[go: up one dir, main page]

EP2959492B1 - Method for operating an on-load tap changer having semiconductor switching elements - Google Patents

Method for operating an on-load tap changer having semiconductor switching elements Download PDF

Info

Publication number
EP2959492B1
EP2959492B1 EP14701315.5A EP14701315A EP2959492B1 EP 2959492 B1 EP2959492 B1 EP 2959492B1 EP 14701315 A EP14701315 A EP 14701315A EP 2959492 B1 EP2959492 B1 EP 2959492B1
Authority
EP
European Patent Office
Prior art keywords
semiconductor switching
winding
switching element
sub
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14701315.5A
Other languages
German (de)
French (fr)
Other versions
EP2959492A2 (en
Inventor
Andrey Gavrilov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Reinhausen GmbH
Scheubeck GmbH and Co
Original Assignee
Maschinenfabrik Reinhausen GmbH
Maschinenfabrik Reinhausen Gebrueder Scheubeck GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Reinhausen GmbH, Maschinenfabrik Reinhausen Gebrueder Scheubeck GmbH and Co KG filed Critical Maschinenfabrik Reinhausen GmbH
Publication of EP2959492A2 publication Critical patent/EP2959492A2/en
Application granted granted Critical
Publication of EP2959492B1 publication Critical patent/EP2959492B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/12Regulating voltage or current  wherein the variable actually regulated by the final control device is AC
    • G05F1/14Regulating voltage or current  wherein the variable actually regulated by the final control device is AC using tap transformers or tap changing inductors as final control devices
    • G05F1/16Regulating voltage or current  wherein the variable actually regulated by the final control device is AC using tap transformers or tap changing inductors as final control devices combined with discharge tubes or semiconductor devices
    • G05F1/20Regulating voltage or current  wherein the variable actually regulated by the final control device is AC using tap transformers or tap changing inductors as final control devices combined with discharge tubes or semiconductor devices semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current

