[go: up one dir, main page]

EP2933924B1 - Clock and data recovery circuit using an injection locked oscillator - Google Patents

Clock and data recovery circuit using an injection locked oscillator Download PDF

Info

Publication number
EP2933924B1
EP2933924B1 EP15160343.8A EP15160343A EP2933924B1 EP 2933924 B1 EP2933924 B1 EP 2933924B1 EP 15160343 A EP15160343 A EP 15160343A EP 2933924 B1 EP2933924 B1 EP 2933924B1
Authority
EP
European Patent Office
Prior art keywords
oscillator
injection
output terminal
coupled
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15160343.8A
Other languages
German (de)
French (fr)
Other versions
EP2933924A1 (en
Inventor
Shiue-Shin Liu
Chih-Chien Hung
Shao-Hung Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Inc
Original Assignee
MediaTek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Inc filed Critical MediaTek Inc
Publication of EP2933924A1 publication Critical patent/EP2933924A1/en
Application granted granted Critical
Publication of EP2933924B1 publication Critical patent/EP2933924B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/027Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit
    • H04L7/0276Self-sustaining, e.g. by tuned delay line and a feedback path to a logical gate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/24Automatic control of frequency or phase; Synchronisation using a reference signal directly applied to the generator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0037Delay of clock signal

Definitions

  • the present invention discloses a clock and data recovery circuit, and more particularly, a clock and data recovery circuit operating using an injection locked oscillator.
  • the present invention discloses a clock and data recovery cicuit and a method of operation of a clock and data recovery circuit according to the pre-characterizing parts of independent claims 1 and 7, respectively.
  • Such a circuit and method are respectively shown in US 2011/316600 A1 and US 2013/216003 A1 .
  • a digital data communication protocol uses a data that carries both the data stream and a data clock on a single channel.
  • the receiving circuit includes a clock and data recovery (CDR) circuit which produces a recovered clock, based on a local reference clock that has a frequency close to the clock carried in the data.
  • the receiving circuit uses the recovered clock to set sampling times for sampling the data on the channel. Phase differences between the recovered clock and the data can be detected and used as feedback in the generation of the recovered clock.
  • CDR clock and data recovery
  • FIG.1 illustrates a burst mode CDR according to an embodiment of a prior art.
  • the absolute phase alignment with input data may amplify high frequency jitter of input data and degrade timing margin of the CDR.
  • FIG.2 illustrates an injection lock CDR suitable for burst mode operation with a complicated injection scheme as shown in MARUKO K ET AL: “Burst-mode CDR using dual-edge injection-locked oscillator”, SOLID-STATE CIRCUITS CONFERENCE DIGEST OF TECHNICAL PAPERS (ISSCC), 2010 IEEE INTERNATIONAL, IEEE, PISCATAWAY, NJ, USA, 7 February 2010 (2010-02-07), pages 364-365, XP031649913, ISBN: 978-1-4244-6033-5 . Both approaches need additional replica of the voltage controlled oscillator based on phase locked loop to control local oscillator frequency.
  • US 2002/113660 A1 describes an injection-locked ring oscillator.
  • the present invention aims at providing a clock and data recovery circuit, which operates using an injection locked oscillator.
  • the claimed structure of a clock and data recovery circuit comprises an injection locked oscillator configured to generate a recovered clock signal, a pulse generator coupled to the injection locked oscillator and configured to generate a pulse signal according to input data for controlling the injection locked oscillator, and a sampler coupled to the input data and the injection locked oscillator and configured to sample the input data according to the recovered clock signal.
  • the injection locked oscillator comprises a two stage ring oscillator and an injection switch coupled to the two stage ring oscillator and configured to control injection strength of the two stage ring oscillator.
  • the claimed method of operation of a clock and data recovery comprises an injection locked oscillator generating a recovered clock signal, a pulse generator generating a pulse signal according to input data for controlling injection locked oscillator, a skew compensation block compensating for the input data and generating compensated data, and a sampler sampling the compensated data according to the recovered clock signal.
  • FIG.3 illustrates a clock and data recovery circuit 100 which illustrates the present invention.
  • the clock and data recovery circuit 100 may comprise a skew compensation block 101, a sampler 102, a pulse generator 103, and an injection locked oscillator 104.
  • the injection locked oscillator 104 may be configured to generate a recovered clock signal.
  • the injection locked oscillator 104 may comprise a two stage ring oscillator and an injection switch 104c.
  • the injection switch 104c may be coupled to the two stage ring oscillator and may be configured to control injection strength of the two stage ring oscillator.
  • the first terminal of the injection switch 104c may be coupled to a first output terminal CK0 of a first ring oscillator stage 104a of the two stage ring oscillator and a first input terminal of a second ring oscillator stage 104b of the two stage ring oscillator.
  • the second terminal of the injection switch 104c may be coupled to a second output terminal CK180 of the first ring oscillator stage 104a of the two stage ring oscillator and a second input terminal of the second ring oscillator stage 104b of the two stage ring oscillator.
  • the control terminal of the injection switch 104c may be coupled to the pulse generator 103.
  • the injection switch 104c may have a programmable gain to control the injection strength of the injection locked oscillator 104. By calibrating the gain, the target bandwidth of the injection locked oscillator 104 may be found.
  • the pulse generator 103 may be coupled to the injection locked oscillator 104 and may be configured to generate a pulse signal PL according to input data DIN for controlling injection locked oscillator 104.
  • the skew compensation block 101 may be coupled to the pulse generator 103 and configured to compensate the input data DIN and generate compensated data IND.
  • the sampler 102 may be coupled to the skew compensation block 102 and a first output terminal CK270 and a second output terminal CK90 of the second ring oscillator stage 104b of the injection locked oscillator 104 and may be configured to sample the compensated data IND according to the recovered clock signal.
