[go: up one dir, main page]

EP2907894B2 - Method for production of a substrate with a chromium VI free and cobalt-free passivation - Google Patents

Method for production of a substrate with a chromium VI free and cobalt-free passivation Download PDF

Info

Publication number
EP2907894B2
EP2907894B2 EP14155058.2A EP14155058A EP2907894B2 EP 2907894 B2 EP2907894 B2 EP 2907894B2 EP 14155058 A EP14155058 A EP 14155058A EP 2907894 B2 EP2907894 B2 EP 2907894B2
Authority
EP
European Patent Office
Prior art keywords
passivation
composition
acidic
alkaline
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14155058.2A
Other languages
German (de)
French (fr)
Other versions
EP2907894A1 (en
EP2907894B1 (en
Inventor
Verena Grossmann
Ingo KLÜPPEL
Christopher Köster
Gerhard Reusmann
Marcel Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ewald Doerken AG
Original Assignee
Ewald Doerken AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50101758&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2907894(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ewald Doerken AG filed Critical Ewald Doerken AG
Priority to EP14155058.2A priority Critical patent/EP2907894B2/en
Priority to ES14155058T priority patent/ES2732264T3/en
Priority to RU2015104265A priority patent/RU2652324C2/en
Priority to BR102015002873-3A priority patent/BR102015002873B1/en
Priority to KR1020150020590A priority patent/KR101897771B1/en
Priority to MX2015001916A priority patent/MX369943B/en
Priority to CN201510079622.2A priority patent/CN104846361B/en
Priority to US14/621,434 priority patent/US10011907B2/en
Publication of EP2907894A1 publication Critical patent/EP2907894A1/en
Publication of EP2907894B1 publication Critical patent/EP2907894B1/en
Application granted granted Critical
Publication of EP2907894B2 publication Critical patent/EP2907894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/04Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • C23C22/80Pretreatment of the material to be coated with solutions containing titanium or zirconium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/06Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly alkaline liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • Chromium(VI) compounds can often no longer be used, and elements such as cobalt and nickel are also often no longer desirable.
  • a chromium(VI)-free and cobalt-free passivation composition is used in the US$4,578,122
  • Nitrate ions and chromium(III) compounds are used in an aqueous acidic solution, with additional activating metal ions, e.g., iron, aluminum, lanthanum, or cerium ions, being added.
  • additional activating metal ions e.g., iron, aluminum, lanthanum, or cerium ions.
  • the ratio of nitrate ions to chromium(III) ions and activating metal ions should not be less than 4:1.
  • the DE-OS 3 213 384 discloses a first acidic and a second alkaline passivation that is chromium(VI)-free and cobalt-free. However, this two-stage passivation is not yet optimized with regard to corrosion protection.
  • the WO 95/24517 A1 relates to a coated metal sheet pretreated with an insoluble composite layer containing a siloxane.
  • the composite layer is obtained by rinsing the metal sheet with a basic solution containing at least 0.005 mol/L of a dissolved silicate or a dissolved aluminate, at least 0.1 vol.% of an organofunctional silane, and at least 0.02 vol.% of a crosslinking agent having 2 or 3 trialkoxysilyl groups.
  • the US 2006/0054248 A1 relates to a method for coloring and protecting metal parts from corrosion by applying a solution containing a trivalent chromium compound and at least one other metal salt selected from the group of iron salts, nickel salts, and cobalt salts, which, together with the chromium compound, are capable of coloring the surface of the metal part, and a phosphate, to a surface of the metal part to obtain a colored surface.
  • a top coat is then applied to the colored surface to achieve high corrosion resistance.
  • the cover layer can, for example, be based on an organosilane silicate coating.
  • solutions for treating metal surfaces further contain D) chromium ions, which are essentially in the oxidation state +3, and iron ions in combination with another metal selected from C) or cerium ions, or A), B), C) and D) and F), a soluble silicate compound compatible with the treatment solution or A), B), C) and D) and G), a mixture of 1-hydroxyethylidene-1,1-diphosphonic acid and citric acid or mixtures of A), B), C) and D) with two or more compounds selected from E), F) and G).
  • the solution can further optionally contain halides or a wetting agent.
  • the US 6,478,886 B1 relates to an agent for sealing metallic substrates, in particular zinc or zinc alloy substrates, which consists of an aqueous dispersion of A) at least one silane derivative and B) at least one colloidal silicon dioxide and/or a colloidal silicate.
  • the agent is preferably used for the direct coating of metallic substrates without prior chromating.
  • the DE 10 2009 042 861 A1 relates to a composition for passivating zinc and its alloys, consisting of a passivation solution and an activating solution, wherein the passivation solution consists of 20 to 200 g/l of chromium(III) compounds, e.g.
  • chromium chloride or chromium nitrate 20 to 600 g/l of soluble nitrate selected from sodium, potassium or ammonium nitrate, 5 to 100 g/l of fluoride selected from sodium, potassium or ammonium chloride, 5 to 20 g/l of organic acids selected from oxalic acid, malonic acid, tartaric acid, formic acid, acetic acid and citric acid, hydrochloric or nitric acid, and wherein the activating solution consists of 1 to 200 g/l of a tin(II) or tin(IV) salt and 10 to 700 g/l of a phosphonic acid or its derivatives.
  • the task is therefore to provide a process for the passivation of metallic substrates that produces good corrosion protection and avoids unnecessary risks to health and the environment.
  • the present invention therefore relates to a method for producing a metallic substrate provided with a chromium(VI)-free and cobalt-free passivation by applying (a) a first acidic passivation, wherein to produce the first acidic passivation an aqueous acidic composition is applied to the substrate which comprises a chromium(III) compound selected from the group consisting of chromium(III) sulfate, chromium(III) hydroxide, chromium(III) dihydrogen phosphate, chromium(III) chloride, chromium(III) nitrate, sodium chromium(III) sulfate, potassium chromium(III) sulfate and chromium(III) salts of organic acids, wherein the composition comprises the chromium(III) compound in amounts of at least 0.05 g/L, based on the aqueous acidic composition, and a phosphonic acid in amounts of 0.5 to 3 wt.%,
  • the method according to the invention provides for the production of a metallic substrate provided with a chromium(VI)-free and cobalt-free passivation by applying a first acidic and a second alkaline passivation.
  • An aqueous alkaline composition used to produce the second alkaline passivation contains silane-modified silicates. The combination of the two passivations, acidic and alkaline, provides good corrosion protection.
  • the first acidic and second alkaline passivation are applied as aqueous compositions.
  • the term "passivation” refers to both the aqueous composition for passivating the substrate or for applying the aqueous compositions, as well as the coating applied to the surface of the metallic workpiece. Treating the surface of the metallic substrate with the acidic and alkaline aqueous compositions results in the deposition of chemical components contained therein, which form a coating on the surface of the substrate, i.e., the passivation. The coating(s) provide improved protection against corrosion.
  • the first, acidic passivation is chromium(VI)-free and cobalt-free.
  • it is also nickel-free.
  • the substrate or workpiece coated with a first acidic passivation is coated with a second passivation, wherein the second passivation is an alkaline passivation.
  • Corrosion protection is significantly increased by this second alkaline passivation.
  • Workpieces in which the acidic passivation does not contain vanadium or tungsten become significantly more resistant to corrosion by a second alkaline passivation applied to the first acidic passivation.
  • corrosion protection is particularly improved when the first acidic passivation is produced using an aqueous acidic composition containing vanadium and/or tungsten or their compounds.
  • An essential feature of the invention is the application of a silicate-containing aqueous composition as a second, alkaline passivation to coat the first acidic passivation.
  • a silicate compound is applied to the first acidic passivation.
  • Typical silicate compounds are water glasses, but aqueous polysilicates or colloidal silicates are also well suited for the second, alkaline passivation. It is preferred that the second alkaline passivation comprises sodium, potassium, lithium, and/or ammonium silicate.
  • a second alkaline passivation comprising a mixture of silicate compounds can also be applied to the workpiece. Both colloidal silicates and dissolved silicates can be used.
  • silane-modified or siloxane-modified silicates in which silanes or siloxanes are bonded to the silicates, preferably polysilicates, have also proven to be well suited for the implementation of the invention. Most silicates form alkaline Solutions or suspensions. However, if necessary, alkalinity can be increased by adding alkalis, such as caustic soda.
  • lithium polysilicate in the aqueous composition for passivating metallic substrates has proven particularly advantageous for producing the second alkaline passivation.
  • Applying an aqueous composition of lithium polysilicate or mixing lithium polysilicate with other water glasses (sodium and/or potassium silicate) or colloidal silica sols to the first acidic passivation results in significantly improved corrosion protection.
  • the use of lithium polysilicate to produce the second alkaline passivation prevents the formation of gray haze on the surface of the metallic substrate passivated according to the invention, which is common for passivations made from aqueous compositions containing sodium or potassium water glasses.
  • the aqueous alkaline composition used for the second alkaline passivation comprises a silane or siloxane.
  • the addition of the silane or siloxane serves to further enhance corrosion protection.
  • a vinyl and/or aminosilane is used to produce the second alkaline passivation; however, epoxysilanes and the siloxanes of the silanes mentioned above and below are also suitable.
  • alkylalkoxysilanes here: mono-, di-, or trialkylalkoxysilanes, are suitable, individually or in combination with silicates, for building up a corrosion-protective coating on the metallic workpiece already treated with an acidic aqueous composition.
  • silane compounds can be used in mixtures with one another.
  • Particularly suitable silane compounds are methacryloxymethyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, methyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane.
  • Silane or siloxane can be used in amounts ranging from 1% to 99% by weight, based on the total amount of the aqueous composition of the second alkaline passivation.
  • aqueous compositions containing only small amounts of silane e.g., up to 20% by weight, demonstrate significantly improved corrosion protection.
  • an aqueous alkaline composition is used to produce the second alkaline passivation, which composition comprises both silicates and silanes and/or siloxanes or mixtures of silicates and silanes or siloxanes or compounds of a silicate and a silane component, hereinafter: silane-modified silicates, or compounds of a silicate and a siloxane component, hereinafter: siloxane-modified silicates.
  • silanes or siloxanes are typically bound to the silicate(s) as covalent side chains, for example by hydrolysis.
  • silane-modified or siloxane-modified silicates form excellent corrosion protection on a first acidic passivation, far exceeding the effect of a simple acidic or alkaline passivation.
  • the silane-modified or siloxane-modified silicates can be detected on the metallic substrate by means of NMR spectroscopy. In particular, silicon-carbon bonds (SiC bonds) can be detected.
  • the second alkaline passivation forms an excellent basis for further coatings, e.g., color-imparting coatings or coatings containing lubricants or other additives that further improve the usability of the coated surface.
  • silane-modified silicates are mentioned or described in connection with this invention, the use of siloxane-modified silicates is always also meant and encompassed.
  • the second alkaline passivation can be produced from partially or—preferably—fully hydrolyzed silicate and silane or siloxane compounds.
  • the joint hydrolysis of silicates and silanes or siloxanes in aqueous solution results in the formation of the silane-modified or siloxane-modified silicates.
  • the factory-based hydrolysis can remove released alcohols, so that users can be provided with aqueous alkaline compositions that are low in volatile organic compounds (low VOC) or that are free of volatile organic compounds (VOC-free).
  • Typical aqueous alkaline compositions according to the invention for passivating metallic substrates contain a maximum of 1% by weight of alcohol, preferably a maximum of 0.3% by weight of alcohol.
  • additives to the aqueous composition for the second alkaline passivation.
  • These additives are usually added to the liquid composition from which the second alkaline passivation is produced. They exert their effect either during application, as in the case of defoamers or stabilizers, or after application and, if necessary, drying of the second alkaline passivation, as in the case of lubricants or dyes.
  • an aqueous, acidic cobalt- and chromium(VI)-free composition which comprises a chromium(III) compound, an inorganic acid and optionally a fluorine source, and which is characterized in that the aqueous composition comprises a compound of the metals vanadium or tungsten, wherein this metal compound can be used individually or in a mixture with other vanadium or tungsten compounds.
  • Molybdenum, vanadium, and tungsten compounds in combination with the aforementioned, known components of the first acid passivation, already provide excellent corrosion protection.
  • the composition according to the invention exhibits a significantly reduced risk of health and environmental damage both during handling of the aqueous composition, e.g., during coating, and as a fully applied passivation, and can therefore be used with high operational reliability.
  • Molybdenum, vanadium, and tungsten compounds are incorporated into the first acid passivation and provide improved corrosion protection.
  • the aqueous acidic and alkaline compositions used according to the invention for passivating metallic substrates are generally suitable for all metallic surfaces or substrates, but are particularly suitable for workpieces with a surface made of steel, iron, aluminum, or zinc, and in particular for workpieces whose surface is provided with an alloy of one or both of the metals aluminum and zinc with other metals.
  • Typical examples are a zinc-aluminum alloy, an aluminum or zinc alloy with other metals such as iron or magnesium, e.g., with a zinc-iron alloy, all of which can be provided with a corrosion protection coating.
  • the layer thickness of the applied coating of metal or alloy is between 5 ⁇ m and 100 ⁇ m.
  • the metallic alloy applied to a substrate appears as a discrete layer.
  • a typical application is coil coating, i.e., the passivation of strip steel.
  • metal-oxygen compounds of the metals molybdenum, vanadium, and/or tungsten are used in the aqueous acidic composition for passivation.
  • one or more of the following compounds are used in the aqueous acidic composition: potassium orthovanadate, potassium metavanadate, sodium orthovanadate, sodium metavanadate, sodium tungstate, sodium paratungstate, and vanadium pentoxide, as well as sodium molybdate and potassium molybdate.
  • compounds of the metals molybdenum, vanadium, and/or tungsten are used, which dissociate in the aqueous acidic composition for passivation, thereby releasing molybdate, vanadate, and/or tungstate anions. Molybdate, vanadate, and tungstate anions are incorporated into the passivation layer and, even during the acidic passivation alone, ensure the development of very good corrosion protection.
  • the acidic aqueous composition contains a phosphonic acid or a mixture of phosphonic acids.
  • organic phosphonic acids for example (1-hydroxyethane-1,1-diyl)bisphosphonic acid, 2-phosphonobutanol-1,2,4-tricarboxylic acid, aminotrimethylenephosphonic acid, ethylenediaminetetramethylenephosphonic acid or diethylenetriaminepentamethylenephosphonic acid or mixtures thereof.
  • phosphonic acid salts can also prove advantageous in connection with the invention.
  • phosphonates are particularly suitable, used individually or as a mixture: tetrasodium (1-hydroxyethane-1,1-diyl)bisphosphonate, trisodium (1-hydroxyethane-1,1-diyl)bisphosphonate, pentasodium ethylenediaminetetramethylenephosphonate or heptosodium diethylenetriaminepentamethylenephosphonate.
  • These salts dissociate in the aqueous, acidic passivation composition, making the phosphonates available as complexing agents.
  • Phosphonic acids can also be advantageously used in combination with vanadium and tungsten compounds in acidic aqueous compositions. The use of phosphonic acid as a complexing agent has proven effective in this case.
  • the acidic aqueous compositions for passivating metallic substrates contain one or more elements or compounds from the group comprising molybdenum, manganese, cerium, and lanthanum.
  • the aqueous, acidic passivation composition comprises a chromium(III) compound or a mixture of chromium(III) compounds selected from the group consisting of chromium(III) sulfate, chromium(III) hydroxide, chromium(III) dihydrogen phosphate, chromium(III) chloride, chromium(III) nitrate, sodium chromium(III) sulfate, potassium chromium(III) sulfate, and chromium(III) salts of organic acids. It has been proven that an aqueous, acidic passivation composition has good corrosion protection properties even without the use of a chromium(VI) compound.
  • the chromium(III) compound is used in an amount of at least 0.05 g/l up to a maximum of saturation.
  • nitrate compound or a mixture of nitrate compounds to the acidic aqueous passivation composition.
  • nitrogen-containing acids such as nitric acid
  • salts of these acids are also preferably used.
  • Typical salts that are particularly suitable for use in the passivation composition are salts of alkali metals, ammonium salts, or salts of the metal ions contained in the passivation composition, e.g., chromium(III) nitrate.
  • the nitrogen and chromium(III) compounds described above are present in the aqueous, acidic passivation composition essentially in dissociated form.
  • the proportion of nitrate compounds is preferably 5% to 20% by weight, based on the total composition used for passivation.
  • an aqueous, acidic cobalt- and chromium(VI)-free composition for passivating metallic substrates which composition comprises a chromium(III) compound, an acid, metal ions, nitrate ions, and optionally a fluorine source, as well as a phosphonic acid, and which is characterized in that nitrate ions are used to the sum of chromium and metal ions in a ratio of maximum 3:1, preferably maximum 1:3.
  • the reduced use of nitrate proves to be advantageous when using this aqueous acidic composition for passivation because fewer nitrous gases are released.
  • the acidic aqueous composition for passivation be adjusted to a pH value of ⁇ 4, preferably ⁇ 3.
  • an acid or a mixture of acids is added.
  • organic and/or inorganic Acids typically one or more of the acids from the group consisting of phosphoric acid, hydrochloric acid, nitric acid, and/or sulfuric acid as inorganic acids, and formic acid, succinic acid, acetic acid, oxalic acid, peracetic acid, salicylic acid, and citric acid as organic acids.
  • the organic acids alone do not always ensure the desired pH is achieved, but their addition proves useful because the organic acids also act as complexing agents in the acidic aqueous composition.
  • the aqueous, acidic composition preferably contains a fluorine source.
  • a fluorine source is preferably a compound or a mixture of compounds selected from the group comprising hydrofluoric acid, hexafluorotitanic acid, hexafluorozirconic acid, sodium fluoride (NaF), potassium fluoride (KF), ammonium fluoride (NH4F), sodium bifluoride (NaHF2), potassium bifluoride (KHF2), and ammonium bifluoride (NH4HF2).
  • the fluorine compounds used as fluorine sources are used in an amount of 0.1% to 5% by weight based on the aqueous composition.
  • the fluorine compounds are preferably used as technically pure, soluble powders.
  • the preferred aqueous, acidic composition for passivating metallic substrates is essentially composed of substances that are largely harmless to health and have little or no environmental impact. It is free of cobalt, nickel, and chromium(VI) compounds. It is also preferably free of peroxide compounds and can be produced without the use of carboxylic acids. Furthermore, in preferred embodiments, the use of nitrate compounds is minimized, thus significantly reducing the emission of nitrous gases.
  • the application of the aqueous acidic passivation composition takes place at room temperature, at maximum temperatures up to 80 °C.
  • the metallic substrate is immersed in a bath of the aqueous acidic and then the aqueous alkaline passivation composition, but the passivation compositions can also be applied by other common and
  • the passivating compositions can be applied to the metallic substrate using known application methods (spraying, dipping, dip-spin coating, doctor blade coating, rolling).
  • the aqueous passivating compositions are usually applied for a treatment time of between 1 second and 180 seconds, preferably approximately 30 seconds to 120 seconds.
  • the application of the passivating composition can be followed by drying, which can be carried out at temperatures between room temperature and approximately 250°C. Drying is aimed solely at removing excess liquid; complete reaction, e.g., hydrolysis or condensation of the components that form the passivating coating on the metallic substrate, is not necessary.
  • the metallic substrate can be cleaned, especially degreased, before applying the passivation composition.
  • Aqueous solutions for cleaning and degreasing are known in the art.
  • the first acidic passivation layer is applied in a layer thickness of 10 nm to 1 ⁇ m, preferably in a layer thickness of 20 nm to 500 nm.
  • the second alkaline passivation layer is applied in a layer thickness of 10 nm to 1 ⁇ m, preferably in a layer thickness of 10 nm to 500 nm.
  • aqueous acidic and alkaline compositions required to carry out the process according to the invention are preferably supplied as a concentrate that is diluted with water for use in a concentrate:water ratio of 1:5 to 1:20, frequently 1:10.
  • the respective aqueous acidic or alkaline compositions are each offered as one-component products.
  • the excellent corrosion protection is achieved by first applying an acidic passivation followed by an alkaline passivation to the metallic substrate. Accordingly, an analysis of the finished coated substrate shows that, starting from the substrate, a first passivation layer is detected, which contains chromium and nitrogen and possibly fluorine, vanadium and/or tungsten, or alternatively other metallic or rare earth elements.
  • this first passivation layer usually does not contain silicon or the elements sodium, potassium, or lithium.
  • a second passivation layer is applied onto this first passivation layer. The second passivation layer is therefore not applied directly to the metallic substrate.
  • silicon, as well as sodium, potassium, and/or lithium can be detected in the second passivation layer.
  • this second passivation layer generally does not contain chromium, fluorine, tungsten, vanadium, or other metallic or rare earth elements.
  • Non-metallic elements such as carbon, phosphorus, or nitrogen may be detected in both passivation layers.
  • aqueous acidic or alkaline composition for passivation is prepared by mixing or dissolving the individual components.
  • the water is introduced into the liquid composition for passivation, for example, through the aqueous chromium(III) salt solution, in this case a sulfate or nitrate. Smaller amounts are added at the end.
  • aqueous chromium(III) salt solution in this case a sulfate or nitrate. Smaller amounts are added at the end.
  • the aqueous alkaline composition is typically produced by adjusting the solids content or proportion of aqueous silicates by adding appropriate amounts of water and, where appropriate, by mixing in silanes. If silicates and fully or partially hydrolyzed silanes or siloxanes are used, the hydrolysis is carried out in the factory so that the ready-to-use products have a lower alcohol content than the non-hydrolyzed products or release less alcohol during processing.
  • a passivation layer is created on the metallic substrate.
  • the application is carried out by a roller arrangement through which the steel sheet passes. Rinsing is then carried out to remove excess acidic composition. Subsequent drying is carried out in a drying oven at 150 °C, which the steel sheet provided with the initial passivation passes through. within a maximum of 10 minutes.
  • the second alkaline coating is created in the same way.
  • Tables 1 and 2 predominantly show compositions of an aqueous acidic composition for a first acid passivation containing vanadium and tungsten compounds.
  • Chromium(III) sulfate and chromium(III) nitrate are, individually or together, the main components of the passivation composition, as in Experiment 11. When used as a 20% solution, the proportion of the chromium(III) compound in the passivation composition is between 64.0% and 77.2% by weight.
  • a nitrate compound can also be added in the form of chromium(III) nitrate
  • a nitrate salt in this case sodium nitrate, is preferably added, as shown in Tables 1 and 2.
  • the proportion of the nitrate compound is preferably between 13% and 16% by weight, but can also be between 5% and 10% by weight.
  • a fluorine salt is preferably used as an optional fluorine source.
  • the examples shown in Tables 1 and 2 are sodium hydrogen difluoride; however, other fluorine compounds listed above are also suitable.
  • composition according to the invention in Tables 1 and 2 show that organic acids can be used individually or in combination. These acids act as complexing agents but also support a low pH. However, the addition of an inorganic acid, preferably nitric acid, is essential for adjusting the pH.
  • Table 1 Compositions for acid passivation (chromium(III) sulfate) Experiment No.: 1 2 3 4 5 no 1 no 1 no 1 no 1 required 2 Chromium(III) compound Chromium(III) sulfate (solution, 20%) 77.2% 72.7% 72.2% 64.0% 70.0% Nitrate compound Sodium nitrate 9.7% 15.8% 15.8% 13.5% 13.5% Fluorine compound Sodium hydrogen difluoride 3.5% 2.8% 2.8% 2.8% 1.2% Organic acid citric acid 2.5% 2.5% 2.5% Oxalic acid 2.5% 2.5% Inorganic acid Nitric acid HNO 3 3.1% 2.2% 2.2% 2.2% 2.2% Vanadium or tungsten compound Sodium vanadate 1.5% 1.5% Potassium vanadate Vanadyl sulfate 15.0% Sodium tungstate Sodium olybdate 0.5%.
  • nitric acid is only preferred because it is considered an additional source of nitrate ions.
  • the pH value preferably below 4
  • Vanadates and tungstates are added in amounts between 0.1% and 5% by weight, preferably in amounts between 0.5% and 3% by weight.
  • Tables 1 and 2 show that even small amounts of vanadates or tungstates, or mixtures of vanadates and tungstates, significantly increase the corrosion protection effect of a passivation composition.
  • phosphonic acids have proven beneficial. They act as complexing agents. The addition of individual phosphonic acids is already effective. However, the addition of mixtures of different phosphonic acids also shows good results. Phosphonic acids are added in amounts of 0.01% to 5% by weight, preferably in amounts of 0.5% to 3% by weight. It is expressly noted here again that the use of elements or compounds containing vanadium, tungsten, molybdenum, manganese, cerium, or lanthanum, as well as phosphonic acid, individually or in any combination, ensures good corrosion protection properties even with an initial acid passivation.
  • the first, acidic passivation is applied to steel sheets with a zinc-iron alloy surface, which may have been pretreated in a known manner, in particular, for example, cleaned or degreased.
  • a second alkaline passivation is applied to the dried first acidic passivation, which was applied from an aqueous acidic composition to the steel sheet with an iron-zinc alloy surface.
  • the aqueous alkaline compositions explained in more detail below are applied to the first acidic passivation according to embodiments 1 and 2 to produce a second alkaline passivation.
  • the aqueous coating composition is alkaline, although a pH value > 9, preferably between pH 10 and pH 12, can also be achieved through the use of alkalis.
  • an alkaline pH is usually already established through the use of silicates, e.g. alkali silicates.
  • Polysilicates are used to carry out embodiments 3 and 4.
  • the solids content (solids based on the total amount of the aqueous solution) is 20% for the preferably used lithium polysilicates, 40% for sodium and potassium silicate solutions (water glasses), and 20% for colloidal silicates, although colloidal silicates with a solids content of up to 30% are also available and suitable.
  • the molecular weight of the lithium polysilicate is between 200 and 300 g/mol and is thus lower than the molecular weight of the water glasses used.
  • Silane is used in 100% solids form.
  • Table 3 Second alkaline passivation (aqueous composition polysilicate and silane) Silane component Experiment No. Lithium polysilicate Experiment No. Soda water glass Experiment No.
  • Table 3 shows compositions for a second alkaline passivation, each of which, with the exception of two reference tests with lithium polysilicate (test no. 1) and methyltrimethoxysilane (test no. 9), consists of a silane-modified silicate.
  • the numerical values indicate the amount of silane used in weight percent based on the total composition of silane and silicate. It is supplemented with silicate to 100 weight percent.
  • an aqueous alkaline composition for producing a second alkaline passivation from vinyltrimethoxysilane and lithium polysilicate (test no. 7) consists of 5.9 weight percent silane and 94.1 weight percent lithium polysilicate (solids content 20%).
  • the aqueous alkaline composition therefore contains an amino-functional, silane-modified lithium polysilicate.
  • An alternative second alkaline passivation is prepared from an aqueous alkaline composition comprising vinyltrimethoxysilane and sodium silicate (Test No. 20).
  • This aqueous alkaline composition consists of 70.2% by weight silane and 29.8% by weight silicate (solids content 40%).
  • the aqueous alkaline composition contains a vinyl-functional, silane-modified silicate.
  • Colloidal silicate, sodium silicate (sodium polysilicate), and lithium polysilicate are used, with the latter being preferred.
  • a fully hydrolyzed product is used, allowing for a substantially VOC-free application of the second alkaline passivation.
  • the steel sheet treated with the first acidic passivation according to embodiments 1 and 2 is immersed in the aqueous composition or coating liquid of a silane-modified silicate and then dried using the same conditions as described for the production of the first acid passivation.
  • alkaline, aqueous compositions containing a silicate modified with various silanes are also well-suited as a second alkaline passivation.
  • Table 4 shows such compositions, in which up to eight different silanes are used, each to modify a silicate.
  • the experiments in Tables 3 and 4 show that the proportions of silane and silicate for the silane-modified silicate can be varied within a wide range.
  • the silicate content can vary between 1% and 99% by weight; preferably, it is between 20% and 90% by weight.
  • the silane can be used in the same amounts as the silicate; both are used in complementary proportions, so that they add up to 100% by weight in the formulations specified here. Preferably, up to 20% by weight of silane is used.
  • lithium polysilicate and silane are used in a ratio of approximately 1:1.
  • the first passivation very thin layers of up to 300 nm are applied, usually up to 150 nm, preferably up to 100 nm. Despite the thin layer thickness, the first passivation according to the invention provides good corrosion protection.
  • the second alkaline passivation is applied in a layer thickness of up to 1 ⁇ m, advantageously from 10 nm to 500 nm. The thickness of the second layer is preferably 300 nm.
  • the aqueous composition for the second alkaline passivation was prepared by joint hydrolysis of the silanes or siloxanes and the silicates, here polysilicates, and subsequent removal of the released alcohols by vacuum distillation.
  • compositions described in Tables 1-4 for the first, acidic passivation (Tables 1, 2) and the second, alkaline passivation (Tables 3, 4) were applied sequentially to steel sheets as explained above in connection with the application of the first, acidic passivation.
  • Row 1 of Table 5 shows the corrosion protection results for steel sheets tested with the first acid passivation but without the second alkaline passivation.
  • Column 1 of Table 5 shows steel sheets tested without the first acid passivation but with the second alkaline passivation.
  • the test results in column 1 and row 1 show the test results for a steel sheet without passivation.
  • compositions of the first acid passivation of experiments 1, 5 and 7 were carried out without vanadium or tungsten compounds.
  • compositions for the second alkaline passivation containing a silane-modified lithium polysilicate predominantly provide excellent corrosion protection when applied over an acidic passivation (tests 1-13 of the second passivation).
  • Acidic and alkaline passivations according to the invention provide particularly good results when the acidic passivation contains vanadium, tungsten, or their compounds.
  • the aqueous alkaline compositions consisting of a silicate modified with multiple silanes also predominantly provide excellent corrosion protection on the substrate of an acidic passivation.
  • Steel sheets with no or only acid or alkaline passivation and a surface coated with a zinc-iron alloy coated, and the steel sheets having a zinc-iron alloy surface provided according to the invention with a first acid passivation and a second alkaline passivation were also tested for their corrosion resistance in the neutral salt spray test as explained above.
  • a steel sheet with a zinc-iron alloy surface, but without any coating, shows a corrosion resistance of less than 24 hours (test column 1, line 1: --).
  • Zinc-iron alloy-coated steel sheets that had at least received acid passivation (tests in line 1) or that had only received alkaline passivation (tests in column 1) show low to average corrosion resistance in the salt spray test.
  • Steel sheets with a zinc-iron alloy surface to which both a first acid passivation and a second, alkaline passivation comprising silane-modified silicates have been applied generally show at least good, but often excellent, corrosion protection.
  • alkaline passivations with lithium polysilicate predominantly provide excellent corrosion protection, especially when lithium polysilicate is modified with one or more silanes or siloxanes.
  • colloidal silicates or silica sols also provide good corrosion protection, especially when the colloidal silicates are modified in combination with silanes or siloxanes (tests lines 28-39; 41, 44). The same applies to silicates modified in a mixture with several silanes or siloxanes simultaneously. In these cases, excellent results are predominantly achieved in the salt spray test.
  • these passivations which offer good to excellent corrosion protection, do not contain cobalt or chromium(VI) compounds. It is also worth noting that these acidic and alkaline passivations can be applied and dried essentially VOC-free, not least because fully hydrolyzed silane-modified silicates, especially polysilicates, are preferred.
  • the effect of the second alkaline passivation does not depend on the composition of the first acidic passivation. Rather, it is shown that the combination of an acidic and an alkaline passivation can achieve good to very good corrosion protection even if, for example, the acidic passivation contains few or no vanadium or tungsten compounds or phosphonic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines mit einer Chrom(VI)-freien und kobaltfreien Passivierung versehenen Substrats.The invention relates to a method for producing a substrate provided with a chromium(VI)-free and cobalt-free passivation.