Definitions

  • the invention relates to a method for operating an on-load tap changer for voltage regulation with semiconductor switching elements on a control transformer with a control winding.
  • a tap changer for voltage regulation with semiconductor switching units known.
  • the tap changer has two parallel load branches, wherein in both load branches semiconductor switching units are connected in series. In each case, a semiconductor switching unit of the first load branch and the second load branch are in pairs opposite. In each case alternately between these paired semiconductor switching units, a partial winding and a bridge are connected in parallel between the two load branches.
  • the partial windings have different numbers of turns.
  • the semiconductor switching units may be formed as thyristor or IGBT pairs. By skillfully interconnecting the semiconductor switching units, the windings can be switched on or off.
  • the transmission ratio of the transformer can be adjusted and the secondary-side voltage can thus be regulated.
  • IGBT's it is also possible with the help of a pulse width modulation to realize an alternating switching on or off of a partial winding and thereby to implement a fine-level voltage regulation. Constant switching on and off of the semiconductor switching units causes switching losses, and the semiconductor switching units heat up, which places a high demand on the cooling device.
  • the object of the invention is to provide an on-load tap changer for voltage regulation with semiconductor switching elements, which has lower switching losses, requires a smaller cooling device and is thus inexpensive and safe.
  • the general inventive idea is to use two anti-serially connected IGBTs with inverse diodes as semiconductor switching elements and to take into account the direction of the current and orientation of the voltage at the partial winding in the pulse width modulation, thereby not switching a part of a load branch and thus switching losses avoid.
  • the on-load tap changer for voltage regulation has semiconductor switching elements and is arranged on a regulating transformer with regulating windings. This is arranged between a fixed, unregulated part of the control winding and a load derivation. Furthermore, the on-load tap changer has a first load branch and a second load branch arranged parallel thereto, wherein a partial winding is arranged between the load branches.
  • the first load branch has a first semiconductor switching element before the partial winding and a second semiconductor switching element after the partial winding.
  • the second load branch also has a first semiconductor switching element before the partial winding and a second semiconductor switching element after the partial winding.
  • the on-load tap-changer comprises at least one switching module, which comprises the first load branch and the second load branch.
  • each semiconductor switching element consists in each case of a first IGBT and a second IGBT which are interconnected antiserially to one another.
  • the IGBTs are each provided with an inverse diode such that an anode of an inverse diode having an emitter terminal and a cathode of the inverse diode are connected to a collector terminal of the first IGBT and the second IGBT.
  • the semiconductor switching elements of the first load branch and the second load branch are selectively switched off.
  • the on-load tap changer comprises a first switching module, a second switching module and a third switching module. They own the Partial windings of each switching module with each other a different turns ratio, for example, 9: 3: 1.
  • Another step according to the method of the invention relates to the definition of an active and a passive side of the switching module.
  • the semiconductor switching elements are actuated, while on the opposite side they are set in a predetermined switching state.
  • the switching states of the semiconductor switching elements of the switching module are determined.
  • the IGBTs of the first semiconductor switching elements or second semiconductor switching elements connected to the alternating current-carrying inverse diodes of the respective active side are always blocking.
  • the two alternating current-carrying IGBT's of the active side one is always conducting, namely that IGBT whose collector terminal is connected to a negative pole and emitter terminal to a positive pole of the partial winding.
  • FIG. 1 is an on-load tap changer 1 for voltage regulation in a control transformer 2 and a control winding 3 shown.
  • the on-load tap-changer 1 is arranged between the fixed, unregulated part of the control winding 3 and a load discharge line 4.
  • the on-load tap-changer 1 consists of at least one switching module 5.
  • the switching module 5 has a first load branch 6 and a second load branch 7 arranged parallel thereto.
  • the first and the second load branch 6, 7 of the switching module 5 is conductively connected to one another via a partial winding 8.
  • the first load branch 6 has a first semiconductor switching element 61 between the control winding 3 and the partial winding 8 and a second semiconductor switching element 62 after the partial winding 8, ie towards the discharge line 4, on.
  • the second load branch 7 likewise has a first semiconductor switching element 71 in front of the partial winding 8 and a second semiconductor switching element 72 after the partial winding 8.
  • each of the semiconductor switching elements 61, 62, 71 and 72 consists of a first insulated gate bipolar transistor (IGBT) 11 and a second IGBT 12, which are connected in antiseries.
  • the first IGBT 11 and the second IGBT 12 are each provided with an inverse diode 14.
  • Each IGBT 11 and 12 has a collector terminal C, an emitter terminal E and a gate G.
  • Each of the inverse diodes 14 has its anode connected to the emitter terminal E and the cathode connected to the collector terminal C of FIG IGBT 11 or 12 connected.
  • pulse-width modulation is used to clock between two of the three explained positions. If switching between the nominal position 22 and the offset position 20 or additional position 21, a passive and an active side of the switching module 5 must be set; this is the rule. Each one side always includes the semiconductor switching elements 61 and 71 or 62 and 72, which lie on the same side before or after the partial winding 8. Thus, it must be determined whether the first semiconductor switching element 61 of the first load branch 6 and the first semiconductor switching element 71 of the second load branch 7 are active and the second semiconductor switching element 62 of the first load branch 6 and the second semiconductor switching element 72 of the second load branch 7 are passive or vice versa.
  • the IGBTs 11 and 12 of the semiconductor switching elements 61, 62, 71, and 72 need to be switched differently.
  • the semiconductor switching elements on the fixed, passive side are always held during the process as conductive or blocking, wherein a semiconductor switching element is conductive and the other is not conductive.
  • the semiconductor switching elements on the active side are actively switched due to the pulse width modulation carried out, ie they assume different states.
  • both sides are active.
  • FIG. 5 In the example of FIG. 5 is the active side of the illustrated switching module 5 of the first semiconductor switching element 61 of the first load branch 6 and the first semiconductor switching element 71 of the second load branch 7. Consequently, the passive side in FIG. 5 from the second semiconductor switching element 62 of the first load branch 6 and the second semiconductor switching element 72 of the second load branch 7.
  • the second semiconductor switching element 72 of the second load branch 7 is always conductive.
  • the second semiconductor switching element 62 of the first load branch 6 is always nonconductive.
  • the current I thus flows either through the first IGBT 11 and the inverse diode 14 which is connected to the second IGBT 12 in the reverse direction by the second IGBT 12 and the inverse diode 14, which is connected to the first IGBT 11.
  • the first and second IGBTs 11 and 12 of the second semiconductor switching element 62 in the first load branch 6 are always blocking, so that no current I flows here.
  • the first or second IGBTs 11 or 12 of the first semiconductor switching elements 61 and 71 are turned off. Of the remaining two IGBTs 11 or 12 of the first semiconductor switching elements 61 and 71 one is always conducting, namely the one whose collector terminal C is connected to a negative pole " "and the emitter terminal E is connected to a positive pole" + "of the partial winding 8, possibly via other IGBT's or inverse diodes. Finally, the fourth IGBT of the active side is clocked with a duty cycle corresponding to the intermediate stage to be achieved. The collector terminal C of this IGBT thus lies at the positive pole "+" and at the emitter terminal E at the negative pole "-".
  • the orientation of the voltage U such that on the upper side of the partial winding 8, the positive pole "+” and on the lower side of the negative pole "-” abut. Since the current I flows from left to right, the first IGBTs 11 of the first semiconductor switching elements 61 and 71 and the inverse diodes 14 connected in parallel to the second IGBT 12 of the first semiconductor switching elements 61 and 71 are used for this purpose. Considering the first IGBTs 11 of the first semiconductor switching elements 61 and 71, the positive terminal "+" of the partial winding 8 and the emitter terminal is located at the collector terminal C of the first IGBT 11 of the first semiconductor switching element 71 in the second load branch 7 E the negative pole "-" of the partial winding 8 at.
  • the first IGBT 11 of the first semiconductor switching element 61 in the first load branch 6 is permanently conductive.
  • the second IGBT 12 of the first semiconductor switching element 71 in the second load branch 7 is turned on shortly before the current zero crossing, ie before the change of direction of the current I.
  • FIG. 6 is the switching module 5 off FIG. 5 displayed.
  • the left side of the switching module 5 with the semiconductor switching elements 61 and 71 is still active as previously determined and the right side of the switching module 5 with the semiconductor switching elements 62 and 72 is passive.
  • the direction of the current I has changed, so that it flows from the right side to the left side of the switching module 5.
  • the orientation of the voltage U at the partial winding 8 has also been reversed.
  • At the upper end of the partial winding 8 are now the negative pole "-" and at the lower end of the partial winding 8 of the positive pole "+" on.
  • the second semiconductor switching element 62 in the first load branch is always non-conductive.
  • the current I can only via the inverse diodes 14, which are connected in parallel to the first IGBTs 11 of the first and second semiconductor switching elements 61 and 71, and the second IGBTs 12 of the first and second semiconductor switching element 61 and 71 flow.
  • the positive pole "+" is present in the second load branch 7; thus this is clocked. Since the second IGBT 12 of the first semiconductor switching element 71 is clocked in the second load branch 7, the second IGBT 12 of the first semiconductor switching element 61 in the first load branch 6 is thus switched permanently conducting.
  • FIG. 7 is an on-load tap-changer 1 shown, in which a first switching module 51, a second switching module 52 and a third switching module 53 are connected in series.
  • the partial windings 8 of these switching modules 51, 52 and 53 have different Windungssch. Particularly advantageous is the distribution of Windungstechnik 9: 3: 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betrieb eines Laststufenschalters zur Spannungsregelung mit Halbleiter-Schaltelementen an einem Regeltransformator mit Regelwicklung. Aus der DE 10 2011 012 080 A1 ist ein Stufenschalter zur Spannungsregelung mit Halbleiter-Schalteinheiten bekannt. Der Stufenschalter besitzt zwei parallele Lastzweige, wobei in beiden Lastzweigen Halbleiter-Schalteinheiten in Reihe geschaltet sind. Dabei liegen sich jeweils eine Halbleiter-Schalteinheit des ersten Lastzweiges und des zweiten Lastzweiges paarweise gegenüber. Jeweils abwechselnd zwischen diesen paarweisen Halbleiter-Schalteinheiten sind parallel zwischen die beiden Lastzweigen jeweils eine Teilwicklung und eine Brücke geschaltet. Die Teilwicklungen weisen unterschiedliche Windungszahlen auf. Die Halbleiter-Schalteinheiten können als Thyristor- oder IGBT-Paare ausgebildet sein. Durch geschicktes Verschalten der Halbleiter-Schalteinheiten können die Wicklungen zu- bzw. abgeschaltet werden. Dadurch lässt sich das Übersetzungsverhältnis vom Transformator anpassen und die sekundärseitige Spannung kann somit geregelt werden. Durch die Verwendung von IGBT's ist es auch möglich mit Hilfe einer Pulsweitenmodulation ein abwechselndes Zu- bzw. Abschalten einer Teilwicklung zu realisieren und dadurch eine feinstufige Spannungsregelung zu implementieren. Durch ständiges Ein- und Abschalten der Halbleiter-Schalteinheiten entstehen Schaltverluste, und die Halbleiter-Schalteinheiten heizen sich auf, was eine hohe Anforderung an die Kühlungsvorrichtung stellt.The invention relates to a method for operating an on-load tap changer for voltage regulation with semiconductor switching elements on a control transformer with a control winding. From the DE 10 2011 012 080 A1 is a tap changer for voltage regulation with semiconductor switching units known. The tap changer has two parallel load branches, wherein in both load branches semiconductor switching units are connected in series. In each case, a semiconductor switching unit of the first load branch and the second load branch are in pairs opposite. In each case alternately between these paired semiconductor switching units, a partial winding and a bridge are connected in parallel between the two load branches. The partial windings have different numbers of turns. The semiconductor switching units may be formed as thyristor or IGBT pairs. By skillfully interconnecting the semiconductor switching units, the windings can be switched on or off. As a result, the transmission ratio of the transformer can be adjusted and the secondary-side voltage can thus be regulated. By the use of IGBT's it is also possible with the help of a pulse width modulation to realize an alternating switching on or off of a partial winding and thereby to implement a fine-level voltage regulation. Constant switching on and off of the semiconductor switching units causes switching losses, and the semiconductor switching units heat up, which places a high demand on the cooling device.

Aufgabe der Erfindung ist, einen Laststufenschalter zur Spannungsregelung mit Halbleiter-Schaltelementen bereitzustellen, der geringere Schaltverluste aufweist, eine kleinere Kühlungsvorrichtung benötigt und damit kostengünstig und sicher ist.The object of the invention is to provide an on-load tap changer for voltage regulation with semiconductor switching elements, which has lower switching losses, requires a smaller cooling device and is thus inexpensive and safe.