  • FIG.4 illustrates a circuit block diagram of one of a ring oscillator stage 104a and 104b of the two stage ring oscillator in FIG.3 .
  • a ring oscillator stage 104a and 104b may comprise of a plurality of delay cells 401, 402, 403, and 404.
  • the first delay cell 401 may have an input terminal and an output terminal.
  • the second delay cell 402 may have an input terminal coupled to the output terminal of the first delay cell 401 and an output terminal.
  • the third delay cell 403 may have an input terminal coupled to the output terminal of the second delay cell 402 and an output terminal coupled to the output terminal of the first delay cell 401.
  • the fourth delay cell 404 may have an input terminal and an output terminal coupled to the input terminal of the third delay cell 403.
  • the input terminal of the second delay cell 402 may be the negative output terminal ON of the ring oscillator stage 104a and 104b and the output terminal of the second delay cell 402 may be the positive output terminal OP of the ring oscillator stage 104a and 104b.
  • the input terminal of the first delay cell 401 may be the positive input terminal IP of the ring oscillator stage 104a and 104b.
  • the input terminal of the fourth delay cell 404 may be the negative input terminal IN of the ring oscillator stage 104a and 104b.
  • FIG.5 illustrates a circuit block diagram of the pulse generator 103 in FIG.3 .
  • the pulse generator 103 may generate a pulse signal PL according to the rising edge and/or the falling edge of the input data DIN.
  • the pulse generator 103 may comprise a delay cell 502 and a XOR gate 501.
  • the XOR gate 501 may have two input terminals and one output terminal.
  • the input data DIN may be inputted into the delay cell 502 and an input terminal of the XOR gate 501.
  • the output of the delay cell 502 may be inputted to another input terminal of the XOR gate 501.
  • the pulse signal PL may then be generated on the output of the XOR gate 501.
  • FIG.6 illustrates a circuit block diagram of the skew compensation block 101 in FIG.3 .
  • the skew compensation block 101 may comprise a XOR gate 601.
  • the XOR gate 601 may have two input terminals and one output terminal.
  • the input data DIN may be inputted into an input terminal of the XOR gate 601.
  • a ground signal may be inputted to another input terminal of the XOR gate 501.
  • the compensated data IND may then be generated on the output of the XOR gate 601.
  • FIG.7 illustrates an injection locking behavior of the clock and data recovery circuit 100 in FIG.3 .
  • the phase error may be defined as a phase difference between the pulse signal PL and a cross point of the two stage ring oscillator.
  • the phase error may be greater than 0, the input data DIN lags the ring oscillator signal, the nodes of the ring oscillator signal may be pulled together and the period of the ring oscillator signal may be prolonged according to the pulse signal PL.
  • the phase error may be equal to 0 because the pulse signal PL coincides with crossing point of the nodes of the ring oscillator signal. Thus, the period of the ring oscillator signal may not be affected.
  • the phase error may be less than 0, the pulse signal PL may pull the nodes of ring oscillator signal together and reduce the period of the ring oscillator.
  • the phase error may be equal to pi ( ⁇ ) having the ring oscillator signal at maximum voltage and/or minimum voltage pulled together according to the pulse signal PL and the ring oscillator signal may not be affected.
  • FIG.8 illustrates a plot of correction phase versus phase error according to the injection locking behavior in FIG.7 .
  • the correction ⁇ cor may be linear with the phase error ⁇ err .
  • the correction ⁇ cor may be saturated at larger phase error ⁇ err .
  • the correction ⁇ cor may be zero when phase error ⁇ err is pi ( ⁇ ).
  • the pulse signal PL may be aligned with edge of the ring oscillator signal. If the oscillation frequency of the ring oscillator signal is half of the input data rate, (i.e. half rate clock and data recovery circuit), the signal at the second output terminals of the ring oscillator stages 104a and 104b may align with center of data except for the delay of the pulse generator 103.
  • the skew compensation block 101 may be used to compensate for the delay of the pulse generator 103.
  • the injection lock clock and data recovery circuit 100 may be suited for a half rate operation.
  • FIG.9 illustrates a timing diagram of a full rate injection lock clock and data recovery (i.e. period of the ring oscillator signal equals full data rate). Because of full rate operation, two lock states may be possible. In both cases, data transitions align with the zero crossing of the signal at the first output terminal and the second output terminal of the first ring oscillator stages 104a.
  • FIG.10 illustrates the associated pulse detection (PD) output plot. The two lock points separate only 0.5 unit interval (UI) along phase error axis. If there is jitter amplitude larger than ⁇ 0.25 unit interval clock and data recovery may lock to another equilibrium point and produce wrong data.
  • UI unit interval
  • the distance between two lock points may be 1 unit interval and may be able to tolerate a maximum ⁇ 0.5 unit interval jitter.
  • the use of a half rate clock and data recovery may be better than the use of a full rate clock and data recovery.
  • the two stage ring oscillator may be best suited for injection locked clock and data recovery application.
  • FIG.11 illustrates a waveform of a four stage ring oscillator and two stage ring oscillator of a half rate clock and data recovery.
  • the ring oscillator node may spend more time staying at maximum / minimum voltage where there is no injection gain.
  • the linear range spans at most ⁇ 0.25 Ul as compared to ⁇ 0.5 UI of the two stage ring oscillator.
  • the shrunk linear range results in null loop response when jitter lies outside ⁇ 0.25 UI.
  • the use of a two stage ring oscillator may be more suitable for injection locked clock and data recovery application as compared to a four stage ring oscillator.
  • the oscillation frequency of the ring oscillator may be assumed to be half of the input data rate. If there is a frequency offset between the oscillation frequency of the ring oscillator and input data rate, steady state phase offset and data jitter may be developed between recovered clock and input data to degrade timing margin of the sampler. If the frequency offset is greater than a predetermined threshold, the clock and data recovery may lose lock. Therefore, it is important to track the natural oscillation frequency of the ring oscillator to input data rate against temperature and voltage variation.
  • PLL phase locked loop
  • FIG.12 illustrates a waveform representing the operation principle of the two stage ring oscillator of the clock and data recovery 100 in FIG.3 .
