EP2927503B1 - Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren - Google Patents
Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren Download PDFInfo
- Publication number
- EP2927503B1 EP2927503B1 EP14163465.9A EP14163465A EP2927503B1 EP 2927503 B1 EP2927503 B1 EP 2927503B1 EP 14163465 A EP14163465 A EP 14163465A EP 2927503 B1 EP2927503 B1 EP 2927503B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- groove
- upstream
- edge
- downstream
- blade tip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/142—Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
- F01D5/143—Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
- F04D29/526—Details of the casing section radially opposing blade tips
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
- F04D29/685—Inducing localised fluid recirculation in the stator-rotor interface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
Definitions
- the present invention relates to a gas turbine compressor and an aircraft engine with such a gas turbine compressor and a method for designing such a gas turbine compressor.
- a gas turbine compressor with casing structuring (“casing treatment” CT) is known.
- This comprises a circumferential or interrupted circumferential groove which is arranged axially in the area of a circumferential blade tip and in which deflection means in the form of webs are arranged.
- the lands have random radial cutbacks.
- the WO 2004/018844 A1 discloses a recirculation structure for turbo compressors, with an annular chamber arranged in the area of the free blade ends of a blade ring, radially adjoining the main flow channel, and with a large number of guide elements arranged in the annular chamber and distributed over its circumference, with the annular chamber in the front and/or rear area allows a flow passage in the circumferential direction, and the guide elements are firmly connected to at least one wall of the annular chamber and are otherwise designed to be free-standing.
- the US 6,290,458 B1 relates to a turbomachine having a casing on the inner airfoil of which a plurality of first grooves are formed to connect an inlet side of blades of an impeller and a portion of the airfoil where the blades of the impeller lie.
- An object of an embodiment of the present invention is to improve a gas turbine compressor.
- a gas turbine compressor in particular an axial compressor, has one or more blades arranged next to one another in the circumferential direction with blade tips, in particular without shrouds, and a flow channel wall lying radially opposite thereto.
- the gas turbine compressor is a gas turbine compressor for an aircraft engine or aircraft engine; in particular, it can be a low-pressure compressor arranged in a gas turbine upstream of a further gas turbine compressor or a high-pressure compressor arranged downstream of a further gas turbine compressor.
- the blades are available in one version rotating blades arranged on a rotatably mounted rotor and rotating during operation, the radially outer blade tips of which are opposite the flow channel wall fixed to the housing radially on the outside.
- the vanes are guide vanes fixed to the housing, which the rotatably mounted flow channel wall, which revolves during operation, is opposite radially on the inside.
- a circumferential groove is arranged in the flow channel wall.
- this has an upstream groove flank which merges into the flow channel wall in an upstream groove edge, a downstream groove flank which merges into the flow channel wall in a downstream groove edge, and a groove base connecting these groove flanks.
- a groove edge can be sharp-edged or angular or also rounded or have a radius, in which case its center point or intersection point of its two outermost tangents can then define the groove edge for dimensions.
- the upstream groove flank and/or the downstream groove flank has an axial undercut whose cross-sectional area in a meridian section is less than 10% of a cross-sectional area of the circumferential groove between its upstream and downstream groove edge.
- a meridional section within the meaning of the present invention is a planar section that contains the axis of rotation of the compressor.
- An axial undercut of the upstream groove flank is a region of this groove flank which is arranged in the axial direction upstream in front of the upstream groove edge.
- an axial undercut of the downstream groove flank is a region of this groove flank which is arranged downstream in the axial direction behind the downstream groove edge.
- a cross-sectional area of the circumferential groove between its upstream and downstream groove edge is correspondingly the area bounded in the meridian section by the groove bottom, a straight line connecting the upstream and downstream groove edge and perpendicular through the upstream and downstream groove edge.
- the circumferential groove extends, in particular continuously or without interruption, over the full circumference of the flow channel wall or over 360°.
- the upstream and downstream groove edges are each a continuous edge that extends over 360° without interruption. In this way, in one embodiment, the manufacture and/or aerodynamics of the circumferential groove can be improved.
- One or more webs are arranged in the circumferential groove.
- Several adjacent webs, in particular all webs can be designed in the same way in one embodiment, in particular have at least essentially identical dimensions and contours. In this way, in one embodiment, the manufacture and/or aerodynamics of the circumferential groove can be improved.
- adjacent webs can be designed in different ways in one embodiment, in particular have different dimensions and/or contours.
- asymmetries can be specifically represented or compensated for in one embodiment.
- Three or more, in particular all, webs can be spaced equidistantly in the circumferential direction. Equally, three or more, in particular all, webs can have different distances from one another in pairs in the circumferential direction.
- a radial cutback is understood to mean in particular an empty space between a blade-side end face of the web and its projection into a reference surface that extends from the upstream groove edge to the downstream groove edge, the curvature of the reference surface in the meridian sections through the end face being equal to infinity or to of the upstream and downstream groove edges is equal to the curvature of the flow passage wall and continuously linear therebetween in the axial direction.
- radial cutback is understood to correspond to the free area between a blade tip-side upper edge of the cross section of the web and a reference curve that extends from the upstream groove edge to the downstream groove edge, the curvature of the reference curve being equal to infinity or at the upstream and downstream groove edges equal to the curvature of the flow channel wall and continuously linear therebetween in the axial direction.
- a radial cutback is understood in one embodiment to be the empty space or the free area between the blade-side end face or upper edge of the web and a flow channel contour that is virtually continued beyond the circumferential groove, with this virtually continued contour connecting the groove edges with a curvature that corresponds to the groove edges of the curvature of the flow channel contour and is linearly interpolated between them.
- an upstream beginning of the cutback is axially downstream of the upstream groove edge between this groove edge and the upstream leading edge of the blade tip and a downstream end of the Cutback arranged in a blade tip closer half of a radial height of the circumferential groove.
- a cutback according to the invention which begins downstream after the upstream groove edge and upstream before the upstream leading edge of the blade tip and ends in the half of the circumferential groove closer to the blade tip, in one embodiment has the advantages of the housing structuring in non-design operation ("off-design "), at least essentially, can be maintained, while at the same time undesired flow phenomena can be reduced in design operation or under nominal operating conditions.
- an upstream start of the cutback is understood to mean that axial position from which the blade-side end face or upper edge of the web deviates from the virtually continued flow channel contour or the reference surface or curve from the blade tip away to the groove base.
- an upstream start of the cutback is understood to mean that axial position from which the blade-side end face or upper edge of the web deviates from the straight reference surface or curve in the radial direction towards the groove base by at least 1%, in particular at least 5% of a maximum radial distance between a groove edge closer to the blade tip and the groove base.
- the upstream beginning of the cutback is located axially downstream of the upstream groove edge and upstream of the upstream leading edge of the blade tip.
- the blade-side face (or in one or more, preferably all, meridian sections through the blade-tip-side face of the web the top edge) of the web continues the flow channel contour with a constant curvature or without an abrupt change in curvature.
- a downstream end of the cutback is understood to mean that axial position at which the blade-side end face or upper edge of the web again opens into the reference surface or reference curve or into the downstream groove flank.
- a downstream end of the cutback is understood to mean that axial position from which the blade-side front side or upper edge of the web deviates from the straight reference surface or curve to the groove base in the radial direction by less than 5%, in particular less than 1 % of the maximum radial distance between the groove edge closest to the blade tip and the groove base.