Diese Aufgabe wird durch ein erfindungsgemäßes Verfahren zum Betrieb eines Laststufenschalters zur Spannungsregelung nach Anspruch 1 gelöst. Bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen definiert. Der erfindungsgemäße Betrieb des Laststufenschalters mit Halbleiter-Schaltelementen ermöglicht geringere Schaltverluste, eine reduzierte Wärmeentwicklung und erhöhte Sicherheit.This object is achieved by a method according to the invention for operating an on-load tap-changer Voltage regulation solved according to claim 1. Preferred embodiments are defined in the dependent claims. The operation according to the invention of the on-load tap-changer with semiconductor switching elements enables lower switching losses, reduced heat development and increased safety.

Die allgemeine erfinderische Idee besteht darin, zwei antiseriell geschaltete IGBT's mit Inversdioden als Halbleiter-Schaltelemente zu nutzen und bei der Pulsweitenmodulation die Richtung des Stromes und Ausrichtung der Spannung an der Teilwicklung zu berücksichtigen, um dabei einen Teil eines Lastzweiges nicht zu schalten und somit Schaltverluste zu vermeiden.The general inventive idea is to use two anti-serially connected IGBTs with inverse diodes as semiconductor switching elements and to take into account the direction of the current and orientation of the voltage at the partial winding in the pulse width modulation, thereby not switching a part of a load branch and thus switching losses avoid.

Gemäß der bevorzugten Ausführungsform der Erfindung weist der Laststufenschalter zur Spannungsregelung Halbleiter-Schaltelemente auf und ist an einem Regeltransformator mit Regelwicklungen angeordnet. Dieser ist zwischen einem festen, ungeregelten Teil der Regelwicklung und einer Lastableitung angeordnet. Weiterhin weist der Laststufenschalter einen ersten Lastzweig und einen parallel dazu angeordneten zweiten Lastzweig auf, wobei zwischen den Lastzweigen eine Teilwicklung angeordnet ist. Der erste Lastzweig hat ein erstes Halbleiter-Schaltelement vor der Teilwicklung und ein zweites Halbleiter-Schaltelement nach der Teilwicklung. Der zweite Lastzweig weist ebenfalls ein erstes Halbleiter-Schaltelement vor der Teilwicklung und ein zweites Halbleiter-Schaltelement nach der Teilwicklung auf. Der Laststufenschalter umfasst mindestens ein Schaltmodul, welches den ersten Lastzweig und den zweiten Lastzweig umfasst.According to the preferred embodiment of the invention, the on-load tap changer for voltage regulation has semiconductor switching elements and is arranged on a regulating transformer with regulating windings. This is arranged between a fixed, unregulated part of the control winding and a load derivation. Furthermore, the on-load tap changer has a first load branch and a second load branch arranged parallel thereto, wherein a partial winding is arranged between the load branches. The first load branch has a first semiconductor switching element before the partial winding and a second semiconductor switching element after the partial winding. The second load branch also has a first semiconductor switching element before the partial winding and a second semiconductor switching element after the partial winding. The on-load tap-changer comprises at least one switching module, which comprises the first load branch and the second load branch.

Nach einer weiteren Ausführungsform der Erfindung besteht jedes Halbleiter-Schaltelement aus jeweils einem ersten IGBT und einem zweiten IGBT die zueinander antiseriell verschaltet sind. Die IGBTs sind jeweils mit einer Inversdiode derart versehen, dass eine Anode einer Inversdiode mit einem Emitter-Anschluss und eine Kathode der Inversdiode mit einem Kollektor-Anschluss des ersten IGBT und des zweiten IGBT verbunden sind. Die Halbleiter-Schaltelemente des ersten Lastzweigs und des zweiten Lastzweigs sind dabei wahlweise abschaltbar.According to a further embodiment of the invention, each semiconductor switching element consists in each case of a first IGBT and a second IGBT which are interconnected antiserially to one another. The IGBTs are each provided with an inverse diode such that an anode of an inverse diode having an emitter terminal and a cathode of the inverse diode are connected to a collector terminal of the first IGBT and the second IGBT. The semiconductor switching elements of the first load branch and the second load branch are selectively switched off.

Nach einer weiteren Ausführungsform besteht der Laststufenschalter aus einem ersten Schaltmodul, einem zweiten Schaltmodul und einem dritten Schaltmodul. Dabei besitzen die Teilwicklungen eines jeden Schaltmoduls untereinander jeweils ein anderes Windungsverhältnis, beispielweise 9:3:1.According to a further embodiment, the on-load tap changer comprises a first switching module, a second switching module and a third switching module. They own the Partial windings of each switching module with each other a different turns ratio, for example, 9: 3: 1.

Beim erfindungsgemäßen Verfahren zum Betrieb des Laststufenschalters wird zunächst bestimmt, zwischen welchen Stellungen einer Teilwicklung eines Schaltmoduls gewechselt werden soll. Bei einer Absatzstellung werden Windungen der Teilwicklung von einer Regelwicklung subtrahiert, bei einer Zusatzstellung werden Windungen der Teilwicklung zu der Regelwicklung addiert und bei einer Nennstellung wird die Teilwicklung vollständig ausgelassen.In the method according to the invention for operating the on-load tap-changer, it is first determined between which positions a partial winding of a switching module is to be changed. In a sales position turns of the partial winding are subtracted from a control winding, in an additional position turns of the partial winding are added to the control winding and at a nominal position, the partial winding is completely omitted.

Ein weiterer Schritt nach dem erfindungsgemäßen Verfahren betrifft die Festlegung einer aktiven und einer passiven Seite des Schaltmoduls. Auf der aktiven Seite des Schaltmoduls werden die Halbleiter-Schaltelemente betätigt, während auf der gegenüberliegenden Seite diese in einen festgelegten Schaltzustand versetzt werden.Another step according to the method of the invention relates to the definition of an active and a passive side of the switching module. On the active side of the switching module, the semiconductor switching elements are actuated, while on the opposite side they are set in a predetermined switching state.

Nach Bestimmung der Richtung eines Stromes und der Ausrichtung einer Spannung an der Teilwicklung, werden die Schaltzustände der Halbleiter-Schaltelemente des Schaltmoduls festgelegt. Dabei sind die an den abwechselnd stromführenden Inversdioden der jeweiligen aktiven Seite angeschlossenen IGBT's der ersten Halbleiter-Schaltelemente oder zweiten Halbleiter-Schaltelemente stets sperrend. Von den zwei abwechselnd stromführenden IGBT's der aktiven Seite ist einer stets leitend und zwar derjenige IGBT, dessen Kollektor-Anschluss mit einem negativen Pol und Emitter-Anschluss mit einem positiven Pol der Teilwicklung verbunden ist. Von den zwei abwechselnd stromführenden IGBT's der aktiven Seite wird einer getaktet und zwar derjenige, dessen Kollektor-Anschluss mit dem positiven Pol und der Emitter-Anschluss mit dem negativen Pol der Teilwicklung verbunden ist. An der passiven Seite ist ein Halbleiter-Schaltelement stets gesperrt und das andere Halbleiter-Schaltelement stets leitend.After determining the direction of a current and the orientation of a voltage at the partial winding, the switching states of the semiconductor switching elements of the switching module are determined. In this case, the IGBTs of the first semiconductor switching elements or second semiconductor switching elements connected to the alternating current-carrying inverse diodes of the respective active side are always blocking. Of the two alternating current-carrying IGBT's of the active side, one is always conducting, namely that IGBT whose collector terminal is connected to a negative pole and emitter terminal to a positive pole of the partial winding. Of the two alternating current-carrying IGBT's of the active side, one is clocked, namely the one whose collector terminal is connected to the positive pole and the emitter terminal is connected to the negative pole of the partial winding. On the passive side of a semiconductor switching element is always locked and the other semiconductor switching element always conductive.

