EP2923047A1 - Scr exhaust-gas aftertreatment device and motor vehicle having such an scr exhaust-gas aftertreatment device - Google Patents
Scr exhaust-gas aftertreatment device and motor vehicle having such an scr exhaust-gas aftertreatment deviceInfo
- Publication number
- EP2923047A1 EP2923047A1 EP13783915.5A EP13783915A EP2923047A1 EP 2923047 A1 EP2923047 A1 EP 2923047A1 EP 13783915 A EP13783915 A EP 13783915A EP 2923047 A1 EP2923047 A1 EP 2923047A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- scr
- exhaust
- particulate filter
- substrate
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003197 catalytic effect Effects 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 239000007789 gas Substances 0.000 claims abstract description 57
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 40
- 238000000576 coating method Methods 0.000 claims abstract description 38
- 239000011248 coating agent Substances 0.000 claims abstract description 35
- 239000002245 particle Substances 0.000 claims abstract description 26
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 24
- 238000002485 combustion reaction Methods 0.000 claims abstract description 20
- 239000003054 catalyst Substances 0.000 claims description 83
- 230000003647 oxidation Effects 0.000 claims description 17
- 238000007254 oxidation reaction Methods 0.000 claims description 17
- 238000011144 upstream manufacturing Methods 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 229910021529 ammonia Inorganic materials 0.000 description 10
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 9
- 239000004202 carbamide Substances 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010531 catalytic reduction reaction Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001149 thermolysis Methods 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- -1 platinum group metals Chemical class 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000003863 metallic catalyst Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052642 spodumene Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/02—Combinations of different methods of purification filtering and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2340/00—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
- F01N2340/02—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the distance of the apparatus to the engine, or the distance between two exhaust treating apparatuses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to a, according to the principle of selective catalytic reduction
- a known NO x exhaust aftertreatment provides for the use of NO x storage catalysts that store nitrogen oxides in the form of nitrates during lean operation (at ⁇ > 1) and desorb the stored nitrogen oxides at short intervals with a rich exhaust gas atmosphere ( ⁇ ⁇ 1) and reduce to nitrogen N 2 in the presence of the reducing agent present in the rich exhaust gas.
- SCR selective catalytic reduction
- These systems comprise at least one SCR catalyst which selectively converts the nitrogen oxides of the exhaust gas into nitrogen and water in the presence of a reducing agent supplied to the exhaust gas, usually ammonia NH 3 .
- the ammonia can be added from an aqueous ammonia solution to the exhaust gas stream or can be obtained from a precursor compound, for example urea in the form of an aqueous solution or solid pellets, by way of thermolysis and hydrolysis.
- a newer approach to ammonia storage in the vehicle are NH 3 storage materials that reversibly bind ammonia as a function of the temperature.
- NH 3 storage materials that reversibly bind ammonia as a function of the temperature.
- Metallammin approximately known, for example, MgCl 2 , CaCl 2 and SrCI 2 , the ammonia store in the form of a complex compound to then, for example, as MgCl2 (NH 3 ) x , CaCl 2 (NH 3 ) x or SrCI 2 (NH 3 ) x present. From these compounds, by supplying heat, the ammonia can be released again.
- Particulate filter is arranged, often at an underbody position of the vehicle.
- SCR catalysts require a specific light-off temperature (light-off temperature) in order to achieve sufficient conversion performance.
- exhaust gas temperatures are in
- a close-coupled arrangement of the SCR catalyst is also known, in particular by integration of an SCR catalytic coating in the particle filter.
- SCR-catalytically coated particulate filter also called SCR particulate filter, SCR / PF or SPF
- SCR / PF SCR particulate filter
- the temperature gradient across the particulate filter substrate is larger compared to the flow-through substrate due to the larger substrate length of the filter, which adversely affects NO x conversion.
- the substrate temperature in the rear of the particulate filter so low that only low conversion rates can be achieved there.
- the coating of the particulate filter substrate with the SCR catalytic material is limited to smaller amounts of coating so that the exhaust gas backpressure across the particulate filter is within acceptable ranges.
- the NO x efficiency of the SCR particulate filter is limited and a downstream SCR catalyst, especially at an underbody position of the vehicle, still required.
- the downstream SCR catalyst also serves to prevent the emission of a reducing agent slip of the SCR device close to the engine.
- US 2008/0060348 A1 describes an exhaust system which has two SCR catalysts connected in series and a particle filter arranged between them. By appropriately selecting the SCR catalytic coatings of the two SCR catalysts, the upstream SCR catalyst has a lower temperature window
- US 2008/0060348 A1 proposes providing the particulate filter with a catalytic SCR coating and thereby saving the first upstream SCR catalyst.
- DE 10 2010 026 890 A1 discloses an exhaust system of a diesel engine which has a first "SCR catalyst” (HC-SCR catalyst) which reduces nitrogen oxides in the presence of hydrocarbons which are fed to the exhaust gas flow by means of a fuel metering -SCR catalyst is an oxidation catalyst, a second SCR catalyst (NH 3 -SCR catalyst) followed by a diesel particulate filter, and the SCR catalytic coating of the NH 3 -SCR catalyst on a wall flow filter substrate.
- HC-SCR catalyst first "SCR catalyst”
- NH 3 -SCR catalyst second SCR catalyst followed by a diesel particulate filter
- DE 10 2010 039 972 A1 describes an arrangement in which a first oxidation catalyst is followed by an SCR / DPF and, downstream of this, an SCR catalyst and optionally a second oxidation catalyst.
- the invention has for its object to provide an exhaust aftertreatment device for
- SCR-PF SCR particulate filter
- the SCR particle filter is downstream of the SCR catalytic converter.
- the SCR catalytic converter is thus connected upstream of the SCR particle filter according to the invention, thus being located at a position closer to the engine. Due to the lower temperature gradient in the flow-through substrate of the SCR catalytic converter, the NO x conversion performance is improved by the arrangement of the SCR catalytic converter close to the engine in front of the SCR particle filter. This applies in particular to low exhaust gas temperatures, for example after a cold start of the internal combustion engine.
- the arrangement according to the invention also allows the reduction or even the abandonment of heating measures of the SCR catalyst, whereby fuel advantages and thus lower C0 2 - emissions are achieved.
- the upstream SCR catalyst also leads to an improvement in the contact times between the NO x molecules of the exhaust gas and the activity centers of the SCR catalytic coating, which also leads to the improvement of the NO x conversion already at low temperatures. Since the flow-through substrate of the upstream SCR catalytic converter allows a higher amount of SCR coating relative to the substrate volume compared to the particle filter substrate of the SCR particle filter, the exhaust gas backpressure of the entire exhaust gas after-treatment device becomes equal to the total SCR catalytic coating compared to a single SCR particle filter reduced. At the same time, with the same amount of coating, lower NO x emissions are achieved compared with a single SCR particulate filter without upstream SCR catalyst. In addition, due to the high temperatures during soot burn-off in the regeneration mode, the SCR coating of the SCR particulate filter is subject to high thermal aging processes, which result in a gradual deterioration of NO x conversion. By the high temperatures during soot burn-off in the regeneration mode, the SCR coating of the S
- the decrease in the NO x activity of the SCR particulate filter can be compensated.
- a flow-through substrate is used
- Catalyst carrier understood that from a Einströmstirnseite to a Ausströmstirnseite includes continuous, continuous flow channels, which are arranged in particular parallel to each other. It may be a ceramic monolith or a metallic catalyst support.
- a particle filter substrate is understood to be a carrier whose flow channels are closed.
- the particle filter substrate may be in the form of a so-called wall-flow filter whose parallel flow channels are closed alternately on the input side or on the output side. In this case, a flow channel closed on the output side is arranged adjacent to flow channels closed on the input side and vice versa.
- Exhaust gas which in the
- Particulate filter substrates are usually made of a ceramic material.
- At least the SCR catalyst is arranged at a position close to the engine.
- a position close to the engine is understood to mean a position within the exhaust gas duct which lies upstream of an underbody position of a vehicle.
- the close-coupled SCR catalytic converter is arranged such that a distance between a cylinder-side
- Inlet opening of an exhaust manifold of the exhaust aftertreatment device and a Einströmstirnseite the SCR catalyst is at most 100 cm, preferably at most 80 cm. In special versions, this distance can even be reduced to values of at most 70 cm. In this case, the distance is measured at the exhaust gas flow length, that is, the exhaust gas between the cylinder-side inlet opening of the exhaust manifold and
- the downstream SCR particulate filter is arranged at a position close to the engine, in which case the distance between the cylinder-side inlet opening of the exhaust manifold and the inflow end of the SCR particulate filter is at most 120 cm, preferably at most 100 cm.
- the SCR catalytic converter has a smaller volume than the downstream SCR particle filter. This measure will be a special achieved rapid onset of the SCR catalyst after a cold start.
- the volume of the SCR catalyst is at most 75%, preferably at most 60%, of the volume of the SCR particulate filter.
- the SCR catalyst has at least the same or a larger amount of the SCR catalytic coating relative to the substrate volume than the SCR particulate filter.
- This embodiment accounts for the fact that flow-through substrates can accommodate a higher coating amount per substrate volume than filter substrates without causing inadmissible exhaust backpressures across the substrate. By using the largest possible amount of SCR catalytic coating of the SCR catalyst, a particularly small catalyst volume can be maintained.
- the SCR catalyst has a SCR catalytic coating larger by a factor of at least 1.2, preferably by a factor of at least 1.5, than the SCR particulate filter.
- the flow-through substrate of the SCR catalytic converter has a larger cell number (cell density) than the particle filter substrate of the SCR particle filter. Due to the larger number of cells of the SCR catalyst is a large
- the flow-through substrate has a cell number which is greater by a factor of at least 1.1, preferably at least 1.2, than the cell number of the particle filter substrate.
- the cell number of the flow-through substrate of the SCR catalyst is at least 300 cpsi (cells per square inch), preferably at least 350 cpsi, and most preferably at least 650 cpsi.
- the particulate filter substrate of the SCR particulate filter in particular has a cell count of at least 250 cpsi, preferably at least 300 cpsi and more preferably at least 350 cpsi.
- the flow-through substrate of the SCR coating has a smaller wall thickness than the particle filter substrate of the SCR particle filter.
- a preferred wall thickness of the particulate filter substrate of the SCR particulate filter is at most 30 mil, more preferably at most 15 mils and more preferably at most 13 mils.
- the porosity of the particulate filter substrate in a preferred embodiment is at most 65%, in particular at most 61%.
- the average pore radius is preferably ⁇ 25 ⁇ m, in particular ⁇ 20 ⁇ m.
- the SCR catalyst and the SCR particulate filter are arranged according to an embodiment of the invention in separate, series-connected housings. According to a preferred embodiment, however, the SCR catalyst and the SCR particulate filter are arranged in a common housing, since this results in a further temperature advantage and a lower exhaust back pressure.
- the exhaust aftertreatment device further comprises a Reduktionsffendosier Surprise, which is adapted to meter the reducing agent or a precursor compound of this the exhaust gas upstream of the SCR catalyst.
