EP2927928B1 - Method for determining an overheating of at least one connection terminal of an electrical device, associated auxiliary apparatus, and electrical system including such an electrical device and such an auxiliary apparatus - Google Patents
Method for determining an overheating of at least one connection terminal of an electrical device, associated auxiliary apparatus, and electrical system including such an electrical device and such an auxiliary apparatus Download PDFInfo
- Publication number
- EP2927928B1 EP2927928B1 EP15161678.6A EP15161678A EP2927928B1 EP 2927928 B1 EP2927928 B1 EP 2927928B1 EP 15161678 A EP15161678 A EP 15161678A EP 2927928 B1 EP2927928 B1 EP 2927928B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- value
- temperature threshold
- connection
- electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013021 overheating Methods 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 22
- 239000004020 conductor Substances 0.000 claims description 106
- 238000001514 detection method Methods 0.000 claims description 8
- 230000001419 dependent effect Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 25
- 238000004891 communication Methods 0.000 description 13
- 238000005259 measurement Methods 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H71/00—Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
- H01H71/08—Terminals; Connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H11/00—Apparatus or processes specially adapted for the manufacture of electric switches
- H01H11/0062—Testing or measuring non-electrical properties of switches, e.g. contact velocity
- H01H2011/0068—Testing or measuring non-electrical properties of switches, e.g. contact velocity measuring the temperature of the switch or parts thereof
Definitions
- the present invention relates to a method for determining, with the aid of an auxiliary apparatus, an overheating of at least one connection terminal of an electrical device, such an auxiliary apparatus and an electrical system comprising such an electrical device. and such an auxiliary apparatus.
- a persistent problem in the field of electrical connection terminals is the safety of such terminals, by monitoring their temperature. Indeed, a too high temperature of the connection terminals is able to lead to their destruction, and the decommissioning of an electrical device comprising these connection terminals. More particularly, a too high temperature of the connection terminals is apt to cause a fire.
- the object of the invention is therefore to propose a method for determining, with the aid of an auxiliary apparatus, an overheating of at least one connection terminal of an electrical device, making it possible to determine the overheating in a manner more precise.
- the value of the temperature threshold for detecting overheating of the connection terminal or terminals is variable between the previous instant and the given instant, which makes it possible to determine more precisely the superheat.
- the fact that the value of the temperature threshold is variable makes it possible, for example, to better take into account the environment in which the connection terminal or terminals are located.
- the invention also relates to an electrical system comprising an electrical device and an auxiliary device associated with the electrical device, the electrical device comprising at least one connection terminal having a connection range capable of being connected to an electrical conductor.
- the auxiliary apparatus is as shown above.
- the electrical device is a switching device comprising for each electrical conductor a current input terminal and a current output terminal, and, in an open position, to let current through the corresponding electrical conductor or conductors, and in a closed position to interrupt the flow of current through the corresponding electrical conductor (s), the auxiliary device being connected via the electrical connection member (s) to the or each terminal of current output.
- an electrical system 10 is connected, on the one hand, to a first 12 and a second 14 electrical input conductors and, secondly, to a first 12 'and a second 14' electrical conductors output.
- the electrical input conductors 12, 14 belonging to an electrical distribution network 16 and being intended to supply via the electrical system 10 and the electrical output conductors 12 ', 14' an electric charge 18.
- the electrical system 10 is able to communicate via a wireless link with electronic equipment 20, such as a computer server, for centralizing data.
- electronic equipment 20 such as a computer server
- the equipment 20 is also called data concentrator.
- the electrical system 10 comprises an electric circuit breaker 22, such as an electromechanical circuit breaker, and an auxiliary device 24 electrically coupled to the circuit breaker 22.
- the auxiliary device 24 is, for example, fixed under the circuit breaker 22.
- the electrical system 10 comprises a rail 25, such as a DIN rail, on which is mechanically fixed the circuit breaker 22.
- the first input 12 and output 12 'conductors are, for example, phase conductors or positive positive potential conductors.
- the second input 14 and output 14 'conductors are, for example, neutral conductors or reference potential conductors.
- the first and second input electrical conductors 12, 14 and output 12 ', 14' form an electrical connection 26.
- the data concentrator 20 is connected, via a data link, such as a radio link, to a display device 27, in order notably to display information relating to the operation of the circuit breaker 22 and transmitted by the auxiliary device 24.
- the concentrator 20 comprises a first communication element 28 and a first radio antenna 30.
- the electric circuit breaker 22 is known per se, and is capable of interrupting the flow of an electric current passing through the first electrical input and output conductors 12 'and / or the second electrical input leads 14 and output 14 ', in particular in the presence of an electrical fault on the first input conductor 12 and / or on the second input conductor 14.
- the circuit breaker 22 comprises a first 34 and a second 36 current input terminals, also called first and second upstream connection terminals, to which are connected the first 12 and second 14 electrical input conductors.
- the circuit breaker 22 also comprises a first 38 and a second 40 current output terminals, also called first and second downstream connection terminals, respectively connected to the first 12 'and second 14' electrical output conductors.
- the electric circuit breaker 22 makes the connection between the first 12 and second 14 electrical input conductors and respectively the first 12 'and second 14' electrical output conductors, via the upstream connection terminals 34, 36 and the terminals of FIG. downstream connection 38, 40.
- the circuit breaker 22 is in the open position capable of interrupting the flow of an electric current through the electrical connection 26.
- the circuit breaker 22 is in the closed position capable of allowing the current to flow through the electrical connection 26, in order to supply the load 18.
- the auxiliary apparatus 24 comprises for each downstream connection terminal 38, 40, a connecting member 42, 44 to the corresponding downstream connection terminal 38, 40, as shown in FIG. figure 2 .
- the auxiliary apparatus 24 comprises, for each downstream connection terminal 38, 40, a first temperature sensor 46 and a current sensor 50, 51.
- the auxiliary device 24 also comprises a processing unit 52, a power supply unit electrical 54 and a voltage regulator 56.
- the auxiliary device 24 comprises a member 58 for storing electrical energy and a second communication member 60, and a second radio antenna 62 able to communicate by radio waves with the first antenna 30.
- the auxiliary device 24 comprises a voltage sensor 64.
- the display device 27, visible on the figure 1 in particular comprises a display screen, not shown, and means, not shown, of display on the screen of data received from the data concentrator 20.
- the first communication device 28 is able to transmit data to the auxiliary device 24 via the first antenna 30 and to establish a radio link with the auxiliary device 24.
- Each downstream connection terminal 38, 40 comprises a connection pad 66 capable of being connected respectively to the first 12 'and second 14' conductors respectively. electrical output, as shown on the figure 2 .
- Each downstream connection terminal 38, 40 also comprises a clamping element 68 able to maintain the connection between the corresponding output electrical conductor 12 ', 14' and the corresponding connection pad 66, by applying a clamping force F on the corresponding output electrical conductor 12 ', 14'.
- each downstream connection terminal 38, 40 comprises a movable member 70 adapted to be displaced via the clamping element 68 in order to clamp together, between the connection pad 66 and the movable member 70, the electrical output conductor 12 ' , 14 'corresponding, and the connecting member 42, 44 corresponding.
- the clamping force F is induced by a tightening torque C applied to the clamping element 68.
- the clamping member 68 is a screw.
- the output terminals differ from the downstream connection terminals 38, 40 presented in the first embodiment, while still including a clamping element adapted to maintain the connection between the corresponding output electrical conductor 12 ', 14' and the corresponding connection pad 66.
- the connecting member 42 is in contact with the first electrical output conductor 12 'and the connection pad 66 of the first output terminal 38.
- the connecting member 42 comprises a thermally and electrically conductive material, such as copper .
- the temperature difference between the connection pad 66 and the connecting member 42 is preferably less than 10 ° C for temperatures of the connection pad 66 of between 100 ° C and 400 ° C.
- connection member 44 is in contact with the second electrical output conductor 14 'and the connection pad 66 of the second output terminal 40.
- the connecting member 44 comprises a thermally and electrically conductive material, such as only copper.
- the temperature difference between the connection pad 66 and the connecting member 44 is preferably less than 10 ° C for temperatures of the connection pad 66 of between 100 ° C and 400 ° C.
- Each first temperature sensor 46 is able to measure, at a given time instant t n , a first temperature corresponding to the temperature of the corresponding connection pad 66, that is to say at the temperature of the downstream connection terminal. 38, 40 corresponding. More specifically, the first temperature sensor 46 is, for example, positioned on the connecting member 42, 44 corresponding and is adapted to measure the temperature of the connecting member 42, 44. Each first temperature sensor is for example , thermocouple or resistance thermometer etc. Each first sensor is suitable for temperature measurement between 25 ° C and 400 ° C.
- the current sensors 50, 51 are able to measure the intensity of the current flowing respectively in the first 12 'and second 14' electrical output conductors, that is to say also the intensity of the current flowing through the range of connection 66 and the corresponding downstream connection terminal 38, 40.
- the current sensors 50, 51 comprise, for example, a Rogowski toroid, a current transformer, a shunt or a Hall effect sensor.
- the auxiliary device 24 comprises a current sensor 50 only for one of the downstream connection terminals 38, which is capable of measuring the current flowing in a single of the electrical output conductors, for example the first electrical conductor of the exit 12 '.
- the current flowing in the second output electrical conductor 14 ' is then calculated from the value of the current flowing in the first output electrical conductor 12'. More precisely, the current flowing in the second electrical output conductor 14 'is equal to the opposite of the current flowing in the first electrical conductor 12'.
- the processing unit 52 includes a second temperature sensor 71, a processor 72, and a memory 76 associated with the processor 72, as shown in FIG. figure 2 .
- the processing unit 52 is able to generate a message M1 comprising data calculated via the processor 72 and the memory 76.
- the power supply member 54 is clean, via the connecting members 42, 44, to recover a part of the electrical energy transmitted on the electrical output conductors 12 ', 14' and to supply electrical energy to the apparatus auxiliary 24.
- the voltage regulator 56 makes it possible to adapt the voltage delivered by the power supply 54 to a voltage value acceptable by the processing unit 52 and by the second communication element 60.
- the voltage regulator 56 is for example a converter DC / DC, which delivers a DC voltage of 3.3 volts.
