Perceptive Sensor Technologies, Inc. Multi-bounce acoustic signal material detection
US11946905B2 (en) 2020-12-30 2024-04-02 Perceptive Sensor Technologies, Inc. Evaluation of fluid quality with signals
US11860014B2 (en) 2022-02-11 2024-01-02 Perceptive Sensor Technologies, Inc. Acoustic signal detection of material composition in static and dynamic conditions
US11940420B2 (en) 2022-07-19 2024-03-26 Perceptive Sensor Technologies, Inc. Acoustic signal material identification with nanotube couplant

Also Published As

Publication number Publication date
ES2750601T3 (en) 2020-03-26
CN105229460B (en) 2018-03-30
DE102013003500A1 (en) 2014-08-28
SI2962096T1 (en) 2019-12-31
DE102013003500B4 (en) 2015-05-28
US9903840B2 (en) 2018-02-27
CN105229460A (en) 2016-01-06
CA2920314A1 (en) 2014-09-04
RU2015136685A (en) 2017-04-03
JP6362625B2 (en) 2018-07-25
RU2649220C2 (en) 2018-03-30
JP2016513264A (en) 2016-05-12
WO2014131499A1 (en) 2014-09-04
CA2920314C (en) 2021-03-02
EP2962096B1 (en) 2019-08-28
US20160003780A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
EP2962096B1 (en) Method for determination of temporally variable thermomechanical stresses and/or stress gradients along the wall thickness of metallic pieces
AbdAlla et al. Challenges in improving the performance of eddy current testing
EP2893336B1 (en) Differentail sensor, investigation apparatus and method of detecting defects in electrically conducting materials
Chen et al. Quantitative nondestructive evaluation of plastic deformation in carbon steel based on electromagnetic methods
EP2567224B1 (en) Method and device for non-destructive material testing by means of ultrasound
Altpeter et al. Electromagnetic techniques for materials characterization
US10823701B2 (en) Methods and systems for nondestructive material inspection
Angani et al. Evaluation of transient eddy current oscillations response for thickness measurement of stainless steel plate
Roskosz et al. Magnetic methods of characterization of active stresses in steel elements
Dobmann Non-destructive testing for ageing management of nuclear power components
DE102007001464A1 (en) Method for determining the remaining service life and / or the fatigue state of components
Liu et al. Magneto acoustic emission technique: a review of methodology, applications, and future prospects in non-destructive testing
DE102016002692A1 (en) Method for determining the neutral temperature in elongate workpieces
EP4168792B1 (en) Method for non-destructively testing objects, in particular planar objects, made of a fibre-reinforced composite material
Pan et al. A method of testing residual stress by ultrasonic shear and longitudinal waves
Teng et al. Comprehensive evaluation of damages in ferromagnetic materials based on integrated magnetic detection
DE102013018114A1 (en) Device for nondestructive testing of a test specimen
EP2023131B1 (en) Method and device for interference-free testing of an object containing material fractions which are magnetic and conductive
Rao et al. Electromagnetic NDE techniques for materials characterization
Qiu et al. Electromagnetic-Acoustic Sensing-Based Multi-Feature Fusion Method for Stress Assessment and Prediction
Dobmann NDT for Characterizing Ageing and Degradation of Nuclear Power Plant Materials-Fatigue and Irradiation
Schreiber Fractal nature of Barkhausen noise–a key to characterise the damage state of magnetic materials
Skalsky et al. The effect of deformation on the parameters of magnetoacoustic signals
先進材料 et al. Smart Sensing in the Light of Non-Destructive Testing and Structural Health Monitoring
Saha Non-Destructive Evaluation of Residual Stresses in Welding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOBMANN, GERD

Inventor name: RUDOLPH, JUERGEN

Inventor name: ALTPETER, IRIS

Inventor name: TSCHUNKY, RALF

Inventor name: HERRMANN, HANS-GEORG

Inventor name: KURZ, JOCHEN

Inventor name: BERGHOLZ, STEFFEN

Inventor name: HUEBSCHEN, GERHARD

DAX Request for extension of the european patent (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

Owner name: FRAMATOME GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1173029

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012509

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191230

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2750601

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012509

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200220

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200220

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1173029

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240301

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240223

Year of fee payment: 11

Ref country code: CH

Payment date: 20240301

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241230

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20241122

Year of fee payment: 12