  • voltage VSHCK0 at the terminal CK0 of the two stage ring oscillator may be greater than voltage VSHCK180 at the terminal CK180 of the two stage ring oscillator during odd cycle and voltage VSHCK0 at the terminal CK0 of the two stage ring oscillator may be less than voltage VSHCK180 at the terminal CK180 of the two stage ring oscillator during even cycle.
  • voltage VSHCK0 at the terminal CK0 of the two stage ring oscillator may be less than voltage VSHCK180 at the terminal CK180 of the two stage ring oscillator during odd cycle and voltage VSHCK0 at the terminal CK0 of the two stage ring oscillator may be greater than voltage VSHCK180 at the terminal CK180 of the two stage ring oscillator during even cycle.
  • the voltage VSHCK0 at the terminal CK0 of the two stage ring oscillator may be equal to the voltage VSHCK180 at the terminal CK180 of the two stage ring oscillator.
  • the waveform of the ring oscillator may be sampled and hold in capacitors according to data transition during even cycles or odd cycles.
  • FIG.13 illustrates a clock and data recovery circuit 200 according to an embodiment of the present invention.
  • the clock and data recovery circuit 200 further comprises a frequency lock loop 210.
  • the frequency locked loop 210 may comprise a multiplexed (Mux) sample and hold (S/H) circuit 310 and a loop filter 300.
  • the multiplexed sample and hold circuit 310 may sample voltages of the terminal CK0 and the terminal CK180 of the two stage ring oscillator according to the pulse signal PL while injection locking the clock and data recovery circuit 200 and store the sampled voltage in a capacitor according to the even cycle or the odd cycle of the two stage ring oscillator.
  • the sampled voltages are coupled to the loop filter 300 and the output of loop filter 300 may be a control voltage Vctrl used to control the ring oscillator frequency in a negative feedback way. Therefore, the ring oscillator frequency may be tracked to maintain a frequency of half the input data rate continuously.
  • FIG. 14 illustrates a multiplexed sample and hold circuit 310 according to an embodiment of the present invention.
  • the sampled voltage is multiplexed through a positive sample terminal SP or a negative sample terminal SN of the multiplexed sample and hold circuit 310 according signals CKOP and CKOPB.
  • the signals CKOP and CKOPB may correspond to the polarity of the signals from the terminal CK90 and the terminal CK270 respectively.
  • FIG. 15 illustrates a multiplexed sample and hold circuit 310 according to another embodiment of the present invention.
  • the pulse signal PL may be multiplexed by the signal CKOP before coupling to the sample switch. There may only one series switch between the terminal CK0 or the terminal CK180 and a positive sample terminal SP or a negative sample terminal SN.
  • Fig 16 illustrates an embodiment of a loop filter 300 of the frequency locked loop 210 of the clock and data recovery circuit 200 in FIG.13 .
  • the loop filter 300 may be an analog transconductance capacitance filter.
  • the loop filter 300 may comprise a transconductance amplifier gm and a capacitor c1.
  • the transconductance amplifier gm may have a first input terminal coupled to the positive sample terminal SP, a second input terminal coupled to the negative sample terminal SN and an output terminal where a control voltage Vctrl may be outputted and used to control the frequency of the two stage ring oscillator.
  • the capacitor c1 may have a first terminal coupled to the output terminal and a second terminal coupled to the ground.
  • the tranconductance value and capacitance value may be calculated such that the bandwidth of the loop filter 300 may be low enough to avoid disturbing the injection locking of the clock and data recovery circuit 300.
  • FIG. 17 illustrates another embodiment of the loop filter 300 of frequency locked loop 210 of the clock and data recovery circuit 200 in FIG.13 .
  • the loop filter 300 of frequency locked loop 210 may use a digital approach.
  • the loop filter 300 may comprise an anti-aliasing filter (AAF) 311, a comparator 312, counter 313, and a digital to analog converter (DAC) 314.
  • AAF anti-aliasing filter
  • DAC digital to analog converter
  • the comparator 312, the counter 313 and the digital to analog converter (DAC) 314 may be coupled to a clock signal CLK.
  • the results of the multiplexed sample and hold circuit 310 may be filtered by the anti-aliasing filter 311, compared and integrated by the counter 312 and outputted to the digital-to-analog converter 314.
  • the digital-to-analog converter 314 may output the control voltage Vctrl used to control the frequency of the ring oscillator in a negative feedback.
  • the bandwidth of the frequency lock loop 310 may be low enough to avoid disturbing the injection locking of the clock and data recovery circuit 300.
  • FIG. 18 illustrates a clock and data recovery circuit 400 according to another embodiment of the present invention.
  • the clock and data recovery circuit 400 further comprises a delay lock loop 410.
  • the delay lock loop 410 may comprise of at least one delay adjustment circuits 411 or 412, an edge sampler 413, a bang-bang phase detector (BBPD) 414 and a counter 415.
  • the delay adjustment circuit 411 may be coupled to the skew compensation block 101 and the delay adjustment circuit 412 may be coupled to the pulse generator 103.
  • the delay locked loop 410 may have a bandwidth that is low enough to avoid disturbing injection lock of the clock and data recovery circuit but is fast enough to track optimum sampling point under voltage and temperature variation in a continuous locking process.
  • FIG.19 illustrates a method of operation of the clock and data recovery circuit 100 in FIG.3 .
  • the method may include but is not limited to the following steps: Step 601: An injection locked oscillator generates a recovered clock signal; Step 602: A pulse generator generates a pulse signal according to input data for controlling injection locked oscillator; Step 603: A skew compensation block compensates for the input data and generating compensated data; and Step 604: A sampler sampling the compensated data according to the recovered clock signal.
  • the method of operation of the clock and data recovery circuit 100 may further comprise of a frequency locked loop correcting a frequency error of the injection locked oscillator, or a delay locked loop finding an optimal sampling point of the recovered data.
  • the frequency locked loop may detect the frequency error between the injection locked oscillator and incoming data rate by a sample and hold circuit sampling a voltage of an injected terminal of the ring oscillator and storing the voltage in a hold capacitor according to even or odd cycle of the ring oscillator.
  • the frequency error is further inputted to loop filter and control ring oscillator in negative feedback.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