- a Reduktionsffendosier Surprise which is adapted to meter the reducing agent or a precursor compound of this the exhaust gas upstream of the SCR catalyst.
- this is a common metering device, both for the SCR catalyst and for the downstream SCR particulate filter.
- the dosed reducing agent is preferably ammonia NH 3 or a precursor compound thereof, in which case urea is particularly suitable.
- the urea can be used in the form of solid urea pellets, but preferably in the form of a particular aqueous urea solution.
- the added urea reacts by way of thermolysis and hydrolysis to release NH 3 .
- the reducing agent ammonia can also be stored in the context of the invention via NH 3 storage materials which reversibly bind or release ammonia as a function of the temperature. Corresponding Metallammin myself were already explained at the beginning.
- Exhaust after-treatment device further comprises an oxidation catalyst.
- This is preferably arranged upstream of the SCR catalyst.
- the oxidation catalyst is connected downstream of the reducing agent metering, it also leads to improved homogenization of the supplied reducing agent in the exhaust gas before it enters the SCR catalytic converter.
- the invention further relates to a motor vehicle with an internal combustion engine for vehicle drive and an exhaust gas aftertreatment device according to the invention.
- the internal combustion engine is a continuously or at least temporarily lean-burn engine, in particular a diesel engine.
- the exhaust gas aftertreatment device according to the invention can also be used with advantage for temporarily lean-burn gasoline engines, in particular spark-ignitable gasoline engines.
- Figure 1 is a schematic representation of an exhaust aftertreatment device according to a first embodiment of the invention
- Figure 2 is a schematic representation of an exhaust aftertreatment device according to a second embodiment of the invention.
- Figure 3 shows the time course of the ⁇ -raw emission of an internal combustion engine
- a total of 10 designated motor vehicle is indicated that by an at least temporarily lean-burn engine 12, in particular a
- the internal combustion engine 12 here has, for example, 4 cylinders, wherein any desired number of cylinders is possible.
- the motor vehicle 10 also has an exhaust gas aftertreatment device according to the invention, designated as a whole by 14, for the catalytic aftertreatment of an exhaust gas of the internal combustion engine 12.
- the exhaust aftertreatment device 14 comprises a
- Exhaust manifold 16 which connects the individual cylinder outlets of the cylinder of the internal combustion engine 12 with an exhaust passage 18.
- the exhaust passage 18 has a portion near the engine 20 and an underbody section 22, which is shown shortened here and ends in an exhaust pipe, not shown.
- an oxidation catalyst 24 is disposed in the exhaust passage 18.
- the oxidation catalyst 24 comprises a flow-through substrate which is coated with a catalytic coating which catalyzes the oxidation of exhaust gas components.
- this is suitable, unburned hydrocarbons HC and
- Oxidation catalyst 24 contains, as a catalytic component, in particular at least one element of the platinum group metals Pt, Pd, Rh, Ru, Os or Ir or a combination of these, in particular Pt and / or Pd.
- the catalytic coating further includes a washcoat comprising a porous ceramic matrix having a large specific surface area,
- the flow-through substrate of the oxidation catalyst 24 may be a metallic substrate or a ceramic monolith, in particular having a honeycomb-like structure with a plurality of continuous, parallel flow channels.
- Suitable ceramic materials include alumina, cordierite, mullite and silicon carbide.
- Suitable metal substrates are made of stainless steels or iron-chromium alloys, for example.
- an SCR catalytic converter 26 Downstream of the oxidation catalytic converter 24, an SCR catalytic converter 26 is arranged in the section 20 of the exhaust gas duct 18 close to the engine.
- the SCR catalyst 26 has as well as the
- Oxidation catalyst 24 a flow-through substrate on a metallic or ceramic base, preferably on a ceramic basis. Suitable ceramic or metallic materials correspond to those mentioned in connection with the oxidation catalyst.
- Flow-through substrate of the SCR catalyst 26 has a cell number of preferably> 350 cpsi and a wall thickness of ⁇ 5.5 mil.
- the walls of the parallel and continuous flow passages of the passage substrate of the SCR catalyst 26 are coated with an SCR catalytic coating. These in turn comprise a washcoat of a porous ceramic matrix with a large specific surface area (eg a zeolite on
- Suitable SCR catalytic substances include in particular non-noble metals, such as Fe, Cu, Va, Cr, Mo, W, as well as combinations of these. These are deposited on the zeolite and / or the zeolite metals are partially replaced by ion exchange by the corresponding
- an SCR particulate filter 28 Downstream of the SCR catalyst 26, an SCR particulate filter 28 is also disposed in the proximal portion 20 of the exhaust passage 18.
- the SCR particulate filter has a
- Particle filter substrate which is for example a wall-flow filter. This has parallel flow channels, which alternately input side and
- the particulate filter substrate is made of a porous ceramic material such as cordierite, ⁇ -alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica-magnesia or
- the number of cells of the particulate filter substrate is preferably> 300 cpsi, wherein the number of cells is at least a factor of 1, 1 smaller than that of the
- the wall thickness of the particulate filter substrate is preferably at most 15 mil and has a porosity of ⁇ 61% at an average pore radius of ⁇ 20 ⁇ .
- the flow channels of the particulate filter substrate are coated with an SCR catalytic coating which is basically the same chemical
- Composition may have the same as that of the SCR catalyst 26. However, the amount of catalytic coating of the SCR particulate filter 28 relative to the substrate volume is less than that of the SCR catalyst 26, in particular by a factor of at least 1.5.
- the particulate filter substrate of the SCR particulate filter 28 may be coated with the SCR catalytic coating over its entire area or only in sections, for example only in an input-side section.
- the SCR catalytic converter 26 and the SCR particulate filter 28 are arranged in a position close to the engine.
- the distance D between a cylinder-side inlet opening of the exhaust manifold 16 and an inflow end face of the SCR catalytic converter 26 is at most 80 cm. Decisive for the dimensioning of this distance D is the actual distance traveled by the exhaust gas (the distance D is simplified here).
- the SCR catalytic converter 26 and the SCR particulate filter 28 are arranged in a common housing 30, which has a conical inlet funnel which widens in the exhaust gas flow direction and a conically tapering outlet funnel via which it communicates with the exhaust gas channel 22 connected is.
- the exhaust gas aftertreatment device 14 also has a reducing agent metering device 32 with which the reducing agent or a precursor compound from it is metered into the exhaust gas.
- the reducing agent is introduced into the exhaust gas flow by means of a nozzle upstream of the SCR catalytic converter 26.
- the reducing agent is typically ammonia NH 3 , which is added in the form of a precursor compound, in particular in the form of urea.
- the urea is conveyed and metered in the form of an aqueous solution from a reservoir, not shown.
- the metering of the reducing agent via the metering device 32 is usually carried out via a controller, not shown here, which controls the device 32 in response to an operating point of the engine 12, in particular in dependence on a current NO x - concentration of the exhaust gas.
- a controller not shown here, which controls the device 32 in response to an operating point of the engine 12, in particular in dependence on a current NO x - concentration of the exhaust gas.
- Exhaust after-treatment device 14 still have different exhaust and temperature sensors, for example, NO x sensors upstream and / or downstream of the SCR components 26/28.
- An exhaust gas aftertreatment device 14 according to a second embodiment of
- FIG. 2 The present invention is shown in FIG. 2.
- matching components are denoted by the same reference numerals as in FIG. 1 and will not be explained again in detail.
- the SCR catalytic converter 26 and the SCR particle filter 28 are arranged separately, each in its own housing 30.
- Exhaust after-treatment components may be present, for example at the
- FIG. 3 shows cumulative NO x emissions of the exhaust gas as a function of time t measured after a cold engine start at time t 0 in a standardized test cycle (here NEDC).
- Exhaust after-treatment device 14 according to Figure 1 measured (broken lines 2 and 4) and a comparison system with SCR particulate filter 28, but without upstream SCR catalytic converter 26 (solid lines 1 and 3).
- the total amount of catalytic coating of the SCR particle filter of the comparative test corresponded to the sum of the catalytic coatings of the SCR catalytic converter 26 and SCR particle filter 28 of the arrangement according to the invention.
- Curves 1 and 2 respectively show the NO x raw emissions, i. H. the NO x emissions generated by the internal combustion engine 12 in the raw exhaust gas.
- Curves 3 and 4 respectively show the NO x emissions measured downstream of the SCR particulate filter.
- the courses of the ⁇ -end emissions (3 and 4) correspond to those of the ⁇ -raw emissions 1, 2.
- the SCR catalytic coatings have not yet reached their light-off temperature that no significant NO x conversion takes place. From the time t- ⁇ the light-off temperature of the SCR components is reached, so that the ⁇ -Endemissionen 3 and 4 is well below the NO x - raw emissions 1, 2.
- Exhaust after-treatment device has improved ⁇ conversion.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
Beschreibung description
SCR-Abgasnachbehandlungseinrichtung sowie Kraftfahrzeug mit einer solchen SCR exhaust aftertreatment device and motor vehicle with such
Die Erfindung betrifft eine, nach dem Prinzip der selektiven katalytischen Reduktion The invention relates to a, according to the principle of selective catalytic reduction
funktionierende Abgasnachbehandlungseinrichtung zur Nachbehandlung eines Abgases einer Brennkraftmaschine sowie ein Kraftfahrzeug mit einer solchen functioning exhaust aftertreatment device for the aftertreatment of an exhaust gas of an internal combustion engine and a motor vehicle with such
Abgasnachbehandlungseinrichtung. Exhaust treatment device.
Brennkraftmaschinen, die ständig oder zeitweise mit einem mageren Luft-Kraftstoff-Gemisch betrieben werden, produzieren Stickoxide NOx (hauptsächlich N02 und NO), die NOx- reduzierende Maßnahmen erforderlich machen. Eine motorische Maßnahme, um die NOx- Rohemission im Abgas zu reduzieren, stellt die Abgasrückführung dar, bei der ein Teil des Abgases des Verbrennungsmotors in die Verbrennungsluft rückgeführt wird, wodurch die Verbrennungstemperaturen gesenkt und somit die NOx-Entstehung reduziert wird. Die Internal combustion engines, which are operated continuously or intermittently with a lean air-fuel mixture, produce nitrogen oxides NO x (mainly N0 2 and NO), which require NO x - reducing measures. A motor action to the NO x - reducing raw emissions in the exhaust gas is the exhaust gas recirculation, in which a part of exhaust gas of the internal combustion engine is recirculated into the combustion air, thereby lowering the combustion temperature and thus the NO x -Emergence is reduced. The
Abgasrückführung ist jedoch nicht immer ausreichend, um gesetzliche NOx-Grenzwerte einzuhalten, weswegen zusätzlich eine aktive Abgasnachbehandlung erforderlich ist, welche die NOx-Endemission durch katalytische Reduzierung von NOx zu Stickstoff N2 senkt. Eine bekannte NOx-Abgasnachbehandlung sieht den Einsatz von NOx-Speicherkatalysatoren vor, die im mageren Betrieb (bei λ > 1 ) Stickoxide in Form von Nitraten speichern und in kurzen Intervallen mit einer fetten Abgasatmosphäre (λ < 1 ) die gespeicherten Stickoxide desorbieren und in Gegenwart der im fetten Abgas vorhandenen Reduktionsmittel zu Stickstoff N2 reduzieren. However, exhaust gas recirculation is not always sufficient to meet legal NO x limits, which is why an additional active exhaust aftertreatment is required, which reduces the NO x emissions by catalytic reduction of NO x to nitrogen N 2 . A known NO x exhaust aftertreatment provides for the use of NO x storage catalysts that store nitrogen oxides in the form of nitrates during lean operation (at λ> 1) and desorb the stored nitrogen oxides at short intervals with a rich exhaust gas atmosphere (λ <1) and reduce to nitrogen N 2 in the presence of the reducing agent present in the rich exhaust gas.