Die Passivierung von metallischen Substraten ist bewährt, allerdings haben sich Bestandteile der Passivierungslösungen unter gesundheitlichen und Umweltschutz-Aspekten als bedenklich erwiesen. So können Chrom(VI)-Verbindungen häufig nichtmehr eingesetzt werden und auch Elemente wie Kobalt und Nickel sind häufig nicht mehr erwünscht.The passivation of metallic substrates is a proven method, but components of passivation solutions have proven to be problematic from a health and environmental perspective. Chromium(VI) compounds can often no longer be used, and elements such as cobalt and nickel are also often no longer desirable.

Eine Chrom(VI)-freie und kobaltfreie Zusammensetzung zur Passivierung wird in der US 4,578,122 offenbart. Es werden Nitrationen und Chrom(III)-Verbindungen in wässriger saurer Lösung eingesetzt, wobei zusätzlich aktivierende Metallionen, z. B. Eisen, Aluminium, Lanthan- oder Cerionen zugesetzt werden. Das Verhältnis von Nitrationen einerseits zu Chrom(III)-Ionen und aktivierenden Metallionen andererseits soll nicht unter 4:1 betragen.A chromium(VI)-free and cobalt-free passivation composition is used in the US$4,578,122 Nitrate ions and chromium(III) compounds are used in an aqueous acidic solution, with additional activating metal ions, e.g., iron, aluminum, lanthanum, or cerium ions, being added. The ratio of nitrate ions to chromium(III) ions and activating metal ions should not be less than 4:1.

Der Zusatz der in der US 4,578,122 genannten, aktivierenden Metallionen ist entweder aus Gründen des Gesundheits- oder Umweltschutzes zukünftig nicht mehr erwünscht oder der Einsatz der Metallionen ist aufwändig.The addition of the US$4,578,122 The use of the activating metal ions mentioned above is either no longer desirable for reasons of health or environmental protection or the use of the metal ions is expensive.

Die DE-OS 3 213 384 offenbart eine erste saure und eine zweite alkalische Passivierung, die Chrom(VI)-frei und kobaltfrei ist. Allerdings ist diese zweistufige Passivierung noch nicht hinsichtlich des Korrosionsschutzes optimiert.The DE-OS 3 213 384 discloses a first acidic and a second alkaline passivation that is chromium(VI)-free and cobalt-free. However, this two-stage passivation is not yet optimized with regard to corrosion protection.

Die WO 95/24517 A1 betrifft ein beschichtetes Metallblech,. welches mit einer unlöslichen Kompositlage, welche ein Siloxan enthält, vorbehandelt ist. Die Kompositlage wird erhalten durch Spülen des Metallbleches mit einer basischen Lösung, welche mindestens 0,005 mol/L eines gelösten Silikats oder eines gelösten Aluminats, mindestens 0,1 Vol.-% eines organofunktionalen Silans und mindestens 0,02 Vol.-% eines Vernetzungsmittels mit 2 oder 3 Trialkoxysilylgruppen aufweist.The WO 95/24517 A1 relates to a coated metal sheet pretreated with an insoluble composite layer containing a siloxane. The composite layer is obtained by rinsing the metal sheet with a basic solution containing at least 0.005 mol/L of a dissolved silicate or a dissolved aluminate, at least 0.1 vol.% of an organofunctional silane, and at least 0.02 vol.% of a crosslinking agent having 2 or 3 trialkoxysilyl groups.