    Field of the Invention
  • The present invention discloses a clock and data recovery circuit, and more particularly, a clock and data recovery circuit operating using an injection locked oscillator. In particular, the present invention discloses a clock and data recovery cicuit and a method of operation of a clock and data recovery circuit according to the pre-characterizing parts of independent claims 1 and 7, respectively. Such a circuit and method are respectively shown in US 2011/316600 A1 and US 2013/216003 A1 .
  • Background of the Invention
  • A digital data communication protocol uses a data that carries both the data stream and a data clock on a single channel. In this protocol, the receiving circuit includes a clock and data recovery (CDR) circuit which produces a recovered clock, based on a local reference clock that has a frequency close to the clock carried in the data. The receiving circuit uses the recovered clock to set sampling times for sampling the data on the channel. Phase differences between the recovered clock and the data can be detected and used as feedback in the generation of the recovered clock.
  • Some applications need burst mode operation, i.e. the lock-in time should be within several tens of bits. Traditional burst mode CDR use gated voltage controlled oscillator (GVCO) to achieve instant locking. FIG.1 illustrates a burst mode CDR according to an embodiment of a prior art. However, the absolute phase alignment with input data may amplify high frequency jitter of input data and degrade timing margin of the CDR. FIG.2 illustrates an injection lock CDR suitable for burst mode operation with a complicated injection scheme as shown in MARUKO K ET AL: "Burst-mode CDR using dual-edge injection-locked oscillator", SOLID-STATE CIRCUITS CONFERENCE DIGEST OF TECHNICAL PAPERS (ISSCC), 2010 IEEE INTERNATIONAL, IEEE, PISCATAWAY, NJ, USA, 7 February 2010 (2010-02-07), pages 364-365, XP031649913, ISBN: 978-1-4244-6033-5. Both approaches need additional replica of the voltage controlled oscillator based on phase locked loop to control local oscillator frequency.
  • Further, US 2002/113660 A1 describes an injection-locked ring oscillator.
  • Summary of the Invention
  • The present invention aims at providing a clock and data recovery circuit, which operates using an injection locked oscillator.
  • This is achieved by a clock and data recovery circuit according to the claims here below. The dependent claims pertain to corresponding further developments and improvements.
  • As will be seen more clearly from the detailed description following below, the claimed structure of a clock and data recovery circuit comprises an injection locked oscillator configured to generate a recovered clock signal, a pulse generator coupled to the injection locked oscillator and configured to generate a pulse signal according to input data for controlling the injection locked oscillator, and a sampler coupled to the input data and the injection locked oscillator and configured to sample the input data according to the recovered clock signal. The injection locked oscillator comprises a two stage ring oscillator and an injection switch coupled to the two stage ring oscillator and configured to control injection strength of the two stage ring oscillator.
  • As will be seen more clearly from the detailed description following below, the claimed method of operation of a clock and data recovery comprises an injection locked oscillator generating a recovered clock signal, a pulse generator generating a pulse signal according to input data for controlling injection locked oscillator, a skew compensation block compensating for the input data and generating compensated data, and a sampler sampling the compensated data according to the recovered clock signal.
  • Brief Description of the Drawings
  • In the following, the invention is further illustrated by way of example, taking reference to the accompanying drawings. Thereof
    • FIG.1 is a burst mode a clock and data recovery (CDR) circuit according to an embodiment of a prior art;
    • FIG.2 is an injection lock a clock and data recovery circuit suitable for burst mode operation with a complicated injection scheme;
    • FIG.3 is a clock and data recovery circuit which illustrates the present invention;
    • FIG.4 is a circuit block diagram of one of a ring oscillator stage of the two stage ring oscillator in FIG.3;
    • FIG.5 is a circuit block diagram of the pulse generator in FIG.3;
    • FIG.6 is a circuit block diagram of the skew compensation block in FIG.3;
    • FIG.7 is an injection locking behavior of the clock and data recovery circuit in FIG.3;
    • FIG.8 is a plot of correction phase versus phase error according to the injection locking behavior in FIG.7;
    • FIG.9 is a timing diagram of a full rate injection lock clock and data recovery;
    • FIG.10 is the associated pulse detection (PD) output plot;
    • FIG.11 is a waveform of a four stage ring oscillator and two stage ring oscillator of a half rate clock and data recovery;
    • FIG.12 is a waveform representing the operation principle of the two stage ring oscillator of the clock and data recovery in FIG.3;
    • FIG.13 is a clock and data recovery circuit according to an embodiment of the present invention;
    • FIG. 14 is a multiplexed sample and hold circuit according to an embodiment of the present invention;
    • FIG. 15 is a multiplexed sample and hold circuit according to another embodiment of the present invention;
    • FIG.16 is an embodiment of a loop filter of the frequency lock loop of the clock and data recovery circuit in FIG.13;
    • FIG.17 is another embodiment of the loop filter of frequency locked loop of the clock and data recovery circuit in FIG.13;
    • FIG.18 is a clock and data recovery circuit according to another embodiment of the present invention;
    • FIG.19 is a method of operation of the clock and data recovery circuit in FIG.3.
    Detailed Description
  • FIG.3 illustrates a clock and data recovery circuit 100 which illustrates the present invention. The clock and data recovery circuit 100 may comprise a skew compensation block 101, a sampler 102, a pulse generator 103, and an injection locked oscillator 104. The injection locked oscillator 104 may be configured to generate a recovered clock signal. The injection locked oscillator 104 may comprise a two stage ring oscillator and an injection switch 104c. The injection switch 104c may be coupled to the two stage ring oscillator and may be configured to control injection strength of the two stage ring oscillator. The first terminal of the injection switch 104c may be coupled to a first output terminal CK0 of a first ring oscillator stage 104a of the two stage ring oscillator and a first input terminal of a second ring oscillator stage 104b of the two stage ring oscillator. The second terminal of the injection switch 104c may be coupled to a second output terminal CK180 of the first ring oscillator stage 104a of the two stage ring oscillator and a second input terminal of the second ring oscillator stage 104b of the two stage ring oscillator. The control terminal of the injection switch 104c may be coupled to the pulse generator 103. The injection switch 104c may have a programmable gain to control the injection strength of the injection locked oscillator 104. By calibrating the gain, the target bandwidth of the injection locked oscillator 104 may be found. The pulse generator 103 may be coupled to the injection locked oscillator 104 and may be configured to generate a pulse signal PL according to input data DIN for controlling injection locked oscillator 104. The skew compensation block 101 may be coupled to the pulse generator 103 and configured to compensate the input data DIN and generate compensated data IND. The sampler 102 may be coupled to the skew compensation block 102 and a first output terminal CK270 and a second output terminal CK90 of the second ring oscillator stage 104b of the injection locked oscillator 104 and may be configured to sample the compensated data IND according to the recovered clock signal.