- the storage member 58 of electrical energy is able to store a portion of the electrical energy delivered by the power supply 54 when the circuit breaker 22 is closed, and to restore the stored electrical energy during a loss of voltage downstream of the circuit breaker 22.
- the storage member 58 is a capacitor whose capacity value is a function, among other things, of the average power consumption of the auxiliary device 24 of the supply voltage delivered to the second communication element 60 and to the processing unit 52.
- the second communication element 60 is able to receive data coming from the data concentrator 20, and more precisely from the first communication element 28 and the first antenna 30, and to establish a radio link with the concentrator 20.
- second communication member 60 is able to transmit, via the second antenna 62, the message M1 to the data concentrator 20.
- the communication members 28, 60 and the antennas 30, 62 are in accordance with the communication protocols ZIGBEE or ZIGBEE GREEN POWER, based on the IEE-802.15.4 standard.
- the communication member 60 is able to communicate with the data concentrator 20 via a wire link, not shown.
- the voltage sensor 64 is known per se, and is capable of measuring a first voltage V1 delivered between the first downstream connection terminal 38 and the second downstream connection terminal 40.
- the voltage sensor 64 makes it possible, more precisely, to measure the first voltage V1 at the output of the circuit breaker 22, at the first electrical output conductor 12 '.
- the second temperature sensor 71 is able to measure a second temperature, corresponding to an ambient temperature in the vicinity of the circuit breaker 22.
- the second temperature sensor 71 is disposed at a distance of less than 3 m, preferably less than 1 m from the circuit breaker 22.
- the second temperature sensor 71 is integrated in the processing unit 52.
- the figure 4 represents a thermal model of the connection between the auxiliary device 24 and one of the corresponding downstream connection terminals 38, 40. More specifically, the figure 4 corresponds to the thermal model of the connection between one of the connection pads 66 and the second temperature sensor 71.
- the model corresponds to an electrical circuit 77 comprising a current generator G, a thermal resistor R and a thermal capacitor C connected in parallel. parallel to each other.
- the thermal resistance R and the thermal capacitor C represent the thermal relation between the corresponding connection pad 66 and the second temperature sensor 71.
- the memory 76 is able to store a first software 78 for calculating a thermal value of each connection pad 66, a second software 80 for calculating, for each connection pad 66, a temperature threshold S1, a software 82 for comparing the thermal value of each connection pad 66 with the temperature threshold S1, a software 83 for detecting an overheating of the downstream connection terminals 38, 40.
- the memory 76 is able to store a third software 84 of calculating a power and an electrical energy passing through each output electrical conductor 12 ', 14' as a function of the intensity and voltage values measured by the current sensors 50, 51 and the voltage sensors 64.
- the memory 76 is able to store a software 88 for sampling the intensity of the current and the voltage measured by the current sensors 50, 51 and the voltage sensors 64.
- the first calculation means 78, the second means 80, the comparison means 82, the detection means 83, the third calculation means 84 and the sampling means 88 are made in the form of programmable logic components or in the form of dedicated integrated circuits.
- the first calculation software 78 is able to calculate the thermal value of each connection pad 66, as a function of the corresponding first measured temperature. More precisely, the first calculation software 78 is able to calculate the difference between the first temperature and the second temperature for each downstream connection terminal 38, 40. Thus, the thermal value corresponds, for example, to a temperature variation, such as the difference between the first temperature and the second temperature, and in particular to a heating of the connection pad 66.
- the second temperature is considered equal to a predetermined constant value and the first calculation software 78 sets the thermal value equal to the difference between the first temperature and the predetermined constant value.
- the second calculation software 80 is able to calculate the temperature threshold S1 at the given instant t n as a function of the value of the temperature threshold calculated at a previous instant t n-1 and the value of the temperature threshold S 1 is variable. between the given instant t n and the previous instant t n-1 .
- the second calculation software 80 is more precisely able to calculate the value of the next temperature threshold S1, a sampling period dt, also called the calculation period dt.
- the preceding instant t n-1 corresponds, for example, to an instant preceding the given instant t n of a duration equal to the calculation period dt.
- the previous instant t0 corresponds to an initial reference time t0.
- the initial reference time t0 corresponds, for example, to the instant of a first measurement made by the auxiliary device chosen from the measurement of the first temperature, the measurement of the second temperature and the measurement of the intensity of the current flowing in the corresponding output electrical conductor 12 ', 14', that is to say for example at the moment of powering on the circuit breaker 22.
- the second calculation software 80 is also preferably able to calculate the temperature threshold S1 as a function of the intensity of the current flowing in the corresponding output electrical conductor 12 ', 14'.
- the temperature threshold S1 corresponds, by for example, at a limit temperature rise of the corresponding connection pad 66, that is to say at a temperature variation.
- the electrical circuit 77 presented above makes it possible to obtain an equation giving the value of the first temperature threshold S1.
- the value of the temperature threshold S1 (0) at the initial reference time t0 is a predetermined value.
- the first temperature threshold S1 is calculated with an equation similar to equation (1) presented above, but the values of the parameters R and C of the equation would be different and correspond for example respectively to the thermal resistance and to the thermal capacitance between the connection pad 66 and a predetermined reference point.
- the comparison software 82 is able to compare the thermal value of each connection pad 66, calculated by the first calculation software 78, with the corresponding temperature threshold S1.
- the comparison between the thermal value and the temperature threshold is performed at each multiple of the sampling period dt after the initial reference time t0.
- the temperature threshold S1 is calculated from the recursive equation (1) making it possible to calculate the value of the first threshold S1 at the given instant t n , from the knowledge of the value of the first threshold S1 at the instant preceding t n-1 and in particular from the knowledge of the value of the temperature threshold S1 (0) at the initial reference time t0.
- the comparison software 82 is able to compare the thermal value calculated from the first temperature measured at the given instant t n with the value of the temperature threshold S1 (n) at the given instant t n .
- the comparison is effective if one compares the value of the temperature threshold S1 and the thermal value at the same instant, that is to say at the time of measurement of the first temperature corresponding to the calculated thermal value.
- the given instant t n corresponds to the measurement instant of the first temperature.
- the detection software 83 is, more specifically, able to detect the loosening of at least one corresponding downstream connection terminal 38, 40, that is to say the loosening of at least one electrical output conductor 12 ', 14 'with respect to the corresponding downstream connection terminal 38, 40, when the thermal value of the connection pad 66 is greater than the temperature threshold S1.
- the loosening corresponds to a value of the tightening torque C less than a first predetermined reference value, that is to say to a value of the clamping force F less than a second predetermined reference value and therefore to a the value of the impedance Z greater than a predetermined value, that is to say, for example, greater than 0.004 ⁇ , preferably greater than 0.005 ⁇ .
- the method is presented below in the case of a single downstream connection terminal 38, 40, that is to say for the connection between only one of the downstream connection terminals 38, 40 and the auxiliary device 24.
- the method generally applies to each downstream connection terminal 38, 40.
- the first temperature sensor 46 measures, at the instant given t n , the first temperature.
- the first measured temperature is saved and the temperature threshold S1 (0) at the initial reference time t0, that is to say the value of the initial sample of the temperature threshold S1, is calculated and then saved.
- the second temperature sensor 71 measures the second temperature.
- the thermal value of the corresponding connection range 66 is calculated, for example with the difference between the first temperature and the second temperature, that is to say that the value of the second temperature at the first temperature.
- step 104 the thermal value is set equal to the first temperature and step 102 is not performed.
- the intensity of the current flowing in the corresponding output electrical conductor 12 ', 14' is measured.
- the value of the temperature threshold S1 at the given instant t n is calculated as a function of the value of the temperature threshold S1 (n-1) at the previous instant t n-1 and preferably also as a function of the intensity of the current measured in step 106.
- the temperature threshold S1 is thus calculated, for example, from equation (1) presented above.
- the value of the temperature threshold at the initial reference time t0 is used.
- the values chosen for the thermal resistance R, the thermal capacitor C and the impedance Z between the connection pad 66 and the corresponding output electrical conductor 12 ', 14' are values corresponding to a maximum temperature rise of the corresponding connection pad 66 and therefore to a maximum temperature threshold S1.
- the value chosen for the impedance Z corresponds to the minimum permissible impedance to prevent a fire.
- the thermal value of the corresponding connection area 66 is compared with the value of the calculated temperature threshold S1, at the given instant t n , during step 108.
- the process returns to step 100 for measuring the first temperature after a predetermined duration, corresponding, for example , at the sampling period dt.
- step 112 If, during the comparison step 110, the thermal value is strictly greater than the temperature threshold S1, then, during a step 112, an overheating of the connection pad 66 and the corresponding downstream connection terminal 38, 40 is detected. In step 112, the loosening of the electrical output conductor 12 ', 14' corresponding, with respect to the corresponding downstream connection terminal 38, 40, is then for example detected.
- the first message M1 is generated and includes a data item specifying the looseness detection or, more generally, the overheating of the corresponding downstream connection terminal 38, 40.
- the first message M1 is transmitted to the concentrator 20.
- the concentrator 20 is then able to indicate to an operator, via the display device 27, an overheating or loosening of the connection terminal downstream 38, 40 corresponding.
- the electrical power and electrical energy values calculated by the third calculation software 84 are included in the first message M1.
- first, second, and third 204 204 curves corresponding to the thermal values, and more precisely to the heating values of one of the connection pads 66, calculated by the first calculation software 78.
- the first 200, second 202 and third 204 curves are plotted as a function of time T, and more precisely according to the time elapsed since the initial reference time t0.
- the initial reference moment corresponds to the abscissa 0 to the figure 6 .
- the first 200, second 202 and third 204 curves each correspond to a respective tightening torque C, applied to the clamping element 68 in order to maintain the electrical connection between the electrical conductor and the connection pad 66, respectively equal to 2 Nm , 0.2 Nm and 0.1 Nm, for a current measured by the current sensor 50, 51 corresponding to 20 A.
- figure 6 also shows a fourth curve 206 corresponding to the value of the temperature threshold S1 calculated by the second calculation software 80, as a function of time, and more precisely according to the time elapsed since the initial reference time t0.