- the downstream end of the cutback is arranged in a half of a radial height of the circumferential groove that is closer to the blade tip.
- a radial height of the circumferential groove means in particular a maximum distance between the groove base and the reference surface or reference curve, i.e. in particular a maximum distance between the groove base and the groove edge closer to the blade tip, in the radial direction or in a direction perpendicular to the connecting line of the understood upstream and downstream groove edge, such a distance perpendicular to the connecting line is generally referred to as the radial height of the circumferential groove.
- the radial cut-back ends in the reference surface or curve, in a further development axially downstream behind the upstream one leading edge of the blade tip.
- the blade-side face (or in one or more, preferably all, meridian sections through the blade-tip-side face of the web the top edge) of the web sets the flow channel contour with a continuous curvature or without an abrupt change in curvature from the downstream one groove edge upstream.
- the radial cut-back ends in the radially upper half of the downstream groove flank, and the web is radially cut-back continuously from the start of the cut-back.
- the radially upper half is generally referred to as the part of the downstream groove flank that extends in the radial direction or in a direction perpendicular to the line connecting the upstream and downstream groove edges over 50% of the maximum distance of the downstream groove edge from the groove base in this direction.
- the web opens into the upstream and downstream groove flank of the circumferential groove, it thus extends axially through the groove or its maximum axial length.
- a blade-tip-side top edge of the web at the upstream groove edge has the same curvature as the flow channel contour, i.e. a constant curvature at the upstream groove edge, and this continue until the start of the cut back.
- the web can be or run straight or curved.
- the end face of the web on the blade side can open out, at least essentially, axially into the upstream groove edge.
- the end face on the blade side can open into the downstream groove flank in a curved manner in or counter to a direction of rotation of the blade tip.
- the area of the cutback in at least one meridian section is preferably limited to at most 30%, in particular at most 25% of the cross-sectional area of the circumferential groove.
- the web has a cross-sectional area in one or more, in particular all meridian sections through the end face of the web on the blade tip side, which is at least 70%, in particular at least 75%, of the cross-sectional area of the circumferential groove in this meridian section.
- a cross-sectional area of the circumferential groove is the area that is delimited in the meridian section by the groove base, the groove flanks and a straight connecting line between the upstream and downstream groove edges.
- the circumferential groove encloses an angle of between 60° and 90° with the flow channel wall in one or more, in particular all meridian sections through the end face of the web on the blade tip side at the upstream groove edge. In this way, in particular, an advantageous axial undercut can be produced.
- an axial distance between the upstream groove edge and the leading edge of the blade tip arranged downstream thereof is greater than an axial distance between the downstream groove edge and the leading edge of the blade tip arranged upstream therefrom.
- the leading edge of the blade tip is located between the upstream and downstream groove edges and closer to the downstream groove edge.
- an axial distance between the upstream and downstream groove edges is at least 25% of an axial distance between the upstream leading edge and a downstream trailing edge of the blade tip.
- the web in a section perpendicular to an axis of rotation of the compressor, can be straight or curved, in which case it or its tangents can run radially or be inclined against the radial direction.
- one or more, in particular all, sections are perpendicular to the axis of rotation of the compressor through the end face of the web on the blade tip side, the web is inclined towards the groove base of the circumferential groove in the direction of rotation of the blade tip, in particular by at least 25° and/or at most 65° against the radial direction.
- FIG. 1 shows a part of a gas turbine compressor according to an embodiment of the present invention or a gas turbine compressor designed according to an embodiment of the present invention in a meridian section.
- the meridian section contains the axis of rotation of the compressor (horizontally in 1 ), in the 1 vertical direction is a radial direction.
- the gas turbine compressor has in the circumferential direction (perpendicular to the plane of the 1 ) Side-by-side moving blades with blade tips without shrouds, of which in the meridian section the 1 a rotor blade tip 10 is shown in part, and a flow channel wall 20 fixed to the housing radially on the outside opposite this.
- a circumferential groove is arranged in the flow channel wall, which has an upstream groove flank 31, which merges into the flow channel wall in an upstream groove edge 21, a downstream groove flank 32, which merges into the flow channel wall in a downstream groove edge 22, and a groove bottom 33 connecting these groove flanks.
- the upstream groove flank has an axial undercut whose cross-sectional area in the meridian section is less than 10% of a cross-sectional area of the circumferential groove between its upstream and downstream groove edges.
- This cross-sectional area of the circumferential groove between its upstream and downstream groove edge is the area in the meridian section of the 1 from the bottom of the groove, a straight connecting line 24 between the upstream and downstream groove edges and perpendicular through the upstream and downstream groove edges, which is shown in FIG 1 are indicated by dot-dash lines, the cross-sectional area of the undercut corresponds to the area between the upstream groove flank 31 and the in 1 left dash-dotted perpendicular to the connecting line 24 .
- circumferential groove In the circumferential groove are several ridges in the circumferential direction (perpendicular to the plane of the drawing 1 ) spaced apart from those in the meridian section of the 1 a web 40 is shown in section.
- At 24 is in 1 , as already explained above, designates a straight connecting line 24 between the upstream and downstream groove edges 21, 22. This thus represents a reference curve extending from the upstream groove edge to the downstream groove edge, with its curvature equal to infinity.
- At 23 is in 1 designates another reference curve which also extends from the upstream groove edge to the downstream groove edge, the curvature of this reference curve at the upstream and downstream groove edges being equal to the curvature of the flow channel wall and continuously linear in between in the axial direction, i.e. the curvature of the flow channel wall 20 between the groove edges 21, 22 linearly interpolated.
- This reference curve 23 thus continues the flow channel contour 20 virtually beyond the circumferential groove.
- the reference curves 23, 24 each represent a circumferentially extending corresponding reference surface 23, 24 in the meridian section of FIG 1 by an end face or upper edge 43 of the web 40 on the blade tip side.
- the end face or top edge 43 on the blade tip side deviates from a point or a peripheral line 41 to a point further point or a further circumferential line 42 from the reference curve or surface 23 or the virtually continued flow channel contour from the blade tip away to the bottom of the groove radially (upward in 1 ) away.
- the blade-side end face or upper edge 43 also deviates from the straight reference surface or curve 24 towards the groove base by at least 1% of a maximum radial distance between the groove edge 22 closer to the blade tip and the groove base 33.
- the point or perimeter 41 thus defines an upstream beginning of a radial cutback 44 of the web.
- the blade-side end face or upper edge of the web continues the flow channel contour 20 with a constant curvature.
- the point or circumferential line 42 defines a downstream end of the radial cutback 44 at which the blade-side face or top edge 43 of the land opens into the downstream groove flank 32 .
- the blade-side end face or upper edge 43 of the web leads back into the reference surface or curve 23. Then the point or the circumferential line at which the blade-side end face or upper edge 43 of the web again opens into the reference surface or curve 23, or the point or the circumferential line from which the blade-side face or upper edge of the web deviates from the straight reference surface or curve 24 to the groove base 33 again by less than 1%. of the maximum radial distance between the groove edge 22 closer to the blade tip and the groove bottom 33, represents the downstream end of the radial cutback.
- the blade-side end face or upper edge of the web can follow the flow channel contour with a continuous curvature from the downstream groove edge 22 upstream (to the left in 1 ) to this end of the cutback, as shown or explained analogously for the area between the upstream groove edge 21 and the upstream beginning 41 of the cutback.