  • FIG.4 illustrates a circuit block diagram of one of a ring oscillator stage 104a and 104b of the two stage ring oscillator in FIG.3. A ring oscillator stage 104a and 104b may comprise of a plurality of delay cells 401, 402, 403, and 404. The first delay cell 401 may have an input terminal and an output terminal. The second delay cell 402 may have an input terminal coupled to the output terminal of the first delay cell 401 and an output terminal. The third delay cell 403 may have an input terminal coupled to the output terminal of the second delay cell 402 and an output terminal coupled to the output terminal of the first delay cell 401. The fourth delay cell 404 may have an input terminal and an output terminal coupled to the input terminal of the third delay cell 403. The input terminal of the second delay cell 402 may be the negative output terminal ON of the ring oscillator stage 104a and 104b and the output terminal of the second delay cell 402 may be the positive output terminal OP of the ring oscillator stage 104a and 104b. The input terminal of the first delay cell 401 may be the positive input terminal IP of the ring oscillator stage 104a and 104b. The input terminal of the fourth delay cell 404 may be the negative input terminal IN of the ring oscillator stage 104a and 104b.
  • FIG.5 illustrates a circuit block diagram of the pulse generator 103 in FIG.3. The pulse generator 103 may generate a pulse signal PL according to the rising edge and/or the falling edge of the input data DIN. The pulse generator 103 may comprise a delay cell 502 and a XOR gate 501. The XOR gate 501 may have two input terminals and one output terminal. The input data DIN may be inputted into the delay cell 502 and an input terminal of the XOR gate 501. The output of the delay cell 502 may be inputted to another input terminal of the XOR gate 501. The pulse signal PL may then be generated on the output of the XOR gate 501.
  • FIG.6 illustrates a circuit block diagram of the skew compensation block 101 in FIG.3. The skew compensation block 101 may comprise a XOR gate 601. The XOR gate 601 may have two input terminals and one output terminal. The input data DIN may be inputted into an input terminal of the XOR gate 601. A ground signal may be inputted to another input terminal of the XOR gate 501. The compensated data IND may then be generated on the output of the XOR gate 601.
  • FIG.7 illustrates an injection locking behavior of the clock and data recovery circuit 100 in FIG.3. The phase error may be defined as a phase difference between the pulse signal PL and a cross point of the two stage ring oscillator. For case A, the phase error may be greater than 0, the input data DIN lags the ring oscillator signal, the nodes of the ring oscillator signal may be pulled together and the period of the ring oscillator signal may be prolonged according to the pulse signal PL. For case B, the phase error may be equal to 0 because the pulse signal PL coincides with crossing point of the nodes of the ring oscillator signal. Thus, the period of the ring oscillator signal may not be affected. For case C, the phase error may be less than 0, the pulse signal PL may pull the nodes of ring oscillator signal together and reduce the period of the ring oscillator. For case D, the phase error may be equal to pi (π) having the ring oscillator signal at maximum voltage and/or minimum voltage pulled together according to the pulse signal PL and the ring oscillator signal may not be affected. FIG.8 illustrates a plot of correction phase versus phase error according to the injection locking behavior in FIG.7. For a small phase error φerr, the correction φcor may be linear with the phase error φerr. The correction φcor may be saturated at larger phase error φerr. And the correction φcor may be zero when phase error φerr is pi (π).
  • At equilibrium, the pulse signal PL may be aligned with edge of the ring oscillator signal. If the oscillation frequency of the ring oscillator signal is half of the input data rate, (i.e. half rate clock and data recovery circuit), the signal at the second output terminals of the ring oscillator stages 104a and 104b may align with center of data except for the delay of the pulse generator 103. The skew compensation block 101 may be used to compensate for the delay of the pulse generator 103.
  • According to the embodiment, the injection lock clock and data recovery circuit 100 may be suited for a half rate operation. FIG.9 illustrates a timing diagram of a full rate injection lock clock and data recovery (i.e. period of the ring oscillator signal equals full data rate). Because of full rate operation, two lock states may be possible. In both cases, data transitions align with the zero crossing of the signal at the first output terminal and the second output terminal of the first ring oscillator stages 104a. FIG.10 illustrates the associated pulse detection (PD) output plot. The two lock points separate only 0.5 unit interval (UI) along phase error axis. If there is jitter amplitude larger than ±0.25 unit interval clock and data recovery may lock to another equilibrium point and produce wrong data. As for the half rate clock and data recovery, the distance between two lock points may be 1 unit interval and may be able to tolerate a maximum ±0.5 unit interval jitter. Thus, the use of a half rate clock and data recovery may be better than the use of a full rate clock and data recovery.
  • According to the embodiment, the two stage ring oscillator may be best suited for injection locked clock and data recovery application. FIG.11 illustrates a waveform of a four stage ring oscillator and two stage ring oscillator of a half rate clock and data recovery. For the four stage ring oscillator, the ring oscillator node may spend more time staying at maximum / minimum voltage where there is no injection gain. The linear range spans at most ±0.25 Ul as compared to ±0.5 UI of the two stage ring oscillator. The shrunk linear range results in null loop response when jitter lies outside ±0.25 UI. Thus the use of a two stage ring oscillator may be more suitable for injection locked clock and data recovery application as compared to a four stage ring oscillator.
  • In the above description, the oscillation frequency of the ring oscillator may be assumed to be half of the input data rate. If there is a frequency offset between the oscillation frequency of the ring oscillator and input data rate, steady state phase offset and data jitter may be developed between recovered clock and input data to degrade timing margin of the sampler. If the frequency offset is greater than a predetermined threshold, the clock and data recovery may lose lock. Therefore, it is important to track the natural oscillation frequency of the ring oscillator to input data rate against temperature and voltage variation. Prior art uses a phase locked loop (PLL) with a replica of the ring oscillator to track frequency which may be power and area consuming.