- the thermal value calculated for the first 200, second 202 and third 204 curves is always lower than the value of the temperature threshold S1, presented on the fourth curve 206.
- the value of the tightening torque C and therefore the clamping force F is such that the corresponding downstream connection terminal 38, 40 is not considered loosened, the value of the temperature threshold is never reached.
- the thermal value corresponding here to a heating value of the connection pad 66 increases.
- the fourth curve 206 the value of the temperature threshold S1 varies according to the time elapsed with respect to the initial reference time t0, and more generally with respect to the previous instant.
- the shape of the fourth curve 206 is globally similar to that of the other three curves 200, 202, 204.
- the evolution of the temperature threshold therefore follows that of the thermal value, which makes it possible to determine the overheating of the downstream connection terminal. 38, 40 more precisely, without risk of error.
- reference t0 and more generally since the previous instant t n-1
- a sixth curve 210 corresponding to the value of the temperature threshold S1 calculated by the second calculation software 80, as a function of time.
- the initial reference time corresponds to the abscissa 0.
- the fifth 208 and sixth 210 curves are obtained for a value of the current flowing through the connection pad 66 and the corresponding output electrical conductor 12 ', 14', which varies with course of time.
- the current flowing through the corresponding connection pad 66 is equal to 10 A between 0 seconds (s) and 600 s, then 40 A between 600 s and 1500 s and at 20 A between 1500 s and 2800 s.
- the thermal value is below the temperature threshold S1 and the evolution of the sixth curve 210 follows that of the fifth curve 208. Then, after loosening of the connection terminal corresponding downstream 38, 40, the thermal value increases sharply and becomes greater than the value of the temperature threshold S1. The overheating of the corresponding downstream connection terminal 38, 40 is then detected.
- the value of the temperature threshold S1 varies as a function of time and more precisely between the given instant t n and the previous instant t n-1 makes it possible to determine the superheating more precisely. Indeed, this makes it possible to consider, for example, different operating phases of the circuit breaker 22, and more specifically the downstream connection terminals 38, 40.
- the method of calculating the temperature threshold S1 as a function of time makes it possible, for example, to take better account is taken of the environment in which the downstream connection terminal (s) 38, 40 are located.
- the thermal value and the value of the temperature threshold S1 respectively increase or decrease.
- the evolution of the temperature threshold S1 follows that of the thermal value, which makes it possible to more precisely determine the overheating of the corresponding downstream connection terminal 38, 40.
- the overheating here due to loosening is detected after 80 s, which makes it possible to quickly detect an anomaly and, for example, to quickly control the power down of the circuit breaker 22 or the intervention of an operator .
- the fact that the temperature threshold S1 is calculated as a function of the intensity of the current makes it possible, in addition, to improve the detection of the superheating since the evolution of the temperature threshold S1 follows that of the thermal value with precision.
- the auxiliary device 24 makes it possible to detect overheating, ie a terminal loosening even for an intensity of the current flowing through the corresponding output electrical conductor 12 ', 14' of less than 10 A and even when the value overheating is low, for example, of the order of 25 ° C, since the value of the temperature threshold generally changes in a similar way to that of the thermal value when it is preferably further calculated as a function of the measured current through the corresponding output electrical conductor 12 ', 14'.
- the connecting members 42, 44 allow improved heat conduction between the corresponding connection pad 66 and each temperature sensor 46.
- the auxiliary device 24 comprises means for detecting a loss of voltage downstream of the circuit breaker and is able to determine a cause of loss of voltage downstream of the circuit breaker 22, said cause being preferably chosen from the group consisting of : an electrical overload, a short circuit, and a voltage drop. More specifically, the auxiliary device 24 is in accordance with the auxiliary device described in the patent application filed under the number FR 13 58776 on pages 9 to 11.
- FIG 8 illustrates a second embodiment of the invention for which the elements similar to the first embodiment, described above, are identified by identical references, and are not described again.
- the current flowing in the electrical conductors 12, 12 ', 14, 14' is a three-phase current
- the electrical connection 26 comprises three first electrical output conductors 12 'and three first electrical input conductors 12, corresponding to phase conductors and a second output electrical conductor 14 'and a second input electrical conductor 14, corresponding to neutral conductors.
- the electrical system 10 then comprises four circuit breakers 22 each provided with a single downstream connection terminal 38, 40 and a single upstream connection terminal 34, 36 and forming a four-pole circuit breaker, coupled to the auxiliary device 24.
- the auxiliary apparatus 24 then comprises four connecting members and four current sensors.
- the second calculation software 80 of the temperature threshold S1 is then adapted to calculate the temperature threshold S1 (n) at the given instant t n , for each connection terminal, as a function of the value of the temperature threshold S1 (n -1) at the previous instant t n-1 and the current flowing through the corresponding downstream connection terminal 38, 40.
- each first electrical output conductor 12 'and the second output electrical conductor 14' is similar to that of the first embodiment, described for a first output conductor 12 'and a second output conductor. output 14 ', and is not described again.
- the auxiliary device 24 comprises three current sensors each associated with a respective first output electrical conductor 12 '. The current flowing in the second electrical output conductor 14 'is then calculated from the currents measured in the first electrical output conductors 12'.
- the invention applies equally well to a single-phase circuit breaker adapted to be connected to a phase conductor and a neutral conductor, as shown in the first embodiment, to a three-phase circuit breaker suitable for connection. with three phase conductors, or a four-pole circuit breaker connected to three phase conductors and a neutral conductor, as shown in the second embodiment.
- a single-phase and four-pole circuit-breakers when opening the circuit-breaker, depending on the application in question, the neutral conductor is cut and the current flowing through it is interrupted, or the neutral conductor is not cut and the current crossing is not interrupted.
- auxiliary device 24 is adapted to be associated with any type of electrical device comprising a connection terminal.
- the communication elements 28, 60 and the antennas 30, 62 conform to any type of wireless communication protocol, such as the WIFI protocol or the BLUETOOTH protocol.
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Manufacturing Of Electrical Connectors (AREA)
Description
La présente invention concerne un procédé de détermination, à l'aide d'un appareil auxiliaire, d'une surchauffe d'au moins une borne de connexion d'un dispositif électrique, un tel appareil auxiliaire et un système électrique comportant un tel dispositif électrique et un tel appareil auxiliaire.The present invention relates to a method for determining, with the aid of an auxiliary apparatus, an overheating of at least one connection terminal of an electrical device, such an auxiliary apparatus and an electrical system comprising such an electrical device. and such an auxiliary apparatus.
Un enjeu persistant dans le domaine des bornes de connexion électrique est la mise en sécurité de telles bornes, par surveillance de leur température. En effet, une température trop élevée des bornes de connexion est propre à conduire à leur destruction, ainsi qu'à la mise hors service d'un dispositif électrique comprenant ces bornes de connexion. Plus particulièrement, une température trop élevée des bornes de connexion est apte à provoquer un incendie.A persistent problem in the field of electrical connection terminals is the safety of such terminals, by monitoring their temperature. Indeed, a too high temperature of the connection terminals is able to lead to their destruction, and the decommissioning of an electrical device comprising these connection terminals. More particularly, a too high temperature of the connection terminals is apt to cause a fire.
Il est ainsi connu des documents
Il est également connu du document
Le but de l'invention est donc de proposer un procédé de détermination, à l'aide d'un appareil auxiliaire, d'une surchauffe d'au moins une borne de connexion d'un dispositif électrique, permettant de déterminer la surchauffe de manière plus précise.The object of the invention is therefore to propose a method for determining, with the aid of an auxiliary apparatus, an overheating of at least one connection terminal of an electrical device, making it possible to determine the overheating in a manner more precise.
A cet effet, l'invention concerne un procédé de détermination, à l'aide d'un appareil auxiliaire, d'une surchauffe d'au moins une borne de connexion d'un dispositif électrique, la ou les bornes de connexion comprenant chacune au moins une plage de connexion propre à être connectée à un conducteur électrique correspondant,
le procédé comprenant pour chaque borne de connexion les étapes suivantes :
- a) la mesure, à un instant temporel donné (tn), d'une première température correspondant à la température de la plage de connexion correspondante, via un premier capteur de température,
- b) le calcul d'une valeur thermique de la plage de connexion en fonction de la première température mesurée,
- c) la comparaison de la valeur thermique de la plage de connexion avec un seuil de température, et
- d) la détection d'une surchauffe de la borne de connexion correspondante lorsque la valeur thermique de la plage de connexion est supérieure au seuil de température,
- - b') le calcul du seuil de température à l'instant donné en fonction de la valeur du seuil de température à un instant précédent, la valeur du seuil de température étant variable entre l'instant précédent et l'instant donné, et
the method comprising for each connection terminal the following steps:
- a) measuring, at a given time instant (tn), a first temperature corresponding to the temperature of the corresponding connection range, via a first temperature sensor,
- b) calculating a thermal value of the connection range as a function of the first temperature measured,
- c) comparing the thermal value of the connection range with a temperature threshold, and
- d) the detection of an overheating of the corresponding connection terminal when the thermal value of the connection range is greater than the temperature threshold,
- - b ') calculating the temperature threshold at the given instant as a function of the value of the temperature threshold at a previous instant, the value of the temperature threshold being variable between the previous instant and the given instant, and
Grâce à l'invention, la valeur du seuil de température permettant de détecter une surchauffe de la ou des bornes de connexion est variable entre l'instant précédent et l'instant donné, ce qui permet de déterminer de manière plus précise la surchauffe. Le fait que la valeur du seuil de température soit variable permet par exemple de mieux prendre en compte l'environnement dans lequel se trouvent la ou les bornes de connexion.Thanks to the invention, the value of the temperature threshold for detecting overheating of the connection terminal or terminals is variable between the previous instant and the given instant, which makes it possible to determine more precisely the superheat. The fact that the value of the temperature threshold is variable makes it possible, for example, to better take into account the environment in which the connection terminal or terminals are located.
Selon différents aspects de l'invention, le procédé comprend une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes les combinaisons techniquement admissibles :
- Le procédé comprend précédemment à l'étape b') de calcul du seuil de température, une étape b") de mesure de l'intensité du courant circulant dans le conducteur électrique correspondant, et lors de l'étape de calcul b'), le seuil de température est calculée en outre en fonction de l'intensité du courant circulant dans le conducteur électrique correspondant.