- the void or free area between the blade-side face or top edge 43 of the web and the reference surface or curve 23 thus defines the radial cutback 44 with its upstream beginning 41 and its downstream end 42.
- this upstream beginning 41 of the cutback 44 becomes or is axially downstream (on the right in 1 ) from the upstream groove edge 21 between this groove edge 21 and the upstream front edge 11 of the blade tip 10 and the downstream end 42 of the cutback 44 in a half 34 of a radial height 35 of the circumferential groove closer to the blade tip.
- the maximum distance between the groove base 33 and the groove edge 22 closer to the blade tip in the radial direction (vertically in 1 ) or, as in 1 indicated, the maximum distance 35 between the groove base 33 and the groove edge 22 closer to the blade tip can be defined in a direction perpendicular to the straight connecting line 24 of the upstream and downstream groove edges.
- the part or region of the downstream groove flank 32 that extends in the radial direction or the direction perpendicular to the connecting line 24 of the upstream and downstream groove edge over 50% of the maximum distance of the downstream groove edge 22 from the groove bottom 33 in this direction is referred to as the radially upper half .
- the web 40 opens into the upstream and downstream groove flank 31, 32 of the circumferential groove, and it thus extends axially through the groove.
- the end face or upper edge of the web on the blade tip side has the same curvature at the upstream groove edge 21 as the flow channel contour 20 and continues this continuously up to the start 41 of the cutback 44 .
- the web 40 has an in 1 cross-sectional area indicated by hatching, which is at least 75% of the cross-sectional area of the circumferential groove in this meridian section, which is defined by the groove flanks 31, 32, the groove base 33 and the connecting line 24 between the two groove edges 21, 22.
- an axial distance between the upstream groove edge 21 and that downstream thereof (right in 1 ) arranged front edge 11 of the blade tip 10 is greater than an axial distance between the downstream groove edge 22 and the front edge 11 arranged upstream thereof 1
- an axial distance between the upstream and downstream groove edges 21, 22 is at least 25% of an axial distance between the upstream leading edge 11 and a downstream trailing edge (not shown) of the blade tip 10.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
- Die vorliegende Erfindung betrifft einen Gasturbinenverdichter sowie ein Flugtriebwerk mit einem solchen Gasturbinenverdichter und ein Verfahren zum Auslegen eines solchen Gasturbinenverdichters.
- Aus der
US 2010/0014956 A1 ist ein Gasturbinenverdichter mit einer Gehäusestrukturierung ("casing treatment" CT) bekannt. Dieses umfasst eine umlaufende oder unterbrochene Umfangsnut, die axial im Bereich einer umlaufenden Schaufelspitze angeordnet ist und in der Ablenkmittel in Form von Stegen angeordnet sind. In verschiedenen Ausführungsbeispielen weisen die Stege willkürliche radiale Rückschnitte auf. - Die
WO 2003/072910 A1 ist ein Turboverdichter des Stands der Technik bekannt. - Die
WO 2004/018844 A1 offenbart eine Rezirkulationsstrüktur für Turboverdichter, mit einer im Bereich der freien Schaufelenden eines Schaufelkranzes angeordneten, radial an den Hauptströmungskanal angrenzenden Ringkammer, und mit einer Vielzahl von in der Ringkammer angeordneten, über deren Umfang verteilten Leitelementen, wobei die Ringkammer im vorderen und/oder hinteren Bereich einen Strömungsdurchtritt in Umfangsrichtung ermöglicht, und die Leitelemente mit zumindest einer Wand der Ringkammer fest verbunden und im Übrigen freistehend ausgeführt sind. - Die
US 6,290,458 B1 betrifft eine Turbomaschine mit einem Gehäuse, an dessen innerer Strömungsfläche eine Mehrzahl von ersten Nuten ausgebildet sind, um eine Einlassseite von Schaufeln eines Laufrades und einen Bereich der Strömungsfläche zu verbinden, in dem die Schaufeln des Laufrades liegen. - Aus der
WO 2009/103278 A1 ist ein Turboverdichter nach dem Oberbegriff des Anspruchs 1 bekannt. - Eine Aufgabe einer Ausführung der vorliegenden Erfindung ist es, einen Gasturbinenverdichter zu verbessern.
- Diese Aufgabe wird durch einen Gasturbinenverdichter mit den Merkmalen des Anspruchs 1 gelöst. Ansprüche 13, 14 stellen ein Flugtriebwerk mit einem solchen Gasturbinenverdichter bzw. ein Verfahren zum Auslegen eines solchen Gasturbinenverdichters unter Schutz. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.
- Nach einem Aspekt der vorliegenden Erfindung weist ein, insbesondere axialer, Gasturbinenverdichter eine oder mehrere in Umfangsrichtung nebeneinander angeordnete Schaufeln mit, insbesondere deckbandlosen, Schaufelspitzen und eine diesen radial gegenüberliegende Strömungskanalwandung auf.
- Der Gasturbinenverdichter ist in einer Ausführung ein Gasturbinenverdichter für ein Flugtriebwerk bzw. eines Flugtriebwerks, er kann insbesondere ein in einer Gastubine stromaufwärts vor einem weiteren Gasturbinenverdichter angeordneter Niederdruckverdichter oder ein stromabwärts nach einem weiteren Gasturbinenverdichter angeordneter Hochdruckverdichter sein. Die Schaufeln sind in einer Ausführung an einem drehbar gelagerten Rotor angeordnete, im Betrieb umlaufende Laufschaufeln, deren radial äußeren Schaufelspitzen die gehäusefeste Strömungskanalwandung radial außen gegenüberliegt. In einer anderen Ausführung sind die Schaufeln gehäusefeste Leitschaufeln, denen die im Betrieb umlaufende, drehbar gelagerte Strömungskanalwandung radial innen gegenüberliegt.
- In der Strömungskanalwandung ist eine Umfangsnut angeordnet. Diese weist in einer Ausführung eine stromaufwärtige Nutflanke, die in einer stromaufwärtigen Nutkante in die Strömungskanalwandung übergeht, eine stromabwärtige Nutflanke, die in einer stromabwärtigen Nutkante in die Strömungskanalwandung übergeht, und einen diese Nutflanken verbindenden Nutgrund auf. Eine Nutkante kann in einer Ausführung scharfkantig bzw. eckig oder auch abgerundet sein bzw. einen Radius aufweisen, wobei dann für Maßangaben dessen Mittelpunkt oder Schnittpunkt seiner beiden äußersten Tangenten die Nutkante definieren kann.
- In einer Ausführung weist die stromaufwärtige Nutflanke und/oder die stromabwärtige Nutflanke eine axiale Hinterschneidung auf, deren Querschnittsfläche in einem Meridianschnitt in einer Weiterbildung weniger als 10% einer Querschnittsfläche der Umfangsnut zwischen ihrer stromaufwärtigen und stromabwärtigen Nutkante beträgt.
- Ein Meridianschnitt im Sinne der vorliegenden Erfindung ist ein ebener Schnitt, der die Drehachse des Verdichters enthält. Eine axiale Hinterschneidung der stromaufwärtigen Nutflanke ist ein Bereich dieser Nutflanke, der in axialer Richtung stromaufwärts vor der stromaufwärtigen Nutkante angeordnet ist. Entsprechend ist eine axiale Hinterschneidung der stromabwärtigen Nutflanke ein Bereich dieser Nutflanke, der in axialer Richtung stromabwärts hinter der stromabwärtigen Nutkante angeordnet ist. Eine Querschnittsfläche der Umfangsnut zwischen ihrer stromaufwärtigen und stromabwärtigen Nutkante ist entsprechend die Fläche, die im Meridianschnitt vom Nutgrund, einer geraden Verbindungslinie zwischen der stromaufwärtigen und stromabwärtigen Nutkante und Senkrechten durch die stromaufwärtige und stromabwärtige Nutkante begrenzt ist.