Als weiterer Ansatz zur Konvertierung von Stickoxiden in Abgasen magerlauffähiger As another approach to the conversion of nitrogen oxides in exhaust gases mlauflauffähiger
Verbrennungsmotoren ist der Einsatz von Katalysatorsystemen bekannt, die nach dem Prinzip der selektiven katalytischen Reduktion (SCR für selective catalytic reduction) arbeiten. Diese Systeme umfassen zumindest einen SCR-Katalysator, der in Gegenwart eines dem Abgas zugeführten Reduktionsmittels, üblicherweise Ammoniak NH3, selektiv die Stickoxide des Abgases in Stickstoff und Wasser umwandelt. Dabei kann das Ammoniak aus einer wässrigen Ammoniaklösung dem Abgasstrom zudosiert werden oder aus einer Vorläuferverbindung, beispielsweise Harnstoff in Form einer wässrigen Lösung oder fester Pellets, im Wege der Thermolyse und Hydrolyse erhalten werden. Ein neuerer Ansatz für die Ammoniakspeicherung im Fahrzeug stellen NH3-Speichermaterialien dar, die Ammoniak in Abhängigkeit von der Temperatur reversibel binden. Insbesondere sind in diesem Zusammenhang Internal combustion engines, the use of catalyst systems is known, which operate on the principle of selective catalytic reduction (SCR for selective catalytic reduction). These systems comprise at least one SCR catalyst which selectively converts the nitrogen oxides of the exhaust gas into nitrogen and water in the presence of a reducing agent supplied to the exhaust gas, usually ammonia NH 3 . In this case, the ammonia can be added from an aqueous ammonia solution to the exhaust gas stream or can be obtained from a precursor compound, for example urea in the form of an aqueous solution or solid pellets, by way of thermolysis and hydrolysis. A newer approach to ammonia storage in the vehicle are NH 3 storage materials that reversibly bind ammonia as a function of the temperature. In particular, in this context
Metallamminspeicher bekannt, beispielsweise MgCI2, CaCI2 und SrCI2, die Ammoniak in Form einer Komplexverbindung speichern, um dann beispielsweise als MgCl2(NH3)x, CaCI2(NH3)x beziehungsweise SrCI2(NH3)x vorzuliegen. Aus diesen Verbindungen kann durch Zufuhr von Wärme das Ammoniak wieder freigesetzt werden. Metallamminspeicher known, for example, MgCl 2 , CaCl 2 and SrCI 2 , the ammonia store in the form of a complex compound to then, for example, as MgCl2 (NH 3 ) x , CaCl 2 (NH 3 ) x or SrCI 2 (NH 3 ) x present. From these compounds, by supplying heat, the ammonia can be released again.
Es sind ferner Anordnungen bekannt, bei denen ein SCR-Katalysator stromab eines Arrangements are also known in which an SCR catalyst downstream of a
Partikelfilters angeordnet ist, häufig an einer Unterbodenposition des Fahrzeugs. Wie alle Abgaskatalysatoren benötigen auch SCR-Katalysatoren eine spezifische Light-off-Temperatur (Anspringtemperatur), um eine ausreichende Konvertierungsleistung zu erbringen. Abhängig von der Beschichtung des SCR-Katalysators sind üblicherweise Abgastemperaturen im Particulate filter is arranged, often at an underbody position of the vehicle. Like all catalytic converters, SCR catalysts require a specific light-off temperature (light-off temperature) in order to achieve sufficient conversion performance. Depending on the coating of the SCR catalyst usually exhaust gas temperatures are in
Katalysator von mindestens 150 °C notwendig. Daher erfordern Unterboden-SCR-Katalysatoren häufig zusätzliche Heizmaßnahmen, was zu einer unerwünschten Erhöhung des Catalyst of at least 150 ° C necessary. Therefore, underfloor SCR catalysts often require additional heating measures, resulting in an undesirable increase in
Kraftstoffverbrauchs und infolgedessen der C02-Emissionen führt. Fuel consumption and, as a result, C0 2 emissions.
Um den Temperaturverlust zu minimieren, ist ferner eine motornahe Anordnung des SCR- Katalysators bekannt, insbesondere durch Integration einer SCR-katalytischen Beschichtung in den Partikelfilter. Ein solcher SCR-katalytisch beschichteter Partikelfilter (auch SCR- Partikelfilter, SCR/PF oder SPF genannt) vereinigt somit die Funktionen der Zurückhaltung von Rußpartikeln sowie der katalytischen Reduzierung von Stickoxiden unter selektivem Verbrauch des Reduktionsmittels. Durch die motornahe Anordnung der SCR-Katalysators In order to minimize the temperature loss, a close-coupled arrangement of the SCR catalyst is also known, in particular by integration of an SCR catalytic coating in the particle filter. Such an SCR-catalytically coated particulate filter (also called SCR particulate filter, SCR / PF or SPF) thus combines the functions of the retention of soot particles and the catalytic reduction of nitrogen oxides with selective consumption of the reducing agent. Due to the close-coupled arrangement of the SCR catalyst
beziehungsweise des SCR/PF wird eine schnelle Aufheizung dieser Komponente auf ihre Betriebstemperatur erzielt. Dies ermöglicht eine frühzeitige Freigabe der or of the SCR / PF, a rapid heating of this component to its operating temperature is achieved. This allows early release of the
Reduktionsmitteldosierung und somit eine verbesserte NOx-Konvertierung im gesamten Fahrzyklus. Jedoch ist der Temperaturgradient über das Partikelfiltersubstrat im Vergleich zum Durchflusssubstrat aufgrund der größeren Substratlänge des Filters größer, was sich nachteilig auf die NOx-Konvertierung auswirkt. Im Einzelfall kann die Substrattemperatur im hinteren Bereich des Partikelfilters, so niedrig sein, dass dort nur geringe Konvertierungsraten erzielt werden. Zudem ist die Beschichtung des Partikelfiltersubstrats mit dem SCR-katalytischen Material im Gegensatz zur Beschichtung eines Durchflusssubstrats (Wabenkörper) auf geringere Beschichtungsmengen limitiert, damit der Abgasgegendruck über den Partikelfilter sich in akzeptablen Bereichen bewegt. Somit ist der NOx-Wirkungsgrad des SCR-Partikelfilters begrenzt und ein nachgeschalteter SCR-Katalysator, insbesondere an einer Unterbodenposition des Fahrzeugs, weiterhin erforderlich. Der nachgeschaltete SCR-Katalysator dient zudem der Verhinderung der Emission eines Reduktionsmittelschlupfes der motornahen SCR-Einrichtung. US 2008/0060348 A1 beschreibt eine Abgasanlage, die zwei hintereinander geschaltete SCR- Katalysatoren sowie einen zwischen diesen angeordneten Partikelfilter aufweist. Durch entsprechende Auswahl der katalytischen SCR-Beschichtungen der beiden SCR-Katalysatoren weist der stromaufwärtige SCR-Katalysator ein Temperaturfenster bei niedrigeren Reducing agent dosage and thus an improved NO x conversion throughout the drive cycle. However, the temperature gradient across the particulate filter substrate is larger compared to the flow-through substrate due to the larger substrate length of the filter, which adversely affects NO x conversion. In individual cases, the substrate temperature in the rear of the particulate filter, so low that only low conversion rates can be achieved there. In addition, unlike the coating of a flow-through substrate (honeycomb body), the coating of the particulate filter substrate with the SCR catalytic material is limited to smaller amounts of coating so that the exhaust gas backpressure across the particulate filter is within acceptable ranges. Thus, the NO x efficiency of the SCR particulate filter is limited and a downstream SCR catalyst, especially at an underbody position of the vehicle, still required. The downstream SCR catalyst also serves to prevent the emission of a reducing agent slip of the SCR device close to the engine. US 2008/0060348 A1 describes an exhaust system which has two SCR catalysts connected in series and a particle filter arranged between them. By appropriately selecting the SCR catalytic coatings of the two SCR catalysts, the upstream SCR catalyst has a lower temperature window
Temperaturen auf, als der stromabwartige SCR-Katalysator. In einer alternativen Ausgestaltung schlägt US 2008/0060348 A1 vor, den Partikelfilter mit einer katalytischen SCR-Beschichtung zu versehen und dadurch den ersten stromaufwärtigen SCR-Katalysator einzusparen. Temperatures, as the downstream SCR catalyst. In an alternative embodiment, US 2008/0060348 A1 proposes providing the particulate filter with a catalytic SCR coating and thereby saving the first upstream SCR catalyst.
Aus DE 10 2010 026 890 A1 ist eine Abgasanlage eines Dieselmotors bekannt, die einen ersten„SCR-Katalysator" (HC-SCR-Katalysator) aufweist, der Stickoxide in Gegenwart von Kohlenwasserstoffen reduziert, die dem Abgasstrom durch eine Kraftstoffdosierung zugeführt werden. Dem HC-SCR-Katalysator ist ein Oxidationskatalysator, ein zweiter SCR-Katalysator (NH3-SCR-Katalysator) und diesem ein Dieselpartikelfilter nachgeschaltet. Die SCR-katalytische Beschichtung des NH3-SCR-Katalysators liegt auf einem Wandflussfiltersubstrat vor. DE 10 2010 026 890 A1 discloses an exhaust system of a diesel engine which has a first "SCR catalyst" (HC-SCR catalyst) which reduces nitrogen oxides in the presence of hydrocarbons which are fed to the exhaust gas flow by means of a fuel metering -SCR catalyst is an oxidation catalyst, a second SCR catalyst (NH 3 -SCR catalyst) followed by a diesel particulate filter, and the SCR catalytic coating of the NH 3 -SCR catalyst on a wall flow filter substrate.
DE 10 2010 039 972 A1 beschreibt eine Anordnung, bei der einem ersten Oxidationskatalysator ein SCR/DPF sowie stromab von diesem ein SCR-Katalysator sowie optional ein zweiter Oxidationskatalysator nachgeschaltet ist. DE 10 2010 039 972 A1 describes an arrangement in which a first oxidation catalyst is followed by an SCR / DPF and, downstream of this, an SCR catalyst and optionally a second oxidation catalyst.