- La ou les bornes de connexion comprennent chacune un élément de serrage propre à maintenir la connexion entre le conducteur électrique et la plage de connexion correspondants, via l'application d'une force de serrage sur le conducteur électrique, et lors de l'étape de détection d), un desserrage d'au moins un conducteur électrique par rapport à la borne de connexion correspondante est détecté, lorsque la valeur thermique de la plage de connexion est supérieure au seuil de température, le desserrage correspondant à une valeur d'impédance entre la plage de
connexion 66 et le conducteur électrique de sortie correspondant supérieure à une valeur prédéterminée. - Lors de l'étape b) de calcul de la valeur thermique de la plage de connexion, la valeur thermique est fixée égale à la première température.
- Le procédé comprend précédemment à l'étape b) de calcul de la valeur thermique, une étape a') de mesure d'une deuxième température ambiante au voisinage du dispositif électrique, via un deuxième capteur de température disposé à une distance inférieure à 3 mètres, de préférence à 1 mètre, du dispositif électrique, et lors de l'étape b) de calcul de la valeur thermique, la valeur thermique est égale à la différence entre la première température et la deuxième température.
- Lors de l'étape b') de calcul du seuil de température, le seuil de température est calculé avec la formule suivante :
- The method comprises previously in step b ') of calculating the temperature threshold, a step b ") of measuring the intensity of the current flowing in the corresponding electrical conductor, and during the calculation step b'), the temperature threshold is further calculated as a function of the intensity of the current flowing in the corresponding electrical conductor.
- The connection terminal or terminals each comprise a clamping element adapted to maintain the connection between the electrical conductor and the corresponding connection pad, by applying a clamping force on the electrical conductor, and during the step of detection d), a loosening of at least one electrical conductor relative to the corresponding connection terminal is detected, when the thermal value of the connection pad is greater than the temperature threshold, the loosening corresponding to an impedance value between the
connection pad 66 and the corresponding output electrical conductor greater than a predetermined value. - During step b) of calculating the thermal value of the connection range, the thermal value is set equal to the first temperature.
- The method comprises previously in step b) of calculating the thermal value, a step a ') of measuring a second ambient temperature in the vicinity of the electrical device, via a second temperature sensor disposed at a distance of less than 3 meters preferably at 1 meter, the electrical device, and during step b) of calculating the thermal value, the thermal value is equal to the difference between the first temperature and the second temperature.
- During step b ') of calculating the temperature threshold, the temperature threshold is calculated with the following formula:
L'invention a également pour objet un appareil auxiliaire pour un dispositif électrique, le dispositif électrique comprenant au moins une borne de connexion comportant une plage de connexion propre à être connectée à un conducteur électrique correspondant, l'appareil auxiliaire comprenant, pour chaque borne de connexion :
- un premier capteur de température propre à mesurer, à un instant temporel donné, une première température correspondant à la température de la plage de connexion correspondante,
- des premiers moyens de calcul d'une valeur thermique de la plage de connexion en fonction de la première température mesurée,
- des moyens de comparaison propres à comparer la valeur thermique de la plage de connexion avec un seuil de température, et
- des moyens de détection d'une surchauffe de la borne de connexion correspondante lorsque la valeur thermique de la plage de connexion correspondante est supérieure au seuil de température.
- a first temperature sensor capable of measuring, at a given time instant, a first temperature corresponding to the temperature of the corresponding connection range,
- first means for calculating a thermal value of the connection range as a function of the first measured temperature,
- comparison means for comparing the thermal value of the connection range with a temperature threshold, and
- means for detecting an overheating of the corresponding connection terminal when the thermal value of the corresponding connection range is greater than the temperature threshold.
Suivant d'autres aspects avantageux de l'invention, l'appareil auxiliaire comprend en outre une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement admissibles :
- L'appareil auxiliaire comprend, pour chaque borne de connexion, un capteur de courant propre à mesurer l'intensité du courant circulant dans le conducteur électrique correspondant, les deuxièmes moyens de calcul étant propres, pour chaque borne de connexion, à calculer le seuil de température en fonction en outre de l'intensité du courant circulant dans le conducteur électrique correspondant.
- L'appareil auxiliaire comprend pour chaque borne de connexion, un organe de liaison électrique à la plage de connexion correspondante, l'organe de liaison comportant un matériau thermiquement conducteur, la différence de température entre la plage de connexion correspondante et l'organe de liaison étant de préférence inférieure à 10°C, pour des températures de la plage de connexion comprises entre 100°C et 400°C, le premier capteur de température étant propre à mesurer la température de l'organe de liaison,
- L'appareil auxiliaire comprend un deuxième capteur de température, disposé à une distance inférieure à 3 mètres, de préférence à 1 mètre, du dispositif électrique et propre à mesurer une deuxième température ambiante au voisinage du dispositif électrique, et les premiers moyens de calcul sont propres à fixer la valeur thermique à une valeur égale à la différence entre la première température et la deuxième température.
- The auxiliary apparatus comprises, for each connection terminal, a clean current sensor for measuring the intensity of the current flowing in the corresponding electrical conductor, the second calculation means being clean, for each connection terminal, for calculating the threshold of temperature in addition to the intensity of the current flowing in the corresponding electrical conductor.
- The auxiliary device comprises for each connection terminal, an electrical connecting member to the corresponding connection pad, the connecting member comprising a thermally conductive material, the temperature difference between the corresponding connection pad and the connecting member. being preferably lower than 10 ° C, for connection range temperatures of between 100 ° C and 400 ° C, the first temperature sensor being suitable for measuring the temperature of the connecting member,
- The auxiliary device comprises a second temperature sensor, disposed at a distance of less than 3 meters, preferably at 1 meter, from the electrical device and capable of measuring a second ambient temperature in the vicinity of the device electrical, and the first calculation means are adapted to set the thermal value to a value equal to the difference between the first temperature and the second temperature.
L'invention a également pour objet un système électrique comprenant un dispositif électrique et un appareil auxiliaire associé au dispositif électrique, le dispositif électrique comprenant au moins une borne de connexion comportant une plage de connexion propre à être connectée à un conducteur électrique. Conformément à l'invention, l'appareil auxiliaire est tel que présenté ci-dessus.The invention also relates to an electrical system comprising an electrical device and an auxiliary device associated with the electrical device, the electrical device comprising at least one connection terminal having a connection range capable of being connected to an electrical conductor. According to the invention, the auxiliary apparatus is as shown above.
Selon un autre aspect avantageux de l'invention, le dispositif électrique est un dispositif de commutation comprenant pour chaque conducteur électrique une borne d'entrée du courant et une borne de sortie du courant, et propre, dans une position ouverte, à laisser circuler du courant à travers le ou les conducteurs électriques correspondants, et dans une position fermée à interrompre la circulation du courant à travers le ou les conducteurs électriques correspondants, l'appareil auxiliaire étant connecté via le ou les organes de liaison électrique à la ou chaque borne de sortie du courant.According to another advantageous aspect of the invention, the electrical device is a switching device comprising for each electrical conductor a current input terminal and a current output terminal, and, in an open position, to let current through the corresponding electrical conductor or conductors, and in a closed position to interrupt the flow of current through the corresponding electrical conductor (s), the auxiliary device being connected via the electrical connection member (s) to the or each terminal of current output.
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaitront plus clairement à la lumière de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif, et faite en se référant aux dessins annexés sur lesquels :
- la
figure 1 est une représentation schématique d'un système électrique selon un premier mode de réalisation de l'invention, comprenant un disjoncteur électrique et un appareil auxiliaire couplé électriquement au disjoncteur électrique ; - la
figure 2 est une représentation schématique de l'appareil auxiliaire de lafigure 1 et de sa connexion à des bornes de connexion aval du disjoncteur de lafigure 1 ; - la
figure 3 est une coupe schématique et partielle d'une borne de connexion aval du disjoncteur, suivant le plan III de lafigure 1 ; - la
figure 4 est une représentation schématique d'un modèle thermique simplifié de la liaison entre l'une des bornes de connexion aval et l'appareil auxiliaire de lafigure 2 ; - la
figure 5 est un organigramme d'un procédé de détermination d'une surchauffe des bornes de connexion, conforme à l'invention ; - la
figure 6 est une ensemble de quatre courbes, parmi lesquelles des première, deuxième et troisième courbes représentent l'échauffement, en fonction du temps, d'une borne de connexion du disjoncteur de lafigure 1 pour différentes valeurs d'un couple de serrage appliquée à un élément de serrage de la borne et une quatrième courbe représente la valeur d'un seuil de température en fonction du temps ; - la
figure 7 est un ensemble de deux courbes représentant, pour différentes valeurs de courant traversant l'une des bornes de connexion aval du disjoncteur de lafigure 1 , respectivement, la valeur d'un seuil de température, en fonction du temps, et une valeur thermique de la borne de connexion aval, en fonction du temps ; et - la
figure 8 est une vue analogue à celle de lafigure 1 selon un deuxième mode de réalisation de l'invention.
- the
figure 1 is a schematic representation of an electrical system according to a first embodiment of the invention, comprising an electric circuit breaker and an auxiliary device electrically coupled to the electric circuit breaker; - the
figure 2 is a schematic representation of the auxiliary apparatus of thefigure 1 and its connection to the downstream connection terminals of the circuit breaker of thefigure 1 ; - the
figure 3 is a schematic and partial section of a connection terminal downstream of the circuit breaker, according to the plane III of thefigure 1 ; - the
figure 4 is a schematic representation of a simplified thermal model of the connection between one of the downstream connection terminals and the auxiliary apparatus of thefigure 2 ; - the
figure 5 is a flowchart of a method for determining an overheating of the connection terminals, according to the invention; - the
figure 6 is a set of four curves, among which first, second and third curves represent the heating, as a function of time, of a connection terminal of the circuit breaker of thefigure 1 for different values of a tightening torque applied to a clamping element of the terminal and a fourth curve representing the value of a temperature threshold as a function of time; - the
figure 7 is a set of two curves representing, for different current values passing through one of the downstream connection terminals of the circuit breaker of thefigure 1 respectively, the value of a temperature threshold, as a function of time, and a thermal value of the downstream connection terminal, as a function of time; and - the
figure 8 is a view similar to that of thefigure 1 according to a second embodiment of the invention.