  • The relationship between the frequency of incoming data and the ring oscillator may be illustrated by comparing the waveform of the ring oscillator at the instant of data transition. Because the ring oscillator oscillates in half rate frequency, the relationship may depend on data transition in odd or even cycle of the ring oscillator. FIG.12 illustrates a waveform representing the operation principle of the two stage ring oscillator of the clock and data recovery 100 in FIG.3. When half rate of the input data DIN is larger than the frequency of the ring oscillator (dF>0), voltage VSHCK0 at the terminal CK0 of the two stage ring oscillator may be greater than voltage VSHCK180 at the terminal CK180 of the two stage ring oscillator during odd cycle and voltage VSHCK0 at the terminal CK0 of the two stage ring oscillator may be less than voltage VSHCK180 at the terminal CK180 of the two stage ring oscillator during even cycle. When half rate of input data DIN is smaller than the frequency (dF<0) of the ring oscillator, voltage VSHCK0 at the terminal CK0 of the two stage ring oscillator may be less than voltage VSHCK180 at the terminal CK180 of the two stage ring oscillator during odd cycle and voltage VSHCK0 at the terminal CK0 of the two stage ring oscillator may be greater than voltage VSHCK180 at the terminal CK180 of the two stage ring oscillator during even cycle. When half data rate is equal to the frequency of the ring oscillator, the voltage VSHCK0 at the terminal CK0 of the two stage ring oscillator may be equal to the voltage VSHCK180 at the terminal CK180 of the two stage ring oscillator. The waveform of the ring oscillator may be sampled and hold in capacitors according to data transition during even cycles or odd cycles.
  • FIG.13 illustrates a clock and data recovery circuit 200 according to an embodiment of the present invention. Aside from components comprising the clock and data recovery circuit 100, the clock and data recovery circuit 200 further comprises a frequency lock loop 210. The frequency locked loop 210 may comprise a multiplexed (Mux) sample and hold (S/H) circuit 310 and a loop filter 300. The multiplexed sample and hold circuit 310 may sample voltages of the terminal CK0 and the terminal CK180 of the two stage ring oscillator according to the pulse signal PL while injection locking the clock and data recovery circuit 200 and store the sampled voltage in a capacitor according to the even cycle or the odd cycle of the two stage ring oscillator. The sampled voltages are coupled to the loop filter 300 and the output of loop filter 300 may be a control voltage Vctrl used to control the ring oscillator frequency in a negative feedback way. Therefore, the ring oscillator frequency may be tracked to maintain a frequency of half the input data rate continuously.
  • FIG. 14 illustrates a multiplexed sample and hold circuit 310 according to an embodiment of the present invention. The sampled voltage is multiplexed through a positive sample terminal SP or a negative sample terminal SN of the multiplexed sample and hold circuit 310 according signals CKOP and CKOPB. The signals CKOP and CKOPB may correspond to the polarity of the signals from the terminal CK90 and the terminal CK270 respectively. There may be a total of two series switch between the terminal CK0 or the terminal CK180 and positive sample terminal SP or a negative sample terminal SN.
  • FIG. 15 illustrates a multiplexed sample and hold circuit 310 according to another embodiment of the present invention. The pulse signal PL may be multiplexed by the signal CKOP before coupling to the sample switch. There may only one series switch between the terminal CK0 or the terminal CK180 and a positive sample terminal SP or a negative sample terminal SN.
  • Fig 16 illustrates an embodiment of a loop filter 300 of the frequency locked loop 210 of the clock and data recovery circuit 200 in FIG.13.The loop filter 300 may be an analog transconductance capacitance filter. The loop filter 300 may comprise a transconductance amplifier gm and a capacitor c1. The transconductance amplifier gm may have a first input terminal coupled to the positive sample terminal SP, a second input terminal coupled to the negative sample terminal SN and an output terminal where a control voltage Vctrl may be outputted and used to control the frequency of the two stage ring oscillator. The capacitor c1 may have a first terminal coupled to the output terminal and a second terminal coupled to the ground. The tranconductance value and capacitance value may be calculated such that the bandwidth of the loop filter 300 may be low enough to avoid disturbing the injection locking of the clock and data recovery circuit 300.
  • FIG. 17 illustrates another embodiment of the loop filter 300 of frequency locked loop 210 of the clock and data recovery circuit 200 in FIG.13. The loop filter 300 of frequency locked loop 210 may use a digital approach. The loop filter 300 may comprise an anti-aliasing filter (AAF) 311, a comparator 312, counter 313, and a digital to analog converter (DAC) 314. The comparator 312, the counter 313 and the digital to analog converter (DAC) 314 may be coupled to a clock signal CLK. The results of the multiplexed sample and hold circuit 310 may be filtered by the anti-aliasing filter 311, compared and integrated by the counter 312 and outputted to the digital-to-analog converter 314. The digital-to-analog converter 314 may output the control voltage Vctrl used to control the frequency of the ring oscillator in a negative feedback. The bandwidth of the frequency lock loop 310 may be low enough to avoid disturbing the injection locking of the clock and data recovery circuit 300.
  • FIG. 18 illustrates a clock and data recovery circuit 400 according to another embodiment of the present invention. Aside from components of the clock and data recovery circuit 100, the clock and data recovery circuit 400 further comprises a delay lock loop 410. The delay lock loop 410 may comprise of at least one delay adjustment circuits 411 or 412, an edge sampler 413, a bang-bang phase detector (BBPD) 414 and a counter 415. The delay adjustment circuit 411 may be coupled to the skew compensation block 101 and the delay adjustment circuit 412 may be coupled to the pulse generator 103. The delay locked loop 410 may have a bandwidth that is low enough to avoid disturbing injection lock of the clock and data recovery circuit but is fast enough to track optimum sampling point under voltage and temperature variation in a continuous locking process.
  • FIG.19 illustrates a method of operation of the clock and data recovery circuit 100 in FIG.3. The method may include but is not limited to the following steps:
    Step 601: An injection locked oscillator generates a recovered clock signal;
    Step 602: A pulse generator generates a pulse signal according to input data for controlling injection locked oscillator;
    Step 603: A skew compensation block compensates for the input data and generating compensated data; and
    Step 604: A sampler sampling the compensated data according to the recovered clock signal.
  • The method of operation of the clock and data recovery circuit 100 may further comprise of a frequency locked loop correcting a frequency error of the injection locked oscillator, or a delay locked loop finding an optimal sampling point of the recovered data.
  • The frequency locked loop may detect the frequency error between the injection locked oscillator and incoming data rate by a sample and hold circuit sampling a voltage of an injected terminal of the ring oscillator and storing the voltage in a hold capacitor according to even or odd cycle of the ring oscillator. The frequency error is further inputted to loop filter and control ring oscillator in negative feedback.