- Die Umfangsnut erstreckt sich in einer Ausführung, insbesondere durchgehend bzw. unterbrechungsfrei, über den vollen Umfang der Strömungskanalwandung bzw. über 360°. Mit anderen Worten ist in einer Ausführung die stromaufwärtige und stromabwärtige Nutkante jeweils eine durchgehende Kante, die sich unterbrechungsfrei über 360° erstreckt. Hierdurch kann in einer Ausführung die Herstellung und/oder Aerodynamik der Umfangsnut verbessert werden.
- In der Umfangsnut sind ein oder mehrere Stege angeordnet. Mehrere benachbarte, insbesondere alle Stege, können in einer Ausführung gleichartig ausgebildet sein, insbesondere, wenigstens im Wesentlichen, identische Abmessungen und Konturen aufweisen. Hierdurch kann in einer Ausführung die Herstellung und/oder Aerodynamik der Umfangsnut verbessert werden. Gleichermaßen können benachbarte Stege in einer Ausführung verschiedenartig ausgebildet sein, insbesondere unterschiedliche Abmessungen und/oder Konturen aufweisen. Hierdurch können in einer Ausführung gezielt Asymmetrien dargestellt oder kompensiert werden. Drei oder mehr, insbesondere alle, Stege können in Umfangsrichtung äquidistant beabstandet sein. Gleichermaßen können drei oder mehr, insbesondere alle, Stege in Umfangsrichtung paarweise unterschiedliche Abstände voneinander aufweisen.
- Ein oder mehrere, vorzugsweise alle Stege weisen einen radialen Rückschnitt auf. Unter einem radialen Rückschnitt wird vorliegend insbesondere ein Leerraum zwischen einer schaufelseitigen Stirnseite des Steges und deren Projektion in eine Referenzfläche verstanden, die sich von der stromaufwärtigen Nutkante zu der stromabwärtigen Nutkante erstreckt, wobei die Krümmung der Referenzfläche in den Meridianschnitten durch die Stirnseite gleich Unendlich oder an der stromaufwärtigen und stromabwärtigen Nutkante gleich der Krümmung der Strömungskanalwandung und dazwischen in axialer Richtung stetig linear ist. In einem Meridianschnitt wird als radialer Rückschnitt entsprechend die freie Fläche zwischen einer schaufelspitzenseitigen Oberkante des Querschnitts des Stegs und einer Referenzkurve verstanden, die sich von der stromaufwärtigen Nutkante zu der stromabwärtigen Nutkante erstreckt, wobei die Krümmung der Referenzkurve gleich Unendlich oder an der stromaufwärtigen und stromabwärtigen Nutkante gleich der Krümmung der Strömungskanalwandung und dazwischen in axialer Richtung stetig linear ist. Mit anderen Worten wird unter einem radialen Rückschnitt in einer Ausführung der Leerraum bzw. die freie Fläche zwischen der schaufelseitigen Stirnseite bzw. Oberkante des Steges und einer virtuell über die Umfangsnut hinweg fortgesetzte Strömungskanalkontur verstanden, wobei diese virtuell fortgesetzte Kontur die Nutkanten mit einer Krümmung verbindet, die an den Nutkanten der Krümmung der Strömungskanalkontur entspricht und dazwischen linear interpoliert.
- Nach der vorliegenden Erfindung ist bzw. wird, in einem oder mehreren, vorzugsweise allen, Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges, ein stromaufwärtiger Anfang des Rückschnitts axial stromabwärts von der stromaufwärtigen Nutkante zwischen dieser Nutkante und der stromaufwärtigen Vorderkante der Schaufelspitze und ein stromabwärtiges Ende des Rückschnitts in einer schaufelspitzennäheren Hälfte einer radialen Höhe der Umfangsnut angeordnet.
- Überraschenderweise hat sich herausgestellt, dass ein erfindungsgemäßer Rückschnitt, der stromabwärts nach der stromaufwärtigen Nutkante und stromaufwärts vor der stromaufwärtigen Vorderkante der Schaufelspitze beginnt und in der schaufelspitzennäheren Hälfte der Umfangsnut endet, in einer Ausführung die Vorteile der Gehäusestrukturierung im Nicht-Ausglegungsbetrieb ("Off-Design"), wenigstens im Wesentlichen, beibehalten werden, während gleichzeitig im Auslegungsbetrieb bzw. unter Nennbetriebsbedingungen ungewollte Strömungsphänomene reduziert werden können.
- Unter einem stromaufwärtigen Anfang des Rückschnitts wird in einer Ausführung diejenige Axialposition verstanden, ab der die schaufelseitigen Stirnseite bzw. Oberkante des Steges von der virtuell fortgesetzten Strömungskanalkontur bzw. der Referenzfläche bzw. -kurve von der Schaufelspitze weg zum Nutgrund hin abweicht. In einer anderen Ausführung wird unter einem stromaufwärtigen Anfang des Rückschnitts diejenige Axialposition verstanden, ab der die schaufelseitige Stirnseite bzw. Oberkante des Steges von der geraden Referenzfläche bzw. -kurve in radialer Richtung zum Nutgrund hin um wenigstens 1%, insbesondere wenigstens 5% eines maximalen radialen Abstandes zwischen einer schaufelspitzennäheren Nutkante und dem Nutgrund abweicht.
- Der stromaufwärtige Anfang des Rückschnitts ist erfindungsgemäß axial stromabwärts nach der stromaufwärtigen Nutkante und stromaufwärts vor der stromaufwärtigen Vorderkante der Schaufelspitze angeordnet. Bis zum Anfang des Rückschnitts setzt die schaufelseitige Stirnseite (bzw. in einem oder mehreren, vorzugsweise allen, Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges die Oberkante) des Steges die Strömungskanalkontur mit stetiger Krümmung bzw. ohne sprunghafte Änderung der Krümmung fort.
- Unter einem stromabwärtigen Ende des Rückschnitts wird entsprechend in einer Ausführung diejenige Axialposition verstanden, an der die schaufelseitige Stirnseite bzw. Oberkante des Steges wieder in die Referenzfläche bzw. -kurve oder in die stromabwärtige Nutflanke mündet. In einer anderen Ausführung wird unter einem stromabwärtigen Ende des Rückschnitts diejenige Axialposition verstanden, ab der die schaufelseitige Stirnseite bzw. Oberkante des Steges von der geraden Referenzfläche bzw. -kurve zum Nutgrund hin in radialer Richtung wieder um weniger als 5%, insbesondere weniger als 1% des maximalen radialen Abstandes zwischen der schaufelspitzennäheren Nutkante und dem Nutgrund abweicht.