Sur la
Le système électrique 10 est propre à communiquer via une liaison sans fil avec un équipement électronique 20, tel qu'un serveur informatique, servant à centraliser des données. L'équipement 20 est également appelé concentrateur de données.The
Le système électrique 10 comprend un disjoncteur électrique 22, tel qu'un disjoncteur électromécanique, et un appareil auxiliaire 24 couplé électriquement au disjoncteur 22. L'appareil auxiliaire 24 est, par exemple, fixé sous le disjoncteur 22.The
Le système électrique 10 comprend un rail 25, tel qu'un rail DIN, sur lequel est fixé mécaniquement le disjoncteur 22.The
Les premiers conducteurs d'entrée 12 et de sortie 12' sont, par exemple, des conducteurs de phase ou encore des conducteurs de potentiel continu positif. Les deuxièmes conducteurs d'entrée 14 et de sortie 14' sont, par exemple, des conducteurs de neutre ou encore des conducteurs de potentiel de référence. Les premiers et deuxièmes conducteurs électriques d'entrée 12, 14 et de sortie 12', 14' forment une liaison électrique 26.The
Le concentrateur de données 20 est relié, via une liaison de données, telle qu'une liaison radioélectrique, à un dispositif de visualisation 27, afin d'afficher notamment des informations relatives au fonctionnement du disjoncteur 22 et transmises par l'appareil auxiliaire 24. Le concentrateur 20 comprend un premier organe de communication 28 et une première antenne radioélectrique 30.The data concentrator 20 is connected, via a data link, such as a radio link, to a
Le disjoncteur électrique 22 est connu en soi, et est propre à interrompre la circulation d'un courant électrique traversant les premiers conducteurs électriques d'entrée 12 et de sortie 12' et/ou les deuxièmes conducteurs électriques d'entrée 14 et de sortie 14', notamment en présence d'un défaut électrique sur le premier conducteur d'entrée 12 et/ou sur le deuxième conducteur d'entrée 14.The
Le disjoncteur 22 comporte une première 34 et une deuxième 36 bornes d'entrée du courant, également appelées première et deuxième bornes de connexion amont, auxquelles sont connectés les premier 12 et deuxième 14 conducteurs électriques d'entrée. Le disjoncteur 22 comporte également une première 38 et une deuxième 40 bornes de sortie du courant, également appelées première et deuxième bornes de connexion aval, connectées respectivement aux premier 12' et deuxième 14' conducteurs électriques de sortie.The
Plus précisément, le disjoncteur électrique 22 fait le lien entre les premier 12 et deuxième 14 conducteurs électriques d'entrée et respectivement les premier 12' et deuxième 14' conducteurs électriques de sortie, via les bornes de connexion amont 34, 36 et les bornes de connexion aval 38, 40.More specifically, the
Le disjoncteur 22 est en position ouverte propre à interrompre la circulation d'un courant électrique à travers la liaison électrique 26. Le disjoncteur 22 est en position fermée propre à laisser circuler le courant à travers la liaison électrique 26, afin d'alimenter la charge 18.The
L'appareil auxiliaire 24 comprend pour chaque borne de connexion aval 38, 40, un organe de liaison 42, 44 à la borne de connexion aval 38, 40 correspondante, comme représenté sur la
Le dispositif de visualisation 27, visible sur la
Le premier organe de communication 28 est apte à transmettre des données vers l'appareil auxiliaire 24, via la première antenne 30 et à établir une liaison radioélectrique avec l'appareil auxiliaire 24.The
Chaque borne de connexion aval 38, 40 comprend une plage de connexion 66 propre à être connectée respectivement au premier 12' et deuxième 14' conducteurs électriques de sortie, comme représenté sur la
Dans l'exemple de réalisation de la
La force de serrage F est par exemple induite par un couple de serrage C appliqué à l'élément de serrage 68. Sur la
En variante, les bornes de sortie diffèrent des bornes de connexion aval 38, 40 présentées dans le premier mode de réalisation, tout en comprenant toujours un élément de serrage propre à maintenir la connexion entre le conducteur électrique de sortie 12', 14' correspondant et la plage de connexion 66 correspondante.As a variant, the output terminals differ from the
L'organe de liaison 42 est en contact avec le premier conducteur électrique de sortie 12' et la plage de connexion 66 de la première borne de sortie 38. L'organe de liaison 42 comporte un matériau thermiquement et électriquement conducteur, tel que du cuivre. La différence de température entre la plage de connexion 66 et l'organe de liaison 42 est de préférence inférieure à 10°C pour des températures de la plage de connexion 66 comprises entre 100°C et 400°C.The connecting
De même, l'organe de liaison 44 est en contact avec le deuxième conducteur électrique de sortie 14' et la plage de connexion 66 de la deuxième borne de sortie 40. L'organe de liaison 44 comporte un matériau thermiquement et électriquement conducteur, tel que du cuivre. La différence de température entre la plage de connexion 66 et l'organe de liaison 44 est de préférence inférieure à 10°C pour des températures de la plage de connexion 66 comprises entre 100°C et 400°C.Similarly, the connecting
Chaque premier capteur de température 46 est propre à mesurer, à un instant temporel donné tn, une première température correspondant à la température de la plage de connexion 66 correspondante, c'est-à-dire à la température de la borne de connexion aval 38, 40 correspondante. Plus précisément, le premier capteur de température 46 est, par exemple, positionné sur l'organe de liaison 42, 44 correspondant et est propre à mesurer la température de l'organe de liaison 42, 44. Chaque premier capteur de température est par exemple, un thermocouple ou une sonde à résistance etc. Chaque premier capteur est adapté pour une mesure de températures comprise entre 25°C et 400°C.Each
Les capteurs de courant 50, 51 sont propres à mesurer l'intensité du courant circulant respectivement dans le premier 12' et le deuxième 14' conducteurs électriques de sortie, c'est-à-dire aussi l'intensité du courant traversant la plage de connexion 66 et la borne de connexion aval 38, 40 correspondante.The
Les capteurs de courant 50, 51 comportent, par exemple, un tore de Rogowski, un transformateur de courant, un shunt ou encore un capteur à effet Hall.The
En variante, l'appareil auxiliaire 24 comprend un capteur de courant 50 seulement pour l'une des bornes de connexion aval 38, qui est propre à mesurer le courant circulant dans un seul des conducteurs électriques de sortie, par exemple le premier conducteur électrique de sortie 12'. Le courant circulant dans le deuxième conducteur électrique de sortie 14', est alors calculé à partir de la valeur du courant circulant dans le premier conducteur électrique de sortie 12'. Plus précisément le courant circulant dans le deuxième conducteur électrique de sortie 14' est égal à l'opposé du courant circulant dans le premier conducteur électrique 12'.In a variant, the
L'unité de traitement 52 comporte un deuxième capteur de température 71, un processeur 72, et une mémoire 76 associée au processeur 72, comme représenté sur la
L'organe d'alimentation électrique 54 est propre, via les organes de liaison 42, 44, à récupérer une partie de l'énergie électrique transmise sur les conducteurs électriques de sortie 12', 14' et à alimenter en énergie électrique l'appareil auxiliaire 24.The
Le régulateur de tension 56 permet d'adapter la tension délivrée par l'alimentation électrique 54 à une valeur de tension acceptable par l'unité de traitement 52 et par le deuxième organe de communication 60. Le régulateur de tension 56 est par exemple un convertisseur continu/continu, qui délivre une tension continue de 3,3 volts.The
L'organe de stockage 58 d'énergie électrique est propre à emmagasiner une partie de l'énergie électrique délivrée par l'alimentation électrique 54 lorsque le disjoncteur 22 est fermé, et à restituer l'énergie électrique stockée lors d'une perte de tension en aval du disjoncteur 22.The
Sur la
Le deuxième organe de communication 60 est apte à recevoir des données en provenance du concentrateur de données 20, et plus précisément en provenance du premier organe de communication 28 et de la première antenne 30, et à établir une liaison radioélectrique avec le concentrateur 20. Le deuxième organe de communication 60 est propre à émettre, via la deuxième antenne 62, le message M1 à destination du concentrateur de données 20. Avantageusement, les organes de communication 28, 60 et les antennes 30, 62 sont conformes aux protocoles de communication ZIGBEE ou ZIGBEE GREEN POWER, basés sur la norme IEE-802.15.4.The
En variante, l'organe de communication 60 est propre à communiquer avec le concentrateur de données 20 via une liaison filaire, non représentée.Alternatively, the
Le capteur de tension 64 est connu en soi, et est propre à mesurer une première tension V1 délivrée entre la première borne de connexion aval 38 et la deuxième borne de connexion aval 40. Le capteur de tension 64 permet, plus précisément, de mesurer la première tension V1 en sortie du disjoncteur 22, au niveau du premier conducteur électrique de sortie 12'.The
Le deuxième capteur de température 71 est propre à mesurer une deuxième température, correspondant à une température ambiante au voisinage du disjoncteur 22. Le deuxième capteur de température 71 est disposé à une distance inférieure à 3 m, de préférence inférieure à 1 m du disjoncteur 22. Le deuxième capteur de température 71 est intégré à l'unité de traitement 52.The
La
La mémoire 76 est apte à stocker un premier logiciel 78 de calcul d'une valeur thermique de chaque plage de connexion 66, un deuxième logiciel 80 de calcul, pour chaque plage de connexion 66, d'un seuil de température S1, un logiciel 82 de comparaison de la valeur thermique de chaque plage de connexion 66 avec le seuil de température S1, un logiciel 83 de détection d'une surchauffe des bornes de connexion aval 38, 40. En complément, la mémoire 76 est apte à stocker un troisième logiciel 84 de calcul d'une puissance et d'une énergie électrique traversant chaque conducteur électrique de sortie 12', 14' en fonction des valeurs d'intensité et de tension mesurées par les capteurs de courant 50, 51 et de tension 64.The memory 76 is able to store a
La mémoire 76 est apte à stocker un logiciel 88 d'échantillonnage de l'intensité du courant et de la tension mesurées par les capteurs de courant 50, 51 et de tension 64. En variante, les premiers moyens de calcul 78, les deuxièmes moyens de calcul 80, les moyens de comparaison 82, les moyens de détection 83, les troisièmes moyens de calcul 84 et les moyens d'échantillonnage 88 sont réalisés sous forme de composants logiques programmables ou encore sous forme de circuits intégrés dédiés.The memory 76 is able to store a