Bei Änderung der Richtung des Stromflusses und der Ausrichtung des positiven Pols und des negativen Pols an der Teilwicklung wird ermittelt, welche IGBT's der Halbleiter-Schaltelemente auf der aktiven Seite getaktet oder leitend geschaltet, auf der passiven Seite leitend oder nicht leitend geschaltet werden und generell welche der Seiten aktiv oder passiv ist.By changing the direction of the current flow and the orientation of the positive pole and the negative pole on the partial winding, it is determined which IGBT's of the semiconductor switching elements on the active side are clocked or turned on, on the passive side turned on or off, and generally which the pages is active or passive.

Diese und andere Merkmale und Vorteile der hier offenbarten Ausführungsform werden mit Bezug auf die folgende Beschreibung und die Zeichnungen besser verständlich, wobei gleiche Bezugszeichen durchweg gleiche Elemente bezeichnen. Es zeigen:

Figur 1
eine schematische Darstellung eines Stufenschalters in Verbindung mit einem Transformator;
Figur 2
eine schematische Darstellung des Stufenschalters mit Halbleiter-Schaltelementen;
Figur 3
eine Darstellung des elektronischen Aufbaus der Halbleiter-Schaltelemente;
Figur 4a -4d
eine Darstellung der verschiedenen Schaltstellungen des Laststufenschalters;
Figur 5
eine Darstellung der Halbleiter-Schaltelemente in einer Schaltstellung;
Figur 6
eine weitere Darstellung einer Schaltstellung des Halbleiter-Schaltelements; und
Figur 7
eine schematische Darstellung der Verschaltung von drei Schaltmodulen.
These and other features and advantages of the embodiment disclosed herein will become better understood with reference to the following description and drawings, wherein like reference numerals refer to like elements throughout. Show it:
FIG. 1
a schematic representation of a tap changer in conjunction with a transformer;
FIG. 2
a schematic representation of the tap changer with semiconductor switching elements;
FIG. 3
a representation of the electronic structure of the semiconductor switching elements;
Figure 4a -4d
a representation of the various switching positions of the on-load tap-changer;
FIG. 5
a representation of the semiconductor switching elements in a switching position;
FIG. 6
a further illustration of a switching position of the semiconductor switching element; and
FIG. 7
a schematic representation of the interconnection of three switching modules.

Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Das dargestellte Ausführungsbeispiel stellt lediglich eine Möglichkeit dar, wie das erfindungsgemäße Schaltelement ausgestaltet sein kann.For identical or equivalent elements of the invention, identical reference numerals are used. The illustrated embodiment represents only one way in which the switching element according to the invention can be configured.

In Figur 1 ist ein Laststufenschalter 1 zur Spannungsregelung in einem Regeltransformator 2 und einer Regelwicklung 3 abgebildet. Der Laststufenschalter 1 ist zwischen dem festen, ungeregelten Teil der Regelwicklung 3 und einer Lastableitung 4 angeordnet.In FIG. 1 is an on-load tap changer 1 for voltage regulation in a control transformer 2 and a control winding 3 shown. The on-load tap-changer 1 is arranged between the fixed, unregulated part of the control winding 3 and a load discharge line 4.

Wie in Figur 2 dargestellt, besteht der Laststufenschalter 1 aus mindestens einem Schaltmodul 5. Das Schaltmodul 5 weist einen ersten Lastzweig 6 und einen parallel dazu angeordneten zweiten Lastzweig 7 auf. Der erste und der zweite Lastzweig 6, 7 des Schaltmoduls 5 ist über eine Teilwicklung 8 leitend miteinander verbunden. Der erste Lastzweig 6 weist ein erstes Halbleiter-Schaltelement 61 zwischen der Regelwicklung 3 und der Teilwicklung 8 und ein zweites Halbleiter-Schaltelement 62 nach der Teilwicklung 8, also hin zur Ableitung 4, auf. Der zweite Lastzweig 7 weist ebenfalls ein erstes Halbleiter-Schaltelement 71 vor der Teilwicklung 8 und ein zweites Halbleiter-Schaltelemente 72 nach der Teilwicklung 8, auf.As in FIG. 2 illustrated, the on-load tap-changer 1 consists of at least one switching module 5. The switching module 5 has a first load branch 6 and a second load branch 7 arranged parallel thereto. The first and the second load branch 6, 7 of the switching module 5 is conductively connected to one another via a partial winding 8. The first load branch 6 has a first semiconductor switching element 61 between the control winding 3 and the partial winding 8 and a second semiconductor switching element 62 after the partial winding 8, ie towards the discharge line 4, on. The second load branch 7 likewise has a first semiconductor switching element 71 in front of the partial winding 8 and a second semiconductor switching element 72 after the partial winding 8.

In Figur 3 ist dargestellt, dass jedes der Halbleiter-Schaltelemente 61, 62, 71 und 72 aus einem ersten Insulated Gate Bipolar Transistor (IGBT) 11 und einem zweiten IGBT 12 besteht, die antiseriell verschaltet sind. Der erste IGBT 11 und der zweite IGBT 12 ist jeweils mit einer Inversdiode 14 versehen. Jeder IGBT 11 und 12 besitzt einen Kollektor-Anschluss C, einen Emitter-Anschluss E und einen Gate-Anschluss G. Jede der Inversdioden 14 ist jeweils mit ihrer Anode an den Emitter-Anschluss E und mit der Kathode an den Kollektor-Anschluss C des jeweiligen IGBT 11 oder 12 angeschlossen.In FIG. 3 It is shown that each of the semiconductor switching elements 61, 62, 71 and 72 consists of a first insulated gate bipolar transistor (IGBT) 11 and a second IGBT 12, which are connected in antiseries. The first IGBT 11 and the second IGBT 12 are each provided with an inverse diode 14. Each IGBT 11 and 12 has a collector terminal C, an emitter terminal E and a gate G. Each of the inverse diodes 14 has its anode connected to the emitter terminal E and the cathode connected to the collector terminal C of FIG IGBT 11 or 12 connected.

Zunächst wird, wie in den Figuren 4a - 4d dargestellt, ermittelt, welche der Stellungen die Teilwicklung 8 annimmt. In einer Absatzstellung 20 (Fig. 4a) werden die Windungen der Teilwicklung 8 von dem festen Teil der Regelwicklung 3 subtrahiert. Dabei fließt der Strom I richtungsunabhängig durch das erste Halbleiter-Schaltelement 61 im ersten Lastzweig 6, die Teilwicklung 8 und das zweite Halbleiter-Schaltelement 72 im zweiten Lastzweig 7.First, as in the FIGS. 4a-4d shown determines which of the positions the sub-winding 8 assumes. In a paragraph 20 ( Fig. 4a ), the turns of the partial winding 8 are subtracted from the fixed part of the control winding 3. In this case, the current I flows independently of the direction through the first semiconductor switching element 61 in the first load branch 6, the partial winding 8 and the second semiconductor switching element 72 in the second load branch 7.