Die US 2006/0054248 A1 betrifft ein Verfahren zum Färben und Korrosionsschutz von Metallteilen durch Aufbringung einer Lösung, welche eine dreiwertige Chromverbindung und mindestens ein weiteres Metallsalz ausgewählt aus der Gruppe von Eisensalzen, Nickelsalzen und Kobaltsalzen, welche in der Lage sind, gemeinsam mit der Chromverbindung die Oberfläche des Metallteils zu färben, und ein Phosphat sowie einen pH-Wert im Bereich von 0,5 bis 5 aufweist, auf eine Oberfläche des Metallteils, um eine gefärbte Oberfläche zu erhalten. Anschließend wird eine Deckschicht (top coat) auf die gefärbte Oberfläche aufgebracht, um eine hohe Korrosionsbeständigkeit zu erzielen. Die Deckschicht kann dabei bspw. auf Basis einer Organosilan-Silikat-Beschichtung ausgebildet sein.The US 2006/0054248 A1 relates to a method for coloring and protecting metal parts from corrosion by applying a solution containing a trivalent chromium compound and at least one other metal salt selected from the group of iron salts, nickel salts, and cobalt salts, which, together with the chromium compound, are capable of coloring the surface of the metal part, and a phosphate, to a surface of the metal part to obtain a colored surface. A top coat is then applied to the colored surface to achieve high corrosion resistance. The cover layer can, for example, be based on an organosilane silicate coating.

Weiterhin betrifft die GB 0297024 A ein Verfahren zur Behandlung von Metalloberflächen, insbesondere Zinkoberflächen und Zinklegierungsoberflächen, durch Behandlung mit einer wässrigen sauren Lösung, enthaltend wirksame Mengen von A) Wasserstoffionen, um einen pH-Wert von etwa 1,5 bis etwa 2,2 zu erzielen, B) ein Oxidationsmittel, C) mindestens ein Element ausgewählt aus Eisen-, Kobalt-, Nickel-, Molybdän-, Mangan-, Aluminium-, Lanthan-, Lanthaniden-Mischungs- oder Cer-Ionen oder deren Mischungen, oder anstelle von C) Eisen- und Kobaltionen. Andere Lösungen zur Behandlung der Metalloberflächen enthalten weiterhin D) Chromionen, welche im Wesentlichen in der Oxidationsstufe +3 vorliegen, und Eisenionen in Kombination mit einem weiteren Metall ausgewählt aus C) oder Cer- Ionen, oder A), B), C) und D) und F), eine lösliche und zu der Behandlungslösung kompatible Silikatverbindung oder A), B), C) und D) und G), eine Mischung von 1- Hydroxyethyliden-1.1-diphosphonsäure und Zitronensäure oder Mischungen von A), B), C) und D) mit zwei oder mehr Verbindungen ausgewählt aus E), F) und G). Die Lösung kann darüber hinaus optional Halogenide enthalten oder ein Benetzungsmittel.Furthermore, the GB 0297024 A a method for treating metal surfaces, in particular zinc surfaces and zinc alloy surfaces, by treatment with an aqueous acidic solution containing effective amounts of A) hydrogen ions to achieve a pH of about 1.5 to about 2.2, B) an oxidizing agent, C) at least one element selected from iron, cobalt, nickel, molybdenum, manganese, aluminum, lanthanum, lanthanide mixture or cerium ions or mixtures thereof, or instead of C) iron and cobalt ions. Other solutions for treating metal surfaces further contain D) chromium ions, which are essentially in the oxidation state +3, and iron ions in combination with another metal selected from C) or cerium ions, or A), B), C) and D) and F), a soluble silicate compound compatible with the treatment solution or A), B), C) and D) and G), a mixture of 1-hydroxyethylidene-1,1-diphosphonic acid and citric acid or mixtures of A), B), C) and D) with two or more compounds selected from E), F) and G). The solution can further optionally contain halides or a wetting agent.

Die US 6,478,886 B1 betrifft ein Mittel zur Versiegelung von metallischen Substraten, insbesondere Zink- oder Zinklegierungssubstraten, welches aus einer wässrigen Dispersion von A) mindestens einem Silanderivat und B) mindestens einem kolloidalen Siliciumdioxid und/oder einem kolloidalen Silikat besteht. Das Mittel wird vorzugsweise zur unmittelbaren Beschichtung von metallischen Substraten ohne vorhergehende Chromatierung verwendet.The US 6,478,886 B1 relates to an agent for sealing metallic substrates, in particular zinc or zinc alloy substrates, which consists of an aqueous dispersion of A) at least one silane derivative and B) at least one colloidal silicon dioxide and/or a colloidal silicate. The agent is preferably used for the direct coating of metallic substrates without prior chromating.

Die EP 0 337 411 B1 offenbart ein Verfahren zur Herstellung eines sauren Chrom(III)-haltigen und fluoridhaltigen Passivierungsbades für Oberflächen aus Zink, Zinklegierungen und Cadmium.The EP 0 337 411 B1 discloses a process for producing an acidic chromium(III)-containing and fluoride-containing passivation bath for surfaces made of zinc, zinc alloys and cadmium.

Die DE 10 2009 042 861 A1 betrifft eine Zusammensetzung zur Passivierung von Zink und seinen Legierungen, bestehend aus einer Passivierungslösung und einer Aktivierungslösung, wobei die Passivierungslösung aus 20 bis 200 g/l Chrom(III)-Verbindungen, z. B. als Chromchlorid oder Chromnitrat, 20 bis 600 g/l lösliches Nitrat, ausgewählt aus Natrium-, Kalium- oder Ammoniumnitrat, 5 bis 100 g/l Fluorid, ausgewählt aus Natrium-, Kalium- oder Ammoniumchlorid, 5 bis 20 g/l organische Säuren, auswählt aus Oxalsäure, Malonsäure, Weinsäure, Ameisensäure, Essigsäure und Zitronensäure, Salz- oder Salpetersäure, besteht und wobei die Aktivierungslösung aus 1 bis 200 g/l eines Zinn(II)- oder Zinn(IV)-Salzes und 10 bis 700 g/l einer Phosphonsäure oder ihren Derivaten besteht.The DE 10 2009 042 861 A1 relates to a composition for passivating zinc and its alloys, consisting of a passivation solution and an activating solution, wherein the passivation solution consists of 20 to 200 g/l of chromium(III) compounds, e.g. as chromium chloride or chromium nitrate, 20 to 600 g/l of soluble nitrate selected from sodium, potassium or ammonium nitrate, 5 to 100 g/l of fluoride selected from sodium, potassium or ammonium chloride, 5 to 20 g/l of organic acids selected from oxalic acid, malonic acid, tartaric acid, formic acid, acetic acid and citric acid, hydrochloric or nitric acid, and wherein the activating solution consists of 1 to 200 g/l of a tin(II) or tin(IV) salt and 10 to 700 g/l of a phosphonic acid or its derivatives.

Schließlich betrifft die wissenschaftliche Veröffentlichung M. Strle, B. Kurbus, S. Pejovnik und I. Kadivec, "Silane treatment of silicate fillers - II", Advanced Powder Technol., Vol. 5, No. 3, 1994, Seiten 269 bis 279 ein Verfahren zur Oberflächenmodifizierung von silikathaltigen Füllstoffen durch Silanisierung und den Einsatz der modifizierten Füllstoffe in organischen Polymeren.Finally, the scientific publication concerns M. Strle, B. Kurbus, S. Pejovnik and I. Kadivec, "Silane treatment of silicate fillers - II", Advanced Powder Technol., Vol. 5, No. 3, 1994, pages 269 to 279 a process for the surface modification of silicate-containing fillers by silanization and the use of the modified fillers in organic polymers.

Es besteht daher die Aufgabe, ein Verfahren zur Passivierung von metallischen Substraten bereitzustellen, das guten Korrosionsschutz erzeugt, und dass unnötige Risiken für Gesundheit und Umwelt vermeidet.The task is therefore to provide a process for the passivation of metallic substrates that produces good corrosion protection and avoids unnecessary risks to health and the environment.

Die der Erfindung zugrunde liegende Aufgabe wird gelöst durch ein Verfahren nach Anspruch 1.The object underlying the invention is achieved by a method according to claim 1.

Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zum Herstellen eines mit einer Chrom(VI)-freien und kobaltfreien Passivierung versehenen metallischen Substrats durch Aufbringen
(a) einer ersten sauren Passivierung, wobei zur Herstellung der ersten, sauren Passivierung eine wässrige saure Zusammensetzung auf das Substrat aufgebracht wird, die eine Chrom(III)-Verbindung, die ausgewählt ist aus der Gruppe von Chrom(III)-Sulfat, Chrom(III)-Hydroxid, Chrom(III)-Dihydrogenphosphat, Chrom(III)- Chlorid, Chrom(III)-Nitrat, Natriumchrom(III)-Sulfat, Kaliumchrom(III)-Sulfat und Chrom(III)-Salzen organischer Säuren, wobei die Zusammensetzung die Chrom(III)- Verbindung in Mengen von mindestens 0,05 g/L, bezogen auf die wässrige saure Zusammensetzung, und eine Phosphonsäure in Mengen von 0,5 bis 3 Gew.-%, bezogen auf die wässrige saure Zusammensetzung, aufweist, und (b) einer zweiten alkalischen Passivierung auf das metallische Substrat, wobei zum Herstellen der zweiten alkalischen Passivierung eine wässrige alkalische Zusammensetzung eingesetzt wird, die silanmodifizierte und/oder siloxanmodifizierte Silikate aufweist.
The present invention therefore relates to a method for producing a metallic substrate provided with a chromium(VI)-free and cobalt-free passivation by applying
(a) a first acidic passivation, wherein to produce the first acidic passivation an aqueous acidic composition is applied to the substrate which comprises a chromium(III) compound selected from the group consisting of chromium(III) sulfate, chromium(III) hydroxide, chromium(III) dihydrogen phosphate, chromium(III) chloride, chromium(III) nitrate, sodium chromium(III) sulfate, potassium chromium(III) sulfate and chromium(III) salts of organic acids, wherein the composition comprises the chromium(III) compound in amounts of at least 0.05 g/L, based on the aqueous acidic composition, and a phosphonic acid in amounts of 0.5 to 3 wt.%, based on the aqueous acidic composition, and (b) a second alkaline passivation on the metallic substrate, wherein to produce the second alkaline passivation an aqueous alkaline composition is used which comprises silane-modified and/or siloxane-modified silicates.

Das erfindungsgemäße Verfahren sieht zum Herstellen eines mit einer Chrom(VI)-freien und kobaltfreien Passivierung versehenen metallischen Substrats vor, dass eine erste saure und eine zweite alkalische Passivierung aufgebracht werden, wobei eine zum Herstellen der zweiten alkalischen Passivierung eingesetzte wässrige alkalische Zusammensetzung silanmodifizierte Silikate enthält. Die Kombination der beiden Passivierungen, sauer und alkalisch, bewirkt einen guten Korrosionsschutz.The method according to the invention provides for the production of a metallic substrate provided with a chromium(VI)-free and cobalt-free passivation by applying a first acidic and a second alkaline passivation. An aqueous alkaline composition used to produce the second alkaline passivation contains silane-modified silicates. The combination of the two passivations, acidic and alkaline, provides good corrosion protection.

Die erste saure und die zweite alkalische Passivierung werden als wässrige Zusammensetzungen aufgebracht. Der Begriff Passivierung wird im Zusammenhang mit dieser Erfindung sowohl für die wässrige Zusammensetzung zum Passivieren des Substrats bzw. für das Aufbringen der wässrigen Zusammensetzungen als auch für den auf die Oberfläche des metallischen Werkstücks aufgetragenen Überzug verwendet. Das Behandeln der Oberfläche des metallischen Substrats mit den sauren und alkalischen wässrigen Zusammensetzungen führt zur Ablagerung von darin enthaltenen chemischen Komponenten, die auf der Oberfläche des Substrats einen Überzug, also die Passivierung, bilden. Der bzw. die Überzüge bewirken einen verbesserten Schutz gegen Korrosion.The first acidic and second alkaline passivation are applied as aqueous compositions. In the context of this invention, the term "passivation" refers to both the aqueous composition for passivating the substrate or for applying the aqueous compositions, as well as the coating applied to the surface of the metallic workpiece. Treating the surface of the metallic substrate with the acidic and alkaline aqueous compositions results in the deposition of chemical components contained therein, which form a coating on the surface of the substrate, i.e., the passivation. The coating(s) provide improved protection against corrosion.

Die erste, saure Passivierung ist nach Maßgabe der Erfindung Chrom(VI)-frei und kobaltfrei. Bevorzugt ist sie auch nickelfreiAccording to the invention, the first, acidic passivation is chromium(VI)-free and cobalt-free. Preferably, it is also nickel-free.

Das mit einer ersten sauren Passivierung beschichtete Substrat oder Werkstück wird erfindungsgemäß mit einer zweiten Passivierung überzogen, wobei es sich bei der zweiten Passivierung um eine alkalische Passivierung handelt. Der Korrosionsschutz wird durch diese zweite alkalische Passivierung deutlich gesteigert. Werkstücke, bei denen die saure Passivierung kein Vanadium oder Wolfram enthält, werden durch eine auf die erste, saure Passivierung aufgebrachte zweite, alkalische Passivierung wesentlich beständiger gegen Korrosion. In besonderer Weise wird der Korrosionsschutz jedoch verbessert, wenn die erste, saure Passivierung unter Verwendung einer wässrigen sauren Zusammensetzung hergestellt wird, die Vanadium und/oder Wolfram oder deren Verbindungen enthält.According to the invention, the substrate or workpiece coated with a first acidic passivation is coated with a second passivation, wherein the second passivation is an alkaline passivation. Corrosion protection is significantly increased by this second alkaline passivation. Workpieces in which the acidic passivation does not contain vanadium or tungsten become significantly more resistant to corrosion by a second alkaline passivation applied to the first acidic passivation. However, corrosion protection is particularly improved when the first acidic passivation is produced using an aqueous acidic composition containing vanadium and/or tungsten or their compounds.

Wesentliches Merkmal der Erfindung ist das Aufbringen einer Silikat enthaltenden wässrigen Zusammensetzung als zweite, alkalische Passivierung zum Überziehen der ersten sauren Passivierung. Auf diese Weise wird eine silikatische Verbindung auf die erste saure Passivierung aufgebracht. Typische silikatische Verbindungen sind Wassergläser, aber auch wässrige Polysilikate oder kolloidale Silikate sind gut geeignet für die zweite, alkalische Passivierung. Bevorzugt ist, dass die zweite alkalische Passivierung Natrium-, Kalium-, Lithium- und/oder Ammoniumsilikat aufweist. Es kann auch eine zweite alkalische Passivierung auf dem Werkstück aufgebracht sein, die eine Mischung von SilikatVerbindungen aufweist. Es können sowohl kolloidal vorliegende Silikate eingesetzt werden als auch gelöste Silikate. Als gut geeignet für die Umsetzung der Erfindung haben sich auch silanmodifizierte oder siloxanmodifizierte Silikate erwiesen, bei denen Silane oder Siloxane an die Silikate, bevorzugt Polysilikate, angebunden sind. Die meisten Silikate bilden in Gegenwart von Wasser alkalische Lösungen oder Suspensionen. Bei Bedarf kann jedoch durch Zusatz von Laugen, z. B. Natronlauge, die Alkalinität erhöht werden.An essential feature of the invention is the application of a silicate-containing aqueous composition as a second, alkaline passivation to coat the first acidic passivation. In this way, a silicate compound is applied to the first acidic passivation. Typical silicate compounds are water glasses, but aqueous polysilicates or colloidal silicates are also well suited for the second, alkaline passivation. It is preferred that the second alkaline passivation comprises sodium, potassium, lithium, and/or ammonium silicate. A second alkaline passivation comprising a mixture of silicate compounds can also be applied to the workpiece. Both colloidal silicates and dissolved silicates can be used. Silane-modified or siloxane-modified silicates, in which silanes or siloxanes are bonded to the silicates, preferably polysilicates, have also proven to be well suited for the implementation of the invention. Most silicates form alkaline Solutions or suspensions. However, if necessary, alkalinity can be increased by adding alkalis, such as caustic soda.

Als besonders vorteilhaft zum Herstellen der zweiten alkalischen Passivierung hat sich der Einsatz von Lithiumpolysilikat in der wässrigen Zusammensetzung zum Passivieren von metallischen Substraten erwiesen. Das Aufbringen einer wässrigen Zusammensetzung von Lithiumpolysilikat oder die Mischung von Lithiumpolysilikat mit anderen Wassergläsern (Natrium- und/oder Kaliumsilikat) oder kolloidalen Silikasolen auf die erste saure Passivierung bewirkt einen außerordentlich verbesserten Korrosionsschutz. Gleichzeitig wird bei Einsatz von Lithiumpolysilikat zur Herstellung der zweiten alkalischen Passivierung erreicht, dass die Bildung von Grauschleiern auf der Oberfläche des erfindungsgemäß passivierten metallischen Substrats vermieden wird, die für Passivierungen aus wässrigen Zusammensetzungen mit Natrium- oder Kaliumwassergläsern üblich ist.The use of lithium polysilicate in the aqueous composition for passivating metallic substrates has proven particularly advantageous for producing the second alkaline passivation. Applying an aqueous composition of lithium polysilicate or mixing lithium polysilicate with other water glasses (sodium and/or potassium silicate) or colloidal silica sols to the first acidic passivation results in significantly improved corrosion protection. At the same time, the use of lithium polysilicate to produce the second alkaline passivation prevents the formation of gray haze on the surface of the metallic substrate passivated according to the invention, which is common for passivations made from aqueous compositions containing sodium or potassium water glasses.