- Das stromabwärtige Ende des Rückschnitts ist erfindungsgemäß in einer schaufelspitzennäheren Hälfte einer radialen Höhe der Umfangsnut angeordnet. Unter einer radialen Höhe der Umfangsnut wird im Sinne der vorliegenden Erfindung insbesondere ein maximaler Abstand zwischen dem Nutgrund und der Referenzfläche bzw. -kurve, insbesondere also ein maximaler Abstand zwischen dem Nutgrund und der schaufelspitzennäheren Nutkante, in radialer Richtung oder einer Richtung senkrecht zur Verbindungslinie der stromaufwärtigen und stromabwärtigen Nutkante verstanden, wobei auch ein solcher Abstand senkrecht zur Verbindungslinie verallgemeinernd als radiale Höhe der Umfangsnut bezeichnet wird.
- In einer Ausführung endet der radiale Rückschnitt in der Referenzfläche bzw. -kurve, in einer Weiterbildung axial stromabwärts hinter der stromaufwärtigen Vorderkante der Schaufelspitze. Bis zum Ende des Rückschnitts setzt die schaufelseitige Stirnseite (bzw. in einem oder mehreren, vorzugsweise allen, Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges die Oberkante) des Steges in einer Ausführung die Strömungskanalkontur mit stetiger Krümmung bzw. ohne abrupte Änderung der Krümmung von der stromabwärtigen Nutkante stromaufwärts fort.
- Erfindungsgemäß endet der radiale Rückschnitt in der radial oberen Hälfte der stromabwärtigen Nutflanke, der Steg ist ab dem Anfang des Rückschnitts durchgehend radial rückgeschnitten. Als radial obere Hälfte wird verallgemeinernd der Teil der stromabwärtigen Nutflanke bezeichnet, der sich in radialer Richtung oder einer Richtung senkrecht zur Verbindungslinie der stromaufwärtigen und stromabwärtigen Nutkante über 50% des maximalen Abstandes der stromabwärtigen Nutkante vom Nutgrund in dieser Richtung erstreckt.
- Erfindungsgemäß mündet der Steg in der stromaufwärtigen und der stromabwärtigen Nutflanke der Umfangsnut, er erstreckt sich somit axial durch die Nut hindurch bzw. deren maximale axiale Länge.
- Dann weist, wie vorstehend bereits ausgeführt, in einem oder mehreren, insbesondere allen Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges eine schaufelspitzenseitige Oberkante des Stegs an der stromaufwärtigen Nutkante dieselbe Krümmung auf wie die Strömmugskanalkontur, d.h. an der stromaufwärtigen Nutkante eine stetige Krümmung auf, und diese bis zum Anfang des Rückschnitts stetig fortsetzen.
- In einer Abwicklung kann der Steg gerade oder gekrümmt sein bzw. verlaufen. Insbesondere kann in einer Ausführung die schaufelseitige Stirnseite des Steges, wenigstens im Wesentlichen, axial in die stromaufwärtige Nutkante münden. Zusätzlich oder alternativ kann die schaufelseitige Stirnseite in oder entgegen einer Drehrichtung der Schaufelspitze gekrümmt in die stromabwärtige Nutflanke münden.
- Vorzugsweise ist die Fläche des Rückschnitts in wenigstens einem Meridianschnitt auf höchstens 30%, insbesondere höchstens 25% der Querschnittsfläche der Umfangsnut limitiert. Entsprechend weist in einer Ausführung der Steg in einem oder mehreren, insbesondere allen Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges eine Querschnittsfläche auf, die wenigstens 70%, insbesondere wenigstens 75%, der Querschnittsfläche der Umfangsnut in diesem Meridianschnitt beträgt. Eine Querschnittsfläche der Umfangsnut ist entsprechend der vorstehend erläuterten Definition die Fläche, die im Meridianschnitt vom Nutgrund, den Nutflanken und einer geraden Verbindungslinie zwischen der stromaufwärtigen und stromabwärtigen Nutkante begrenzt ist.
- In einer Ausführung schließt die Umfangsnut in einem oder mehreren, insbesondere allen Meridianschnitten durch die schaufelspitzenseitige Stirnseite des Steges an der stromaufwärtigen Nutkante mit der Strömungskanalwandung einen Winkel ein, der zwischen 60° und 90° beträgt. Hierdurch kann insbesondere eine vorteilhafte axiale Hinterschneidung dargestellt werden.
- In einer Ausführung ist ein axialer Abstand zwischen der stromaufwärtigen Nutkante und der hiervon stromabwärts angeordneten Vorderkante der Schaufelspitze größer als ein axialer Abstand zwischen der stromabwärtigen Nutkante und der hiervon stromaufwärts angeordneten Vorderkante der Schaufelspitze. Mit anderen Worten ist die Vorderkante der Schaufelspitze zwischen der stromaufwärtigen und stromabwärtigen Nutkante und näher bei der stromabwärtigen Nutkante angeordnet.
- In einer Ausführung beträgt ein axialer Abstand zwischen der stromaufwärtigen und der stromabwärtigen Nutkante wenigstens 25% eines axialen Abstands zwischen der stromaufwärtigen Vorderkante und einer stromabwärtigen Hinterkante der Schaufelspitze.
- In einem Schnitt senkrecht zu einer Drehachse des Verdichters kann der Steg gerade oder gekrümmt sein, wobei er bzw. seine Tangenten radial verlaufen oder gegen die radiale Richtung geneigt sein können. Entsprechend ist in einer Ausführung in einem oder mehreren, insbesondere allen Schnitten senkrecht zur Drehachse des Verdichters durch die schaufelspitzenseitige Stirnseite des Steges der Steg zum Nutgrund der Umfangsnut hin in Drehrichtung der Schaufelspitze geneigt, insbesondere um wenigstens 25° und/oder höchstens 65° gegen die radiale Richtung.
- Weitere vorteilhafte Weiterbildungen der vorliegenden Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung bevorzugter Ausführungen. Hierzu zeigt, teilweise schematisiert, die einzige:
- Fig. 1
- einen Teil eines Gasturbinenverdichters nach einer Ausführung der vorliegenden Erfindung in einem Meridianschnitt.
-
Fig. 1 zeigt in einem Meridianschnitt einen Teil eines Gasturbinenverdichters nach einer Ausführung der vorliegenden Erfindung bzw. eines nach einer Ausführung der vorliegenden Erfindung ausgelegten Gasturbinenverdichters. Der Meridianschnitt enthält die Drehachse des Verdichters (horizontal inFig. 1 ), die inFig. 1 vertikale Richtung ist eine radiale Richtung. - Der Gasturbinenverdichter weist in Umfangsrichtung (senkrecht zur Zeichenebene der
Fig. 1 ) nebeneinander angeordnete Laufschaufeln mit deckbandlosen Schaufelspitzen, von denen im Meridianschnitt derFig. 1 eine Laufschaufelspitze 10 teilweise dargestellt ist, und eine diesen radial außen gegenüberliegende gehäusefeste Strömungskanalwandung 20 auf. - In der Strömungskanalwandung ist eine Umfangsnut angeordnet, die eine stromaufwärtige Nutflanke 31, die in einer stromaufwärtigen Nutkante 21 in die Strömungskanalwandung übergeht, eine stromabwärtige Nutflanke 32, die in einer stromabwärtigen Nutkante 22 in die Strömungskanalwandung übergeht, und einen diese Nutflanken verbindenden Nutgrund 33 aufweist.