Le premier logiciel de calcul 78 est propre à calculer la valeur thermique de chaque plage de connexion 66, en fonction de la première température mesurée correspondante. Plus précisément, le premier logiciel de calcul 78 est propre à calculer la différence entre la première température et la deuxième température pour chaque borne de connexion aval 38, 40. Ainsi, la valeur thermique correspond, par exemple, à une variation de température, telle que la différence entre la première température et la deuxième température, et notamment à un échauffement de la plage de connexion 66.The
En variante, la deuxième température est considérée comme égale à une valeur constante prédéterminée et le premier logiciel de calcul 78 fixe la valeur thermique égale à la différence entre la première température et la valeur constante prédéterminée.Alternatively, the second temperature is considered equal to a predetermined constant value and the
Le deuxième logiciel de calcul 80 est propre à calculer le seuil de température S1 à l'instant donné tn en fonction de la valeur du seuil de température calculée à un instant précédent tn-1 et la valeur du seuil de température S1 est variable entre l'instant donné tn et l'instant précédent tn-1. Le deuxième logiciel de calcul 80 est plus précisément apte à calculer la valeur du seuil de température S1 suivant, une période d'échantillonnage dt, également appelée période de calcul dt. L'instant précédent tn-1 correspond par exemple à un instant qui précède l'instant donné tn d'une durée égal à la période de calcul dt.The
En variante, l'instant précédent t0 correspond à un instant initial de référence t0. L'instant initial de référence t0 correspond, par exemple, à l'instant d'une première mesure effectuée par l'appareil auxiliaire choisie parmi la mesure de la première température, la mesure de la deuxième température et la mesure de l'intensité du courant circulant dans le conducteur électrique de sortie 12', 14' correspondant, c'est-à-dire par exemple à l'instant de la mise sous tension du disjoncteur 22.In a variant, the previous instant t0 corresponds to an initial reference time t0. The initial reference time t0 corresponds, for example, to the instant of a first measurement made by the auxiliary device chosen from the measurement of the first temperature, the measurement of the second temperature and the measurement of the intensity of the current flowing in the corresponding output
Le deuxième logiciel de calcul 80 est de préférence également apte à calculer le seuil de température S1 en fonction de l'intensité du courant circulant dans le conducteur électrique de sortie 12', 14' correspondant. Le seuil de température S1 correspond, par exemple, à un échauffement limite de la plage de connexion 66 correspondante, c'est-à-dire à une variation de température. Le circuit électrique 77 présenté précédemment permet d'obtenir une équation donnant la valeur du premier seuil de température S1.The
Plus précisément, le seuil de température S1 est calculé suivant la période d'échantillonnage dt avec l'équation suivante :
En variante, la valeur du seuil de température S1(0) à l'instant initial de référence t0 est une valeur prédéterminée.Alternatively, the value of the temperature threshold S1 (0) at the initial reference time t0 is a predetermined value.
Dans la variante où le premier logiciel de calcul 78 fixe la valeur thermique égale à la différence entre la première température et la valeur constante prédéterminée, le premier seuil de température S1 est calculé avec une équation similaire à équation (1) présenté ci-dessus, mais les valeurs des paramètres R et C de l'équation seraient différentes et correspondraient par exemple respectivement à la résistance thermique et à la capacité thermique entre la plage de connexion 66 et un point de référence prédéterminé.In the variant where the
Le logiciel de comparaison 82 est propre à comparer la valeur thermique de chaque plage de connexion 66, calculée par le premier logiciel de calcul 78, avec le seuil de température S1 correspondant. La comparaison entre la valeur thermique et le seuil de température est réalisée à chaque multiple de la période d'échantillonnage dt après l'instant initial de référence t0. Le seuil de température S1 est calculé à partir de l'équation (1) récursive permettant de calculer la valeur du premier seuil S1 à l'instant donné tn, à partir de la connaissance de la valeur du premier seuil S1 à l'instant précédent tn-1 et notamment à partir de la connaissance de la valeur du seuil de température S1(0) à l'instant initial de référence t0.The
Plus précisément, le logiciel de comparaison 82 est apte à comparer la valeur thermique calculée à partir de la première température mesurée à l'instant donné tn avec la valeur du seuil de température S1(n) à l'instant donné tn. En effet, la comparaison est efficace si l'on compare la valeur du seuil de température S1 et la valeur thermique au même instant, c'est-à-dire à l'instant de mesure de la première température correspondant à la valeur thermique calculée. Ainsi, l'instant donné tn correspond à l'instant de mesure de la première température.More precisely, the
Le logiciel de détection 83 est, plus précisément, propre à détecter le desserrage d'au moins une borne de connexion aval 38, 40 correspondante, c'est-à-dire le desserrage d'au moins un conducteur électrique de sortie 12', 14' par rapport à la borne de connexion aval 38, 40 correspondante, lorsque la valeur thermique de la plage de connexion 66 est supérieure au seuil de température S1. Le desserrage correspond à une à une valeur du couple de serrage C inférieure à une première valeur de référence prédéterminée, c'est-à-dire à une valeur de la force de serrage F inférieure à une deuxième valeur de référence prédéterminée et donc à une valeur de l'impédance Z supérieure à une valeur prédéterminée, c'est-à-dire, par exemple, supérieure à 0,004 Ω de préférence supérieure à 0,005 Ω.The
Le fonctionnement du système électrique 10 selon l'invention va désormais être expliqué à l'aide de la
Le procédé est présenté ci-dessous dans le cas d'une seule borne de connexion aval 38, 40, c'est-à-dire pour la connexion entre une seule des bornes de connexion aval 38, 40 et l'appareil auxiliaire 24. Le procédé s'applique généralement à chaque borne de connexion aval 38, 40.The method is presented below in the case of a single
Lors d'une étape initiale 100, le premier capteur de température 46 mesure, à l'instant donné tn, la première température. En outre, lors de la première mesure de la première température, c'est-à-dire à l'instant initial de référence t0, la première température mesurée est sauvegardé et le seuil de température S1(0) à l'instant initial de référence t0, c'est-à-dire la valeur de l'échantillon initial du seuil de température S1, est calculé, puis sauvegardé. Puis, lors d'une suivante 102, le deuxième capteur de température 71 mesure la deuxième température.During an
Ensuite, lors d'une étape 104, la valeur thermique de la plage de connexion 66 correspondante est calculée, par exemple avec la différence entre la première température et la deuxième température, c'est-à-dire qu'on soustrait la valeur de la deuxième température à la première température.Then, during a
En variante, lors de l'étape 104, la valeur thermique est fixée égale à la première température et l'étape 102 n'est pas réalisée.Alternatively, in
Au cours d'une étape 106, l'intensité du courant circulant dans le conducteur électrique de sortie 12', 14' correspondant est mesurée. Puis, lors d'une étape 108, la valeur du seuil de température S1 à l'instant donné tn, est calculée en fonction de la valeur du seuil de température S1(n-1) à l'instant précédent tn-1 et de préférence également en fonction de l'intensité du courant mesurée lors de l'étape 106. Le seuil de température S1 est ainsi calculé, par exemple, à partir de l'équation (1) présentée ci-dessus. Lors d'un premier calcul du seuil de température S1, après l'instant initial de référence t0, la valeur du seuil de température à l'instant initial de référence t0 est utilisée. En outre, lors du calcul du seuil de température S1, les valeurs choisies pour la résistance thermique R, le condensateur thermique C et l'impédance Z entre la plage de connexion 66 et le conducteur électrique de sortie 12', 14' correspondant, sont des valeurs correspondant à un échauffement maximal de la plage de connexion 66 correspondante et donc à un seuil de température maximum S1. Ainsi, la valeur choisie pour l'impédance Z correspond à l'impédance minimale admissible pour éviter un incendie.During a
Ensuite, lors d'une étape 110, la valeur thermique de la plage de connexion 66 correspondante est comparée avec la valeur du seuil de température S1 calculée, à l'instant donné tn, lors de l'étape 108.Then, during a
Si lors de l'étape 110 de comparaison, la valeur thermique est inférieure ou égale au seuil de température S1, alors le procédé retourne à l'étape 100 de mesure de la première température au bout d'une durée prédéterminée, correspondant, par exemple, à la période d'échantillonnage dt.If, during the
Si lors de l'étape 110 de comparaison, la valeur thermique est strictement supérieure au seuil de température S1 alors, lors d'une étape 112, une surchauffe de la plage de connexion 66 et de la borne de connexion aval 38, 40 correspondante est détectée. Lors de l'étape 112, le desserrage du conducteur électrique de sortie 12', 14' correspondant, par rapport à la borne de connexion aval 38, 40 correspondante, est alors par exemple détecté.If, during the
Lors d'une étape 114 suivante, le premier message M1 est généré et comprend une donnée spécifiant la détection du desserrage ou, plus généralement de la surchauffe de la borne de connexion aval 38, 40 correspondante. Enfin, au cours d'une étape 116 suivante, le premier message M1 est transmis au concentrateur 20. Le concentrateur 20 est alors propre à indiquer à un opérateur, via le dispositif de visualisation 27, une surchauffe ou un desserrage de la borne de connexion aval 38, 40 correspondante.In a
Avantageusement, lors de la génération du premier message M1 des valeurs de puissance électrique et d'énergie électrique calculées par le troisième logiciel de calcul 84 sont incluses dans le premier message M1.Advantageously, during the generation of the first message M1, the electrical power and electrical energy values calculated by the third calculation software 84 are included in the first message M1.