Erfindungsgemäß weist die wässrige alkalische Zusammensetzung, die für die zweite alkalische Passivierung eingesetzt wird, ein Silan oder Siloxan auf. Der Zusatz des Silans oder Siloxans dient der weiteren Steigerung des Korrosionsschutzes. Bevorzugt wird ein Vinyl- und/oder Aminosilan zum Herstellen der zweiten alkalische Passivierung eingesetzt; geeignet sind aber auch Expoxysilane sowie die Siloxane der vorstehend und nachfolgend genannten Silane. Insbesondere Alkylalkoxysilane, hier: Mono-, Di- oderTrialkylalkoxysilane, sind einzeln oder in Mischung in Kombination mit Silikaten geeignet, auf dem bereits mit einer sauren wässrigen Zusammensetzung behandelten, metallischen Werkstück einen korrosionsschützenden Überzug aufzubauen. Verschiedene Silan-Verbindungen können miteinander in Mischung eingesetzt werden. Besonders geeignete Silanverbindungen sind Methacryloxymethyltriethoxysilan, 3-Aminopropylmethyldiethoxysilan, 3-Aminopropyltriethoxysilan,N-(2-Aminoethyl)-3-aminopropylmethyldimethoxysilan, 3- Glycidyloxypropyltrimethoxysilan, Vinyltrimethoxysilan, Vinyltriethoxysilan, Methyltrimethoxysilan sowie 3-Mercaptopropyltrimethoxysilan.According to the invention, the aqueous alkaline composition used for the second alkaline passivation comprises a silane or siloxane. The addition of the silane or siloxane serves to further enhance corrosion protection. Preferably, a vinyl and/or aminosilane is used to produce the second alkaline passivation; however, epoxysilanes and the siloxanes of the silanes mentioned above and below are also suitable. In particular, alkylalkoxysilanes, here: mono-, di-, or trialkylalkoxysilanes, are suitable, individually or in combination with silicates, for building up a corrosion-protective coating on the metallic workpiece already treated with an acidic aqueous composition. Various silane compounds can be used in mixtures with one another. Particularly suitable silane compounds are methacryloxymethyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, methyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane.

Silan oder Siloxan können, bezogen auf die Gesamtmenge der wässrigen Zusammensetzung der zweiten alkalischen Passivierung, in einer Menge von 1 Gewichts-% bis 99 Gewichts-% eingesetzt werden. Allerdings zeigen bereits wässrige Zusammensetzungen, die nur geringe Mengen an Silan, z. B. bis zu 20 Gewichts-% aufweisen, einen deutlich verbesserten Korrosionsschutz.Silane or siloxane can be used in amounts ranging from 1% to 99% by weight, based on the total amount of the aqueous composition of the second alkaline passivation. However, even aqueous compositions containing only small amounts of silane, e.g., up to 20% by weight, demonstrate significantly improved corrosion protection.

Erfindungsgemäß wird eine wässrige alkalische Zusammensetzung zum Herstellen der zweiten alkalischen Passivierung verwendet, die sowohl Silikate als auch Silane und/oder Siloxane oder Mischungen von Silikaten und Silanen bzw. Siloxanen bzw. Verbindungen aus einer silikatischen und einer Silankomponente im Folgenden: silanmodifizierte Silikate, oder Verbindungen aus einer silikatischen und einer Siloxankomponente , im Folgenden: siloxanmodifizierte Silikate aufweist. Die Silane bzw. Siloxane werden hier typischerweise z. B. durch Hydrolyse als kovalente Seitenketten an das oder die Silikate gebunden. Diese silanmodifizierten oder siloxanmodifizierten Silikate bilden auf einer ersten sauren Passivierung einen hervorragenden Korrosionsschutz, der den Effekt einer einfachen sauren oder alkalischen Passivierung weit übersteigt. Die silanmodifizierten oder siloxanmodifizierten Silikate sind mittels NMR-Spektroskopie auf dem metallischen Substrat nachweisbar. Insbesondere können Silizium-Kohlenstoff-Bindungen (SiC-Bindungen) detektiertwerden. Gleichzeitig bildet die zweite alkalische Passivierung eine ausgezeichnete Basis für weitere Beschichtungen, z. B. farbgebende Beschichtungen oder Beschichtungen, die Schmiermittel oder andere Additive enthalten, die die Nutzung der beschichteten Oberfläche weiter verbessern. Sofern im Zusammenhang mit dieser Erfindung silanmodifizierte Silikate erwähnt oder beschrieben werden, ist stets auch die Verwendung von siloxanmodifizierten Silikaten mit gemeint und erfasst.According to the invention, an aqueous alkaline composition is used to produce the second alkaline passivation, which composition comprises both silicates and silanes and/or siloxanes or mixtures of silicates and silanes or siloxanes or compounds of a silicate and a silane component, hereinafter: silane-modified silicates, or compounds of a silicate and a siloxane component, hereinafter: siloxane-modified silicates. The silanes or siloxanes are typically bound to the silicate(s) as covalent side chains, for example by hydrolysis. These silane-modified or siloxane-modified silicates form excellent corrosion protection on a first acidic passivation, far exceeding the effect of a simple acidic or alkaline passivation. The silane-modified or siloxane-modified silicates can be detected on the metallic substrate by means of NMR spectroscopy. In particular, silicon-carbon bonds (SiC bonds) can be detected. At the same time, the second alkaline passivation forms an excellent basis for further coatings, e.g., color-imparting coatings or coatings containing lubricants or other additives that further improve the usability of the coated surface. Where silane-modified silicates are mentioned or described in connection with this invention, the use of siloxane-modified silicates is always also meant and encompassed.

Die zweite alkalische Passivierung kann nach einer weiter bevorzugten Ausführung der Erfindung aus teilweise oder -bevorzugt- vollständig hydrolysierten Silikat- und Silan-bzw. Siloxan-Verbindungen hergestellt sein. Durch die gemeinsame Hydrolyse von Silikaten und Silanen bzw. Siloxanen in wässriger Lösung erfolgt zum einen die Ausbildung der silanmodifizierten bzw. siloxanmodifizierten Silikate. Zum anderen können durch die werkseitig erfolgte Hydrolyse frei werdende Alkohole entfernt werden, so dass den Anwendern wässrige alkalische Zusammensetzungen bereitgestellt werden können, die arm an flüchtigen organischen Verbindungen sind (VOC-arm) oder die frei von flüchtigen organischen Verbindungen sind (VOC-frei). Die durch die Hydrolyse freiwerdenden Alkohole können beispielsweise durch Ultramembranfiltration oder Umkehrosmose, aber auch durch Destillation, z. B. Vakuumdestillation entfernt werden. Typische erfindungsgemäße wässrige alkalische Zusammensetzungen zum Passivieren von metallischen Substraten enthalten maximal 1 Gewichts-% Alkohol, bevorzugt maximal 0,3 Gewichts-% Alkohol.According to a further preferred embodiment of the invention, the second alkaline passivation can be produced from partially or—preferably—fully hydrolyzed silicate and silane or siloxane compounds. The joint hydrolysis of silicates and silanes or siloxanes in aqueous solution, on the one hand, results in the formation of the silane-modified or siloxane-modified silicates. On the other hand, the factory-based hydrolysis can remove released alcohols, so that users can be provided with aqueous alkaline compositions that are low in volatile organic compounds (low VOC) or that are free of volatile organic compounds (VOC-free). The alcohols released by hydrolysis can be removed, for example, by ultramembrane filtration or reverse osmosis, but also by distillation, e.g., vacuum distillation. Typical aqueous alkaline compositions according to the invention for passivating metallic substrates contain a maximum of 1% by weight of alcohol, preferably a maximum of 0.3% by weight of alcohol.

Falls gewünscht, ist es ohne weiteres möglich, der wässrigen Zusammensetzung für die zweite alkalische Passivierung Additive zuzusetzen. Die Additive werden in der Regel bereits der flüssigen Zusammensetzung zugesetzt, aus der die zweite alkalische Passivierung hergestellt wird. Sie entfalten ihre Wirkung entweder, wie zum Beispiel bei Entschäumern oder Stabilisatoren, während des Aufbringens oder aber, zum Beispiel bei Schmiermitteln oder Farbstoffen, nach dem Auftragen und gegebenenfalls Trocknen der zweiten alkalischen Passivierung.If desired, it is readily possible to add additives to the aqueous composition for the second alkaline passivation. These additives are usually added to the liquid composition from which the second alkaline passivation is produced. They exert their effect either during application, as in the case of defoamers or stabilizers, or after application and, if necessary, drying of the second alkaline passivation, as in the case of lubricants or dyes.

Nach einer vorteilhaften Ausführung der Erfindung wird zum Herstellen der ersten sauren Passivierung des metallischen Substrats vorgeschlagen, eine wässrige, saure Kobalt- und Chrom(VI)-freie Zusammensetzung einzusetzen, die eine Chrom(III)-Verbindung, eine anorganische Säure und optional eine Fluorquelle aufweist, und die dadurch gekennzeichnet ist, dass die wässrige Zusammensetzung eine Verbindung der Metalle Vanadium oder Wolfram aufweist, wobei diese Metallverbindung jeweils einzeln oder in Mischung mit anderen Vanadium- oder Wolframverbindungen eingesetzt sein kann.According to an advantageous embodiment of the invention, for producing the first acidic passivation of the metallic substrate, it is proposed to use an aqueous, acidic cobalt- and chromium(VI)-free composition which comprises a chromium(III) compound, an inorganic acid and optionally a fluorine source, and which is characterized in that the aqueous composition comprises a compound of the metals vanadium or tungsten, wherein this metal compound can be used individually or in a mixture with other vanadium or tungsten compounds.

Molybdän-, Vanadium- und Wolframverbindungen bewirken in Verbindung mit den vorgenannten, bekannten Bestandteilen der ersten sauren Passivierung bereits einen ausgezeichneten Korrosionsschutz, wobei die erfindungsgemäße Zusammensetzung sowohl bei der Handhabung der wässrigen Zusammensetzung z. B. während des Beschichtens aber auch als fertig aufgebrachte Passivierung ein erheblich reduziertes Risiko von Gesundheits- und Umweltschäden aufweist und dadurch mit hoher Betriebssicherheit verwendet werden kann. Molybdän-, Vanadium- und Wolframverbindungen werden in die erste saure Passivierung eingebaut und bewirken dort eine Verbesserung des Korrosionsschutzes.Molybdenum, vanadium, and tungsten compounds, in combination with the aforementioned, known components of the first acid passivation, already provide excellent corrosion protection. The composition according to the invention exhibits a significantly reduced risk of health and environmental damage both during handling of the aqueous composition, e.g., during coating, and as a fully applied passivation, and can therefore be used with high operational reliability. Molybdenum, vanadium, and tungsten compounds are incorporated into the first acid passivation and provide improved corrosion protection.

Die erfindungsgemäß eingesetzten wässrigen sauren und alkalischen Zusammensetzungen zum Passivieren metallischer Substrate allgemein eignen sich für alle metallischen Oberflächen bzw. Substrate, jedoch besonders gut für Werkstücke mit einer Oberfläche aus Stahl, Eisen, Aluminium oder Zink, insbesondere aber auch für Werkstücke, deren Oberfläche mit einer Legierung von einem oder beiden der Metalle Aluminium und Zink mit weiteren Metallen versehen ist. Typisch sind beispielsweise geeignet eine Zink-Aluminiumlegierung, eine Aluminium- oder eine Zinklegierung mit weiteren Metallen wie z. B. Eisen oder Magnesium, z. B. mit einer Zink-Eisen-Legierung, die sämtlich mit einer Korrosionsschutzbeschichtung versehen werden können. Die Schichtstärke der aufgetragenen Beschichtung aus Metall oder Legierung beträgt zwischen 5 µm und 100 µm. Die auf ein Substrat aufgebrachte metallische Legierung zeigt sich als diskrete Schicht. Ein typischer Anwendungsfall ist das Coil-Coating, also das Passivieren von Bandstahl.The aqueous acidic and alkaline compositions used according to the invention for passivating metallic substrates are generally suitable for all metallic surfaces or substrates, but are particularly suitable for workpieces with a surface made of steel, iron, aluminum, or zinc, and in particular for workpieces whose surface is provided with an alloy of one or both of the metals aluminum and zinc with other metals. Typical examples are a zinc-aluminum alloy, an aluminum or zinc alloy with other metals such as iron or magnesium, e.g., with a zinc-iron alloy, all of which can be provided with a corrosion protection coating. The layer thickness of the applied coating of metal or alloy is between 5 µm and 100 µm. The metallic alloy applied to a substrate appears as a discrete layer. A typical application is coil coating, i.e., the passivation of strip steel.

Vorteilhaft werden Metall-Sauerstoff-Verbindungen der Metalle Molybdän, Vanadium und/oder Wolfram in der wässrigen sauren Zusammensetzung zum Passivieren genutzt. Bevorzugt werden eine oder mehrere der nachfolgend aufgeführten Verbindungen in der wässrigen sauren Zusammensetzung eingesetzt: Kaliumorthovanadat, Kaliummetavanadat, Natriumorthovanadat, Natriummetavanadat, Natriumwolframat, Natriumparawolframat und Vanadiumpentoxid sowie Natriummolybdat und Kaliummolybdat. Es werden vorteilhafterweise Verbindungen der Metalle Molybdän, Vanadium und/oder Wolfram eingesetzt, die in der wässrigen sauren Zusammensetzung zum Passivieren dissoziieren und dadurch Molybdat-, Vanadat- und/oder Wolframatanionen freisetzen. Molybdat-, Vanadat- und Wolframatanionen werden in die Passivierungsschicht eingebaut und bewirken den Aufbau eines sehr guten Korrosionsschutzes bereits in der sauren Passivierung allein.Advantageously, metal-oxygen compounds of the metals molybdenum, vanadium, and/or tungsten are used in the aqueous acidic composition for passivation. Preferably, one or more of the following compounds are used in the aqueous acidic composition: potassium orthovanadate, potassium metavanadate, sodium orthovanadate, sodium metavanadate, sodium tungstate, sodium paratungstate, and vanadium pentoxide, as well as sodium molybdate and potassium molybdate. Advantageously, compounds of the metals molybdenum, vanadium, and/or tungsten are used, which dissociate in the aqueous acidic composition for passivation, thereby releasing molybdate, vanadate, and/or tungstate anions. Molybdate, vanadate, and tungstate anions are incorporated into the passivation layer and, even during the acidic passivation alone, ensure the development of very good corrosion protection.

Erfindungsgemäß enthält die saure wässrige Zusammensetzung eine Phosphonsäure oder eine Mischung von Phosphonsäuren. Besonders bevorzugt werden organische Phosphonsäuren eingesetzt, zum Beispiel (1-Hydroxyethan-1,1-diyl)-bisphosphonsäure, 2-Phosphonbutanol-1,2,4-tricarboxylsäure, Aminotrimethylenphosphonsäure, Ethylendiamintetramethylenphosphonsäure oder Diethylentriaminpentamethylenphosphonsäure oder deren Mischungen. Auch der Einsatz von Salzen der Phosphonsäure kann sich im Zusammenhang mit der Erfindung als vorteilhaft erweisen. Besonders geeignet sind die nachfolgend aufgeführten Phosphonate, jeweils einzeln oder auch in Mischung eingesetzt: Tetranatrium (1-Hydroxyethan-1 ,1-diyl)bisphosphonat, Trinatrium (1-Hydroxyethan-1,1-diyl) bisphosphonat, Pentanatrium-Ethylendiamintetramethylenphosphonat oder Heptanatrium-Diethylentriaminpentamethylenphosphonat. Diese Salze dissoziieren in der wässrigen, sauren Passivierungszusammensetzung, so dass die Phosphonate als Komplexbildner zur Verfügung stehen. Phosphonsäuren können weiter vorteilhaft auch in Verbindung mit Vanadium- und Wolframverbindungen in sauren wässrigen Zusammensetzungen eingesetzt werden. Hier hat sich der Einsatz von Phosphonsäure als Komplexbildner bewährt.According to the invention, the acidic aqueous composition contains a phosphonic acid or a mixture of phosphonic acids. Particular preference is given to using organic phosphonic acids, for example (1-hydroxyethane-1,1-diyl)bisphosphonic acid, 2-phosphonobutanol-1,2,4-tricarboxylic acid, aminotrimethylenephosphonic acid, ethylenediaminetetramethylenephosphonic acid or diethylenetriaminepentamethylenephosphonic acid or mixtures thereof. The use of phosphonic acid salts can also prove advantageous in connection with the invention. The following phosphonates are particularly suitable, used individually or as a mixture: tetrasodium (1-hydroxyethane-1,1-diyl)bisphosphonate, trisodium (1-hydroxyethane-1,1-diyl)bisphosphonate, pentasodium ethylenediaminetetramethylenephosphonate or heptosodium diethylenetriaminepentamethylenephosphonate. These salts dissociate in the aqueous, acidic passivation composition, making the phosphonates available as complexing agents. Phosphonic acids can also be advantageously used in combination with vanadium and tungsten compounds in acidic aqueous compositions. The use of phosphonic acid as a complexing agent has proven effective in this case.

Im Rahmen des erfindungsgemäßen Verfahrens ist es bevorzugt, wenn die sauren wässrigen Zusammensetzungen zum Passivieren von metallischen Substraten eine oder mehrere Elemente oder Verbindungen der Gruppe aufweisen, die Molybdän, Mangan, Cer und Lanthan umfasst. Durch Zusatz dieser Elemente oder deren Verbindungen, bevorzugt deren Salze und Oxide, wird eine weitere Verbesserung der antikorrosiven Eigenschaften der erfindungsgemäßen Passivierung erreicht.In the context of the process according to the invention, it is preferred if the acidic aqueous compositions for passivating metallic substrates contain one or more elements or compounds from the group comprising molybdenum, manganese, cerium, and lanthanum. By adding these elements or their compounds, preferably their salts and oxides, a further improvement in the anticorrosive properties of the passivation according to the invention is achieved.