- Die stromaufwärtige Nutflanke weist eine axiale Hinterschneidung auf, deren Querschnittsfläche in dem Meridianschnitt weniger als 10% einer Querschnittsfläche der Umfangsnut zwischen ihrer stromaufwärtigen und stromabwärtigen Nutkante beträgt. Diese Querschnittsfläche der Umfangsnut zwischen ihrer stromaufwärtigen und stromabwärtigen Nutkante ist die Fläche, die im Meridianschnitt der
Fig. 1 vom Nutgrund, einer geraden Verbindungslinie 24 zwischen der stromaufwärtigen und stromabwärtigen Nutkante und Senkrechten durch die stromaufwärtige und stromabwärtige Nutkante begrenzt ist, die inFig. 1 strichpunktiert angedeutet sind, die Querschnittsfläche der Hinterschneidung entsprechend die Fläche zwischen der stromaufwärtigen Nutflanke 31 und der inFig. 1 linken strichpunktierten Senkrechten auf die Verbindungslinie 24 . - In der Umfangsnut sind mehrere Stege in Umfangsrichtung (senkrecht auf der Zeichenebene der
Fig. 1 ) beabstandet angeordnet, von denen in dem Meridianschnitt derFig. 1 ein Steg 40 geschnitten dargestellt ist. - Mit 24 ist in
Fig. 1 , wie vorstehend bereits erläutert, eine gerade Verbindungslinie 24 zwischen der stromaufwärtigen und stromabwärtigen Nutkante 21, 22 bezeichnet. Diese stellt somit eine Referenzkurve dar, die sich von der stromaufwärtigen Nutkante zu der stromabwärtigen Nutkante erstreckt, wobei ihre Krümmung gleich Unendlich ist. - Mit 23 ist in
Fig. 1 eine andere Referenzkurve bezeichnet, die sich ebenfalls von der stromaufwärtigen Nutkante zu der stromabwärtigen Nutkante erstreckt, wobei die Krümmung dieser Referenzkurve an der stromaufwärtigen und stromabwärtigen Nutkante jeweils gleich der Krümmung der Strömungskanalwandung und dazwischen in axialer Richtung stetig linear ist, d.h. die Krümmung der Strömungskanalwandung 20 zwischen den Nutkanten 21, 22 linear interpoliert. Diese Referenzkurve 23 setzt die Strömungskanalkontur 20 somit virtuell über die Umfangsnut hinweg fort. - Die Referenzkurven 23, 24 stellen jeweils eine sich in Umfansgrichtung erstreckende entsprechende Referenzfläche 23, 24 in dem Meridianschnitt der
Fig. 1 durch eine schaufelspitzenseitige Stirnfläche bzw. Oberkante 43 des Steges 40 dar. - Wie im Meridianschnitt der
Fig. 1 erkennbar, weicht die schaufelspitzenseitige Stirnfläche bzw. Oberkante 43 von einem Punkt bzw. einer Umfangslinie 41 ab bis zu einem weiteren Punkt bzw. einer weiteren Umfangslinie 42 von der Referenzkurve bzw. -fläche 23 bzw. der virtuell fortgesetzten Strömungskanalkontur von der Schaufelspitze weg zum Nutgrund hin radial (nach oben inFig. 1 ) ab. - Ab dem Punkt bzw. der Umfangslinie 41 weicht die schaufelseitigen Stirnseite bzw. Oberkante 43 zudem von der geraden Referenzfläche bzw. -kurve 24 zum Nutgrund hin um wenigstens 1% eines maximalen radialen Abstandes zwischen der schaufelspitzennäheren Nutkante 22 und dem Nutgrund 33 ab.
- Der Punkt bzw. die Umfangslinie 41 definiert damit einen stromaufwärtigen Anfang eines radialen Rückschnitts 44 des Steges.
- Bis zu diesem Anfang 41 des Rückschnitts 44 setzt die schaufelseitige Stirnseite bzw. Oberkante des Steges die Strömungskanalkontur 20 mit stetiger Krümmung fort.
- Der Punkt bzw. die Umfangslinie 42 definiert ein stromabwärtiges Ende des radialen Rückschnitts 44, an dem bzw. der die schaufelseitige Stirnseite bzw. Oberkante 43 des Steges in die stromabwärtige Nutflanke 32 mündet.
- In einer nicht dargestellten Abwandlung mündet die schaufelseitige Stirnseite bzw. Oberkante 43 des Steges hingegen wieder in die Referenzfläche bzw. -kurve 23. Dann stellt der Punkt bzw. die Umfangslinie, an dem bzw. der die schaufelseitige Stirnseite bzw. Oberkante 43 des Steges wieder in die Referenzfläche bzw. -kurve 23 mündet, oder der Punkt bzw. die Umfangslinie, ab dem bzw. der die schaufelseitige Stirnseite bzw. Oberkante des Steges von der geraden Referenzfläche bzw. -kurve 24 zum Nutgrund 33 hin wieder um weniger als 1% des maximalen radialen Abstandes zwischen der schaufelspitzennäheren Nutkante 22 und dem Nutgrund 33 abweicht, das stromabwärtigen Ende des radialen Rückschnitts dar.
- In dieser nicht dargestellten Abwandlung kann die schaufelseitige Stirnseite bzw. Oberkante des Steges die Strömungskanalkontur mit stetiger Krümmung von der stromabwärtigen Nutkante 22 stromaufwärts (nach links in
Fig. 1 ) bis zu diesem Ende des Rückschnitts fortsetzen, wie dies analog für den Bereich zwischen der stromaufwärtigen Nutkante 21 und dem stromaufwärtigen Anfang 41 des Rückschnitts gezeigt bzw. erläutert ist. - Der Leerraum bzw. die freie Fläche zwischen der schaufelseitigen Stirnseite bzw. Oberkante 43 des Steges und der Referenzfläche bzw. -kurve 23 definiert somit den radialen Rückschnitt 44 mit seinem stromaufwärtigen Anfang 41 und seinem stromabwärtigen Ende 42.
- Wie im Meridianschnitt der
Fig. 1 erkennbar, wird bzw. ist dieser stromaufwärtige Anfang 41 des Rückschnitts 44 axial stromabwärts (rechts inFig. 1 ) von der stromaufwärtigen Nutkante 21 zwischen dieser Nutkante 21 und der stromaufwärtigen Vorderkante 11 der Schaufelspitze 10 und das stromabwärtige Ende 42 des Rückschnitts 44 in einer schaufelspitzennäheren Hälfte 34 einer radialen Höhe 35 der Umfangsnut angeordnet. - Dabei kann als radiale Höhe der maximale Abstand zwischen dem Nutgrund 33 und der schaufelspitzennäheren Nutkante 22 in radialer Richtung (vertikal in
Fig. 1 ) oder, wie inFig. 1 angedeutet, der maximale Abstand 35 zwischen dem Nutgrund 33 und der schaufelspitzennäheren Nutkante 22 in einer Richtung senkrecht zur geraden Verbindungslinie 24 der stromaufwärtigen und stromabwärtigen Nutkante definiert sein. - Erfindungsgemäß endet der radiale Rückschnitt in der radial oberen Hälfte 34 der stromabwärtigen Nutflanke 32, der Steg ist ab dem Anfang 41 durchgehend radial rückgeschnitten. Als radial obere Hälfte wird der Teil bzw. Bereich der stromabwärtigen Nutflanke 32 bezeichnet, der sich in radialer Richtung oder der Richtung senkrecht zur Verbindungslinie 24 der stromaufwärtigen und stromabwärtigen Nutkante über 50% des maximalen Abstandes der stromabwärtigen Nutkante 22 vom Nutgrund 33 in dieser Richtung erstreckt.