In einer Zusatzstellung 21 (Fig. 4b) werden die Windungen der Teilwicklung 8 zum festen Teil der Regelwicklung 3 addiert. Dabei fließt der Strom I richtungsunabhängig durch das erste Halbleiter-Schaltelement 71 im zweiten Lastzweig 7, die Teilwicklung 8 und das zweite Halbleiter-Schaltelement 62 im ersten Lastzweig 6.In an additional position 21 ( Fig. 4b ), the turns of the partial winding 8 are added to the fixed part of the control winding 3. In this case, the current I flows irrespective of the direction through the first semiconductor switching element 71 in the second load branch 7, the partial winding 8 and the second semiconductor switching element 62 in the first load branch 6.

In einer Nennstellung 22 (Fig. 4c und 4d) wird der Strom I gezielt an der Teilwicklung 8 entweder über den ersten oder den zweiten Lastzweig 6, 7 vorbeigeführt. In dieser Stellung haben die Windungen der Teilwicklung 8 keinen Einfluss auf die Regelwicklung 3.In a nominal position 22 ( Fig. 4c and 4d ), the current I is selectively guided past the partial winding 8 either via the first or the second load branch 6, 7. In this position, the turns of the partial winding 8 have no influence on the control winding third

Um eine feinstufige Regelung zu implementieren und eine Zwischenstufe erzeugen zu können, wird mit Pulsweitenmodulation zwischen zwei von den drei erläuterten Stellungen getaktet. Falls zwischen der Nennstellung 22 und der Absatzstellung 20 bzw. Zusatzstellung 21 geschaltet wird, muss eine passive und eine aktive Seite des Schaltmoduls 5 festgelegt werden; dies ist der Regelfall. Zu jeweils einer Seite gehören stets die Halbleiter-Schaltelemente 61 und 71 bzw. 62 und 72, die auf derselben Seite also vor bzw. nach der Teilwicklung 8 liegen. Somit muss festgelegt werden, ob das erste Halbleiter-Schaltelement 61 des ersten Lastzweigs 6 und das erste Halbleiter-Schaltelement 71 des zweiten Lastzweigs 7 aktiv und das zweite Halbleiter-Schaltelement 62 des ersten Lastzweigs 6 und das zweite Halbleiter-Schaltelement 72 des zweiten Lastzweigs 7 passiv sind oder umgekehrt. Abhängig von dieser Festlegung müssen die IGBT's 11 und 12 der Halbleiter-Schaltelemente 61, 62, 71 und 72 unterschiedlich geschaltet werden. Die Halbleiter-Schaltelemente auf der festgelegten, passiven Seite werden während des Verfahrens stets als leitend bzw. sperrend gehalten, wobei ein Halbleiter-Schaltelement leitend und das andere nicht leitend ist. Auf der aktiven Seite werden die Halbleiter-Schaltelemente auf Grund der durchgeführten Pulsweitenmodulation aktiv geschaltet, d.h. diese nehmen unterschiedliche Zustände an. Beim Schalten zwischen Absatzstellung 20 und Zusatzstellung 21 sind beide Seiten aktiv.In order to implement a fine-level control and to be able to generate an intermediate stage, pulse-width modulation is used to clock between two of the three explained positions. If switching between the nominal position 22 and the offset position 20 or additional position 21, a passive and an active side of the switching module 5 must be set; this is the rule. Each one side always includes the semiconductor switching elements 61 and 71 or 62 and 72, which lie on the same side before or after the partial winding 8. Thus, it must be determined whether the first semiconductor switching element 61 of the first load branch 6 and the first semiconductor switching element 71 of the second load branch 7 are active and the second semiconductor switching element 62 of the first load branch 6 and the second semiconductor switching element 72 of the second load branch 7 are passive or vice versa. Depending on this setting, the IGBTs 11 and 12 of the semiconductor switching elements 61, 62, 71, and 72 need to be switched differently. The semiconductor switching elements on the fixed, passive side are always held during the process as conductive or blocking, wherein a semiconductor switching element is conductive and the other is not conductive. On the active side, the semiconductor switching elements are actively switched due to the pulse width modulation carried out, ie they assume different states. When switching between sales position 20 and additional position 21 both sides are active.

Im Beispiel der Figur 5 besteht die aktive Seite des dargestellten Schaltmoduls 5 aus dem ersten Halbleiter-Schaltelement 61 des ersten Lastzweigs 6 und dem ersten Halbleiter-Schaltelement 71 des zweiten Lastzweigs 7. Folglich besteht die passive Seite in Figur 5 aus dem zweiten Halbleiter-Schaltelement 62 des ersten Lastzweigs 6 und dem zweiten Halbleiter-Schaltelement 72 des zweiten Lastzweigs 7.In the example of FIG. 5 is the active side of the illustrated switching module 5 of the first semiconductor switching element 61 of the first load branch 6 and the first semiconductor switching element 71 of the second load branch 7. Consequently, the passive side in FIG. 5 from the second semiconductor switching element 62 of the first load branch 6 and the second semiconductor switching element 72 of the second load branch 7.

Auf der passiven Seite ist das zweite Halbleiter-Schaltelement 72 des zweiten Lastzweigs 7 stets leitend. Das zweite Halbleiter-Schaltelement 62 des ersten Lastzweigs 6 ist dagegen stets nicht leitend. Der Strom I fließt somit entweder durch den ersten IGBT 11 und die Inversdiode 14, welche mit dem zweiten IGBT 12 verbunden ist ober in umgekehrter Richtung durch den zweiten IGBT 12 und die Inversdiode 14, die mit dem ersten IGBT 11 verbunden ist. Die ersten und zweiten IGBT's 11 und 12 des zweiten Halbleiter-Schaltelements 62 im ersten Lastzweig 6 hingegen sind stets sperrend, so dass hier kein Strom I fließt.On the passive side, the second semiconductor switching element 72 of the second load branch 7 is always conductive. By contrast, the second semiconductor switching element 62 of the first load branch 6 is always nonconductive. The current I thus flows either through the first IGBT 11 and the inverse diode 14 which is connected to the second IGBT 12 in the reverse direction by the second IGBT 12 and the inverse diode 14, which is connected to the first IGBT 11. By contrast, the first and second IGBTs 11 and 12 of the second semiconductor switching element 62 in the first load branch 6 are always blocking, so that no current I flows here.

Auf der aktiven Seite werden die ersten oder die zweiten IGBTs 11 oder 12 der ersten Halbleiter-Schaltelemente 61 und 71, deren Durchlassrichtung nicht der Stromflussrichtung entspricht, gesperrt. Der Strom I fließt dabei über die zu ihnen parallel angeschlossenen Inversdioden 14. Von den übrigen beiden IGBTs 11 oder 12 der ersten Halbleiter-Schaltelemente 61 und 71 wird einer stets leitend, und zwar derjenige, dessen Kollektor-Anschluss C mit einem negativen Pol "-" und der Emitter-Anschluss E mit einem positiven Pol "+" der Teilwicklung 8 verbunden ist, evtl. über andere IGBT's bzw. Inversdioden. Letztlich wird der vierte IGBT der aktiven Seite mit einem Tastverhältnis entsprechend der zu erzielenden Zwischenstufe getaktet. Der Kollektor-Anschluss C dieses IGBT liegt also am positiven Pol "+" und am Emitter-Anschluss E am negativen Pol "-" an.On the active side, the first or second IGBTs 11 or 12 of the first semiconductor switching elements 61 and 71, whose forward direction does not correspond to the current flow direction, are turned off. Of the remaining two IGBTs 11 or 12 of the first semiconductor switching elements 61 and 71 one is always conducting, namely the one whose collector terminal C is connected to a negative pole " "and the emitter terminal E is connected to a positive pole" + "of the partial winding 8, possibly via other IGBT's or inverse diodes. Finally, the fourth IGBT of the active side is clocked with a duty cycle corresponding to the intermediate stage to be achieved. The collector terminal C of this IGBT thus lies at the positive pole "+" and at the emitter terminal E at the negative pole "-".