Sämtlichen vorgenannten Systemen ist gemeinsam, dass sie einen SCR-Katalysator auf einem Partikelfiltersubstrat (SCR/PF) mit nachgeschaltetem SCR-Katalysator auf einem All the above systems have in common that they have an SCR catalyst on a particulate filter substrate (SCR / PF) with downstream SCR catalyst on a
Durchflusssubstrat umfassen. Include flow-through substrate.
Der Erfindung liegt die Aufgabe zugrunde, eine Abgasnachbehandlungseinrichtung zur The invention has for its object to provide an exhaust aftertreatment device for
Verfügung zu stellen, welche eine weitere Reduzierung der NOx-Emissionen ermöglicht, ohne Nachteile bezüglich des Kraftstoffverbrauchs bzw. der C02-Emissionen in Kauf zu nehmen. Es soll ferner ein entsprechendes Kraftfahrzeug bereitgestellt werden. To provide, which allows a further reduction of NO x emissions without incurring disadvantages in terms of fuel consumption or C0 2 emissions. It is also intended to provide a corresponding motor vehicle.
Diese Aufgabe wird durch eine Abgasnachbehandlungseinrichtung sowie durch ein This object is achieved by an exhaust aftertreatment device and by a
Kraftfahrzeug mit den Merkmalen der unabhängigen Ansprüche gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche. Motor vehicle solved with the features of the independent claims. Further advantageous embodiments of the invention are the subject of the dependent claims.
Die erfindungsgemäße Abgasnachbehandlungseinrichtung zur Nachbehandlung von Abgasen einer Brennkraftmaschine umfasst: - einen SCR-Katalysator, der eine auf einem Durchflusssubstrat angeordnete SCR- katalytische Beschichtung zur selektiven Reduktion von Stickoxiden NOx in Gegenwart eines dem Abgas zudosierten Reduktionsmittels umfasst, sowie The exhaust gas aftertreatment device according to the invention for after-treatment of exhaust gases of an internal combustion engine comprises: an SCR catalyst comprising an SCR catalytic coating arranged on a flow-through substrate for the selective reduction of nitrogen oxides NO x in the presence of a reducing agent added to the exhaust gas, and
- einen SCR-Partikelfilter (SCR-PF), der eine auf einem Partikelfiltersubstrat angeordnete SCR-katalytische Beschichtung zur selektiven Reduktion von NOx in Gegenwart des dem Abgas zudosierten Reduktionsmittels umfasst. an SCR particulate filter (SCR-PF) comprising an SCR catalytic coating disposed on a particulate filter substrate for selectively reducing NO x in the presence of the reductant metered into the exhaust gas.
Dabei ist der SCR-Partikelfilter dem SCR-Katalysator nachgeschaltet. The SCR particle filter is downstream of the SCR catalytic converter.
Gegenüber bekannten SCR-Abgasnachbehandlungseinrichtungen ist erfindungsgemäß somit der SCR-Katalysator dem SCR-Partikelfilter vorgeschaltet, befindet sich somit an einer motornäheren Position. Durch die motornahe Anordnung des SCR-Katalysators vor dem SCR- Partikelfilter wird aufgrund des geringeren Temperaturgradienten im Durchflusssubstrat des SCR-Katalysators dessen NOx-Konvertierungsleistung verbessert. Dies trifft insbesondere auf niedrige Abgastemperaturen zu, beispielsweise nach einem Kaltstart der Brennkraftmaschine. Die erfindungsgemäße Anordnung erlaubt zudem die Reduzierung oder sogar den Verzicht auf Heizmaßnahmen des SCR-Katalysators, wodurch Kraftstoffvorteile und somit geringere C02- Emissionen erzielt werden. Compared with known SCR exhaust aftertreatment devices, the SCR catalytic converter is thus connected upstream of the SCR particle filter according to the invention, thus being located at a position closer to the engine. Due to the lower temperature gradient in the flow-through substrate of the SCR catalytic converter, the NO x conversion performance is improved by the arrangement of the SCR catalytic converter close to the engine in front of the SCR particle filter. This applies in particular to low exhaust gas temperatures, for example after a cold start of the internal combustion engine. The arrangement according to the invention also allows the reduction or even the abandonment of heating measures of the SCR catalyst, whereby fuel advantages and thus lower C0 2 - emissions are achieved.
Der vorgeschaltete SCR-Katalysator führt zudem zu einer Verbesserung der Kontaktzeiten zwischen den NOx-Molekülen des Abgases und den Aktivitätszentren der SCR-katalytischen Beschichtung, was ebenfalls zur Verbesserung des NOx-Umsatzes bereits bei niedrigen Temperaturen führt. Da das Durchflusssubstrat des vorgeschalteten SCR-Katalysators im Vergleich zu dem Partikelfiltersubstrat des SCR-Partikelfilters eine höhere Menge an SCR- Beschichtung bezogen auf das Substratvolumen erlaubt, wird der Abgasgegendruck der gesamten Abgasnachbehandlungseinrichtung bei gleicher Gesamtmenge der SCR- katalytischen Beschichtung gegenüber einem einzelnen SCR-Partikelfilter reduziert. Gleichzeitig werden bei gleicher Beschichtungsmenge niedrigere NOx-Emissionen gegenüber einem einzelnen SCR-Partikelfilter ohne vorgeschaltetem SCR-Katalysator erzielt. Zudem unterliegt die SCR-Beschichtung des SCR-Partikelfilters aufgrund der hohen Temperaturen während des Rußabbrands im Regenerationsbetrieb hohen thermischen Alterungsprozessen, die eine schleichende Verschlechterung der NOx-Konvertierung zur Folge haben. Durch den The upstream SCR catalyst also leads to an improvement in the contact times between the NO x molecules of the exhaust gas and the activity centers of the SCR catalytic coating, which also leads to the improvement of the NO x conversion already at low temperatures. Since the flow-through substrate of the upstream SCR catalytic converter allows a higher amount of SCR coating relative to the substrate volume compared to the particle filter substrate of the SCR particle filter, the exhaust gas backpressure of the entire exhaust gas after-treatment device becomes equal to the total SCR catalytic coating compared to a single SCR particle filter reduced. At the same time, with the same amount of coating, lower NO x emissions are achieved compared with a single SCR particulate filter without upstream SCR catalyst. In addition, due to the high temperatures during soot burn-off in the regeneration mode, the SCR coating of the SCR particulate filter is subject to high thermal aging processes, which result in a gradual deterioration of NO x conversion. By the
vorgeschalteten SCR-Katalysator kann die Abnahme der NOx-Aktivität des SCR-Partikelfilters kompensiert werden. upstream SCR catalyst, the decrease in the NO x activity of the SCR particulate filter can be compensated.
Im Rahmen der vorliegenden Erfindung wird unter einem Durchflusssubstrat ein In the context of the present invention, a flow-through substrate is used
Katalysatorträger verstanden, der von einer Einströmstirnseite bis zu einer Ausströmstirnseite ununterbrochene, durchgehende Strömungskanäle umfasst, die insbesondere parallel zueinander angeordnet sind. Es kann sich hierbei um einen keramischen Monolith handeln oder einen metallischen Katalysatorträger. Demgegenüber wird unter einem Partikelfiltersubstrat ein Träger verstanden, dessen Strömungskanäle verschlossen sind. Beispielsweise kann das Partikelfiltersubstrat in Form eines so genannten Wandstromfilters ausgebildet sein, dessen parallele Strömungskanäle alternierend eingangsseitig oder ausgangsseitig verschlossen sind. Dabei ist ein ausgangsseitig verschlossener Strömungskanal zu eingangsseitig verschlossenen Strömungskanälen benachbart angeordnet und umgekehrt. Abgas, welches in die Catalyst carrier understood that from a Einströmstirnseite to a Ausströmstirnseite includes continuous, continuous flow channels, which are arranged in particular parallel to each other. It may be a ceramic monolith or a metallic catalyst support. In contrast, a particle filter substrate is understood to be a carrier whose flow channels are closed. For example, the particle filter substrate may be in the form of a so-called wall-flow filter whose parallel flow channels are closed alternately on the input side or on the output side. In this case, a flow channel closed on the output side is arranged adjacent to flow channels closed on the input side and vice versa. Exhaust gas, which in the
ausgangsseitig verschlossenen Strömungskanäle einströmt, ist somit gezwungen, die seitlichen Kanalwände zu durchdringen, um so in die eingangsseitig verschlossenen Strömungskanäle zu gelangen und den Filter zu verlassen. Dabei werden partikuläre Bestandteile des Abgases, insbesondere Rußpartikel, an und in den porösen Kanalwänden zurückgehalten. On the output side closed flow channels flows, is thus forced to penetrate the side channel walls, so as to get into the flow channels closed on the input side and leave the filter. In this case, particulate constituents of the exhaust gas, in particular soot particles, are retained on and in the porous channel walls.
Partikelfiltersubstrate sind üblicherweise aus einem keramischen Material gefertigt. Particulate filter substrates are usually made of a ceramic material.
In bevorzugter Ausgestaltung der Erfindung ist zumindest der SCR-Katalysator an einer motornahen Position angeordnet. Auf diese Weise wird ein schnelles Erreichen der Light-Off- Temperatur des SCR-Katalysators nach einem Motorkaltstart erzielt und ein Abkühlen des Katalysators während des Betriebs vermieden. Dies erlaubt den Verzicht auf zusätzliche Heizmaßnahmen zur gezielten Wärmeeinbringung in den Katalysator. Vorliegend wird unter einer motornahen Anordnung eine Position innerhalb des Abgaskanals verstanden, die stromauf einer Unterbodenposition eines Fahrzeugs liegt. Insbesondere ist der motornahe SCR-Katalysator so angeordnet, dass eine Distanz zwischen einer zylinderseitigen In a preferred embodiment of the invention, at least the SCR catalyst is arranged at a position close to the engine. In this way, a rapid achievement of the light-off temperature of the SCR catalyst is achieved after an engine cold start and prevents cooling of the catalyst during operation. This allows the waiver of additional heating measures for targeted heat input into the catalyst. In the present case, a position close to the engine is understood to mean a position within the exhaust gas duct which lies upstream of an underbody position of a vehicle. In particular, the close-coupled SCR catalytic converter is arranged such that a distance between a cylinder-side
Einlassöffnung eines Abgaskrümmers der Abgasnachbehandlungseinrichtung und einer Einströmstirnseite des SCR-Katalysators höchstens 100 cm beträgt, vorzugsweise höchstens 80 cm. In speziellen Ausführungen kann diese Distanz sogar auf werte von höchstens 70 cm verringert werden. Dabei bemisst sich die Distanz an der Abgaslauflänge, das heißt der von dem Abgas zwischen zylinderseitiger Einlassöffnung des Abgaskrümmers und Inlet opening of an exhaust manifold of the exhaust aftertreatment device and a Einströmstirnseite the SCR catalyst is at most 100 cm, preferably at most 80 cm. In special versions, this distance can even be reduced to values of at most 70 cm. In this case, the distance is measured at the exhaust gas flow length, that is, the exhaust gas between the cylinder-side inlet opening of the exhaust manifold and
Einströmstirnseite des SCR-Katalysators zurückzulegenden Wegstrecke. Einströmstirnseite the SCR catalyst zurückzulegenden distance.