- Erfindungsgemäß mündet der Steg 40 in der stromaufwärtigen und stromabwärtigen Nutflanke 31, 32 der Umfangsnut, er erstreckt sich somit axial durch die Nut hindurch.
- Wie vorstehend bereits ausgeführt, weist die schaufelspitzenseitige Stirnfläche bzw. Oberkante des Stegs an der stromaufwärtigen Nutkante 21 dieselbe Krümmung auf wie die Strömugskanalkontur 20 und setzt diese bis zum Anfang 41 des Rückschnitts 44 stetig fort.
- In der Ausführung der
Fig. 1 weist der Steg 40 eine inFig. 1 schraffiert angedeutete Querschnittsfläche auf, die wenigstens 75% der Querschnittsfläche der Umfangsnut in diesem Meridianschnitt beträgt, welche durch die Nutflanken 31, 32, den Nutgrund 33 und die Verbindungslinie 24 zwischen den beiden Nutkanten 21, 22 definiert ist. - In der Ausführung der
Fig. 1 schließt die Umfangsnut an der stromaufwärtigen Nutkante 21 mit der Strömungskanalwandung 20 einen Winkel α ein, der zwischen 60° und 90° beträgt. - In der Ausführung der
Fig. 1 ist ein axialer Abstand zwischen der stromaufwärtigen Nutkante 21 und der hiervon stromabwärts (rechts inFig. 1 ) angeordneten Vorderkante 11 der Schaufelspitze 10 größer als ein axialer Abstand zwischen der stromabwärtigen Nutkante 22 und der hiervon stromaufwärts angeordneten Vorderkante 11. In der Ausführung derFig. 1 beträgt ein axialer Abstand zwischen der stromaufwärtigen und der stromabwärtigen Nutkante 21, 22 wenigstens 25% eines axialen Abstands zwischen der stromaufwärtigen Vorderkante 11 und einer stromabwärtigen Hinterkante (nicht dargestellt) der Schaufelspitze 10. -
- 10
- Schaufelspitze
- 11
- Vorderkante
- 20
- Strömungskanalkontur
- 21
- stromaufwärtige Nutkante
- 22
- stromabwärtige Nutkante
- 23
- Referenzfläche/-kurve
- 24
- gerade Referenzfläche/-kurve
- 31
- stromaufwärtige Nutflanke
- 32
- stromabwärtige Nutflanke
- 33
- Nutgrund
- 34
- schaufelspitzennähere Hälfte der Umfangsnut
- 35
- radiale Höhe der Umfangsnut
- 40
- Steg
- 41
- stromaufwärtiger Anfang des Rückschnitts
- 42
- stromabwärtiges Ende des Rückschnitts
- 43
- schaufelspitzenseitige Stirnseite/Oberkante
- 44
- Rückschnitt
- α
- Winkel
Claims (14)
- Gasturbinenverdichter, mit wenigstens einer Schaufelspitze (10) und einer dieser radial gegenüberliegenden Strömungskanalwandung (20), in der eine Umfangsnut (31-33) angeordnet ist, in der wenigstens ein Steg (40) angeordnet ist, der einen radialen Rückschnitt (44) aufweist, wobeiein stromaufwärtiger Anfang (41) des Rückschnitts axial stromabwärts von einer stromaufwärtigen Nutkante (21) zwischen dieser Nutkante und einer stromaufwärtigen Vorderkante (11) der Schaufelspitze und ein stromabwärtiges Ende (42) des Rückschnitts in einer schaufelspitzennäheren Hälfte (34) einer radialen Höhe (35) der Umfangsnut angeordnet ist, wobei der Steg in einer stromaufwärtigen und einer stromabwärtigen Nutflanke (31, 32) der Umfangsnut mündet, wobeidie stromaufwärtige Nutflanke (31) der Umfangsnut eine axiale Hinterschneidung aufweistdadurch gekennzeichnet, dass in wenigstens einem Meridianschnitt eine schaufelspitzenseitige Oberkante (43) des Stegs an der stromaufwärtigen Nutkante dieselbe Krümmung aufweist wie eine Strömungskanalkontur der Strömungskanalwandung, d.h. an der stromaufwärtigen Nutkante eine stetige Krümmung aufweist und diese bis zum Anfang (41) des Rückschnitts stetig fortsetzt.
- Gasturbinenverdichter nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass eine schaufelseitige Stirnseite (43) des Steges, wenigstens im Wesentlichen, axial in die stromaufwärtige Nutkante und/oder in oder entgegen einer Drehrichtung der Schaufelspitze gekrümmt in die stromabwärtige Nutflanke mündet.
- Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Steg in wenigstens einem Meridianschnitt eine Querschnittsfläche aufweist, die wenigstens 70%, insbesondere wenigstens 75%, einer Querschnittsfläche der Umfangsnut beträgt.
- Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umfangsnut sich über den vollen Umfang der Strömungskanalwandung erstreckt.
- Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umfangsnut in wenigstens einem Meridianschnitt an der stromaufwärtigen Nutkante mit der Strömungskanalwandung einen Winkel (α) einschließt, der zwischen 60° und 90° beträgt.
- Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein axialer Abstand zwischen der stromaufwärtigen Nutkante und der hiervon stromabwärts angeordneten Vorderkante der Schaufelspitze größer ist als ein axialer Abstand zwischen der stromabwärtigen Nutkante und der hiervon stromaufwärts angeordneten Vorderkante der Schaufelspitze.
- Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein axialer Abstand zwischen der stromaufwärtigen und der stromabwärtigen Nutkante wenigstens 25% eines axialen Abstands zwischen der stromaufwärtigen Vorderkante und einer stromabwärtigen Hinterkante der Schaufelspitze beträgt.
- Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Steg in wenigstens einem Schnitt senkrecht zu einer Drehachse des Verdichters zu einem Nutgrund der Umfangsnut hin in Drehrichtung der Schaufelspitze geneigt ist, insbesondere um wenigstens 25° und/oder höchstens 65° gegen eine radiale Richtung.
- Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Umfangsnut wenigstens drei gleich- oder verschiedenartige Stege in Umfangsrichtung äquidistant oder mit unterschiedlichen Abständen voneinander angeordnet sind.
- Gasturbinenverdichter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schaufelspitze eine radial äußere Schaufelspitze (11) einer Laufschaufel (10) ist, der die Strömungskanalwandung radial au-βen gegenüberliegt.
- Gasturbinenverdichter nach einem der vorhergehenden Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Schaufelspitze eine radial innere Schaufelspitze einer Leitschaufel ist, der die Strömungskanalwandung radial innen gegenüberliegt.
- Gasturbinenverdichter nach einem der vorhergehenden Ansprüche 1, dadurch gekennzeichnet, dass eine stromaufwärtige Nutflanke (31) und/oder eine stromabwärtige Nutflanke (32) der Umfangsnut eine axiale Hinterschneidung aufweisen, deren Querschnittsfläche in einem Meridianschnitt weniger als 10% einer Querschnittsfläche der Umfangsnut zwischen ihrer stromaufwärtigen und stromabwärtigen Nutkante beträgt.
- Flugtriebwerk mit einem Gasturbinenverdichter nach einem der vorhergehenden Ansprüche.