Kurz vor dem Stromnulldurchgang wird der gegenüber dem getakteten IGBT antiserielle IGBT des jeweiligen Halbleiter-Schaltelements eingeschaltet, um einen sicheren Strompfad beim Stromrichtungswechsel zu gewährleisten.Shortly before the current zero crossing of the clocked IGBT antiserial IGBT of the respective semiconductor switching element is turned on to ensure a safe current path when Stromrichtungswechsel.

Im Beispiel in Figur 5 ist die Ausrichtung der Spannung U derart, dass an der oberen Seite der Teilwicklung 8 der positive Pol "+" und an der unteren Seite der negative Pol "-" anliegen. Da der Strom 1 von links nach rechts fließt, werden hierfür die ersten IGBT's 11 der ersten Halbleiter-Schaltelemente 61 und 71 und die Inversdioden 14, die dem zweiten IGBT 12 der ersten Halbleiter-Schaltelemente 61 und 71 parallel geschaltet sind, genutzt. Betrachtet man die ersten IGBT's 11 der ersten Halbleiter-Schaltelemente 61 und 71, so liegt am Kollektor-Anschluss C des ersten IGBT 11 des ersten Halbleiter-Schaltelements 71 im zweiten Lastzweig 7 der positive Pol "+" der Teilwicklung 8 und am Emitter-Anschluss E der negative Pol "-" der Teilwicklung 8 an. Dieser wird also getaktet, während der erste IGBT 11 des ersten Halbleiter-Schaltelements 61 im ersten Lastzweig 6 dauerleitend ist. Der zweite IGBT 12 des ersten Halbleiter-Schaltelements 71 im zweiten Lastzweig 7 wird kurz vor dem Stromnulldurchgang, also vor dem Richtungswechsel des Stromes I leitend geschaltet.In the example in FIG. 5 is the orientation of the voltage U such that on the upper side of the partial winding 8, the positive pole "+" and on the lower side of the negative pole "-" abut. Since the current I flows from left to right, the first IGBTs 11 of the first semiconductor switching elements 61 and 71 and the inverse diodes 14 connected in parallel to the second IGBT 12 of the first semiconductor switching elements 61 and 71 are used for this purpose. Considering the first IGBTs 11 of the first semiconductor switching elements 61 and 71, the positive terminal "+" of the partial winding 8 and the emitter terminal is located at the collector terminal C of the first IGBT 11 of the first semiconductor switching element 71 in the second load branch 7 E the negative pole "-" of the partial winding 8 at. This is thus clocked, while the first IGBT 11 of the first semiconductor switching element 61 in the first load branch 6 is permanently conductive. The second IGBT 12 of the first semiconductor switching element 71 in the second load branch 7 is turned on shortly before the current zero crossing, ie before the change of direction of the current I.

Nach jedem Spannungs- bzw. Stromrichtungswechsel wird immer neu definiert, welche IGBT's leitend, welche sperrend und welche getaktet werden. Dabei kann ein Wechsel der aktiven und passiven Seite der gleichmäßigen Verteilung der Verluste dienen und somit zu einer Verlängerung der Lebensdauer der Bauelemente führen.After each change of voltage or current direction is always redefined which IGBT's conducting, which blocking and which are clocked. In this case, a change of the active and passive sides of the uniform distribution of losses serve and thus lead to an extension of the life of the components.

Bei rein ohmschen Belastungen des Laststufenschalters 1 ändern sich die Richtung des Stromes I und die Ausrichtung der Spannung U an der Teilwicklung 8 zur gleichen Zeit. Bei induktiven und kapazitiven Lasten ändert sich die Ausrichtung der Spannung U versetzt zur Richtungsänderung des Stromes I.In purely resistive loads of the on-load tap-changer 1, the direction of the current I and the orientation of the voltage U at the partial winding 8 change at the same time. For inductive and capacitive loads, the orientation of the voltage U changes offset to the change in direction of the current I.

In Figur 6 ist das Schaltmodul 5 aus Figur 5 abgebildet. Die linke Seite des Schaltmoduls 5 mit den Halbleiter-Schaltelementen 61 und 71 ist wie vorher bestimmt immer noch aktiv und die rechte Seite des Schaltmoduls 5 mit den Halbleiter-Schaltelementen 62 und 72 ist passiv. Hier hat sich die Richtung des Stromes I verändert, so dass dieser von der rechten Seite zur linken Seite des Schaltmoduls 5 fließt. Ausgehend von einer ohmschen Belastung, hat sich auch die Ausrichtung der Spannung U an der Teilwicklung 8 ebenfalls umgekehrt. Am oberen Ende der Teilwicklung 8 liegen nun der negative Pol "-" und am unteren Ende der Teilwicklung 8 der positive Pol "+" an.In FIG. 6 is the switching module 5 off FIG. 5 displayed. The left side of the switching module 5 with the semiconductor switching elements 61 and 71 is still active as previously determined and the right side of the switching module 5 with the semiconductor switching elements 62 and 72 is passive. Here, the direction of the current I has changed, so that it flows from the right side to the left side of the switching module 5. Based on an ohmic load, the orientation of the voltage U at the partial winding 8 has also been reversed. At the upper end of the partial winding 8 are now the negative pole "-" and at the lower end of the partial winding 8 of the positive pole "+" on.

Auf der passiven Seite wird der Strom I über das zweite Halbleiter-Schaltelement 72 im zweiten Lastzweig 7, insbesondere den zweiten IGBT 12 des zweiten Halbleiter-Schaltelements 72 und die Inversdiode 14, die dem ersten IGBT 11 des zweiten Halbleiter-Schaltelements 72 parallel geschaltet ist, geführt. Das zweite Halbleiter-Schaltelement 62 im ersten Lastzweig ist hierbei stets nicht leitend. Auf der aktiven Seite des Schaltmoduls 5 kann der Strom I nur über die Inversdioden 14, die parallel zum ersten IGBTs 11 des ersten und zweiten Halbleiter-Schaltelements 61 und 71 geschaltet sind, sowie die zweiten IGBTs 12 des ersten und zweiten Halbleiter-Schaltelements 61 und 71 fließen. Dabei liegt am Kollektor-Anschluss C des zweiten IGBT 12 des ersten Halbleiter-Schaltelements 71 im zweiten Lastzweig 7 der positive Pol "+" an; somit wird dieser getaktet. Da der zweite IGBT 12 des ersten Halbleiter-Schaltelements 71 im zweiten Lastzweig 7 getaktet wird, ist der zweite IGBT 12 des ersten Halbleiter-Schaltelements 61 im ersten Lastzweig 6 folglich dauerleitend geschaltet.On the passive side, the current I through the second semiconductor switching element 72 in the second load branch 7, in particular the second IGBT 12 of the second semiconductor switching element 72 and the inverse diode 14, the first IGBT 11 of the second semiconductor switching element 72 is connected in parallel, guided. The second semiconductor switching element 62 in the first load branch is always non-conductive. On the active side of the switching module 5, the current I can only via the inverse diodes 14, which are connected in parallel to the first IGBTs 11 of the first and second semiconductor switching elements 61 and 71, and the second IGBTs 12 of the first and second semiconductor switching element 61 and 71 flow. At the collector terminal C of the second IGBT 12 of the first semiconductor switching element 71, the positive pole "+" is present in the second load branch 7; thus this is clocked. Since the second IGBT 12 of the first semiconductor switching element 71 is clocked in the second load branch 7, the second IGBT 12 of the first semiconductor switching element 61 in the first load branch 6 is thus switched permanently conducting.