Die wässrige, saure Zusammensetzung zum Passivieren weist im Rahmen der vorliegenden Erfindung eine Chrom(III)-Verbindung oder eine Mischung von Chrom(III)-Verbindungen auf, die ausgewählt ist aus der Gruppe Chrom(III)-Sulfat, Chrom(III)-Hydroxid, Chrom(III)-Dihydrogenphosphat, Chrom(III)-Chlorid, Chrom(III)-Nitrat, Natrium-Chrom(III)-Sulfat, Kalium-Chrom(III)-Sulfat und Chrom(III)-Salze organischer Säuren enthält. Es hat sich erwiesen, dass eine wässrige, saure Zusammensetzung zum Passivieren auch ohne den Einsatz einer Chrom(VI)-Verbindung gute Korrosionsschutzeigenschaften aufweist. Die Chrom(III)-Verbindung wird in einer Menge von mindestens 0,05 g/l bis maximal zur Sättigung eingesetzt.In the context of the present invention, the aqueous, acidic passivation composition comprises a chromium(III) compound or a mixture of chromium(III) compounds selected from the group consisting of chromium(III) sulfate, chromium(III) hydroxide, chromium(III) dihydrogen phosphate, chromium(III) chloride, chromium(III) nitrate, sodium chromium(III) sulfate, potassium chromium(III) sulfate, and chromium(III) salts of organic acids. It has been proven that an aqueous, acidic passivation composition has good corrosion protection properties even without the use of a chromium(VI) compound. The chromium(III) compound is used in an amount of at least 0.05 g/l up to a maximum of saturation.

Es hat sich weiter als vorteilhaft erwiesen, der sauren wässrigen Zusammensetzung zum Passivieren eine Nitratverbindung oder eine Mischung von Nitratverbindungen zuzusetzen. Dabei werden bevorzugt neben stickstoffhaltigen Säuren wie zum Beispiel Salpetersäure auch Salze dieser Säuren eingesetzt. Typische Salze, die sich zum Einsatz in der Zusammensetzung zum Passivieren besonders eignen sind Salze der Alkalimetalle, Ammoniumsalze oder Salze der in der Zusammensetzung zum Passivieren enthaltenen Metallionen, z. B. Chrom(III)-Nitrat. Die vorstehend beschriebenen Stickstoff- und Chrom(III)-Verbindungen liegen in der wässrigen, sauren Zusammensetzung zum Passivieren im Wesentlichen in dissoziierter Form vor. Der Anteil der Nitratverbindungen beträgt vorzugsweise 5 Gewichts-% bis 20 Gewichts-% bezogen auf die Gesamtzusammensetzung, die zur Passivierung eingesetzt wird.It has also proven advantageous to add a nitrate compound or a mixture of nitrate compounds to the acidic aqueous passivation composition. In addition to nitrogen-containing acids such as nitric acid, salts of these acids are also preferably used. Typical salts that are particularly suitable for use in the passivation composition are salts of alkali metals, ammonium salts, or salts of the metal ions contained in the passivation composition, e.g., chromium(III) nitrate. The nitrogen and chromium(III) compounds described above are present in the aqueous, acidic passivation composition essentially in dissociated form. The proportion of nitrate compounds is preferably 5% to 20% by weight, based on the total composition used for passivation.

Auch vorteilhaft ist der Einsatz einer wässrigen, sauren Kobalt- und Chrom(VI)-freien Zusammensetzung zur Passivierung von metallischen Substraten, die eine Chrom(III)-Verbindung, eine Säure, Metallionen, Nitrationen und optional eine Fluorquelle sowie eine Phosphonsäure aufweist und die dadurch gekennzeichnet ist, dass Nitrationen zu der Summe aus Chrom- und Metallionen in einem Verhältnis von maximal 3 : 1, bevorzugt von maximal 1 : 3 eingesetzt sind. Der reduzierte Nitrateinsatz erweist sich bei der Verwendung dieser wässrigen sauren Zusammensetzung zum Passivieren als vorteilhaft, weil weniger Nitrosegase freigesetzt werden.Also advantageous is the use of an aqueous, acidic cobalt- and chromium(VI)-free composition for passivating metallic substrates, which composition comprises a chromium(III) compound, an acid, metal ions, nitrate ions, and optionally a fluorine source, as well as a phosphonic acid, and which is characterized in that nitrate ions are used to the sum of chromium and metal ions in a ratio of maximum 3:1, preferably maximum 1:3. The reduced use of nitrate proves to be advantageous when using this aqueous acidic composition for passivation because fewer nitrous gases are released.

Empfehlenswert für das sichere Aufbringen der Beschichtung und den Aufbau eines guten Korrosionsschutzes ist jedoch, dass die saure wässrige Zusammensetzung zum Passivieren auf einen pH-Wert < 4, bevorzugt einen pH-Wert < 3 eingestellt wird. Um dies zu gewährleisten, werden eine Säure oder eine Mischung von Säuren zugesetzt. Als besonders vorteilhaft hat sich der Einsatz von organischen und/oder anorganischen Säuren gezeigt, typischerweise eine oder mehrere der Säuren aus der Gruppe, die umfasst Phosphorsäure, Salzsäure, Salpetersäure und/oder Schwefelsäure als anorganische Säuren und Ameisensäure, Bernsteinsäure, Essigsäure, Oxalsäure, Peressigsäure Salicylsäure und Zitronensäure als organische Säuren. Die organischen Säuren allein gewährleisten nicht immer das Erreichen des gewünschten pH-Werts, ihr Zusatz erweist sich dennoch als zweckmäßig, denn die organischen Säuren wirken zudem als Komplexbildner in der sauren wässrigen Zusammensetzung.However, for the safe application of the coating and the development of good corrosion protection, it is recommended that the acidic aqueous composition for passivation be adjusted to a pH value of < 4, preferably < 3. To ensure this, an acid or a mixture of acids is added. The use of organic and/or inorganic Acids are shown, typically one or more of the acids from the group consisting of phosphoric acid, hydrochloric acid, nitric acid, and/or sulfuric acid as inorganic acids, and formic acid, succinic acid, acetic acid, oxalic acid, peracetic acid, salicylic acid, and citric acid as organic acids. The organic acids alone do not always ensure the desired pH is achieved, but their addition proves useful because the organic acids also act as complexing agents in the acidic aqueous composition.

Um ein gutes Anhaften der Passivierung zu bewirken, weist die wässrige, saure Zusammensetzung bevorzugt eine Fluorquelle auf. Eine solche Fluorquelle ist bevorzugt eine Verbindung oder eine Mischung von Verbindungen, ausgewählt aus der Gruppe, die umfasst Flusssäure, Hexafluorotitansäure, Hexafluorozirkonsäure, Natriumfluorid (NaF), Kaliumfluorid (KF), Ammoniumfluorid (NH4F), Natriumbifluorid (NaHF2), Kaliumbifluorid (KHF2) und Ammoniumbifluorid (NH4HF2). Die als Fluorquelle eingesetzten Fluorverbindungen werden in einer Menge von 0,1 Gewichts- % bis 5 Gewichts-% bezogen auf die wässrige Zusammensetzung eingesetzt. Die Fluorverbindungen werden bevorzugt als technisch reine, lösliche Pulver eingesetzt.To ensure good adhesion of the passivation, the aqueous, acidic composition preferably contains a fluorine source. Such a fluorine source is preferably a compound or a mixture of compounds selected from the group comprising hydrofluoric acid, hexafluorotitanic acid, hexafluorozirconic acid, sodium fluoride (NaF), potassium fluoride (KF), ammonium fluoride (NH4F), sodium bifluoride (NaHF2), potassium bifluoride (KHF2), and ammonium bifluoride (NH4HF2). The fluorine compounds used as fluorine sources are used in an amount of 0.1% to 5% by weight based on the aqueous composition. The fluorine compounds are preferably used as technically pure, soluble powders.

Es wird hier ausdrücklich angemerkt, dass die vorstehend beschriebene Verwendung von Elementen oder Verbindungen, die Vanadium, Wolfram, Molybdän, Mangan, Cer oder Lanthan sowie von Phosphonsäure jeweils einzeln oder in beliebiger Kombination erfolgen kann. Wässrige saure Zusammensetzungen, die eines oder mehrere dieser Elemente oder Verbindungen enthalten, bewirken bereits als saure Passivierung allein einen guten Korrosionsschutz.It is expressly noted here that the above-described use of elements or compounds containing vanadium, tungsten, molybdenum, manganese, cerium, or lanthanum, as well as phosphonic acid, can be used individually or in any combination. Aqueous acidic compositions containing one or more of these elements or compounds provide good corrosion protection even as acidic passivation alone.

Die bevorzugte wässrige, saure Zusammensetzung zum Passivieren von metallischen Substraten ist im Wesentlichen aus gesundheitlich weitgehend unbedenklichen und die Umwelt nicht bzw. nur wenig belastenden Substanzen zusammengesetzt. Sie ist frei von Kobalt-, Nickel- und Chrom(VI)-Verbindungen. Sie ist weiter bevorzugt auch frei von Peroxid-Verbindungen und kann ohne Verwendung von Carbonsäuren hergestellt werden. Außerdem wird in bevorzugten Ausführungen der Einsatz von Nitratverbindungen minimiert, so dass die Emission von nitrosen Gasen stark reduziert wird.The preferred aqueous, acidic composition for passivating metallic substrates is essentially composed of substances that are largely harmless to health and have little or no environmental impact. It is free of cobalt, nickel, and chromium(VI) compounds. It is also preferably free of peroxide compounds and can be produced without the use of carboxylic acids. Furthermore, in preferred embodiments, the use of nitrate compounds is minimized, thus significantly reducing the emission of nitrous gases.

Das Aufbringen der wässrigen sauren Zusammensetzung zum Passivieren erfolgt bei Raumtemperatur, maximal bei Temperaturen bis zu 80 °C. Das metallische Substrat wird in den meisten Fällen in ein Bad der wässrigen sauren und anschließend der wässrigen alkalischen Zusammensetzung zum Passivieren getaucht, die Zusammensetzungen zum Passivieren können aber auch mittels anderer üblicher und bekannter Auftragsverfahren (Sprühen, Tauchen, Tauch-Schleudern, Rakeln, Walzen) auf das metallische Substrat aufgebracht werden. Das Aufbringen der wässrigen Zusammensetzungen zum Passivieren erfolgt meist mit einer Behandlungsdauer, die zwischen 1 Sekunde und 180 Sekunden, bevorzugt ca. 30 Sekunden bis 120 Sekunden beträgt. An das Aufbringen der Zusammensetzung zum Passivieren kann sich die Trocknung anschließen, die bei Temperaturen zwischen Raumtemperatur und ca. 250 °C durchgeführt werden kann. Die Trocknung richtet sich nur auf das Entfernen überschüssiger Flüssigkeit; ein Ausreagieren, z. B. ein Hydrolysieren oder Kondensieren der Komponenten, die den passivierenden Überzug auf dem metallischen Substrat bilden, ist nicht erforderlich.The application of the aqueous acidic passivation composition takes place at room temperature, at maximum temperatures up to 80 °C. In most cases, the metallic substrate is immersed in a bath of the aqueous acidic and then the aqueous alkaline passivation composition, but the passivation compositions can also be applied by other common and The passivating compositions can be applied to the metallic substrate using known application methods (spraying, dipping, dip-spin coating, doctor blade coating, rolling). The aqueous passivating compositions are usually applied for a treatment time of between 1 second and 180 seconds, preferably approximately 30 seconds to 120 seconds. The application of the passivating composition can be followed by drying, which can be carried out at temperatures between room temperature and approximately 250°C. Drying is aimed solely at removing excess liquid; complete reaction, e.g., hydrolysis or condensation of the components that form the passivating coating on the metallic substrate, is not necessary.

Gegebenenfalls kann das metallische Substrat vor dem Aufbringen der Zusammensetzung zum Passivieren gereinigt, insbesondere entfettet werden. Wässrige Lösungen zum Reinigen und Entfetten sind aus dem Stand der Technik bekannt.If necessary, the metallic substrate can be cleaned, especially degreased, before applying the passivation composition. Aqueous solutions for cleaning and degreasing are known in the art.

Die erste saure Passivierung wird in einer Schichtstärke von 10 nm bis 1 µm aufgetragen, bevorzugt in einer Schichtstärke von 20 nm bis 500 nm. Die zweite alkalische Passivierung wird ein einer Schichtstärke von 10 nm bis 1 µm aufgetragen, bevorzugt in einer Schichtstärke von 10 nm bis 500 nm. Diese dünnen Schichten ergeben sich durch das Anhaften der wässrigen Lösungen auf dem Substrat bzw. auf vorangegangenen Passivierungsschichten, ein nachfolgendes Aushärten ist nicht erforderlich. Die Schichtstärke ändert sich nach dem Auftragen und Trocknen nicht.The first acidic passivation layer is applied in a layer thickness of 10 nm to 1 µm, preferably in a layer thickness of 20 nm to 500 nm. The second alkaline passivation layer is applied in a layer thickness of 10 nm to 1 µm, preferably in a layer thickness of 10 nm to 500 nm. These thin layers result from the adhesion of the aqueous solutions to the substrate or to previous passivation layers; subsequent curing is not required. The layer thickness does not change after application and drying.

Die wässrigen sauren und alkalischen Zusammensetzungen, die zur Durchführung des erfindungsgemäßen Verfahrens benötigt werden, werden bevorzugt als Konzentrat geliefert, dass zur Anwendung in einem Verhältnis Konzentrat: Wasser von 1:5 bis 1:20, häufig von 1:10 mit Wasser verdünnt wird. Die jeweiligen wässrigen sauren oder alkalischen Zusammensetzungen werden jeweils als Ein-Komponenten-Produkte angeboten.The aqueous acidic and alkaline compositions required to carry out the process according to the invention are preferably supplied as a concentrate that is diluted with water for use in a concentrate:water ratio of 1:5 to 1:20, frequently 1:10. The respective aqueous acidic or alkaline compositions are each offered as one-component products.

Erfindungsgemäß wird der hervorragende Korrosionsschutz erreicht, indem zuerst eine saure Passivierung und anschließend eine alkalische Passivierung auf das metallische Substrat aufgetragen werden. Entsprechend zeigt eine Analyse des fertig beschichteten Substrats, dass, ausgehend vom Substrat, zuerst eine erste Passivierungschicht detektiert wird, die Chrom und Stickstoff sowie ggf. Fluor, Vanadium und/ oder Wolfram, alternativ auch weitere metallische oder Seltenerdelemente aufweist. Diese erste Passivierungsschicht enthält jedoch üblicherweise kein Silizum sowie keines der Elemente Natrium, Kalium oder Lithium. Auf diese erste Passivierungsschicht wird eine zweite Passivierungsschicht aufgetragen. Die zweite Passivierungsschicht wird also nicht unmittelbar auf das metallische Substrat aufgetragen. In der zweiten Passivierungsschicht können tpyischerweise Silizium sowie Natrium, Kalium und/oder Lithium detektiert werden. Diese zweite Passivierungsschicht weist jedoch in der Regel kein Chrom, Fluor, Wolfram, Vanadium oder weitere metallische oder Seltenerdelemente auf. Nichtmetallische Elemente wie z. B. Kohlenstoff, Phosphor oder Stickstoff können ggf. in beiden Passivierungsschichten detektiert werden.According to the invention, the excellent corrosion protection is achieved by first applying an acidic passivation followed by an alkaline passivation to the metallic substrate. Accordingly, an analysis of the finished coated substrate shows that, starting from the substrate, a first passivation layer is detected, which contains chromium and nitrogen and possibly fluorine, vanadium and/or tungsten, or alternatively other metallic or rare earth elements. However, this first passivation layer usually does not contain silicon or the elements sodium, potassium, or lithium. A second passivation layer is applied onto this first passivation layer. The second passivation layer is therefore not applied directly to the metallic substrate. Typically, silicon, as well as sodium, potassium, and/or lithium, can be detected in the second passivation layer. However, this second passivation layer generally does not contain chromium, fluorine, tungsten, vanadium, or other metallic or rare earth elements. Non-metallic elements such as carbon, phosphorus, or nitrogen may be detected in both passivation layers.

Details der Erfindung werden an Hand der nachfolgenden Ausführungsbeispiele erläutert:
Für sämtliche nachfolgenden Beispiele gilt, dass die Mengenangaben in Gewichts-% bezogen auf die Gesamtzusammensetzung der jeweiligen wässrigen Zusammensetzung gemacht werden, die zum Herstellen der Passivierung verwendet wird. Ist nichts Gegenteiliges ausgeführt, sind reine Substanzen (100 %) eingesetzt worden. Das Herstellen der wässrigen sauren oder alkalischen Zusammensetzung zum Passivieren erfolgt durch Mischen bzw. Lösen der einzelnen Bestandteile.
Details of the invention are explained using the following embodiments:
For all of the following examples, the quantities given are in weight percent based on the total composition of the respective aqueous composition used to produce the passivation. Unless otherwise stated, pure substances (100%) were used. The aqueous acidic or alkaline composition for passivation is prepared by mixing or dissolving the individual components.

Das Wasser wird bei der sauren wässrigen Zusammensetzung vor allem z. B. durch die wässrige Chrom(III)-Salzlösung, hier ein Sulfat oder ein Nitrat, in die flüssige Zusammensetzung zum Passivieren eingebracht. Kleinere Mengen werden abschließend zugesetzt. Diese Zusammensetzungen weisen einen pH-Wert von 1,5 bis 1,8 auf. Sie können ohne weiteres über mehr als sechs Monate gelagert werden.In the acidic aqueous composition, the water is introduced into the liquid composition for passivation, for example, through the aqueous chromium(III) salt solution, in this case a sulfate or nitrate. Smaller amounts are added at the end. These compositions have a pH value of 1.5 to 1.8. They can easily be stored for more than six months.