In weiterer bevorzugter Ausführung der Erfindung ist auch der nachgeschaltete SCR- Partikelfilter an einer motornahen Position angeordnet, wobei in diesem Fall die Distanz zwischen zylinderseitiger Einlassöffnung des Abgaskrümmers und der Einströmstirnseite des SCR-Partikelfilters höchstens 120 cm beträgt, vorzugsweise höchstens 100 cm. In a further preferred embodiment of the invention, the downstream SCR particulate filter is arranged at a position close to the engine, in which case the distance between the cylinder-side inlet opening of the exhaust manifold and the inflow end of the SCR particulate filter is at most 120 cm, preferably at most 100 cm.
Nach einer vorteilhaften Ausgestaltung weist der SCR-Katalysator ein kleineres Volumen auf, als der nachgeschaltete SCR-Partikelfilter. Durch diese Maßnahme wird ein besonders schnelles Anspringen des SCR-Katalysators nach einem Kaltstart erzielt. Insbesondere beträgt das Volumen des SCR-Katalysators höchstens 75 %, vorzugsweise höchstens 60 % des Volumens des SCR-Partikelfilters. According to an advantageous embodiment, the SCR catalytic converter has a smaller volume than the downstream SCR particle filter. This measure will be a special achieved rapid onset of the SCR catalyst after a cold start. In particular, the volume of the SCR catalyst is at most 75%, preferably at most 60%, of the volume of the SCR particulate filter.
Es ist ferner bevorzugt vorgesehen, dass der SCR-Katalysator zumindest die gleiche oder eine größere Menge an der SCR-katalytischen Beschichtung bezogen auf das Substratvolumen aufweist als der SCR-Partikelfilter. Diese Ausführung trägt dem Umstand Rechnung, dass Durchflusssubstrate eine höhere Beschichtungsmenge pro Substratvolumen aufnehmen können als Filtersubstrate, ohne unzulässige Abgasgegendrücke über das Substrat zu verursachen. Durch eine möglichst große Menge SCR-katalytischer Beschichtung des SCR- Katalysators kann ein besonders geringes Katalysatorvolumen eingehalten werden. It is further preferred that the SCR catalyst has at least the same or a larger amount of the SCR catalytic coating relative to the substrate volume than the SCR particulate filter. This embodiment accounts for the fact that flow-through substrates can accommodate a higher coating amount per substrate volume than filter substrates without causing inadmissible exhaust backpressures across the substrate. By using the largest possible amount of SCR catalytic coating of the SCR catalyst, a particularly small catalyst volume can be maintained.
Insbesondere weist der SCR-Katalysator eine um einen Faktor von mindestens 1 ,2, vorzugsweise um einen Faktor von mindestens 1 ,5 größere Menge an SCR-katalytischer Beschichtung auf, als der SCR-Partikelfilter. In particular, the SCR catalyst has a SCR catalytic coating larger by a factor of at least 1.2, preferably by a factor of at least 1.5, than the SCR particulate filter.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung weist das Durchflusssubstrat des SCR-Katalysators eine größere Zellenzahl (Zelldichte), als das Partikelfiltersubstrat des SCR- Partikelfilters auf. Durch die größere Zellenzahl des SCR-Katalysators wird eine große According to a further advantageous embodiment of the invention, the flow-through substrate of the SCR catalytic converter has a larger cell number (cell density) than the particle filter substrate of the SCR particle filter. Due to the larger number of cells of the SCR catalyst is a large
Oberfläche der Zellwände der Strömungskanäle erzielt, wodurch die Aufnahme einer vergleichsweise großen Menge an SCR-Beschichtung ermöglicht wird. Insbesondere weist das Durchflusssubstrat eine Zellenzahl auf, die um einen Faktor von mindestens 1 , 1 , vorzugsweise mindestens 1 ,2 größer ist, als die Zellenzahl des Partikelfiltersubstrats. Surface of the cell walls of the flow channels achieved, whereby the inclusion of a relatively large amount of SCR coating is made possible. In particular, the flow-through substrate has a cell number which is greater by a factor of at least 1.1, preferably at least 1.2, than the cell number of the particle filter substrate.
Insbesondere beträgt die Zellenzahl des Durchflusssubstrats des SCR-Katalysators mindestens 300 cpsi (Zellen pro Quadratzoll, cells per Square inch), vorzugsweise mindestens 350 cpsi und besonders bevorzugt mindestens 650 cpsi. Demgegenüber weist das Partikelfiltersubstrat des SCR-Partikelfilters insbesondere eine Zellenzahl von mindestens 250 cpsi auf, vorzugsweise mindestens 300 cpsi und besonders bevorzugt mindestens 350 cpsi. In particular, the cell number of the flow-through substrate of the SCR catalyst is at least 300 cpsi (cells per square inch), preferably at least 350 cpsi, and most preferably at least 650 cpsi. In contrast, the particulate filter substrate of the SCR particulate filter in particular has a cell count of at least 250 cpsi, preferably at least 300 cpsi and more preferably at least 350 cpsi.
Ferner weist das Durchflusssubstrat der SCR-Beschichtung eine geringere Wandstärke als das Partikelfiltersubstrat des SCR-Partikelfilters auf. Vorzugsweise beträgt die Wandstärke des Durchflusssubstrats höchstens 6 mil (1 mil = 1/1000 inch = 0,0254 mm), vorzugsweise höchstens 5,5 mil, besonders bevorzugt höchstens 5 mil. Demgegenüber beträgt eine bevorzugte Wandstärke des Partikelfiltersubstrats des SCR-Partikelfilters höchstens 30 mil, insbesondere höchstens 15 mil und besonders bevorzugt höchstens 13 mil. Die Porosität des Partikelfiltersubstrats beträgt in einer bevorzugten Ausführung höchstens 65 %, insbesondere höchstens 61 %. Der mittlere Porenradius ist bevorzugt < 25 μηη, insbesondere < 20 μηη. Furthermore, the flow-through substrate of the SCR coating has a smaller wall thickness than the particle filter substrate of the SCR particle filter. Preferably, the wall thickness of the flow-through substrate is at most 6 mils (1 mil = 1/1000 inch = 0.0254 mm), preferably at most 5.5 mils, more preferably at most 5 mils. In contrast, a preferred wall thickness of the particulate filter substrate of the SCR particulate filter is at most 30 mil, more preferably at most 15 mils and more preferably at most 13 mils. The porosity of the particulate filter substrate in a preferred embodiment is at most 65%, in particular at most 61%. The average pore radius is preferably <25 μm, in particular <20 μm.
Der SCR-Katalysator und der SCR-Partikelfilter sind gemäß einer Ausführung der Erfindung in separaten, hintereinander geschalteten Gehäusen angeordnet. Nach einer bevorzugten Ausführung sind jedoch der SCR-Katalysator und der SCR-Partikelfilter in einem gemeinsamen Gehäuse angeordnet, da sich hierdurch ein weiterer Temperaturvorteil sowie ein geringerer Abgasgegendruck ergibt. The SCR catalyst and the SCR particulate filter are arranged according to an embodiment of the invention in separate, series-connected housings. According to a preferred embodiment, however, the SCR catalyst and the SCR particulate filter are arranged in a common housing, since this results in a further temperature advantage and a lower exhaust back pressure.
In bevorzugter Ausgestaltung der Erfindung umfasst die Abgasnachbehandlungseinrichtung ferner eine Reduktionsmitteldosiereinrichtung, welche eingerichtet ist, das Reduktionsmittel oder eine Vorläuferverbindung von diesem dem Abgas stromauf des SCR-Katalysators zuzudosieren. Insbesondere handelt es sich hier um eine gemeinsame Dosiereinrichtung, sowohl für den SCR-Katalysator als auch für den nachgeschalteten SCR-Partikelfilter. In a preferred embodiment of the invention, the exhaust aftertreatment device further comprises a Reduktionsmitteldosiereinrichtung, which is adapted to meter the reducing agent or a precursor compound of this the exhaust gas upstream of the SCR catalyst. In particular, this is a common metering device, both for the SCR catalyst and for the downstream SCR particulate filter.
Bei dem zudosierten Reduktionsmittel handelt es sich vorzugsweise um Ammoniak NH3 oder um eine Vorläuferverbindung von diesem, wobei hier insbesondere Harnstoff in Betracht kommt. Der Harnstoff kann in Form fester Harnstoffpellets, vorzugsweise jedoch in Form einer insbesondere wässrigen Harnstofflösung eingesetzt werden. Der zudosierte Harnstoff reagiert im Wege der Thermolyse und Hydrolyse unter Freisetzung von NH3. Grundsätzlich kann im Rahmen der Erfindung das Reduktionsmittel Ammoniak auch über NH3-Speichermaterialien bevorratet werden, die Ammoniak in Abhängigkeit von der Temperatur reversibel binden beziehungsweise freisetzen. Entsprechende Metallamminspeicher wurden eingangs bereits erläutert. The dosed reducing agent is preferably ammonia NH 3 or a precursor compound thereof, in which case urea is particularly suitable. The urea can be used in the form of solid urea pellets, but preferably in the form of a particular aqueous urea solution. The added urea reacts by way of thermolysis and hydrolysis to release NH 3 . In principle, the reducing agent ammonia can also be stored in the context of the invention via NH 3 storage materials which reversibly bind or release ammonia as a function of the temperature. Corresponding Metallamminspeicher were already explained at the beginning.
Nach einer weiteren bevorzugten Ausführung der Erfindung weist die According to another preferred embodiment of the invention, the
Abgasnachbehandlungseinrichtung ferner einen Oxidationskatalysator auf. Dieser ist vorzugsweise stromauf des SCR-Katalysators angeordnet. Hierdurch wird erreicht, dass das N02/NO-Verhältnis des Abgases vergrößert wird, wodurch eine verbesserte NOx- Konvertierungsleistung der nachgeschalteten SCR-Komponenten erzielt wird. Sofern darüber hinaus der Oxidationskatalysator der Reduktionsmitteldosierung nachgeschaltet ist, führt er zudem zu einer verbesserten Homogenisierung des zugeführten Reduktionsmittels im Abgas, bevor es in den SCR-Katalysator eintritt. Die Erfindung betrifft ferner ein Kraftfahrzeug mit einer Brennkraftmaschine zum Fahrzeugantrieb sowie einer Abgasnachbehandlungseinrichtung gemäß der Erfindung. Exhaust after-treatment device further comprises an oxidation catalyst. This is preferably arranged upstream of the SCR catalyst. As a result, it is achieved that the N0 2 / NO ratio of the exhaust gas is increased, whereby an improved NO x - conversion performance of the downstream SCR components is achieved. If, in addition, the oxidation catalyst is connected downstream of the reducing agent metering, it also leads to improved homogenization of the supplied reducing agent in the exhaust gas before it enters the SCR catalytic converter. The invention further relates to a motor vehicle with an internal combustion engine for vehicle drive and an exhaust gas aftertreatment device according to the invention.