Claims (10)

  1. A clock and data recovery circuit (100), comprising:
    an injection locked oscillator (104) configured to generate a recovered clock signal, the injection locked oscillator (104) comprising:
    an oscillator (104a, 104b); and
    an injection switch (104c) coupled to the oscillator (104a, 104b);
    a pulse generator (103) coupled to the injection locked oscillator (104) and configured to generate a pulse signal (PL) according to input data (DIN) for controlling the injection locked oscillator (104);
    a sampler (102) coupled to the input data (DIN) and the injection locked oscillator (104) and configured to sample the input data (DIN) according to the recovered clock signal; and
    a frequency locked loop (210) coupled to the injection locked oscillator (104) and configured to correct a frequency error in the injection locked oscillator;
    characterized in that
    the oscillator is a two stage ring oscillator; and
    the frequency locked loop (210) comprises:
    a sample and hold circuit (310) coupled to the pulse generator and the injection locked oscillator and configured to sample a voltage of an injection terminal of the injection locked oscillator (104) and store the voltage in a hold capacitor according to an even cycle or an odd cycle of the injection locked oscillator (104); and
    a loop filter (300) configured to receive a voltage from the sample and hold circuit (310) and generate a control voltage (Vctrl) to control the injection lock oscillator (104); the loop filter (300) further controls the bandwidth of the frequency locked loop (210) such that the bandwidth of the frequency locked loop (210) is low enough to avoid disturbing injection locking of the clock and data recovery circuit (100).
  2. The circuit (100) of claim 1, further characterized by:
    a skew compensation block (101) coupled to the input data (DIN) and configured to compensate the input data (DIN) and generate compensated data (IND) to be sampled by the sampler (102).
  3. The circuit (100) of any of claims 1 or 2, further characterized in that the two stage ring oscillator (104a, 104b) operates at half of an incoming data rate.
  4. The circuit (100) of any of claims 1 to 3, further characterized by:
    a delay locked loop (410) coupled to the injection locked oscillator (104) and configured to find an optimal sampling point of the recovered data;
    wherein bandwidth of the delay locked loop (410) is low enough to avoid disturbing injection locking of the clock and data recovery circuit (100).
  5. The circuit (100) of any of claims 1 to 4, further characterized in that the two stage ring oscillator (104a, 104b) comprises:
    a first oscillator stage (104a) having a first input terminal, a second input terminal, a first output terminal, and a second output terminal; and
    a second oscillator stage (104b) having a first input terminal coupled to the first output terminal of the first oscillator stage (104a), a second input terminal coupled to the second output terminal of the first oscillator stage (104a), a first output terminal coupled to the second input terminal of the first oscillator stage (104a), and a second output terminal coupled to the first input terminal of the first oscillator stage (104a).
  6. The circuit (100) of claim 5, further characterized in that each oscillator stage (104a, 104b) of the two stage ring oscillator (104a, 104b) comprises:
    a first delay cell (401) having an input terminal and an output terminal;
    a second delay cell (402) having an input terminal and an output terminal;
    a third delay cell (403) having:
    an input terminal coupled to the output terminal of the second delay cell (402); and
    an output terminal coupled to the output terminal of the first delay cell (401); and
    a fourth delay cell (404) having:
    an input terminal coupled to the output terminal of the first delay cell (401); and
    an output terminal coupled to the output terminal of the second delay cell (402).
  7. A method of operation of a clock and data recovery circuit (100), characterized by:
    an injection locked oscillator (104) generating a recovered clock signal;
    a pulse generator (103) generating a pulse signal (PL) according to input data (DIN) for controlling the injection locked oscillator (104);
    a sampler (102) sampling the input data according to the recovered clock signal; and
    a frequency locked loop (210) correcting a frequency error of the injection locked oscillator (104);
    characterized in that
    the frequency locked loop (310) correcting a frequency error of the injection locked oscillator (104) comprises:
    a sample and hold circuit (310) sampling a frequency from the injection locked oscillator (104) and storing the frequency in a hold capacitor of the sample and hold circuit (310); and
    a loop filter (300) receiving a voltage from the sample and hold circuit (310) and generating a control voltage (Vctrl) to control the injection lock oscillator (104).
  8. The method of claim 7, further characterized by:
    a skew compensation block (101) compensating the input data (DIN).
  9. The method of any of claims 7 or 8, further characterized by:
    a delay locked loop (410) finding an optimal sampling point of the recovered data (IND).
  10. The method of claim 9, further characterized in that the delay locked loop (410) operates at a lower clock frequency than the injection locked oscillator (104).
EP15160343.8A 2014-03-24 2015-03-23 Clock and data recovery circuit using an injection locked oscillator Active EP2933924B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461969270P 2014-03-24 2014-03-24
US14/658,256 US9432178B2 (en) 2014-03-24 2015-03-16 Clock and data recovery circuit using an injection locked oscillator