Das Herstellen der wässrigen alkalischen Zusammensetzung erfolgt typischerweise durch Einstellen des Feststoffgehalts bzw. Mengenanteils von wässrigen Silikaten durch Zugaben entsprechender Mengen Wasser und, soweit vorgesehen, durch Einmischen von Silanen. Werden Silikate und ganz oder teilweise hydrolysierte ggf. Silane oder Siloxane eingesetzt, wird die Hydrolyse werkseits durchgeführt, so dass die anwendungsfertigen Produkte einen gegenüber den nicht hydrolysierten Produkten reduzierten Alkoholgehalt aufweisen bzw. in der Verarbeitung weniger Alkohol freisetzen.The aqueous alkaline composition is typically produced by adjusting the solids content or proportion of aqueous silicates by adding appropriate amounts of water and, where appropriate, by mixing in silanes. If silicates and fully or partially hydrolyzed silanes or siloxanes are used, the hydrolysis is carried out in the factory so that the ready-to-use products have a lower alcohol content than the non-hydrolyzed products or release less alcohol during processing.

Durch das Aufbringen der wässrigen sauren Zusammensetzung zum Passivieren durch Walzen bei Raumtemperatur auf Stahlbleche mit einer Oberfläche, die hier z. B. aus einer Zink-Eisen-Legierung besteht, auf dem metallischen Substrat wird eine Passivierungsschicht erzeugt. Das Aufbringen erfolgt durch eine Walzenanordnung, die von dem Stahlblech passiert wird. Anschließend wird gespült, um überschüssige saure Zusammensetzung zu entfernen. Das anschließende Trocknen erfolgt hier durch einen Trockenofen bei 150 °C, den das mit der ersten Passivierung versehene Stahlblech innerhalb von maximal 10 Minuten durchläuft. In gleicher Weise wird die zweite alkalische Beschichtung erzeugt.By applying the aqueous acidic passivation composition by rolling at room temperature to steel sheets with a surface consisting, for example, of a zinc-iron alloy, a passivation layer is created on the metallic substrate. The application is carried out by a roller arrangement through which the steel sheet passes. Rinsing is then carried out to remove excess acidic composition. Subsequent drying is carried out in a drying oven at 150 °C, which the steel sheet provided with the initial passivation passes through. within a maximum of 10 minutes. The second alkaline coating is created in the same way.

Ausführungsbeispiele der Tabellen 1 und 2Examples of implementation in Tables 1 and 2

Die Tabellen 1 und 2 zeigen überwiegen Zusammensetzungen einer wässrigen sauren Zusammensetzung für eine erste saure Passivierung, die Vanadium- und Wolframverbindungen enthält.Tables 1 and 2 predominantly show compositions of an aqueous acidic composition for a first acid passivation containing vanadium and tungsten compounds.

Chrom(III)-sulfat und Chrom(III)-nitrat sind, einzeln oder - wie im Versuch 11 - auch zusammen der Hauptbestandteil der Zusammensetzung zum Passivieren. Eingesetzt jeweils als 20%-ige Lösung beträgt der Anteil der Chrom(III)-Verbindung an der Zusammensetzung zum Passivieren zwischen 64,0 Gewichts-% und 77,2 Gewichts-%.Chromium(III) sulfate and chromium(III) nitrate are, individually or together, the main components of the passivation composition, as in Experiment 11. When used as a 20% solution, the proportion of the chromium(III) compound in the passivation composition is between 64.0% and 77.2% by weight.

Zwar kann eine Nitratverbindung auch in Form von Chrom(III)-nitrat zugesetzt werden, bevorzugt wird jedoch - wie in Tabellen 1, 2 dargestellt - ein Nitratsalz zugesetzt, hier Natriumnitrat. Der Anteil der Nitratverbindung beträgt bevorzugt zwischen 13 Gewichts-% und 16 Gewichts-%, kann aber auch bei 5 Gewichts-% bis 10 Gewichts-% liegen.Although a nitrate compound can also be added in the form of chromium(III) nitrate, a nitrate salt, in this case sodium nitrate, is preferably added, as shown in Tables 1 and 2. The proportion of the nitrate compound is preferably between 13% and 16% by weight, but can also be between 5% and 10% by weight.

Als optionale Fluorquelle wird bevorzugt ein Fluorsalz eingesetzt. Bei den Ausführungen gemäß Tabelle 1 und 2 handelt es sich um Natriumhydrogendifluorid; geeignet sind jedoch auch andere Fluorverbindungen, die vorstehend benannt sind.A fluorine salt is preferably used as an optional fluorine source. The examples shown in Tables 1 and 2 are sodium hydrogen difluoride; however, other fluorine compounds listed above are also suitable.

Die Ausführungen der erfindungsgemäßen Zusammensetzung in Tabellen 1, 2 zeigen, dass organische Säuren einzeln oder in Kombination eingesetzt werden können. Diese Säuren wirken als Komplexbildner, unterstützen aber auch einen niedrigen pH-Wert. Wesentlich für das Einstellen des pH-Werts ist jedoch vor allem der Zusatz einer anorganischen Säure, bevorzugt Salpetersäure. Tabelle 1 Zusammensetzungen zum sauren Passivieren (Chrom(III)-sulfat) Versuch Nr.: 1 2 3 4 5 n. e.1 n. e.1 n. e.1 n. e.1 erf.2 Chrom-(III)-Verbindung Chrom(III)-sulfat (Lösung. 20%ig) 77,2% 72,7% 72,2% 64,0% 70,0% Nitratverbindung Natriumnitrat 9,7% 15,8% 15,8% 13,5% 13,5% Fluorverbindung Natriumhydrogendifluorid 3,5% 2,8% 2,8% 2,8% 1,2% Organische Säure Zitronensäure 2,5% 2,5% 2,5% Oxalsäure 2,5% 2,5% Anorganische Säure Salpetersäure HNO3 3,1% 2,2% 2,2% 2,2% 2,2% Vanadium- oder Wolframverbindung Natriumvanadat 1,5% 1,5% Kaliumvanadat Vanadylsulfat 15,0% Natriumwolframat Natriumolybdat 0,5%. Kaliummolybdat Phosphonsäure 1-Hydroxyethan-1,1-diphosphonsäure 1,5% Wasser 4,0%. 2,5% 2,5% 9,1% Summe 100,0% 100,0% 100,0% 100,0% 100,0% 1 n.e. = nicht erfindungsgemäß
2 erf. = erfindungsgemäß
The descriptions of the composition according to the invention in Tables 1 and 2 show that organic acids can be used individually or in combination. These acids act as complexing agents but also support a low pH. However, the addition of an inorganic acid, preferably nitric acid, is essential for adjusting the pH. Table 1 Compositions for acid passivation (chromium(III) sulfate) Experiment No.: 1 2 3 4 5 no 1 no 1 no 1 no 1 required 2 Chromium(III) compound Chromium(III) sulfate (solution, 20%) 77.2% 72.7% 72.2% 64.0% 70.0% Nitrate compound Sodium nitrate 9.7% 15.8% 15.8% 13.5% 13.5% Fluorine compound Sodium hydrogen difluoride 3.5% 2.8% 2.8% 2.8% 1.2% Organic acid citric acid 2.5% 2.5% 2.5% Oxalic acid 2.5% 2.5% Inorganic acid Nitric acid HNO 3 3.1% 2.2% 2.2% 2.2% 2.2% Vanadium or tungsten compound Sodium vanadate 1.5% 1.5% Potassium vanadate Vanadyl sulfate 15.0% Sodium tungstate Sodium olybdate 0.5%. Potassium molybdate Phosphonic acid 1-Hydroxyethane-1,1-diphosphonic acid 1.5% Water 4.0% . 2.5% 2.5% 9.1% sum 100.0% 100.0% 100.0% 100.0% 100.0% 1 ne = not in accordance with the invention
2 req. = according to the invention

Der Einsatz von Salpetersäure wird jedoch nur deshalb bevorzugt, weil sie als zusätzliche Quelle von Nitrationen anzusehen ist. Der pH-Wert von bevorzugt unter 4 lässt sich auch gut mit z.B. Schwefelsäure, Salzsäure oder Phosphorsäure einstellen, ebenso wie auch Mischungen anorganischer und/oder organischer Säuren einsetzbar sind, siehe Versuche 11, 12 in Tabelle 2. Geringe Einsatzmengen von bis zu 5 Gewichts-% anorganischer Säure reichen in der Regel aus, um einen pH-Wert < 4 einzustellen.However, the use of nitric acid is only preferred because it is considered an additional source of nitrate ions. The pH value, preferably below 4, can also be easily adjusted using sulfuric acid, hydrochloric acid, or phosphoric acid, for example, as well as mixtures of inorganic and/or organic acids; see Experiments 11 and 12 in Table 2. Small amounts of up to 5% by weight of inorganic acid are generally sufficient to achieve a pH value below 4.

Der Zusatz von Vanadaten und Wolframaten erfolgt in Mengen zwischen 0,1 Gewichts-% und 5 Gewichts-%, bevorzugt in Mengen von 0,5 Gewichts-% bis 3 Gewichts-%. Die Ausführungen gemäß Tabellen 1, 2 zeigen, dass bereits geringe Mengen Vanadate oder Wolframate oder Mischungen von Vanadaten und Wolframaten die Korrosionsschutzwirkung einer Passivierungszusammensetzung deutlich steigern.Vanadates and tungstates are added in amounts between 0.1% and 5% by weight, preferably in amounts between 0.5% and 3% by weight. The results in Tables 1 and 2 show that even small amounts of vanadates or tungstates, or mixtures of vanadates and tungstates, significantly increase the corrosion protection effect of a passivation composition.

Die antikorrosive Wirkung dieser ersten, sauren Passivierungslösung wird weiter gesteigert, wenn Molybdate oder Manganate oder Mischungen von Molybdaten und Manganaten eingesetzt werden. Mengen von 0,05 Gewichts-% bis 3 Gewichts-% je Molybdän-Verbindung genügen, um einen deutlichen Synergieeffekt beim Korrosionsschutz zu erreichen. Bevorzugt werden bis zu 1,5 Gewichts-% Molybdate und bis zu 0,5 Gewichts-% Manganate eingesetzt.The anticorrosive effect of this initial, acidic passivation solution is further enhanced when molybdates or manganates, or mixtures of molybdates and manganates, are used. Amounts of 0.05% to 3% by weight per molybdenum compound are sufficient to achieve a significant synergistic effect in corrosion protection. Preferably, up to 1.5% by weight of molybdates and up to 0.5% by weight of manganates are used.

Weiterhin erweist sich der Zusatz von Phosphonsäuren als vorteilhaft. Sie wirken als Komplexbildner. Der Zusatz einzelner Phosphonsäuren ist bereits wirkungsvoll. Aber auch der Zusatz von Mischungen verschiedener Phosphonsäuren zeigt gute Ergebnisse. Phosphonsäuren werden in Mengen von 0,01 Gewichts-% bis 5 Gewichts-% zugesetzt, vorzugsweise in Mengen von 0,5 Gewichts-% bis 3 Gewichts- %. Es wird hier nochmals ausdrücklich angemerkt, dass die Verwendung von Elementen oder Verbindungen, die Vanadium, Wolfram, Molybdän, Mangan, Cer oder Lanthan sowie von Phosphonsäure, jeweils einzeln oder in beliebiger Verbindung gute Korrosionsschutzeigenschaften bereits bei einer ersten sauren Passivierung gewährleistet. ' Tabelle 2 Zusammensetzung zum sauren Passivieren (Chrom(III)-nitrat und -sulfat) Versuch Nr.: 6 7 8 9 10 11 12 erf.2 n.e.1 erf.2 n.e.1 erf.2 n.e.1 n.e.1 Chrom-(III)-Verbindung Anteil Anteil Anteil Anteil Anteil Anteil Anteil Chrom(III)-sulfat Lösung 20%ig 5,0% 70,0% Chrom(III)-nitrat Lösung 20%ig 65,7% 65,7% 65,7% 65,7% 65,7% 65,7% Nitratverbindung Natriumnitrat 15,8% 15,8% 15,8% 15,8% 15,8% 15,8% 15,8% Fluorverbindung Natriumhydrogendifluorid 0,2% 0,2% 0,2% 1,7% 1,7% 1,7% 1,7% Organische Säure Zitronensäure 1,0% 1,0% 2,5% 2,5% 0,1% 0,1% Oxalsäure 2,5% Salicylsäure 2,5% Bernsteinsäure 1,0% 1,0% 1,0% 1,0% 1,0% 1,0% Anorganische Säure Salpetersäure HNO3 2,2% 2,2% 2,2% 2,2% 2,2% 1,2% 1,2% Schwefelsäure 1,5% 11,5% Vanadium- oder Wolframverbindung Natriumvanadat Kaliumvanadat 1,5% Vanadylsulfat 1,3% 1,3% Natriumwolframat 1,0% 1,0% 1,0% Natriumolybdat 1,0% 1,0% 1,0% Kaliummolybdat 0,5% 0,5% 0,5% Phosphonsäure 1-Hydroxyethan-1,1-diphosphonsäure 1,0% 1,0% 1,0% Amino-tris(methylenphosphonsäure) Ethylendiamin-tetra (methylenphosphonsäure) 1,0% 0,7% Diethylentriamin-penta (methylenphosphonsäure) 1,5% 1,0% 1,0% Hexamethylendiamin-tetra (methylenphosphonsäure) Hydroxyethyl-amino-di (methylenphosphonsäure) 0,5% 0,5% 0,5% 2-Phosphonobutan-1,2,4-tricarbonsäure 0,5% 0,5% Bis(hexamethylentriaminpent a (methylenphosphonsäure)) 0,2% 0,2% 0,2% Natriumpermanganat 0,1% 0,1% 0,1% Wasser 11,1% 11,1% 11,1% 7,3% 7,3% 3,2% 3,9% Summe 100,0% 100,0 % 100,0 % 100,0 % 100,0 % 100,0 % 100,0 % 1 n.e. = nicht erfindungsgemäß
2 erf. = erfindungsgemäß
Furthermore, the addition of phosphonic acids has proven beneficial. They act as complexing agents. The addition of individual phosphonic acids is already effective. However, the addition of mixtures of different phosphonic acids also shows good results. Phosphonic acids are added in amounts of 0.01% to 5% by weight, preferably in amounts of 0.5% to 3% by weight. It is expressly noted here again that the use of elements or compounds containing vanadium, tungsten, molybdenum, manganese, cerium, or lanthanum, as well as phosphonic acid, individually or in any combination, ensures good corrosion protection properties even with an initial acid passivation. Table 2 Composition for acid passivation (chromium(III) nitrate and sulfate) Experiment No.: 6 7 8 9 10 11 12 required 2 no 1 required 2 no 1 required 2 no 1 no 1 Chromium(III) compound Portion Portion Portion Portion Portion Portion Portion Chromium(III) sulfate solution 20% 5.0% 70.0% Chromium(III) nitrate solution 20% 65.7% 65.7% 65.7% 65.7% 65.7% 65.7% Nitrate compound Sodium nitrate 15.8% 15.8% 15.8% 15.8% 15.8% 15.8% 15.8% Fluorine compound Sodium hydrogen difluoride 0.2% 0.2% 0.2% 1.7% 1.7% 1.7% 1.7% Organic acid citric acid 1.0% 1.0% 2.5% 2.5% 0.1% 0.1% Oxalic acid 2.5% Salicylic acid 2.5% succinic acid 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% Inorganic acid Nitric acid HNO3 2.2% 2.2% 2.2% 2.2% 2.2% 1.2% 1.2% sulfuric acid 1.5% 11.5% Vanadium or tungsten compound Sodium vanadate Potassium vanadate 1.5% Vanadyl sulfate 1.3% 1.3% Sodium tungstate 1.0% 1.0% 1.0% Sodium olybdate 1.0% 1.0% 1.0% Potassium molybdate 0.5% 0.5% 0.5% Phosphonic acid 1-Hydroxyethane-1,1-diphosphonic acid 1.0% 1.0% 1.0% Amino-tris(methylenephosphonic acid) Ethylenediamine-tetra (methylenephosphonic acid) 1.0% 0.7% Diethylenetriamine penta (methylenephosphonic acid) 1.5% 1.0% 1.0% Hexamethylenediamine-tetra (methylenephosphonic acid) Hydroxyethyl-amino-di (methylenephosphonic acid) 0.5% 0.5% 0.5% 2-Phosphonobutane-1,2,4-tricarboxylic acid 0.5% 0.5% Bis(hexamethylenetriaminepent a (methylenephosphonic acid)) 0.2% 0.2% 0.2% Sodium permanganate 0.1% 0.1% 0.1% Water 11.1% 11.1% 11.1% 7.3% 7.3% 3.2% 3.9% sum 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 1 ne = not in accordance with the invention
2 req. = according to the invention

Die erste, saure Passivierung wird auf Stahlbleche mit einer Zink-Eisen-Legierungsoberfläche aufgebracht, die in bekannter Weise vorbehandelt sein können, die insbesondere z.B. gereinigt oder entfettet wurden.The first, acidic passivation is applied to steel sheets with a zinc-iron alloy surface, which may have been pretreated in a known manner, in particular, for example, cleaned or degreased.