Bei der Brennkraftmaschine handelt es sich um eine ständig oder zumindest zeitweise mager betriebene Brennkraftmaschine, insbesondere um einen Dieselmotor. Grundsätzlich ist die erfindungsgemäße Abgasnachbehandlungseinrichtung jedoch auch für zeitweise mager betriebene Ottomotoren, insbesondere schichtladefähige Ottomotoren, mit Vorteil einsetzbar. The internal combustion engine is a continuously or at least temporarily lean-burn engine, in particular a diesel engine. In principle, however, the exhaust gas aftertreatment device according to the invention can also be used with advantage for temporarily lean-burn gasoline engines, in particular spark-ignitable gasoline engines.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen The invention is described below in embodiments with reference to the associated
Zeichnungen näher erläutert. Es zeigen: Drawings explained in more detail. Show it:
Figur 1 eine schematische Darstellung einer Abgasnachbehandlungseinrichtung nach einer ersten Ausgestaltung der Erfindung; Figure 1 is a schematic representation of an exhaust aftertreatment device according to a first embodiment of the invention;
Figur 2 eine schematische Darstellung einer Abgasnachbehandlungseinrichtung nach einer zweiten Ausgestaltung der Erfindung; und Figure 2 is a schematic representation of an exhaust aftertreatment device according to a second embodiment of the invention; and
Figur 3 zeitliche Verläufe der ΝΟχ-Rohemission einer Brennkraftmaschine sowie der Figure 3 shows the time course of the ΝΟχ-raw emission of an internal combustion engine and the
ΝΟχ-Endemission bei einer erfindungsgemäßen ΝΟχ endemission in an inventive
Abgasnachbehandlungseinrichtung mit einer Kombination eines SCR- Partikelfilters mit vorgeschaltetem SCR-Katalysator (unterbrochene Linien) sowie eines Vergleichssystems ohne vorgeschaltetem SCR-Katalysator (durchgezogene Linien). Exhaust after-treatment device with a combination of an SCR particulate filter with upstream SCR catalytic converter (broken lines) and a comparison system without an upstream SCR catalytic converter (solid lines).
In Figur 1 ist ein insgesamt mit 10 bezeichnetes Kraftfahrzeug angedeutet, das durch eine zumindest zeitweise mager betriebene Brennkraftmaschine 12, insbesondere einen In Figure 1, a total of 10 designated motor vehicle is indicated that by an at least temporarily lean-burn engine 12, in particular a
Dieselmotor, als Traktionsquelle angetrieben wird. Die Brennkraftmaschine 12 weist hier beispielsweise 4 Zylinder auf, wobei eine beliebige, hiervon abweichende Zylinderanzahl möglich ist. Diesel engine, is driven as a source of traction. The internal combustion engine 12 here has, for example, 4 cylinders, wherein any desired number of cylinders is possible.
Das Kraftfahrzeug 10 weist ferner eine erfindungsgemäße, insgesamt mit 14 bezeichnete Abgasnachbehandlungseinrichtung zur katalytischen Nachbehandlung eines Abgases der Brennkraftmaschine 12 auf. Die Abgasnachbehandlungseinrichtung 14 umfasst einen The motor vehicle 10 also has an exhaust gas aftertreatment device according to the invention, designated as a whole by 14, for the catalytic aftertreatment of an exhaust gas of the internal combustion engine 12. The exhaust aftertreatment device 14 comprises a
Abgaskrümmer 16, der die einzelnen Zylinderauslässe der Zylinder der Brennkraftmaschine 12 mit einem Abgaskanal 18 verbindet. Der Abgaskanal 18 weist einen motornahen Abschnitt 20 sowie einen Unterbodenabschnitt 22 auf, welcher hier verkürzt dargestellt ist und in einem nicht dargestellten Auspuffrohr endet. Exhaust manifold 16, which connects the individual cylinder outlets of the cylinder of the internal combustion engine 12 with an exhaust passage 18. The exhaust passage 18 has a portion near the engine 20 and an underbody section 22, which is shown shortened here and ends in an exhaust pipe, not shown.
Stromab des Abgaskrümmers 16 ist ein Oxidationskatalysator 24 in dem Abgaskanal 18 angeordnet. Der Oxidationskatalysator 24 weist ein Durchflusssubstrat auf, welches mit einer katalytischen Beschichtung beschichtet ist, welche die Oxidation von Abgaskomponenten kataly-siert. Insbesondere ist diese geeignet, unverbrannte Kohlenwasserstoffe HC und Downstream of the exhaust manifold 16, an oxidation catalyst 24 is disposed in the exhaust passage 18. The oxidation catalyst 24 comprises a flow-through substrate which is coated with a catalytic coating which catalyzes the oxidation of exhaust gas components. In particular, this is suitable, unburned hydrocarbons HC and
Kohlenmonoxid CO in C02 und H20 umzusetzen. Darüber hinaus ist die katalytische Carbon monoxide CO in C0 2 and H 2 0 implement. In addition, the catalytic
Beschichtung des Oxidationskatalysators 24 ausgelegt, NO und N20 zu N02 zu oxidieren, um das N02/NO-Verhältnis zu vergrößern. Die katalytische Beschichtung des Coating the oxidation catalyst 24 designed to oxidize NO and N 2 0 to N0 2 to increase the N0 2 / NO ratio. The catalytic coating of the
Oxidationskatalysators 24 enthält als katalytische Komponente insbesondere mindestens ein Element der Platingruppenmetalle Pt, Pd, Rh, Ru, Os oder Ir oder eine Kombination von diesen, insbesondere Pt und/oder Pd. Die katalytische Beschichtung enthält ferner einen Washcoat, der eine poröse keramische Matrix mit einer großen spezifischen Oberfläche umfasst, Oxidation catalyst 24 contains, as a catalytic component, in particular at least one element of the platinum group metals Pt, Pd, Rh, Ru, Os or Ir or a combination of these, in particular Pt and / or Pd. The catalytic coating further includes a washcoat comprising a porous ceramic matrix having a large specific surface area,
beispielsweise auf Zeolith-Basis, welche mit der katalytischen Komponente dotiert ist. Bei dem Durchströmsubstrat des Oxidationskatalysators 24 kann es sich um ein metallisches Substrat oder einen keramischen Monolith handeln, insbesondere mit einer wabenähnlichen Struktur mit einer Mehrzahl durchgehender, paralleler Strömungskanäle. Geeignete keramische Materialien schließen Aluminiumoxid, Cordierit, Mullit und Siliziumcarbid ein. Geeignete Metallsubstrate sind etwa aus rostfreien Stählen oder Eisen-Chrom-Legierungen gefertigt. for example, zeolite-based, which is doped with the catalytic component. The flow-through substrate of the oxidation catalyst 24 may be a metallic substrate or a ceramic monolith, in particular having a honeycomb-like structure with a plurality of continuous, parallel flow channels. Suitable ceramic materials include alumina, cordierite, mullite and silicon carbide. Suitable metal substrates are made of stainless steels or iron-chromium alloys, for example.
Stromab des Oxidationskatalysators 24 ist im motornahen Abschnitt 20 des Abgaskanals 18 ein SCR-Katalysator 26 angeordnet. Der SCR-Katalysator 26 weist ebenso wie der Downstream of the oxidation catalytic converter 24, an SCR catalytic converter 26 is arranged in the section 20 of the exhaust gas duct 18 close to the engine. The SCR catalyst 26 has as well as the
Oxidationskatalysator 24 ein Durchflusssubstrat auf metallischer oder keramischer Basis, vorzugsweise auf keramischer Basis auf. Geeignete keramische oder metallische Materialien entsprechen den im Zusammenhang mit dem Oxidationskatalysator genannten. Das Oxidation catalyst 24, a flow-through substrate on a metallic or ceramic base, preferably on a ceramic basis. Suitable ceramic or metallic materials correspond to those mentioned in connection with the oxidation catalyst. The
Durchflusssubstrat des SCR-Katalysators 26 weist einen Zellenzahl vorzugsweise von > 350 cpsi und eine Wandstärke von < 5,5 mil auf. Die Wände der parallelen und durchgehenden Strömungskanäle des Durchlasssubstrats des SCR-Katalysators 26 sind mit einer SCR- katalytischen Beschichtung beschichtet. Diese umfassen wiederum einen Washcoat aus einer porösen keramischen Matrix mit großer spezifischer Oberfläche (z. B. ein Zeolith auf Flow-through substrate of the SCR catalyst 26 has a cell number of preferably> 350 cpsi and a wall thickness of <5.5 mil. The walls of the parallel and continuous flow passages of the passage substrate of the SCR catalyst 26 are coated with an SCR catalytic coating. These in turn comprise a washcoat of a porous ceramic matrix with a large specific surface area (eg a zeolite on
Aluminiumsilicat-Basis) und darauf verteilt angeordnete katalytische Substanzen. Geeignete SCR-katalytische Substanzen umfassen insbesondere Nichtedelmetalle, wie Fe, Cu, Va, Cr, Mo, W, sowie Kombinationen von diesen. Diese sind auf dem Zeolith abgeschieden und/oder die Zeolithmetalle sind durch lonenaustausch partiell durch die entsprechenden Aluminosilicate base) and catalytic substances distributed thereon. Suitable SCR catalytic substances include in particular non-noble metals, such as Fe, Cu, Va, Cr, Mo, W, as well as combinations of these. These are deposited on the zeolite and / or the zeolite metals are partially replaced by ion exchange by the corresponding
Nichtedelmetallen ersetzt. Stromab des SCR-Katalysators 26 ist ein SCR-Partikelfilter 28 ebenfalls in dem motornahen Abschnitt 20 des Abgaskanals 18 angeordnet. Der SCR-Partikelfilter weist ein Non-precious metals replaced. Downstream of the SCR catalyst 26, an SCR particulate filter 28 is also disposed in the proximal portion 20 of the exhaust passage 18. The SCR particulate filter has a
Partikelfiltersubstrat auf, bei dem es sich beispielsweise um einen Wandstromfilter handelt. Dieses weist parallele Strömungskanäle auf, die abwechselnd eingangsseitig und Particle filter substrate, which is for example a wall-flow filter. This has parallel flow channels, which alternately input side and
ausgangsseitig verschlossen sind. Das Partikelfiltersubstrat besteht aus einem porösen keramischen Material, beispielsweise Cordierit, α-Aluminiumoxid, Siliziumcarbid, Siliziumnitrid, Zirkoniumoxid, Mullit, Spodumen, Aluminiumoxid-Siliziumoxid-Magnesiumoxid oder are closed on the output side. The particulate filter substrate is made of a porous ceramic material such as cordierite, α-alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica-magnesia or
Zirkoniumsilikat. Die Zellenzahl des Partikelfiltersubstrats beträgt vorzugsweise > 300 cpsi, wobei die Zellenzahl mindestens um einen Faktor von 1 , 1 kleiner ist, als die des Zirconium silicate. The number of cells of the particulate filter substrate is preferably> 300 cpsi, wherein the number of cells is at least a factor of 1, 1 smaller than that of the
Durchflusssubstrats des SCR-Katalysators 26. Die Wandstärke des Partikelfiltersubstrats beträgt vorzugsweise höchstens 15 mil und weist eine Porosität von < 61 % bei einem mittleren Porenradius von < 20 μηη auf. Die Strömungskanäle des Partikelfiltersubstrats sind mit einer SCR-katalytischen Beschichtung beschichtet, die grundsätzlich die gleiche chemische Flow-through substrate of the SCR catalyst 26. The wall thickness of the particulate filter substrate is preferably at most 15 mil and has a porosity of <61% at an average pore radius of <20 μηη. The flow channels of the particulate filter substrate are coated with an SCR catalytic coating which is basically the same chemical
Zusammensetzung wie die des SCR-Katalysators 26 aufweisen kann. Jedoch ist die Menge an der katalytischen Beschichtung des SCR-Partikelfilters 28 bezogen auf das Substratvolumen geringer als die des SCR-Katalysators 26, insbesondere um einen Faktor von mindestens 1 ,5. Das Partikelfiltersubstrat des SCR-Partikelfilters 28 kann vollflächig oder nur abschnittsweise, beispielsweise nur in einem eingangsseitigen Abschnitt mit der SCR-katalytischen Beschichtung beschichtet sein. Composition may have the same as that of the SCR catalyst 26. However, the amount of catalytic coating of the SCR particulate filter 28 relative to the substrate volume is less than that of the SCR catalyst 26, in particular by a factor of at least 1.5. The particulate filter substrate of the SCR particulate filter 28 may be coated with the SCR catalytic coating over its entire area or only in sections, for example only in an input-side section.