Auf Grund der Tatsache, dass während des Verfahrens ein Halbleiter-Schaltelement 61, 62, 71, oder 72 auf der aktiven Seite stets dauerleitend ist, d.h. niederohmig, werden Schaltverluste, die im Stand der Technik beim Übergang vom hochohmigen Zustand zum niederohmigen Zustand entstehen, deutlich reduziert. Dadurch sinkt die Wärmeentwicklung am Schaltmodul 5, so dass weniger Wärmeenergie durch die Kühlung abgeführt werden muss. Generell kann bei Verwendung dieses Verfahrens eine räumlich kleinere und somit kostengünstigere Kühlanlage verwendet werden.Due to the fact that during the process, a semiconductor switching element 61, 62, 71, or 72 on the active side is always conducting, i. Low impedance, switching losses, which arise in the prior art in the transition from the high-impedance state to the low-impedance state, significantly reduced. As a result, the heat generation decreases at the switching module 5, so that less heat energy has to be dissipated by the cooling. In general, when using this method, a spatially smaller and thus cheaper cooling system can be used.

In Figur 7 ist ein Laststufenschalter 1 abgebildet, bei dem ein erstes Schaltmodul 51, ein zweites Schaltmodul 52 und ein drittes Schaltmodul 53 in Reihe geschaltet sind. Die Teilwicklungen 8 dieser Schaltmodule 51, 52 und 53 haben unterschiedliche Windungsverhältnisse. Besonders vorteilhaft ist die Verteilung der Windungsverhältnisse 9:3:1. Durch die Anwendung des erfindungsgemäßen Verfahrens in einem dieser Schaltmodule 51, 52 oder 53 ist es möglich, die hier erzeugten feineren Zwischenstufen mit den Stufen der anderen Schaltmodule 51, 52 und 53 zu kombinieren.In FIG. 7 is an on-load tap-changer 1 shown, in which a first switching module 51, a second switching module 52 and a third switching module 53 are connected in series. The partial windings 8 of these switching modules 51, 52 and 53 have different Windungsverhältnisse. Particularly advantageous is the distribution of Windungsverhältnisse 9: 3: 1. By applying the method according to the invention in one of these switching modules 51, 52 or 53, it is possible to combine the finer intermediate stages produced here with the stages of the other switching modules 51, 52 and 53.

Claims (8)

  1. Method of operating an on-load tap changer (1) for voltage regulation with semiconductor switching elements (61, 62, 71, 72) at a regulating transformer (2) with a regulating winding (3), wherein
    - the on-load tap changer (1) is arranged between a feed line (4'), which is connected with a fixed unregulated part of the regulating winding (3), and a load diverter (4);
    - the on-load tap changer (1) consists of at least one switching module (5), which has a first load branch (6), a second load branch (7), arranged parallel thereto and a sub-winding (8) therebetween;
    - the first load branch (6) comprises a first semiconductor switching element (61) between the feed line (4') and the sub-winding (8) and a second semiconductor switching element (62) between the sub-winding (8) and the load diverter (4);
    - the second load branch (7) comprises a first semiconductor switching element (71) between the feed line (4') and the sub-winding (8) and a second semiconductor switching element (72) between the sub-winding (8) and the load diverter (4);
    comprising the following steps:
    - determining the desired intermediate stage of the sub-winding (8);
    - subtraction of the windings of the sub-winding (8) from the unregulated part of the regulating winding (3) in a first setting of the switching module (5), i.e. the reducing setting;
    - addition of the windings of the sub-winding (8) to the unregulated part of the regulating winding in a second setting of the switching module (5), i.e. the increasing setting;
    - completely leaving out the sub-winding in a third setting of the switching module (5), i.e. the nominal setting;
    - producing the intermediate stage in that switching over between the third setting and the first or second setting is carried out;
    - characterised by
    - determining an active and a passive side of the respective switching module (5) for the desired intermediate stage, wherein the active side comprises the first semiconductor switching elements (61, 71) and the passive side comprises the second semiconductor switching elements (62, 72) or vice versa;
    - determining the switching states of the semiconductor switching elements (61, 62, 71, 72) of the switching module (5) in that
    - for switching over between the third and second settings on the active side of the respective switching module (5) the semiconductor switching element (61) of the first load branch (6) is conducting and the switching element (71) of the second load branch (7) is cycled by pulse width modulation and on the passive side of the respective switching module (5) the semiconductor switching element (62) of the first load branch (6) is non-conducting and the semiconductor switching element (72) of the second load branch (7) is conducting; and
    - for switching over between the third and first settings on the active side of the respective switching module (5) the semiconductor switching element (61) of the first load branch (6) is cycled by pulse width modulation and the switching element (71) of the second load branch (7) is conducting and on the passive side of the respective switching module (5) the semiconductor switching element (62) of the first load branch (6) is conducting and the semiconductor switching element (72) of the second load branch (7) is non-conducting.
  2. Method according to claim 1, wherein
    - each semiconductor switching element (61, 62, 71, 72) consists of a respective first IGBT (11) and second IGBT (12), which are connected anti-serially with respect to one another;
    - the first IGBT (11) and the second IGBT (12) are each provided with an inverse diode (14) in such a way that an anode of one inverse diode (14) is connected with an emitter terminal (E) and a cathode of the inverse diode (14) is connected with a collector terminal (C) of the first IGBT (11) and the second IGBT (12); and
    - the semiconductor switching elements (61, 62, 71, 72) of the first load branch (6) and the second load branch (7) are selectably switchable off.
  3. Method according to claim 2, wherein
    - the IGBTs (11, 12), which are connected with the alternately current-conducting inverse diodes (14) of the respective active side, of the first semiconductor switching elements (61, 71) or second semiconductor switching elements (62, 72) are constantly blocking;
    - of the two alternately current-conducting IGBTs (11, 12) of the active side one is always conducting and, in particular, that IGBT (11, 12) of which the collector terminal (C) is connected with a negative pole (-) and the emitter terminal (E) is connected with a positive pole (+) of the sub-winding (8);
    - of the two alternately current-conducting IGBTs (11, 12) of the active side one is cycled and, in particular that of which the collector terminal (C) is connected with the positive pole (+) and the emitter terminal (E) with the negative pole (-) of the sub-winding (8); and
    - at a passive side one semiconductor switching element (61, 62, 71, 72) is always blocked and the other semiconductor switching element (61, 62, 71, 72) is always conducting.
  4. Method according to any one of the preceding claims, wherein
    - in the case of change in the direction of the current flow (I) and the orientation of the positive pole (+) and the negative pole (-) it is detected at the sub-winding (8) which IGBTs (11, 12) of the semiconductor switching element (61, 62, 71, 72) on the active side are cycled or switched to be conducting.
  5. Method according to claim 4, wherein
    - in the case of change in the direction of the current flow (I) and the orientation of the positive pole (+) and the negative pole (-) it is detected at the sub-winding (8) which IGBTs (11, 12) of the semiconductor switching element (61, 62, 71, 72) on the passive side are switched to be conducting or non-conducting.
  6. Method according to claim 5, wherein
    - in the case of change in direction of the current flow (I) and the orientation of the positive pole (+) and the negative pole (-) the active side and the passive side are determined at the sub-winding (8).
  7. Method according to any one of the preceding claims, wherein
    - the on-load tap changer (1) consists of a first switching module (51), a second switching module (52) and a third switching module (53); and
    - the sub-windings (8) of the switching modules (51, 52, 53) have different winding ratios with respect to one another.
  8. Method according to claim 7, wherein
    - the winding ratio of the sub-windings (8) is 9:3:1.
EP14701315.5A 2013-02-20 2014-01-15 Method for operating an on-load tap changer having semiconductor switching elements Not-in-force EP2959492B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013101652.9A DE102013101652A1 (en) 2013-02-20 2013-02-20 On-load tap-changer with semiconductor switching elements and method for operating an on-load tap-changer
PCT/EP2014/050697 WO2014127932A2 (en) 2013-02-20 2014-01-15 On-load tap changer having semiconductor switching elements and method for operating an on-load tap changer