Publications (2)

Publication Number Publication Date
EP2933924A1 EP2933924A1 (en) 2015-10-21
EP2933924B1 true EP2933924B1 (en) 2018-08-15

Family

ID=52736890

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15160343.8A Active EP2933924B1 (en) 2014-03-24 2015-03-23 Clock and data recovery circuit using an injection locked oscillator

Country Status (3)

Country Link
US (2) US9432178B2 (en)
EP (1) EP2933924B1 (en)
CN (1) CN105099447B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8836394B2 (en) * 2012-03-26 2014-09-16 Rambus Inc. Method and apparatus for source-synchronous signaling
US9825597B2 (en) 2015-12-30 2017-11-21 Skyworks Solutions, Inc. Impedance transformation circuit for amplifier
US10062670B2 (en) 2016-04-18 2018-08-28 Skyworks Solutions, Inc. Radio frequency system-in-package with stacked clocking crystal
US10171053B2 (en) 2016-05-05 2019-01-01 Skyworks Solutions, Inc. Apparatus and methods for power amplifiers with an injection-locked oscillator driver stage
KR102469786B1 (en) * 2016-06-21 2022-11-23 에스케이하이닉스 주식회사 Injection-locked oscillator and semiconductor device including the same
US10419246B2 (en) 2016-08-31 2019-09-17 Qualcomm Incorporated C-PHY training pattern for adaptive equalization, adaptive edge tracking and delay calibration
CN109891843B (en) * 2016-09-08 2022-03-08 美国莱迪思半导体公司 Computer-implemented method and system for executing computer-implemented method
US9735950B1 (en) * 2016-10-18 2017-08-15 Omnivision Technologies, Inc. Burst mode clock data recovery circuit for MIPI C-PHY receivers
TW202512653A (en) 2016-12-29 2025-03-16 美商天工方案公司 Front end systems, wireless communication devices, and packaged front end modules
US10454432B2 (en) 2016-12-29 2019-10-22 Skyworks Solutions, Inc. Radio frequency amplifiers with an injection-locked oscillator driver stage and a stacked output stage
US10515924B2 (en) 2017-03-10 2019-12-24 Skyworks Solutions, Inc. Radio frequency modules
US10439623B2 (en) * 2017-05-30 2019-10-08 Globalfoundries Inc. Injection locked oscillator system and processes
US10447294B2 (en) * 2017-05-30 2019-10-15 Infineon Technologies Austria Ag System and method for an oversampled data converter
US10425089B2 (en) * 2017-12-21 2019-09-24 Advanced Micro Devices, Inc. Master/slave frequency locked loop
US11095426B1 (en) * 2018-04-05 2021-08-17 Marvell Asia Pte, Ltd. Method and apparatus for clock recovery
US10298381B1 (en) 2018-04-30 2019-05-21 Qualcomm Incorporated Multiphase clock data recovery with adaptive tracking for a multi-wire, multi-phase interface
US10333690B1 (en) 2018-05-04 2019-06-25 Qualcomm Incorporated Calibration pattern and duty-cycle distortion correction for clock data recovery in a multi-wire, multi-phase interface
US10601575B1 (en) 2019-01-31 2020-03-24 Marvell International Ltd. Oscillator calibration structure and method
US11196425B1 (en) * 2020-08-18 2021-12-07 Novatek Microelectronics Corp. Eye width monitor and related method of detecting eye width
CN112688701B (en) * 2020-12-22 2022-05-31 北京奕斯伟计算技术有限公司 Receiver circuit and receiver circuit control method
US11405043B1 (en) * 2021-09-16 2022-08-02 Qualcomm Incorporated Phase calibration with half-rate clock for injection-locking oscillators

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167199C (en) * 2000-06-08 2004-09-15 华为技术有限公司 Injection Synchronous Narrowband Regenerative PLL
US6617936B2 (en) 2001-02-20 2003-09-09 Velio Communications, Inc. Phase controlled oscillator
US8170523B2 (en) * 2007-12-12 2012-05-01 Electronics And Telecommunications Research Institute Super regenerative receiver and method of saving power of the same
JP5430488B2 (en) * 2010-05-11 2014-02-26 株式会社日本製鋼所 Laser annealing processing apparatus, laser annealing processing body manufacturing method, and laser annealing processing program
US8331517B2 (en) 2010-06-29 2012-12-11 Realtek Semiconductor Corp. Serial link receiver and method thereof
GB2483898B (en) * 2010-09-24 2015-07-22 Cambridge Silicon Radio Ltd Injection-locked oscillator
CN102332915A (en) * 2011-07-25 2012-01-25 复旦大学 A Subharmonic Injection Locked Voltage Controlled Oscillator with Wide Locking Range
US20130216003A1 (en) 2012-02-16 2013-08-22 Qualcomm Incorporated RESETTABLE VOLTAGE CONTROLLED OSCILLATORS (VCOs) FOR CLOCK AND DATA RECOVERY (CDR) CIRCUITS, AND RELATED SYSTEMS AND METHODS
US9001869B2 (en) * 2013-02-28 2015-04-07 Broadcom Corporation Compact low-power fully digital CMOS clock generation apparatus for high-speed SerDes
US8841948B1 (en) * 2013-03-14 2014-09-23 Xilinx, Inc. Injection-controlled-locked phase-locked loop

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105099447B (en) 2018-11-09
US20160337117A1 (en) 2016-11-17
CN105099447A (en) 2015-11-25
US20150270943A1 (en) 2015-09-24
US9525543B2 (en) 2016-12-20
US9432178B2 (en) 2016-08-30
EP2933924A1 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
EP2933924B1 (en) Clock and data recovery circuit using an injection locked oscillator
US8432198B2 (en) Injection-locked phase-locked loop with a self-aligned injection window
US8860467B2 (en) Biased bang-bang phase detector for clock and data recovery
KR101694926B1 (en) Circuit for generating accurate clock phase signals for a high-speed serializer/deserializere
US10879914B1 (en) Phase-locked loop (PLL) circuit and clock generator including sub-sampling circuit
KR101141029B1 (en) Compensating for leakage currents in loop filter capacitors in PLLs and the like
US8803573B2 (en) Serializer-deserializer clock and data recovery gain adjustment
US8258830B2 (en) Methods for calibrating gated oscillator and oscillator circuit utilizing the same
US20100067636A1 (en) Baseband Phase-Locked Loop
US20070285178A1 (en) Phase locked loop for the generation of a plurality of output signals
EP1811669A1 (en) Phase locked loop architecture with partial cascode
CN120049879A (en) Clock signal generating circuit, wired communication transceiver and electronic device
CN106385252A (en) Multi-phase clock generation method and circuit for realizing high precision phase difference control
US20140145768A1 (en) Correcting for offset-errors in a pll/dll
US7333578B2 (en) Linear data recovery phase detector
CN118199621A (en) Clock data recovery circuit and clock data recovery method based on phase-locked loop
JP2012039619A (en) Method and circuit for generating multiphase signal
US11387835B1 (en) Phase-locked loop capable of compensating power noise
Lv et al. Design of 56 Gb/s PAM4 wire-line receiver with ring VCO based CDR in a 65 nm CMOS technology
US6657466B1 (en) System and method for generating interleaved multi-phase outputs from a nested pair of phase locked loops
Sanchez-Azqueta et al. A phase detection scheme for clock and data recovery applications
JP2010206720A (en) Pll device and method of controlling the same
US20250147544A1 (en) Clock Signal Skew Calibration Apparatus and Control Method
JP2002084189A (en) Phase locked loop
US11711200B2 (en) Multiphase clock generators with digital calibration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160318

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 1030942

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015014655

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1030942

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015014655

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190323

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190323

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20250214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20250224

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20250213

Year of fee payment: 11