Der SCR-Katalysator 26 sowie der SCR-Partikelfilter 28 sind in einer motornahen Position angeordnet. Insbesondere beträgt die Distanz D zwischen einer zylinderseitigen Einlassöffnung des Abgaskrümmers 16 sowie einer Einströmstirnseite des SCR-Katalysators 26 höchstens 80 cm. Maßgebend für die Bemessung dieser Distanz D ist die tatsächliche, vom Abgas zurückzulegende Wegstrecke (die Distanz D ist hier vereinfacht dargestellt). The SCR catalytic converter 26 and the SCR particulate filter 28 are arranged in a position close to the engine. In particular, the distance D between a cylinder-side inlet opening of the exhaust manifold 16 and an inflow end face of the SCR catalytic converter 26 is at most 80 cm. Decisive for the dimensioning of this distance D is the actual distance traveled by the exhaust gas (the distance D is simplified here).
In der in Figur 1 gezeigten Ausführung sind der SCR-Katalysator 26 sowie der SCR-Partikelfilter 28 in einem gemeinsamen Gehäuse 30 angeordnet, welches über einen konischen sich in Abgasströmungsrichtung erweiternden Eingangstrichter und einen konisch sich verjüngenden Ausgangstrichter verfügt, über welche es mit dem Abgaskanal 22 verbunden ist. In the embodiment shown in FIG. 1, the SCR catalytic converter 26 and the SCR particulate filter 28 are arranged in a common housing 30, which has a conical inlet funnel which widens in the exhaust gas flow direction and a conically tapering outlet funnel via which it communicates with the exhaust gas channel 22 connected is.
Die Abgasnachbehandlungseinrichtung 14 weist ferner eine Reduktionsmitteldosiereinrichtung 32 auf, mit welcher das Reduktionsmittel oder eine Vorläuferverbindung von diesem dem Abgas zudosiert wird. Beispielsweise wird das Reduktionsmittel mittels einer Düse stromauf des SCR- Katalysators 26 in den Abgasstrom eingebracht. Bei dem Reduktionsmittel handelt es sich typischerweise um Ammoniak NH3, das in Form einer Vorläuferverbindung, insbesondere in Form von Harnstoff zudosiert wird. Vorzugsweise wird der Harnstoff in Form einer wässrigen Lösung aus einem nicht dargestellten Reservoir gefördert und zudosiert. Im Wege der The exhaust gas aftertreatment device 14 also has a reducing agent metering device 32 with which the reducing agent or a precursor compound from it is metered into the exhaust gas. For example, the reducing agent is introduced into the exhaust gas flow by means of a nozzle upstream of the SCR catalytic converter 26. The reducing agent is typically ammonia NH 3 , which is added in the form of a precursor compound, in particular in the form of urea. Preferably, the urea is conveyed and metered in the form of an aqueous solution from a reservoir, not shown. In the way of
Thermolyse und Hydrolyse wird der Harnstoff im heißen Abgas zu NH3 und C02 zersetzt. Thermolysis and hydrolysis of the urea in the hot exhaust gas to NH 3 and C0 2 is decomposed.
Die Zudosierung des Reduktionsmittels über die Dosiereinrichtung 32 erfolgt üblicherweise über eine hier nicht dargestellte Steuerung, welche die Einrichtung 32 in Abhängigkeit von einem Betriebspunkt des Motors 12, insbesondere in Abhängigkeit von einer aktuellen NOx- Konzentration des Abgases steuert. Zum Zwecke der Steuerung kann die The metering of the reducing agent via the metering device 32 is usually carried out via a controller, not shown here, which controls the device 32 in response to an operating point of the engine 12, in particular in dependence on a current NO x - concentration of the exhaust gas. For the purpose of control, the
Abgasnachbehandlungseinrichtung 14 noch verschiedene Abgas- und Temperatursensoren aufweisen, beispielsweise NOx-Sensoren stromauf und/oder stromab der SCR-Komponenten 26/28. Exhaust after-treatment device 14 still have different exhaust and temperature sensors, for example, NO x sensors upstream and / or downstream of the SCR components 26/28.
Eine Abgasnachbehandlungseinrichtung 14 gemäß einer zweiten Ausgestaltung der An exhaust gas aftertreatment device 14 according to a second embodiment of
vorliegenden Erfindung zeigt Figur 2. Hier sind übereinstimmende Bauteile mit den gleichen Bezugszeichen wie in Figur 1 bezeichnet und werden im Einzelnen nicht noch einmal erläutert. The present invention is shown in FIG. 2. Here, matching components are denoted by the same reference numerals as in FIG. 1 and will not be explained again in detail.
Im Unterschied zu der in Figur 1 gezeigten Ausführungsform sind in Figur 2 der SCR- Katalysator 26 und der SCR-Partikelfilter 28 separat, jeweils in einem eigenen Gehäuse 30 angeordnet. In contrast to the embodiment shown in FIG. 1, in FIG. 2, the SCR catalytic converter 26 and the SCR particle filter 28 are arranged separately, each in its own housing 30.
Weitere, hier nicht dargestellte Ausführungsvarianten der Abgasnachbehandlungseinrichtung 14 sehen die Anordnung der Oxidationskatalysators 24 stromab der Further, not shown embodiments of the exhaust aftertreatment device 14 see the arrangement of the oxidation catalyst 24 downstream of the
Reduktionsmitteldosiereinrichtung 32 vor. Zudem können weitere Reducing agent metering device 32 before. In addition, more
Abgasnachbehandlungskomponenten vorhanden sein, beispielsweise an der Exhaust after-treatment components may be present, for example at the
Unterbodenposition 22 des Abgaskanals 18. Underbody position 22 of the exhaust duct 18.
Figur 3 zeigt kumulierte NOx-Emissionen des Abgases in Abhängigkeit von der Zeit t gemessen nach einem Motorkaltstart zum Zeitpunkt t0 in einem standardisierten Testzyklus (hier NEFZ). Dabei wurden einerseits die NOx-Emissionen einer erfindungsgemäßen FIG. 3 shows cumulative NO x emissions of the exhaust gas as a function of time t measured after a cold engine start at time t 0 in a standardized test cycle (here NEDC). On the one hand, the NO x emissions of an inventive
Abgasnachbehandlungseinrichtung 14 gemäß Figur 1 gemessen (unterbrochene Linien 2 und 4) sowie eines Vergleichssystems mit SCR-Partikelfilter 28, aber ohne vorgeschalteten SCR- Katalysator 26 (durchgezogene Linien 1 und 3). Dabei entsprach die Gesamtmenge an katalytischer Beschichtung des SCR-Partikelfilters des Vergleichsversuchs der Summe der katalytischen Beschichtungen des SCR-Katalysators 26 und SCR-Partikelfilters 28 der erfindungsgemäßen Anordnung. Die Kurven 1 und 2 zeigen jeweils die NOx-Rohemissionen, d. h. die von der Brennkraftmaschine 12 erzeugten NOx-Emissionen im Rohabgas. Die Kurven 3 und 4 zeigen jeweils die stromab des SCR-Partikelfilters gemessenen NOx-Endemissionen. Exhaust after-treatment device 14 according to Figure 1 measured (broken lines 2 and 4) and a comparison system with SCR particulate filter 28, but without upstream SCR catalytic converter 26 (solid lines 1 and 3). In this case, the total amount of catalytic coating of the SCR particle filter of the comparative test corresponded to the sum of the catalytic coatings of the SCR catalytic converter 26 and SCR particle filter 28 of the arrangement according to the invention. Curves 1 and 2 respectively show the NO x raw emissions, i. H. the NO x emissions generated by the internal combustion engine 12 in the raw exhaust gas. Curves 3 and 4 respectively show the NO x emissions measured downstream of the SCR particulate filter.