- Verfahren zum Auslegen eines Gasturbinenverdichters nach einem der vorhergehenden Ansprüche, wobei ein stromaufwärtiger Anfang (41) des Rückschnitts axial stromabwärts von einer stromaufwärtigen Nutkante (21) zwischen dieser Nutkante und einer stromaufwärtigen Vorderkante (11) der Schaufelspitze und ein stromabwärtiges Ende (42) des Rückschnitts in einer schaufelspitzennäheren Hälfte (34) einer radialen Höhe (35) der Umfangsnut angeordnet wird.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14163465.9A EP2927503B1 (de) | 2014-04-03 | 2014-04-03 | Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren |
US14/672,959 US10450869B2 (en) | 2014-04-03 | 2015-03-30 | Gas turbine compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14163465.9A EP2927503B1 (de) | 2014-04-03 | 2014-04-03 | Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2927503A1 EP2927503A1 (de) | 2015-10-07 |
EP2927503B1 true EP2927503B1 (de) | 2023-05-17 |
Family
ID=50434071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14163465.9A Active EP2927503B1 (de) | 2014-04-03 | 2014-04-03 | Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren |
Country Status (2)
Country | Link |
---|---|
US (1) | US10450869B2 (de) |
EP (1) | EP2927503B1 (de) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018203304A1 (de) | 2018-03-06 | 2019-09-12 | MTU Aero Engines AG | Gasturbinenverdichter |
US12066035B1 (en) | 2023-08-16 | 2024-08-20 | Rolls-Royce North American Technologies Inc. | Adjustable depth tip treatment with axial member with pockets for a fan of a gas turbine engine |
US12078070B1 (en) | 2023-08-16 | 2024-09-03 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with sliding doors for a fan of a gas turbine engine |
US12085021B1 (en) | 2023-08-16 | 2024-09-10 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with movable closure for a fan of a gas turbine engine |
US11965528B1 (en) | 2023-08-16 | 2024-04-23 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with circumferential movable closure for a fan of a gas turbine engine |
US12018621B1 (en) | 2023-08-16 | 2024-06-25 | Rolls-Royce North American Technologies Inc. | Adjustable depth tip treatment with rotatable ring with pockets for a fan of a gas turbine engine |
US11970985B1 (en) | 2023-08-16 | 2024-04-30 | Rolls-Royce North American Technologies Inc. | Adjustable air flow plenum with pivoting vanes for a fan of a gas turbine engine |
US12258870B1 (en) | 2024-03-08 | 2025-03-25 | Rolls-Royce North American Technologies Inc. | Adjustable fan track liner with slotted array active fan tip treatment for distortion tolerance |
US12215712B1 (en) | 2024-05-09 | 2025-02-04 | Rolls-Royce North American Technologies Inc. | Adjustable fan track liner with dual grooved array active fan tip treatment for distortion tolerance |
US12209541B1 (en) | 2024-05-09 | 2025-01-28 | Rolls-Royce North American Technologies Inc. | Adjustable fan track liner with dual slotted array active fan tip treatment for distortion tolerance |
US12209502B1 (en) | 2024-06-28 | 2025-01-28 | Rolls-Royce North American Technologies Inc. | Active fan tip treatment using rotating drum array with axial channels in fan track liner for distortion tolerance |
US12168983B1 (en) | 2024-06-28 | 2024-12-17 | Rolls-Royce North American Technologies Inc. | Active fan tip treatment using rotating drum array in fan track liner with axial and circumferential channels for distortion tolerance |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009103278A1 (de) * | 2008-02-21 | 2009-08-27 | Mtu Aero Engines Gmbh | Zirkulationsstruktur für einen turboverdichter |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6290458B1 (en) * | 1999-09-20 | 2001-09-18 | Hitachi, Ltd. | Turbo machines |
DE50306028D1 (de) * | 2002-02-28 | 2007-02-01 | Mtu Aero Engines Gmbh | Rezirkulationsstruktur für turboverdichter |
ATE325939T1 (de) * | 2002-08-23 | 2006-06-15 | Mtu Aero Engines Gmbh | Rezirkulationsstruktur für turboverdichter |
GB2418956B (en) * | 2003-11-25 | 2006-07-05 | Rolls Royce Plc | A compressor having casing treatment slots |
DE102008031982A1 (de) | 2008-07-07 | 2010-01-14 | Rolls-Royce Deutschland Ltd & Co Kg | Strömungsarbeitsmaschine mit Nut an einem Laufspalt eines Schaufelendes |
FR2989743B1 (fr) * | 2012-04-19 | 2015-08-14 | Snecma | Carter de compresseur a cavites de longueurs variees |
-
2014
- 2014-04-03 EP EP14163465.9A patent/EP2927503B1/de active Active
-
2015
- 2015-03-30 US US14/672,959 patent/US10450869B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009103278A1 (de) * | 2008-02-21 | 2009-08-27 | Mtu Aero Engines Gmbh | Zirkulationsstruktur für einen turboverdichter |
Also Published As
Publication number | Publication date |
---|---|
US10450869B2 (en) | 2019-10-22 |
EP2927503A1 (de) | 2015-10-07 |
US20150285079A1 (en) | 2015-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2927503B1 (de) | Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren | |
EP2696029B1 (de) | Schaufelgitter mit Seitenwandkonturierung und Strömungsmaschine | |
EP1875045B1 (de) | Turbinenrad | |
EP3536974B1 (de) | Gasturbinenverdichter | |
EP0799973B1 (de) | Wandkontur für eine axiale Strömungsmaschine | |
EP3176370B1 (de) | Leitschaufelcluster für eine strömungsmaschine | |
EP1632662B1 (de) | Strömungsarbeitsmaschine mit Fluidentnahme | |
EP2789802B1 (de) | Schaufelgitter für eine Turbomaschine und zugehöriges Herstellungsverfahren | |
EP2761137B1 (de) | Schaufel einer rotor- oder statorreihe für den einsatz in einer strömungsmaschine | |
EP2299124A1 (de) | Verdichterlaufschaufel für einen Axialverdichter | |
CH697806A2 (de) | Turbinenschaufel-Deckbandkantenprofil. | |
EP2921716B1 (de) | Schaufelreihengruppe | |
EP2538024A1 (de) | Schaufel einer Strömungsmaschine | |
EP2993357A2 (de) | Radialverdichterstufe | |
WO2017140756A1 (de) | Mixed-flow-turbinenrad eines abgasturboladers sowie abgasturbine mit einem solchen turbinenrad | |
EP3078804A1 (de) | Deckbandanordnung einer schaufelreihe von stator- oder rotorschaufeln und zugehörige turbine | |
EP2505851A2 (de) | Stator einer Axialverdichterstufe einer Turbomaschine | |
EP2607625B1 (de) | Turbomaschine und turbomaschinenstufe | |
EP2597257B1 (de) | Beschaufelung | |
WO2005116404A1 (de) | Schaufelblatt mit übergangszone | |
EP2730745B1 (de) | Schaufelanordnung für eine Turbomaschine | |
EP2787178B1 (de) | Leitschaufelanordnung | |
EP2410131A2 (de) | Rotor einer Turbomaschine | |
EP3388626A1 (de) | Konturierung einer schaufelgitterplattform | |
DE102009040298A1 (de) | Strömungsmaschine und Verfahren zur Erzeugung eines strukturierten Einlaufbelags |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160315 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180528 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04D 29/52 20060101ALI20210910BHEP Ipc: F04D 29/68 20060101ALI20210910BHEP Ipc: F04D 29/32 20060101AFI20210910BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211103 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20221212 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014016560 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1568473 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230918 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230817 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230917 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014016560 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240423 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230517 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240403 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20240430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 |