Ausführungsbeispiele der Tabellen 3 und 4Examples of implementation in Tables 3 and 4

Auf die getrocknete erste saure Passivierung, die aus einer wässrigen sauren Zusammensetzung auf dem Stahlblech mit Eisen-Zink-Legierungsoberfläche aufgebracht wurde, wird erfindungsgemäß eine zweite alkalische Passivierung aufgebracht. Vorliegend werden auf die erste saure Passivierung gemäß der Ausführungsbeispiele 1 und 2 die nachfolgend näher erläuterten wässrigen alkalischen Zusammensetzungen zum Herstellen einer zweiten alkalischen Passivierung aufgebracht.According to the invention, a second alkaline passivation is applied to the dried first acidic passivation, which was applied from an aqueous acidic composition to the steel sheet with an iron-zinc alloy surface. In the present case, the aqueous alkaline compositions explained in more detail below are applied to the first acidic passivation according to embodiments 1 and 2 to produce a second alkaline passivation.

Diese zweite Passivierung wird als eine wässrige Zusammensetzung aufgebracht. Die wässrige Beschichtungszusammensetzung ist alkalisch, wobei ein pH-Wert > 9, bevorzugt zwischen pH 10 und pH 12, zwar auch durch den Einsatz von Laugen erreicht werden kann. Üblicherweise stellt sich ein alkalischer pH-Wert jedoch bereits durch Einsatz von Silikaten, z.B. von Alkalisilikaten, ein. Zur Durchführung der Ausführungsbeispiele 3 und 4 werden Polysililikate eingesetzt. Der Feststoffgehalt (Feststoff bezogen auf die Gesamtmenge der wässrigen Lösung) beträgt für die bevorzugt eingesetzten Lithiumpolysilikate 20%, für Natrium- und Kaliumsilikatlösungen (Wassergläser) 40% und für kolloidale Silikate 20%, wobei auch kolloidale Silikate mit einem Feststoffgehalt von bis zu 30% verfügbar und geeignet sind. Das Molgewicht des Lithiumpolysilikats beträgt zwischen 200 und 300 g/mol und liegt damit geringer als das Molgewicht der eingesetzten Wassergläser. Silan wird jeweils mit 100% Feststoff eingesetzt. Tabelle 3 Zweite, alkalische Passivierung (Wässrige Zusammensetzung Polysilikat und Silan) Silan-Komponente Versuch Nr. Lithiumpolysilikat Versuch Nr. Natronwassergla s Versuch Nr. kolloidales Silikat Methacryloxymethyltriethoxysilan 1 0 14 0 27 0 Methacryloxymethyltriethoxysilan 2 15,2 15 1,3 28 27,8 3-Aminopropylmethyldiethoxysilan 3 4,1 16 41,5 29 17,3 3-Aminopropyltriethoxysilan 4 7,5 17 33,2 30 47,5 N-(2-Aminoethyl)-3-aminopropylmethyl-dimethoxysilan 5 70,8 18 1,5 31 13,9 3-Glycidyloxypropylt rimethoxysilan 6 19,3 19 2,9 32 28,9 Vinyltrimethoxysilan 7 5,9 20 70,2 33 55,5 Vinyltriethoxysilan 8 30,1 21 23,2 34 5,2 Methyltrimethoxysilan 9 100,0 22 100,0 35 100,0 Methyltrimethoxysilan 10 20,3 23 7,9 36 48,7 3-Mercaptopropyltri methoxysilan 11 7,5 24 21,3 37 2,3 CoatOSil MP 200* 12 27,5 25 3,9 38 45,0 N-[3-(Trimethyloxysilyl) propyl]ethylendiamin 13 25,6 26 9,2 39 44,1 *CoatOSil MP 200 ist ein Oligomeres des Gammaglycidyloxypropyltrimethoxysilans This second passivation is applied as an aqueous composition. The aqueous coating composition is alkaline, although a pH value > 9, preferably between pH 10 and pH 12, can also be achieved through the use of alkalis. However, an alkaline pH is usually already established through the use of silicates, e.g. alkali silicates. Polysilicates are used to carry out embodiments 3 and 4. The solids content (solids based on the total amount of the aqueous solution) is 20% for the preferably used lithium polysilicates, 40% for sodium and potassium silicate solutions (water glasses), and 20% for colloidal silicates, although colloidal silicates with a solids content of up to 30% are also available and suitable. The molecular weight of the lithium polysilicate is between 200 and 300 g/mol and is thus lower than the molecular weight of the water glasses used. Silane is used in 100% solids form. Table 3 Second alkaline passivation (aqueous composition polysilicate and silane) Silane component Experiment No. Lithium polysilicate Experiment No. Soda water glass Experiment No. colloidal silicate Methacryloxymethyltriethoxysilane 1 0 14 0 27 0 Methacryloxymethyltriethoxysilane 2 15.2 15 1.3 28 27.8 3-Aminopropylmethyldiethoxysilane 3 4.1 16 41.5 29 17.3 3-Aminopropyltriethoxysilane 4 7.5 17 33.2 30 47.5 N -(2-Aminoethyl)-3-aminopropylmethyl-dimethoxysilane 5 70.8 18 1.5 31 13.9 3-Glycidyloxypropyltrimethoxysilane 6 19.3 19 2.9 32 28.9 Vinyltrimethoxysilane 7 5.9 20 70.2 33 55.5 Vinyltriethoxysilane 8 30.1 21 23.2 34 5.2 Methyltrimethoxysilane 9 100.0 22 100.0 35 100.0 Methyltrimethoxysilane 10 20.3 23 7.9 36 48.7 3-Mercaptopropyltrimethoxysilane 11 7.5 24 21.3 37 2.3 CoatOSil MP 200* 12 27.5 25 3.9 38 45.0 N -[3-(Trimethyloxysilyl)propyl]ethylenediamine 13 25.6 26 9.2 39 44.1 *CoatOSil MP 200 is an oligomer of gammaglycidyloxypropyltrimethoxysilane

Tabelle 3 zeigt Zusammensetzungen für eine zweite alkalische Passivierung, die, zwei Referenzversuche mit Lithiumpolysilikat (Versuch Nr. 1) und Methyltrimethoxysilan (Versuch Nr. 9) ausgenommen, jeweils aus einem silanmodifizierten Silikat besteht. Die Zahlenwerte geben jeweils die Einsatzmenge des Silans in Gewichts-% bezogen auf die Gesamtzusammensetzung des Silans und des Silikats an. Es wird mit Silikat auf 100 Gewichts-% ergänzt. So setzt sich z.B. eine wässrige alkalische Zusammensetzung zum Herstellen einer zweiten alkalischen Passivierung aus Vinyltrimethoxysilan und Litiumpolysilikat (Versuch Nr. 7) aus 5,9 Gewichts-% Silan und 94,1 Gewichts-% Lithiumpolysilikat (Feststoffgehalt 20%) zusammen. Hier weist die wässrige alkalische Zusammensetzung also ein aminofunktionelles, silanmodifiziertes Lithiumpolysilikat auf. Eine alternative zweite alkalische Passivierung wird aus einer wässrigen alkalischen Zusammensetzung aufweisend Vinlytrimethoxysilan und Natronwasserglas (Versuch Nr. 20) hergestellt; diese wässrige alkalische Zusammensetzung setzt sich aus 70,2 Gewichts-% Silan und 29,8 Gewichts-% Silikat (Feststoffgehalt 40%) zusammen. Hier weist die wässrige alkalische Zusammensetzung also ein vinylfunktionelles, silanmodifziertes Silikat auf. Eingesetzt werden kolloidales Silikat, Natronwasserglas (Natriumpolysilikat) und Lithiumpolysilikat, wobei letzteres bevorzugt ist. Es wird ein vollständig hydrolysiertes Produkt eingesetzt, so dass ein im Wesentlichen VOC-freies Aufbringen der zweiten alkalischen Passivierung ermöglicht wird.Table 3 shows compositions for a second alkaline passivation, each of which, with the exception of two reference tests with lithium polysilicate (test no. 1) and methyltrimethoxysilane (test no. 9), consists of a silane-modified silicate. The numerical values indicate the amount of silane used in weight percent based on the total composition of silane and silicate. It is supplemented with silicate to 100 weight percent. For example, an aqueous alkaline composition for producing a second alkaline passivation from vinyltrimethoxysilane and lithium polysilicate (test no. 7) consists of 5.9 weight percent silane and 94.1 weight percent lithium polysilicate (solids content 20%). In this case, the aqueous alkaline composition therefore contains an amino-functional, silane-modified lithium polysilicate. An alternative second alkaline passivation is prepared from an aqueous alkaline composition comprising vinyltrimethoxysilane and sodium silicate (Test No. 20). This aqueous alkaline composition consists of 70.2% by weight silane and 29.8% by weight silicate (solids content 40%). In this case, the aqueous alkaline composition contains a vinyl-functional, silane-modified silicate. Colloidal silicate, sodium silicate (sodium polysilicate), and lithium polysilicate are used, with the latter being preferred. A fully hydrolyzed product is used, allowing for a substantially VOC-free application of the second alkaline passivation.

Das mit der ersten, sauren Passivierung gemäß der Ausführungsbeispiele 1 und 2 behandelte Stahlblech wird in die wässrige Zusammensetzung oder Beschichtungsflüssigkeit aus einem silanmodiftierten Silikat getaucht und anschließend getrocknet, wobei die gleichen Bedingungen zur Anwendung kommen wie zur Herstellung der ersten sauren Passivierung beschrieben.The steel sheet treated with the first acidic passivation according to embodiments 1 and 2 is immersed in the aqueous composition or coating liquid of a silane-modified silicate and then dried using the same conditions as described for the production of the first acid passivation.

Ebenfalls gut geeignet als zweite alkalische Passivierung sind alkalische, wässrige Zusammensetzungen, die ein Silikat aufweisen, dass mit verschiedenen Silanen modifiziert ist. Tabelle 4 zeigt solche Zusammensetzungen, bei denen bis zu acht unterschiedliche Silane eingesetzt sind, jeweils zur Modifikation eines Silikats.Also well-suited as a second alkaline passivation are alkaline, aqueous compositions containing a silicate modified with various silanes. Table 4 shows such compositions, in which up to eight different silanes are used, each to modify a silicate.

Die Versuche in Tabellen 3, 4 zeigen, dass für das silanmodifizierte Silikat die Mengenanteile von Silan und Silikat in einem weiten Bereich variiert werden können. Der Silikatanteil kann zwischen 1 Gewichts-% und 99 Gewichts-% variieren; bevorzugt beträgt er zwischen 20 Gewichts-% und 90 Gewichts-%. Das Silan kann in den gleichen Mengen eingesetzt werden wie das Silikat; beide werden jeweils in komplementären Anteilen eingesetzt, so dass sie sich bei den hier angegebenen Rezepturen zu 100 Gewichts-% addieren. Bevorzugt werden bis zu 20 Gewichts-% Silan eingesetzt. Bezogen auf den Feststoffgehalt werden nach einer besonders vorteilhaften Ausführung Lithiumpolysilikat und Silan in einem Verhältnis von etwa 1:1 eingesetzt.The experiments in Tables 3 and 4 show that the proportions of silane and silicate for the silane-modified silicate can be varied within a wide range. The silicate content can vary between 1% and 99% by weight; preferably, it is between 20% and 90% by weight. The silane can be used in the same amounts as the silicate; both are used in complementary proportions, so that they add up to 100% by weight in the formulations specified here. Preferably, up to 20% by weight of silane is used. Based on the solids content, according to a particularly advantageous embodiment, lithium polysilicate and silane are used in a ratio of approximately 1:1.

Mit der ersten, sauren Passivierung werden sehr dünne Schichten von bis zu 300 nm aufgetragen, meist von bis zu 150 nm, bevorzugt von bis zu 100 nm. Trotz der geringen Schichtstärke bewirkt die erfindungsgemäße erste Passivierung einen guten Korrosionsschutz. Die zweite alkalische Passivierung wird in einer Schichtstärke von bis zu 1 µm aufgetragen, vorteilhaft von 10 nm bis 500 nm. Bevorzugt beträgt die Stärke der zweiten Schicht hier 300 nm. Tabelle 4 Zweite alkalischen Passivierung (Wässrige Zusammensetzung Polysilikat und mehrere Silane) Silan-Komponente / Versuch Nr. 40 41 42 43 44 Methacryloxymethyltriethoxysilan 1,0 % 15,0 % 0,0 % 5,0 % 2,0 % 3-Aminopropylmethyldiethoxysilan 5,0 % 1,0 % 3-Aminopropyltriethoxysilan 1,3 % N-(2-Aminoethyl)-3-aminopropylmethyldimethoxysilan 15,0 % 3-Glycidyloxypropyltrimethoxysilan 4,0 % 20,0 % 21,0 % 5,0 % Vinyltrimethoxysilan 5,0 % 2,0 % 2,7 % 5,0 % Vinyltriethoxysilan 1,5 % 3-Mercaptopropyltrimethoxysilan 5,0 % 3,0 % CoatOSil MP 200* 5,0 % 25,0 % 2,0 % 5,0 % 45,0 % N-[3-(Trimethyloxysilyl) propyl] Ethylendiamin 15,0 % 6,0 % 5,0 % 7,5 % Silikat-Komponente, jeweils als Polysilikat eingesetzt Lithiumpolysilikat 90,0 % Natronwasserglas 70,0 % 55,0 % kolloidales Silikat 20,0 % 30,0 % *CoatOSil MP 200 ist ein Oligomeres des Gammaglycidyloxypropyltrimethoxysilans With the first, acidic passivation, very thin layers of up to 300 nm are applied, usually up to 150 nm, preferably up to 100 nm. Despite the thin layer thickness, the first passivation according to the invention provides good corrosion protection. The second alkaline passivation is applied in a layer thickness of up to 1 µm, advantageously from 10 nm to 500 nm. The thickness of the second layer is preferably 300 nm. Table 4 Second alkaline passivation (aqueous composition polysilicate and several silanes) Silane component / Experiment No. 40 41 42 43 44 Methacryloxymethyltriethoxysilane 1.0% 15.0% 0.0% 5.0% 2.0% 3-Aminopropylmethyldiethoxysilane 5.0% 1.0% 3-Aminopropyltriethoxysilane 1.3% N -(2-Aminoethyl)-3-aminopropylmethyldimethoxysilane 15.0% 3-Glycidyloxypropyltrimethoxysilane 4.0% 20.0% 21.0% 5.0% Vinyltrimethoxysilane 5.0% 2.0% 2.7% 5.0% Vinyltriethoxysilane 1.5% 3-Mercaptopropyltrimethoxysilane 5.0% 3.0% CoatOSil MP 200* 5.0% 25.0% 2.0% 5.0% 45.0% N -[3-(Trimethyloxysilyl)propyl]ethylenediamine 15.0% 6.0% 5.0% 7.5% Silicate component, each used as polysilicate Lithium polysilicate 90.0% Soda water glass 70.0% 55.0% colloidal silicate 20.0% 30.0% *CoatOSil MP 200 is an oligomer of gammaglycidyloxypropyltrimethoxysilane

Die wässrige Zusammensetzung für die zweite alkalische Passivierung wurde durch gemeinsame Hydrolyse der Silane bzw. Siloxane und der Silikate, hier Polysilikate, und anschließendes entfernen der freigesetzten Alkohole mittels Vakuumdestillation hergestellt.The aqueous composition for the second alkaline passivation was prepared by joint hydrolysis of the silanes or siloxanes and the silicates, here polysilicates, and subsequent removal of the released alcohols by vacuum distillation.

Die in den Tabellen 1- 4 beschriebenen Zusammensetzungen für die erste, saure Passivierung (Tabellen 1,2) und die zweite, alkalische Passivierung (Tabellen 3, 4) wurden nacheinander auf Stahlbleche aufgetragen, so wie vorstehend im Zusammenhang mit dem Aufbringen der ersten, sauren Passivierung erläutert.The compositions described in Tables 1-4 for the first, acidic passivation (Tables 1, 2) and the second, alkaline passivation (Tables 3, 4) were applied sequentially to steel sheets as explained above in connection with the application of the first, acidic passivation.

Zum Vergleich wurden aber auch unbehandelte Stahlbleche sowie Stahlbleche getestet, die nur mit einer ersten sauren Passivierung oder nur mit einer zweiten Passivierung versehen wurden. Diese Vergleichsobjekte und die erfindungsgemäß mit beiden sauren und alkalischen Passivierungen versehenen Stahlbleche wurden dann dem neutralen Salzsprühtest DIN EN ISO 9227 unterzogen. Die Ergebnisse dieses Tests sind in Tabelle 5 zusammengefasst. Sämtliche zur Durchführung der Ausführungsbeispiele 1 bis 4 eingesetzten Stahlbleche weisen eine Zinklegierungsoberfläche auf.For comparison, untreated steel sheets and steel sheets treated with only a first acidic passivation or only a second passivation were also tested. These comparison objects and the steel sheets treated with both acidic and alkaline passivations according to the invention were then subjected to the neutral salt spray test according to DIN EN ISO 9227. The results of this test are summarized in Table 5. All steel sheets used to carry out Examples 1 to 4 have a zinc alloy surface.

Zeile 1 der Tabelle 5 zeigt jeweils die Korrosionsschutzergebnisse für Stahlbleche, die mit erster saurer Passivierung, aber ohne zweite alkalische Passivierung geprüft wurden. Spalte 1 der Tabelle 5 zeigt Stahlbleche, die ohne erste saure Passivierung, aber mit zweiter alkalischer Passivierung geprüft wurden. Das Versuchsergebnis in Spalte 1 und Zeile 1 zeigt die Prüferergebnisse für ein Stahlblech ohne Passivierung.Row 1 of Table 5 shows the corrosion protection results for steel sheets tested with the first acid passivation but without the second alkaline passivation. Column 1 of Table 5 shows steel sheets tested without the first acid passivation but with the second alkaline passivation. The test results in column 1 and row 1 show the test results for a steel sheet without passivation.