A la
Sur la
A la
Concernant la cinquième courbe 208, un desserrage de l'élément de serrage 68, c'est-à-dire de la borne de connexion aval 38, 40 correspondante, a été effectué pour un temps égal à 2400 s. Ainsi, entre 0 s et 2400 s le couple de serrage est égal à 0,2 Nm et après 2400 s le couple de serrage est égal à 0 Nm ce qui correspond à un desserrage complet de l'élément de serrage 68.Concerning the
On observe alors, qu'avant un temps égal à 2400s, la valeur thermique est inférieure au seuil de température S1 et l'évolution de la sixième courbe 210 suit celle de la cinquième courbe 208. Puis, après le desserrage de la borne de connexion aval 38, 40 correspondante, la valeur thermique augmente fortement et devient supérieure à la valeur du seuil de température S1. La surchauffe de la borne de connexion aval 38, 40 correspondante est alors détectée.It is then observed that before a time equal to 2400s, the thermal value is below the temperature threshold S1 and the evolution of the
Le fait que la valeur du seuil de température S1 varie en fonction du temps et plus précisément entre l'instant donné tn et l'instant précédent tn-1 permet de déterminer de manière plus précise la surchauffe. En effet, ceci permet de considérer, par exemple, différentes phases de fonctionnement du disjoncteur 22, et plus précisément des bornes de connexion aval 38, 40. La méthode de calcul du seuil de température S1 en fonction du temps permet par exemple de mieux prendre en compte l'environnement dans lequel se trouvent la ou les bornes de connexion aval 38, 40.The fact that the value of the temperature threshold S1 varies as a function of time and more precisely between the given instant t n and the previous instant t n-1 makes it possible to determine the superheating more precisely. Indeed, this makes it possible to consider, for example, different operating phases of the
On observe sur les cinquième 208 et sixième 210 courbes, que lorsque le courant augmente ou diminue, la valeur thermique et la valeur du seuil de température S1 respectivement augmentent ou diminuent. L'évolution du seuil de température S1 suit celle de la valeur thermique, ce qui permet de déterminer de manière plus précise la surchauffe de la borne de connexion aval 38, 40 correspondante. Sur la
De plus, l'appareil auxiliaire 24 permet de détecter la surchauffe, c'est à dire un desserrage de borne même pour une intensité du courant traversant le conducteur électrique de sortie 12', 14' correspondant inférieure à 10 A et même lorsque la valeur de la surchauffe est faible, par exemple, de l'ordre de 25 °C, puisque la valeur du seuil de température évolue globalement de manière analogue à celle de la valeur thermique lorsqu'elle est de préférence calculée en outre en fonction du courant mesuré traversant le conducteur électrique de sortie 12', 14' correspondant.In addition, the
Les organes de liaison 42, 44 permettent une conduction de chaleur améliorée entre la plage de connexion 66 correspondante et chaque capteur de température 46.The connecting
Avantageusement, l'appareil auxiliaire 24 comprend un moyen de détection d'une perte de tension en aval du disjoncteur et est propre à déterminer une cause de perte de tension en aval du disjoncteur 22, ladite cause étant de préférence choisie parmi le groupe consistant en : une surcharge électrique, un court-circuit, et une chute de tension. Plus précisément, l'appareil auxiliaire 24 est conforme à l'appareil auxiliaire décrit dans la demande de brevet déposé sous le numéro
La
Selon le deuxième mode de réalisation, le courant circulant dans les conducteurs électriques 12, 12', 14, 14' est un courant triphasé, et la liaison électrique 26 comporte trois premiers conducteurs électriques de sortie 12' et trois premiers conducteurs électriques d'entrée 12, correspondant à des conducteurs de phase et un deuxième conducteur électrique de sortie 14' et un deuxième conducteur électrique d'entrée 14, correspondant à des conducteurs de neutre.According to the second embodiment, the current flowing in the
Le système électrique 10 comporte alors quatre disjoncteurs 22 munis chacun d'une seule borne de connexion aval 38, 40 et d'une seule borne de connexion amont 34, 36 et formant un disjoncteur tétrapolaire, couplé à l'appareil auxiliaire 24.The
L'appareil auxiliaire 24 comporte alors quatre organes de liaison et quatre capteurs de courant.The
Le deuxième logiciel de calcul 80 du seuil de température S1 est alors propre à calculer le seuil de température S1(n) à l'instant donné tn, pour chaque borne de connexion, en fonction de la valeur du seuil de température S1(n-1) à l'instant précédent tn-1 et du courant traversant la borne de connexion aval 38, 40 correspondante.The
Le fonctionnement de ce deuxième mode de réalisation pour chaque premier conducteur électrique de sortie 12' et le deuxième conducteur électrique de sortie 14' est analogue à celui du premier mode de réalisation, décrit pour un premier conducteur de sortie 12' et un deuxième conducteur de sortie 14', et n'est pas décrit à nouveau.The operation of this second embodiment for each first
Les avantages de ce deuxième mode de réalisation sont identiques à ceux du premier mode de réalisation.The advantages of this second embodiment are identical to those of the first embodiment.
En variante, dans ce deuxième mode de réalisation, l'appareil auxiliaire 24 comprend trois capteurs de courant chacun associé à un premier conducteur électrique de sortie 12' respectif. Le courant circulant dans le deuxième conducteur électrique de sortie 14' est alors calculé à partir des courants mesurés dans les premiers conducteurs électriques de sortie 12'.Alternatively, in this second embodiment, the
Plus généralement, l'invention s'applique aussi bien à un disjoncteur monophasé propre à être connecté à un conducteur de phase et à un conducteur de neutre, comme présenté dans le premier mode de réalisation, qu'à un disjoncteur triphasé propre à être connecté à trois conducteurs de phases, ou encore qu'à un disjoncteur tétrapolaire connecté à trois conducteurs de phase et à un conducteur de neutre, comme présenté dans le deuxième mode de réalisation. Pour les disjoncteurs monophasé et tétrapolaire, lors de l'ouverture du disjoncteur, suivant l'application considérée, le conducteur de neutre est coupé et le courant le traversant est interrompu, ou bien le conducteur de neutre n'est pas coupé et le courant le traversant n'est pas interrompu.More generally, the invention applies equally well to a single-phase circuit breaker adapted to be connected to a phase conductor and a neutral conductor, as shown in the first embodiment, to a three-phase circuit breaker suitable for connection. with three phase conductors, or a four-pole circuit breaker connected to three phase conductors and a neutral conductor, as shown in the second embodiment. For single-phase and four-pole circuit-breakers, when opening the circuit-breaker, depending on the application in question, the neutral conductor is cut and the current flowing through it is interrupted, or the neutral conductor is not cut and the current crossing is not interrupted.
Plus généralement, l'appareil auxiliaire 24 est apte à être associé à tout type de dispositif électrique comprenant une borne de connexion.More generally, the
Selon une autre variante, les organes de communication 28, 60 et les antennes 30, 62 sont conformes à tout type de protocole de communication sans fil, tels que le protocole WIFI ou le protocole BLUETOOTH.According to another variant, the
Claims (12)
- Method for determining, using an auxiliary unit (24), an overheating of at least one connection terminal (38, 40) of an electrical device (22), the one or more connection terminals (38, 40) each comprising at least one connection area (66) that is capable of being connected to a corresponding electrical conductor (12', 14'),
the method comprising, for each connection terminal (38, 40), the following steps:- a) measuring (100), at a given instant in time (tn), a first temperature corresponding to the temperature of the corresponding connection area (66), via a first temperature sensor (46);- b) computing (104) a thermal value of the connection area (66) as a function of the first measured temperature;- c) comparing (110) the thermal value of the connection area (66) with a temperature threshold (S1), and- d) detecting (112) an overheating of the corresponding connection terminal (38, 40) when the thermal value of the connection area (66) is above the temperature threshold (S1),the method being characterized in that it comprises, prior to comparison step c) and for each connection terminal (38, 40), the following step:- b') computing (108) the temperature threshold (S1(n)) at the given instant (tn) as a function of the value of the temperature threshold (S1(n-1)) at a preceding instant (tn-1, t0), the value of the temperature threshold (S1) varying between the preceding instant (tn-1, tO), and the given instant (tn), andin comparison step c), the thermal value is compared with the value of the temperature threshold (S1 (n)) at the given instant (tn). - Method according to Claim 1, characterized in that it comprises, prior to step b') of computing the temperature threshold (S1), the following step:- b") measuring (106) the intensity of the current flowing through the corresponding electrical conductor (12', 14'),and in that in computation step b'), the temperature threshold (S1) is additionally computed as a function of the intensity of the current flowing through the corresponding electrical conductor (12', 14'),
- Method according to one of the preceding claims, characterized in that the one or more connection terminals (38, 40) each comprise a clamping element (68) that is capable of maintaining the connection between the corresponding electrical conductor (12', 14') and the corresponding connection area (38, 40) via the application of a clamping force (C) on the electrical conductor (12', 14'), and in that in detection step d), a loosening of at least one electrical conductor (12', 14') with respect to the corresponding connection terminal (38, 40) is detected when the thermal value of the connection area is above the temperature threshold (S1), the loosening corresponding to an impedance value (Z) between the connection area 66 and the corresponding electrical output conductor (12', 14') that is higher than a predetermined value.
- Method according to one of the preceding claims, characterized in that in step b) of computing the thermal value of the connection area (66), the thermal value is fixed so as to be equal to the first temperature.
- Method according to one of Claims 1 to 3, characterized in that it comprises, prior to step b) of computing the thermal value, the following step:- a') measuring (102) a second ambient temperature in the vicinity of the electrical device (22) via a second temperature sensor (71) that is positioned at a distance of less than 3 metres away, preferably 1 metre away, from the electrical device (22),in that, in step b) of computing the thermal value, the thermal value is equal to the difference between the first temperature and the second temperature.
- Method according to Claim 5, characterized in that in step b') of computing the temperature threshold (S1), the temperature threshold (S1) is computed using the following formula:where S1(0) corresponds to the value of the temperature threshold at the initial reference instant (tO), S1(0) is dependent on the value of the first temperature measured at the initial reference instant,S1 (n) and S1 (n-1) correspond, respectively, to the value of the temperature threshold at the given instant (tn) and at the preceding instant (tn-1), where n is greater than or equal to 1, dt corresponds to a period of computing the temperature threshold, in which the temperature threshold (S1) is computed, Irms(n) corresponds to the root mean square value of the current flowing through the electrical output conductor (12', 14') corresponding to the given instant (tn), Z corresponds to the impedance between the connection area (66) and the corresponding electrical conductor (12', 14'), R and C correspond, respectively, to the thermal resistance and to the thermal capacitance between the first (46) and the second (71) temperature sensors.