Publications (2)

Publication Number Publication Date
EP2959492A2 EP2959492A2 (en) 2015-12-30
EP2959492B1 true EP2959492B1 (en) 2017-12-27

Family

ID=50002696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14701315.5A Not-in-force EP2959492B1 (en) 2013-02-20 2014-01-15 Method for operating an on-load tap changer having semiconductor switching elements

Country Status (10)

Country Link
US (1) US9588527B2 (en)
EP (1) EP2959492B1 (en)
JP (1) JP2016507907A (en)
KR (1) KR20150119877A (en)
CN (1) CN105009241B (en)
BR (1) BR112015019248A2 (en)
DE (1) DE102013101652A1 (en)
HK (1) HK1214678A1 (en)
RU (1) RU2015135326A (en)
WO (1) WO2014127932A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252040B (en) * 2016-08-18 2025-02-21 中国电力科学研究院 A non-arc on-load automatic voltage regulating distribution transformer device and voltage regulating method thereof
EP3327911B1 (en) * 2016-11-23 2020-10-21 Maschinenfabrik Reinhausen GmbH Method for controlling a switch module based on thyristor switching elements
EP3788712A1 (en) 2018-06-07 2021-03-10 Siemens Energy Global GmbH & Co. KG Apparatus for converting an electrical dc voltage into an ac voltage

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL278413A (en) * 1961-05-15
JPS62184514A (en) * 1986-02-10 1987-08-12 Toshiba Corp Voltage phase regulating device of thyrister control type
JPH0645320U (en) * 1992-11-24 1994-06-14 株式会社明電舎 Voltage regulator with built-in transformer
CA2193477C (en) * 1994-04-06 2000-07-18 Robert C. Degeneff Load tap changer
NL1000914C2 (en) * 1995-08-01 1997-02-04 Geb Zuid Holland West Nv Method and device for continuous adjustment and control of a transformer conversion ratio, as well as a transformer provided with such a device.
US6087738A (en) * 1998-08-20 2000-07-11 Robicon Corporation Variable output three-phase transformer
JP2000125473A (en) * 1998-10-19 2000-04-28 Toshiba Corp Power regulator and control method for the regulator
JP2000287447A (en) * 1999-03-31 2000-10-13 Hitachi Ltd Regular commercial uninterruptible power supply with voltage control function
AU2001283808A1 (en) * 2000-08-18 2002-02-25 John Vithayathil Circuit arrangement for the static generation of a variable electric output
JP3816487B2 (en) * 2003-12-25 2006-08-30 株式会社エヌ・ティ・ティ・データ・イー・エックス・テクノ AC voltage controller with uninterruptible power supply function
US8203319B2 (en) * 2009-07-09 2012-06-19 General Electric Company Transformer on-load tap changer using MEMS technology
GB0916190D0 (en) * 2009-09-15 2009-10-28 Imp Innovations Ltd Method and apparatus for performing on-load mechanical switching operations
DE102009060132B3 (en) * 2009-12-23 2011-05-12 Maschinenfabrik Reinhausen Gmbh Tap changer with polarity switch on a control transformer
UA112302C2 (en) 2010-12-17 2016-08-25 Машіненфабрік Райнхаузен Гмбх STEP SWITCH
DE102011012080A1 (en) * 2011-02-23 2012-08-23 Maschinenfabrik Reinhausen Gmbh step switch

Also Published As

Publication number Publication date
HK1214678A1 (en) 2016-07-29
WO2014127932A2 (en) 2014-08-28
JP2016507907A (en) 2016-03-10
RU2015135326A (en) 2017-03-27
US9588527B2 (en) 2017-03-07
CN105009241B (en) 2017-09-08
US20150338861A1 (en) 2015-11-26
WO2014127932A3 (en) 2015-06-18
CN105009241A (en) 2015-10-28
EP2959492A2 (en) 2015-12-30
KR20150119877A (en) 2015-10-26
BR112015019248A2 (en) 2017-08-22
DE102013101652A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
DE19732828C2 (en) Circuit arrangement for driving a light-emitting diode array
EP2654190B1 (en) Method for operating an electric circuit
EP2807738B1 (en) Multicell converter
EP2959492B1 (en) Method for operating an on-load tap changer having semiconductor switching elements
DE102013109797A1 (en) ionizer
DE102011078034A1 (en) switching device
WO2013186004A1 (en) Apparatus for switching in a dc voltage mains
EP2966769B1 (en) Operation of a modular multi level power converter
EP3361596B1 (en) Battery with a battery management system which comprises an electronic switching circuit
EP3583672B1 (en) Efficient pre-charging of sections of a dc network
EP2826126B1 (en) Electronic power assembly having balancing of a voltage node in the intermediate circuit
DE102015105889A1 (en) Switching module and converter with at least one switching module
WO2016012465A1 (en) Switching assembly for an npc multi-point inverter having relief network
EP3391524B1 (en) Convertermodule for multilevelconverters and its workingprocess
DE4042378C2 (en)
EP3673551B1 (en) Voltage supply circuit
DE102011089679A1 (en) Commutation cell with statically relieved diode
EP3815208B1 (en) Switchable longitudinal voltage source, dc transmission system with longitudinal voltage source, and method for operating a longitudinal voltage source
DE102022211926A1 (en) welding machine
DE202017000743U1 (en) Electronic switching device of a battery management system and battery
WO2017108073A1 (en) Longitudinal voltage source and direct current transmission system with longitudinal voltage source
EP3218980B1 (en) Control of the power transmission in a dc grid
DE102022202750A1 (en) High performance DC/DC converter
WO2023110384A1 (en) Electric device comprising a driver circuit for supplying a control input of a controlled first semiconductor switch
DE102006060350B4 (en) Circuit for limiting at least one voltage and method for operating the circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20151218

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1214678

Country of ref document: HK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014006730

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01H0009000000

Ipc: G05F0001200000

RIC1 Information provided on ipc code assigned before grant

Ipc: G05F 1/20 20060101AFI20170810BHEP

Ipc: H01F 29/04 20060101ALI20170810BHEP

Ipc: H01H 9/00 20060101ALI20170810BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170925

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 958814

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006730

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180327

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180327

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006730

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180115

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180227

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

26N No opposition filed

Effective date: 20180928

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1214678

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 958814

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200123

Year of fee payment: 7

Ref country code: SE

Payment date: 20200127

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140115

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014006730

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210116

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803