Bis zu einem Zeitpunkt t-ι entsprechen die Verläufe der ΝΟχ-Endemissionen (3 und 4) dem der ΝΟχ-Rohemission 1 , 2. Bis zu diesem Zeitpunkt haben die SCR-katalytischen Beschichtungen jeweils ihre Light-Off-Temperatur noch nicht erreicht, so dass keine nennenswerte NOx- Konvertierung stattfindet. Ab dem Zeitpunkt t-ι ist die Light-Off-Temperatur der SCR- Komponenten erreicht, so dass die ΝΟχ-Endemissionen 3 und 4 deutlich unterhalb der NOx- Rohemissionen 1 , 2 liegt. Im weiteren Verlauf trennen sich auch die Verläufe der Up to a point in time t-1, the courses of the ΝΟχ-end emissions (3 and 4) correspond to those of the ΝΟχ-raw emissions 1, 2. Until this point in time, the SCR catalytic coatings have not yet reached their light-off temperature that no significant NO x conversion takes place. From the time t-ι the light-off temperature of the SCR components is reached, so that the ΝΟχ-Endemissionen 3 and 4 is well below the NO x - raw emissions 1, 2. In the further course, the courses of the
Endemissionen 3 und 4, wobei die NOx-Endemissionen der erfindungsgemäßen Endemissionen 3 and 4, wherein the NO x emissions of the inventive
Abgasnachbehandlung deutlich unterhalb dem Vergleichssystem liegt. Hieraus ist ersichtlich, dass trotz identischer Menge katalytischen Materials die erfindungsgemäße Exhaust gas aftertreatment is well below the comparison system. It can be seen that despite identical amount of catalytic material, the inventive
Abgasnachbehandlungseinrichtung einen verbesserten ΝΟχ-Umsatz aufweist. Exhaust after-treatment device has improved ΝΟχ conversion.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
Kraftfahrzeug motor vehicle
Brennkraftmaschine Internal combustion engine
Abgasnachbehandlungseinrichtung exhaust treatment device
Abgaskrümmer exhaust manifold
Abgaskanal exhaust duct
motornaher Abschnitt close to the engine section
Unterbodenabschnitt Underbody portion
Oxidationskatalysator oxidation catalyst
SCR-Katalysator SCR catalyst
SCR-Partikelfilter SCR particulate filter
Gehäuse casing
Reduktionsmitteldosiereinrichtung Reduktionsmitteldosiereinrichtung
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012023049.4A DE102012023049A1 (en) | 2012-11-26 | 2012-11-26 | SCR exhaust aftertreatment device and motor vehicle with such |
PCT/EP2013/072611 WO2014079664A1 (en) | 2012-11-26 | 2013-10-29 | Scr exhaust-gas aftertreatment device and motor vehicle having such an scr exhaust-gas aftertreatment device |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2923047A1 true EP2923047A1 (en) | 2015-09-30 |
Family
ID=49513929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13783915.5A Withdrawn EP2923047A1 (en) | 2012-11-26 | 2013-10-29 | Scr exhaust-gas aftertreatment device and motor vehicle having such an scr exhaust-gas aftertreatment device |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150252706A1 (en) |
EP (1) | EP2923047A1 (en) |
CN (1) | CN104884752A (en) |
DE (1) | DE102012023049A1 (en) |
WO (1) | WO2014079664A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9528422B2 (en) * | 2013-08-06 | 2016-12-27 | GM Global Technology Operations LLC | Particulate filter washcoat diagnosis based on exothermic substrate temperature |
FR3042219B1 (en) * | 2015-10-08 | 2017-11-17 | Peugeot Citroen Automobiles Sa | EXHAUST GAS POST-TREATMENT DEVICE OF A COMBUSTION ENGINE |
EP3222834B1 (en) * | 2016-03-23 | 2019-05-08 | Volvo Car Corporation | Exhaust gas aftertreatment device for an internal combustion engine |
US11339701B2 (en) * | 2016-10-24 | 2022-05-24 | Basf Corporation | Integrated SCR catalyst and LNT for NOx abatement |
DE102016123426A1 (en) * | 2016-12-05 | 2018-06-07 | Volkswagen Aktiengesellschaft | Method and exhaust system for testing a loading condition of a particulate filter |
US20200108373A1 (en) * | 2017-03-20 | 2020-04-09 | Basf Corporation | Selective catalytic reduction articles and systems |
DE102017204897A1 (en) * | 2017-03-23 | 2018-09-27 | Volkswagen Aktiengesellschaft | Internal combustion engine and exhaust aftertreatment system for an internal combustion engine |
DE102017206425A1 (en) * | 2017-04-13 | 2018-10-18 | Continental Automotive Gmbh | exhaust system |
CN107218107B (en) * | 2017-06-02 | 2023-10-31 | 河南科技大学 | Catalytic converter and internal combustion engine and vehicle using the catalytic converter |
US10823030B2 (en) | 2018-06-11 | 2020-11-03 | Faurecia Emissions Control Technologies, Usa, Llc | Method and apparatus to control valve operation for close coupled SCR |
US10823031B2 (en) | 2018-09-20 | 2020-11-03 | Faurecia Emissions Control Technologies, Usa, Llc | Method and apparatus for turbo bypass valve operation strategy for close coupled SCR |
FR3087836B1 (en) * | 2018-10-26 | 2021-03-05 | Faurecia Systemes Dechappement | INJECTOR FOR INJECTING A GAS REDUCING AGENT INTO AN EXHAUST GAS FLOW, INCLUDING AT LEAST ONE ANTI-REFLUX DEVICE |
DE102020005360A1 (en) | 2020-09-01 | 2022-03-03 | Daimler Ag | Catalytic converter for a motor vehicle, both motor vehicles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010032544A1 (en) * | 2009-07-30 | 2011-02-17 | Ford Global Technologies, LLC, Dearborn | Methods and systems for controlling an emissions system with more than one SCR range |
US20110138776A1 (en) * | 2010-09-02 | 2011-06-16 | Ford Global Technologies, Llc | Diesel engine exhaust treatment system |
DE102011079785A1 (en) * | 2010-07-30 | 2012-02-02 | Ford Global Technologies, Llc | SYNERGISTIC SCR / DOC CONFIGURATIONS FOR REDUCING DIESEL EMISSIONS |
DE102011117808A1 (en) * | 2010-11-11 | 2012-05-16 | Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) | CONTROL METHOD AND DEVICE FOR REGENERATING A PARTICLE FILTER |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080060348A1 (en) | 2006-09-08 | 2008-03-13 | Caterpillar Inc. | Emissions reduction system |
US8409515B2 (en) | 2009-07-14 | 2013-04-02 | GM Global Technology Operations LLC | Exhaust gas treatment system |
US20110064632A1 (en) | 2009-09-14 | 2011-03-17 | Ford Global Technologies, Llc | Staged Catalyst System and Method of Using the Same |
WO2011089330A1 (en) * | 2010-01-25 | 2011-07-28 | Peugeot Citroën Automobiles SA | Device for post-treating exhaust gases of an internal combustion engine |
US8701388B2 (en) * | 2010-05-10 | 2014-04-22 | GM Global Technology Operations LLC | Exhaust treatment methods and systems |
FR2971810B1 (en) * | 2011-02-18 | 2013-03-15 | Peugeot Citroen Automobiles Sa | EXHAUST GAS POST-TREATMENT ASSEMBLY OF A SUPERCHARGED COMBUSTION ENGINE, AND MOTOR VEHICLE COMPRISING SUCH AN ASSEMBLY |
DE102011100677A1 (en) * | 2011-05-06 | 2012-11-08 | Daimler Ag | Operating method for a motor vehicle diesel engine |
US9132386B2 (en) * | 2011-12-23 | 2015-09-15 | Volvo Lastvagnar Ab | Exhaust aftertreatment system and method for operating the system |
RU2651917C2 (en) * | 2012-10-18 | 2018-04-24 | Джонсон Мэтти Паблик Лимитед Компани | Closely located scr system |
-
2012
- 2012-11-26 DE DE102012023049.4A patent/DE102012023049A1/en not_active Withdrawn
-
2013
- 2013-10-29 EP EP13783915.5A patent/EP2923047A1/en not_active Withdrawn
- 2013-10-29 CN CN201380056493.4A patent/CN104884752A/en active Pending
- 2013-10-29 WO PCT/EP2013/072611 patent/WO2014079664A1/en active Application Filing
-
2015
- 2015-05-15 US US14/714,190 patent/US20150252706A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010032544A1 (en) * | 2009-07-30 | 2011-02-17 | Ford Global Technologies, LLC, Dearborn | Methods and systems for controlling an emissions system with more than one SCR range |
DE102011079785A1 (en) * | 2010-07-30 | 2012-02-02 | Ford Global Technologies, Llc | SYNERGISTIC SCR / DOC CONFIGURATIONS FOR REDUCING DIESEL EMISSIONS |
US20110138776A1 (en) * | 2010-09-02 | 2011-06-16 | Ford Global Technologies, Llc | Diesel engine exhaust treatment system |
DE102011117808A1 (en) * | 2010-11-11 | 2012-05-16 | Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) | CONTROL METHOD AND DEVICE FOR REGENERATING A PARTICLE FILTER |
Non-Patent Citations (1)
Title |
---|
See also references of WO2014079664A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN104884752A (en) | 2015-09-02 |
US20150252706A1 (en) | 2015-09-10 |
DE102012023049A1 (en) | 2014-05-28 |
WO2014079664A1 (en) | 2014-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014079664A1 (en) | Scr exhaust-gas aftertreatment device and motor vehicle having such an scr exhaust-gas aftertreatment device | |
EP1892396B1 (en) | Exhaust gas treatment system | |
DE102010014468B4 (en) | Process for the reduction of nitrous oxide in the exhaust aftertreatment of lean burn engines | |
DE102007060623B4 (en) | Denitrification of diesel engine exhaust gases using a tempered pre-catalyst for on-demand NO2 provision | |
DE102010026888B4 (en) | Exhaust gas treatment system including an ash filter and method for treating an exhaust gas flow | |
DE602004006415T2 (en) | PROCESS FOR CONTROLLING THE REDUCTION ADDITIVE | |
DE112013005070B4 (en) | SYSTEM FOR TREATING EXHAUST GASES FROM AN ENGINE CONTAINING NOx | |
DE102010023819B4 (en) | Exhaust gas treatment system for a diesel engine Method of using it and diesel engine and exhaust gas treatment system | |
DE102005025045A1 (en) | exhaust system | |
DE102012006448B4 (en) | Method for use in connection with an exhaust aftertreatment system | |
EP2349537A1 (en) | Particle reduction having a combined scr and nh3 slip catalyst | |
EP1892394A1 (en) | Exhaust gas finishing treatment system | |
EP3025045A2 (en) | Method for diagnosing an exhaust gas catalytic converter, and motor vehicle | |
EP3134622B1 (en) | Model kit and method of production for a catalyst assembly | |
EP3126646B1 (en) | Regeneration method for exhaust-gas aftertreatment systems | |
DE102010055147A1 (en) | Four-way catalyst for cleaning exhaust gas of temporarily stoichiometric fueled internal combustion engine, particularly petrol engine, of vehicle, has ceramic support body, which is provided with particle filter function | |
DE102017120712A1 (en) | Method and device for controlling an exhaust gas treatment system | |
DE102017117209A1 (en) | Method and device for controlling an exhaust gas treatment system | |
DE102018119047B4 (en) | METHOD FOR DETERMINING SOOT LOAD IN A SELECTIVE CATALYTIC REDUCTION PARTICULATE FILTER DEVICE | |
DE102010033688A1 (en) | Exhaust gas aftertreatment system for internal combustion engine has flow-through monolith with storage capacity designed such that breakthrough signal downstream of flow-through monolith has highest gradient of concentration curve | |
EP2166203A1 (en) | Device for cleaning an exhaust gas flow of a combustion engine of a motor vehicle, in particular a commercial vehicle | |
EP2823162B1 (en) | Exhaust gas after-treatment component having hc adsorber function and exhaust gas system comprising same | |
EP2659950B1 (en) | Exhaust gas finishing treatment system | |
AT525793B1 (en) | Exhaust gas purification system for a motor vehicle powered by a diesel engine and operating method therefor | |
DE102017128510A1 (en) | RUSS OXIDATION CATALYST MATERIALS AND SELECTIVE CATALYTIC REDUCTION FILTER EQUIPMENT THAT INCLUDE THEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150626 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20161124 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170405 |