- Auxiliary unit (24) for an electrical device (22), the electrical device (22) comprising at least one connection terminal (38, 40) comprising a connection area (66) that is capable of being connected to a corresponding electrical conductor (12', 14'), the auxiliary unit (24) comprising, for each connection terminal (38, 40):- a first temperature sensor (46) that is capable of measuring, at a given instant in time (tn), a first temperature corresponding to the temperature of the corresponding connection area (66);- first computation means (78) for computing a thermal value of the connection area (66) as a function of the first measured temperature;- comparison means (82) that are capable of comparing the thermal value of the connection area (66) with a temperature threshold (S1), and- detection means (83) for detecting an overheating of the corresponding connection terminal (38, 40) when the corresponding thermal value of the connection area (66) is above the temperature threshold (S1),characterized in that the auxiliary unit (24) comprises, for each connection terminal (38, 40):- second computation means (80) for computing the temperature threshold (S1) at the given instant (tn) as a function of the value of the temperature threshold (S1(n-1)) at a preceding instant (tn-1, t0), the value of the temperature threshold (S1) varying between the preceding instant (tn-1), and the given instant (tn), and the comparison means (82) are capable of comparing the thermal value with the value of the temperature threshold (S1(n)) at the given instant (tn).
- Unit according to Claim 7, characterized in that it comprises, for each connection terminal (38, 40), a current sensor (50, 51) that is capable of measuring the intensity of the current flowing through the corresponding electrical conductor (12', 14'), the second computation means (80) being capable, for each connection terminal (38, 40), of computing the temperature threshold (S1) additionally as a function of the intensity of the current flowing through the corresponding electrical conductor (12', 14').
- Unit according to Claim 7 or 8, characterized in that it comprises, for each connection terminal (38, 40), a member (42, 44) for making an electrical connection to the corresponding connection area (66), the connection member (42, 44) comprising a thermally conductive material, the difference in temperature between the corresponding connection area (66) and the connection member (42, 44) preferably being less than 10°C for temperatures of the connection area (66) of between 100°C and 400°C, the first temperature sensor (46) being capable of measuring the temperature of the connection member (42, 44).
- Unit according to one of Claims 7 to 9, characterized in that it comprises a second temperature sensor (71) that is positioned at a distance of less than 3 metres away, preferably 1 metre away, from the electrical device (22) and is capable of measuring a second ambient temperature in the vicinity of the electrical device (22), and in that the first computation means (78) are capable of fixing the thermal value at a value that is equal to the difference between the first temperature and the second temperature.
- Electrical system (10) comprising an electrical device (22) and an auxiliary unit (24) associated with the electrical device, the electrical device (22) comprising at least one connection terminal (38, 40) comprising a connection area (66) that is capable of being connected to an electrical conductor (12', 14'), characterized in that the auxiliary unit (24) is in accordance with one of Claims 7 to 10.
- System according to Claim 11, characterized in that the electrical device (22) is a switching device comprising, for each electrical conductor (12, 12', 14, 14'), a current input terminal (34, 36) and a current output terminal (38, 40) and is capable, in an open position, of allowing the current to flow through the one or more corresponding electrical conductors (12', 14') and, in a closed position, of interrupting the flow of the current through the one or more corresponding electrical conductors (12', 14'), the auxiliary unit being connected via the one or more electrical connection members (42, 44) to the or each current output terminal (38, 40).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1452785A FR3019302B1 (en) | 2014-03-31 | 2014-03-31 | METHOD FOR DETERMINING AN OVERHEAT OF AT LEAST ONE CONNECTION TERMINAL OF AN ELECTRICAL DEVICE, ASSOCIATED AUXILIARY APPARATUS AND ELECTRICAL SYSTEM COMPRISING SUCH AN ELECTRICAL DEVICE AND SUCH AN AUXILIARY APPARATUS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2927928A1 EP2927928A1 (en) | 2015-10-07 |
EP2927928B1 true EP2927928B1 (en) | 2016-11-16 |
Family
ID=51063611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15161678.6A Active EP2927928B1 (en) | 2014-03-31 | 2015-03-30 | Method for determining an overheating of at least one connection terminal of an electrical device, associated auxiliary apparatus, and electrical system including such an electrical device and such an auxiliary apparatus |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2927928B1 (en) |
ES (1) | ES2615638T3 (en) |
FR (1) | FR3019302B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3076669B1 (en) * | 2018-01-11 | 2020-10-09 | Schneider Electric Ind Sas | WIRELESS COMMUNICATING ELECTRICAL DEVICE AND ELECTRICAL CABINET INCLUDING THIS ELECTRICAL DEVICE |
CN109375044A (en) * | 2018-12-12 | 2019-02-22 | 上海奥波电子有限公司 | The method and system of quality are electrically connected between a kind of detection conductor |
FR3130965A1 (en) * | 2021-12-16 | 2023-06-23 | Schneider Electric Industries Sas | Device for measuring a temperature and an electrical voltage between two electrical connection terminals of an electrical protection device |
EP4296696A1 (en) * | 2022-06-22 | 2023-12-27 | K & N Schalterentwicklungsgesellschaft m.b.H. | Measuring module |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1358776A (en) | 1963-05-28 | 1964-04-17 | Thomson Houston Comp Francaise | Titanium-ceramic composite bodies |
US5188542A (en) | 1991-12-05 | 1993-02-23 | Gray Ballman | Electrical connector with integral strain relief and mount, and overtemperature indicator |
US7501926B2 (en) | 2004-03-25 | 2009-03-10 | B Safe Electrix, Inc. | Heat sensing electrical receptacle |
US20090167537A1 (en) * | 2007-12-28 | 2009-07-02 | Feliss Norbert A | Minimizing electrical outlet safety failures due to over temperature condition |
GB201211709D0 (en) * | 2012-07-02 | 2012-08-15 | Indumission Ltd | Protecting electrical distribution equipment against overheating |
-
2014
- 2014-03-31 FR FR1452785A patent/FR3019302B1/en not_active Expired - Fee Related
-
2015
- 2015-03-30 EP EP15161678.6A patent/EP2927928B1/en active Active
- 2015-03-30 ES ES15161678.6T patent/ES2615638T3/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2927928A1 (en) | 2015-10-07 |
ES2615638T3 (en) | 2017-06-07 |
FR3019302B1 (en) | 2016-04-29 |
FR3019302A1 (en) | 2015-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2849196B1 (en) | Method for determining a cause of a loss of voltage downstream from a circuit breaker, auxiliary apparatus for a circuit breaker, electric system comprising a circuit breaker and such an auxiliary apparatus | |
EP2717408B1 (en) | Reactive power compensator | |
EP2927928B1 (en) | Method for determining an overheating of at least one connection terminal of an electrical device, associated auxiliary apparatus, and electrical system including such an electrical device and such an auxiliary apparatus | |
EP2849195B1 (en) | Auxiliary device for electric circuit breaker, electrical system comprising a circuit breaker and such an auxiliary device and method to determine the ground of the circuit breaker opening with such an auxiliary device | |
FR2878380A1 (en) | METHOD AND DEVICE FOR IDENTIFYING ELECTRIC ARCS OF FAULT CURRENT IN ELECTRIC CIRCUITS | |
EP2446281B1 (en) | Electricity meter having an uninsulated current sensor and a cutoff contactor | |
EP4134695B1 (en) | Verification of the metrological precision of an electricity meter | |
EP3106887A1 (en) | Method and device for detecting a fault in an electrical network | |
EP2909909B1 (en) | Protection system for a plurality of direct voltage supplies | |
FR2699753A1 (en) | Device for digital calculation of a symmetrical component of an electrical quantity of a three-phase network and relay comprising it. | |
EP1318586B1 (en) | Method and device for electrical short circuit detection, and circuit breaker comprising such a device | |
EP3361268B1 (en) | Monitoring circuit of an electrical power network | |
EP2910958A1 (en) | Detecting a fault, in particular a transient fault, in an electrical network | |
EP3009851A1 (en) | Counter for detecting fraud by bypass | |
EP2818879B1 (en) | Device for estimating the impedance of an electrical ground connection, related estimation method and power supply system | |
FR3004581A1 (en) | ELECTRICAL CONTACTOR AND METHOD FOR CONTROLLING AN ELECTROMAGNETIC COIL IN SUCH A CONTACTOR | |
EP0591011B1 (en) | Device for detecting faults on an electric energy distributing underground network | |
EP4016578B1 (en) | Device for diagnosing a switching event, associated switching device and diagnostic method | |
FR3039335A1 (en) | METHOD FOR PROTECTING AGAINST OVERHEATING AND / OR OVERCURRENTS OF AN ELECTRICAL CONNECTOR | |
EP3650875B1 (en) | Method for testing an electrical protection unit and protection unit implementing such a method | |
EP1083644B1 (en) | Earth fault protection device sensitive to arc currents, trip device and circuit breaker comprising such a device | |
FR3116392A1 (en) | Electronic cut-off protection device | |
WO2015022280A1 (en) | Method, device and computer program for controlling a mechatronic circuit breaker | |
FR2488458A1 (en) | THERMAL PROTECTION CIRCUIT OF AN ELECTRIC MOTOR COMPRISING TWO TIME-CONSTANT ORGANS | |
FR3089707A1 (en) | Electronic power outage system with a quick outage solution. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160310 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01H 71/08 20060101AFI20160530BHEP Ipc: H01H 11/00 20060101ALN20160530BHEP |
|
INTG | Intention to grant announced |
Effective date: 20160620 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 846617 Country of ref document: AT Kind code of ref document: T Effective date: 20161215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015000711 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 3 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 846617 Country of ref document: AT Kind code of ref document: T Effective date: 20161116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170217 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170216 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170316 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2615638 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015000711 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170216 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170330 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170316 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240328 Year of fee payment: 10 Ref country code: GB Payment date: 20240319 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240321 Year of fee payment: 10 Ref country code: FR Payment date: 20240327 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240412 Year of fee payment: 10 |