Spalten 1-12 der Tabelle 5 zeigen jeweils die Korrosionsschutzergebnisse für die in den Tabellen 1 und 2 aufgeführten wässrigen Zusammensetzungen der ersten, sauren Passivierung. Zeilen 1-44 zeigen in Tabelle 5 die auf diese sauren Passivierungen jeweils aufgebrachten zweiten alkalischen Passivierungen.Columns 1-12 of Table 5 show the corrosion protection results for the aqueous compositions of the first, acidic passivation listed in Tables 1 and 2. Rows 1-44 in Table 5 show the second alkaline passivations applied to these acidic passivations.

Die Zusammensetzungen der ersten, sauren Passivierung der Versuche 1, 5 und 7 wurden ohne Vanadium- oder Wolframverbindungen durchgeführt.The compositions of the first acid passivation of experiments 1, 5 and 7 were carried out without vanadium or tungsten compounds.

Die in Tabelle 5 dargestellten Ergebnisse wurden wie folgt bewertet:

  • -- kein Korrosionsschutz: Standzeit im Salzsprühtest < 24 Stunden
  • - mäßiger Korrosionsschutz: Standzeit im Salzsprühtest >24 Stunden
  • ○ durchschnittlicher Korrosionschutz: Standzeit im Salzsprühtest >48 Stunden + guter Korrosionsschutz: Standzeit im Salzsprühtest >150 Stunden
  • ++ hervorragender Korrosionsschutz: Standzeit im Salzsprühtest >360 Stunden (Weissrost), Standzeit im Salzsprühtest >720 Stunden (Rotrost)
The results presented in Table 5 were evaluated as follows:
  • -- no corrosion protection: service life in salt spray test < 24 hours
  • - moderate corrosion protection: service life in salt spray test >24 hours
  • ○ Average corrosion protection: Service life in salt spray test >48 hours + Good corrosion protection: Service life in salt spray test >150 hours
  • ++ Excellent corrosion protection: Service life in salt spray test >360 hours (white rust), service life in salt spray test >720 hours (red rust)

Im Einzelnen zeigt sich im Vergleich der jeweils ersten Spalte in Tabelle 5 mit den weiteren Spalten, dass ohne erste saure Passivierung auch mit einer ansonsten sehr gut wirksamen zweiten alkalischen Passivierung bestenfalls ein durchschnittlicher Korrosionsschutz erreichbar ist. Andererseits zeigt sich, dass es zum Aufbau eines guten oder hervorragenden Korrosionsschutzes zwar von Bedeutung ist, dass eine saure Passivierung bereits vorab aufgetragen wurde, dass die Qualität des gemessenen Korrosionsschutzes für die erfindungsgemäße zweischichtige Passivierung jedoch eher von der Zusammensetzung der zweiten alkalischen Passivierung abhängt. Dies lässt sich daraus ablesen, dass die Ergebnisse in einer Zeile (ausgenommen Spalte "ohne") jeweils gleich einzuordnen sind.In detail, a comparison of the first column in Table 5 with the subsequent columns shows that, without a first acid passivation, even with an otherwise highly effective second alkaline passivation, only average corrosion protection can be achieved at best. On the other hand, it is clear that, while it is important to apply an acid passivation beforehand to achieve good or excellent corrosion protection, the quality of the measured corrosion protection for the two-layer passivation according to the invention depends more on the composition of the second alkaline passivation. This can be seen from the fact that the results in a row (except for the "without" column) are all classified in the same way.

Weiter zeigt sich, dass Zusammensetzungen für die zweite alkalische Passivierung, die ein silanmodifiziertes Lithiumpolysilikat enthalten, ganz überwiegend hervorragenden Korrosionsschutz bewirken, wenn sie auf eine saure Passivierung aufgetragen werden (Versuche 1-13 der zweiten Passivierung). Besonders gute Ergebnisse liefern erfindungsgemäße saure und alkalische Passivierungen, wenn die saure Passivierung Vanadium, Wolfram oder deren Verbindungen enthält. Aber auch die wässrigen alkalischen Zusammensetzungen aus einem mit mehreren Silanen modifizierten Silikat bewirken ganz überwiegend einen hervorragenden Korrosionsschutz auf der Unterlage einer sauren Passivierung.Furthermore, it has been shown that compositions for the second alkaline passivation containing a silane-modified lithium polysilicate predominantly provide excellent corrosion protection when applied over an acidic passivation (tests 1-13 of the second passivation). Acidic and alkaline passivations according to the invention provide particularly good results when the acidic passivation contains vanadium, tungsten, or their compounds. However, the aqueous alkaline compositions consisting of a silicate modified with multiple silanes also predominantly provide excellent corrosion protection on the substrate of an acidic passivation.

Eine alkalische Passivierung, bei der kolloidales Silikat oder Wasserglas in Kombination mit Silan, also silan modifiziert, eingesetzt werden, und die auf eine saure Passivierung aufgetragen ist, führt zu guten, teilweise auch hervorragenden Ergebnissen beim neutralen Salzsprühtest.

  • Zeichnungen siehe Ansicht "Originaldokument"
  • Zeichnungen siehe Ansicht "Originaldokument"
    Figure imgb0001
    Figure imgb0002
An alkaline passivation, in which colloidal silicate or water glass is used in combination with silane, i.e. silane-modified, and which is applied to an acidic passivation, leads to good, sometimes even excellent results in the neutral salt spray test.
  • Drawings see view "Original document"
  • Drawings see view "Original document"
    Figure imgb0001
    Figure imgb0002

Die gar nicht oder nur mit einer sauren oder mit einer alkalischen Passivierung versehenen Stahlbleche mit einer Oberfläche, die mit einer Zink-Eisen-Legierung beschichtet ist und auch die erfindungsgemäß mit einer ersten sauren Passivierung und einer zweiten alkalischen Passivierung versehenen, eine Zink-Eisen-Legierungsoberfläche aufweisenden Stahlbleche wurden im neutralen Salzsprühtest wie vorstehend erläutert auf ihre Korrosionsbeständigkeit getestet. Ein Stahlblech mit einer Oberfläche aus einer Zink-Eisen-Legierung, jedoch ohne jegliche Beschichtung zeigt eine Korrosionsbeständigkeit von weniger als 24 Stunden (Versuch Spalte 1, Zeile1: --). Zink-Eisen-legierungsbeschichtete Stahlbleche, die immerhin eine saure Passivierung erhalten hatten (Versuche der Zeile 1) oder die allein eine alkalische Passivierung erhalten hatten (Versuche der Spalte 1) weisen eine geringe bis durchschnittliche Korrosionsbeständigkeit im Salzsprühtest auf.Steel sheets with no or only acid or alkaline passivation and a surface coated with a zinc-iron alloy coated, and the steel sheets having a zinc-iron alloy surface provided according to the invention with a first acid passivation and a second alkaline passivation were also tested for their corrosion resistance in the neutral salt spray test as explained above. A steel sheet with a zinc-iron alloy surface, but without any coating, shows a corrosion resistance of less than 24 hours (test column 1, line 1: --). Zinc-iron alloy-coated steel sheets that had at least received acid passivation (tests in line 1) or that had only received alkaline passivation (tests in column 1) show low to average corrosion resistance in the salt spray test.

Stahlbleche mit einer Zink-Eisen-Legierungsoberfläche, auf die sowohl eine erste saure Passivierung als auch eine zweite, alkalische Passivierung aufweisend silanmodifzierte Silikate aufgetragen wurde, zeigen in der Regel mindestens guten, häufig aber hervorragenden Korrosionsschutz.Steel sheets with a zinc-iron alloy surface to which both a first acid passivation and a second, alkaline passivation comprising silane-modified silicates have been applied generally show at least good, but often excellent, corrosion protection.

Besonders hervorzuheben sind die Ergebnisse für die unter Verwendung von Vanadium- und Wolframverbindungen hergestellten, sauer passivierten Substrate (Versuche 2-4, 6, 8-12), die dann erfindungsgemäß mit einer zweiten alkalischen Passivierung behandelt wurden.Particularly noteworthy are the results for the acid-passivated substrates produced using vanadium and tungsten compounds (tests 2-4, 6, 8-12), which were then treated with a second alkaline passivation according to the invention.

Bei der Auswertung des Effekts, den die zweite alkalische Passivierung zum Korrosionsschutz beiträgt, zeigt sich, dass alkalische Passivierungen mit Lithiumpolysilikat überwiegend (Versuche Zeilen 1-13) hervorragenden Korrosionsschutz bieten, insbesondere dann, wenn Lithiumpolysilikat mit einem oder mehreren Silanen oder Siloxanen modifiziert wird.When evaluating the effect that the second alkaline passivation contributes to corrosion protection, it is shown that alkaline passivations with lithium polysilicate predominantly (tests lines 1-13) provide excellent corrosion protection, especially when lithium polysilicate is modified with one or more silanes or siloxanes.

Auch kolloidale Silikate bzw. Silikasole führen zu guter Korrosionsschutzbeständigkeit, insbesondere, wenn die kolloidalen Silikate in Verbindung mit Silanen oder Siloxanen modifiziert werden (Versuche Zeilen 28-39; 41, 44). Gleiches gilt für Silikate, die in Mischung mit mehreren Silanen oder Siloxanen gleichzeitig modifiziert werden. Hier werden ganz überwiegend hervorragende Ergebnisse im Salzsprühtest erzielt.Colloidal silicates or silica sols also provide good corrosion protection, especially when the colloidal silicates are modified in combination with silanes or siloxanes (tests lines 28-39; 41, 44). The same applies to silicates modified in a mixture with several silanes or siloxanes simultaneously. In these cases, excellent results are predominantly achieved in the salt spray test.

Aber auch die Wassergläser sind sehr gut zur Herstellung von wässrigen, alkalischen Passivierungslösungen geeignet; Passivierungen, die mit solchen Lösungen hergestellt wurden, zeigen insbesondere dann, wenn die eingesetzten Silikate mit Silanen oder Siloxanen modifiziert wurden, gute Korrosionsschutzergebnisse (Versuche 14-26; 42, 43).But water glasses are also very well suited for the production of aqueous, alkaline passivation solutions; passivations produced with such solutions show good corrosion protection results, especially when the silicates used have been modified with silanes or siloxanes (tests 14-26; 42, 43).

Es ist hervorzuheben, dass diese Passivierungen, die guten bis hervorragenden Korrosionsschutz bieten, ohne Kobalt und ohne Chrom(VI)-Verbindungen auskommen. Es ist weiter hervorzuheben, dass diese sauren und alkalischen Passivierungen im Wesentlichen VOC-frei aufgetragen und getrocknet werden können, nicht zuletzt, weil bevorzugt vollständig hydrolysierte silanmodifizierte Silikate, insbesondere Polysilikate, eingesetzt werden.It is worth emphasizing that these passivations, which offer good to excellent corrosion protection, do not contain cobalt or chromium(VI) compounds. It is also worth noting that these acidic and alkaline passivations can be applied and dried essentially VOC-free, not least because fully hydrolyzed silane-modified silicates, especially polysilicates, are preferred.

Weiter zeigt sich, dass der Effekt der zweiten alkalischen Passivierung nicht von der Zusammensetzung der ersten sauren Passivierung abhängt. Es zeigt sich vielmehr, dass in der Kombination einer sauren und einer alkalischen Passivierung ein guter bis sehr guter Korrosionsschutz auch dann erreicht werden kann, wenn z. B. wenige oder keine Vanadium- oder Wolframverbindungen oder Phosphonsäure in der sauren Passivierung enthalten sind.Furthermore, it is shown that the effect of the second alkaline passivation does not depend on the composition of the first acidic passivation. Rather, it is shown that the combination of an acidic and an alkaline passivation can achieve good to very good corrosion protection even if, for example, the acidic passivation contains few or no vanadium or tungsten compounds or phosphonic acid.

Claims (18)

  1. A method for the manufacture of a metallic substrate provided with a passivation which is free of chromium VI and cobalt, by applying
    (a) a first acidic passivation, wherein for the manufacture of the first acidic passivation an aqueous acidic composition is applied to the substrate, the composition containing a chromium (III) compound which is selected from the group consisting of chromium (III) sulphate, chromium (III) hydroxide, chromium (III) dihydrogen phosphate, chromium (III) chloride, chromium (III) nitrate, sodium chromium (III) sulphate, potassium chromium (III) sulphate and chromium (III) salts of organic acids, wherein the composition contains the chromium (III) compound in quantities of at least 0.05 g/l, based on the aqueous acidic composition, and a phosphorous acid in quantities of 0.5 % by weight to 3 % by weight, based on the aqueous acidic composition, and
    (b) a second alkaline passivation to the metallic substrate, wherein for the manufacture of the second alkaline passivation an aqueous alkaline composition is used, which contains silane-modified and/or siloxane-modified silicates.
  2. The method according to claim 1, characterised in that with the second alkaline passivation, an aqueous alkaline composition is applied to the substrate, the composition containing a silane-modified and/or a siloxane-modified silicate with a 1 % by weight to a 99 % by weight proportion of silane.
  3. The method according to claim 1 or claim 2, characterised in that for the manufacture of the second alkaline passivation an aqueous alkaline composition is applied to the metallic substrate, the composition containing one or more silicates from the group comprising colloidal silica sols, sodium silicate, potassium silicate, lithium silicate and ammonium silicate, with all silicates in this case also comprising polysilicates.
  4. The method according to claim 3, characterised in that for the manufacture of the second alkaline passivation an aqueous alkaline composition is applied which contains lithium polysilicate or a mixture of lithium polysilicate with colloidal silica sols or sodium silicate, potassium silicate and/or ammonium silicate.
  5. The method according to at least one of claims 1 to 4, characterised in that the aqueous alkaline composition applied for the manufacture of the second alkaline passivation contains a vinyl silane, amino silane or epoxy-functional silane and/or a siloxane or a mixture of these silanes or siloxanes.
  6. The method according to claim 5, characterised in that the aqueous solution applied for the manufacture of the second alkaline passivation contains one or more silanes from the group comprising methacryloxy methyltriethoxy silane, methacryloxy methyltriethoxy silane, 3-aminopropyl methyldiethoxy silane, 3-aminopropyl triethoxy silane, N-(2-aminoethyl) 3-aminopropyl methyldimethoxy silane, 3-glycidyloxy propyltrimethoxy silane, vinyl trimethoxy silane, vinyl triethoxy silane, methyl trimethoxy silane, as well as 3-mercaptopropyl trimethoxy silane and siloxanes.
  7. The method according to one of claims 1 to 6, characterised in that the aqueous alkaline composition used for the manufacture of the second alkaline passivation contains silicates, silanes, siloxanes and silane-modified and/or siloxane-modified silicates which are used in a partly or completely hydrolysed form.
  8. The method according to at least one of the preceding claims 1 to 7, characterised in that a substrate is coated which has a metallic surface from the group comprising a surface of zinc, aluminium, a zinc-aluminium alloy, a zinc-iron alloy or an alloy of zinc or aluminium with one or more other metals.
  9. The method according to at least one of the preceding claims 1 to 9, characterised in that the second alkaline passivation has a layer thickness of 10 nm to 1 µm, preferably of 20 nm to 500 nm.
  10. The method according to at least one of claims 1 to 10, characterised in that a first acidic passivation is applied, which is optionally subsequently dried, and in that a second alkaline passivation is applied to the dried first passivation.
  11. The method according to at least one of claims 1 to 10, characterised in that for the manufacture of the first acidic passivation an aqueous acidic composition is applied to the substrate, the composition containing a nitrate compound.
  12. The method according to at least one of claims 1 to 11, characterised in that for the manufacture of the first acidic passivation an aqueous acidic composition is applied to the substrate, the composition containing a source of fluorine, wherein as the source of fluorine a compound is selected from the group comprising hydrofluoric acid, hexafluorotitanic acid, hexafluorozirconic acid, sodium fluoride, potassium fluoride, ammonium fluoride, sodium bifluoride, potassium bifluoride and ammonium bifluoride.
  13. The method according to at least one of claims 1 to 12, characterised in that for the manufacture of the first acidic passivation an aqueous acidic composition is applied to the substrate, the composition containing one or more compounds of the metals molybdenum, vanadium or tungsten.
  14. The method according to at least one of claims 1 to 13, characterised in that for the manufacture of the first acidic passivation an aqueous acidic composition is applied to the substrate, the composition containing one or more of the compounds from the group comprising potassium molybdate, sodium molybdate, potassium orthovanadate, potassium metavanadate, sodium orthovanadate, sodium metavanadate, sodium tungstate, sodium paratungstate and vanadium pentoxide.
  15. The method according to one of claims 1 to 14, characterised in that for the manufacture of the first acidic passivation an aqueous acidic composition is applied to the substrate, in which one or more acids are used from the group comprising (1-hydroxyethane-1,1-diyl) biphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, aminotrimethylene phosphonic acid, ethylenediamine tetramethylene phosphonic acid or diethylenetriamine pentamethylene phosphonic acid.
  16. The method according to one of claims 1 to 14, characterised in that for the manufacture of the first acidic passivation an aqueous acidic composition is applied to the substrate, the composition containing phosphonates individually or in a mixture, from the group comprising tetrasodium (1-hydroxyethane-1,1-diyl) biphosphonate, trisodium (1-hydroxyethane-1,1-diyl) biphosphonate, pentasodium ethylenediamine tetramethylene phosphonate or heptasodium diethylenetriamine pentamethylene phosphonate.
  17. The method according to at least one of claims 1 to 16, characterised in that for the manufacture of the first acidic passivation an aqueous acidic composition is applied to the substrate, the composition containing one or more of the elements or compounds thereof from the group comprising molybdenum, manganese, cerium and lanthanum.
  18. The method according to at least one of the preceding claims 1 to 17, characterised in that the first acidic passivation has a layer thickness of 10 nm up to 1 µm, preferably up to 500 nm.
EP14155058.2A 2014-02-13 2014-02-13 Method for production of a substrate with a chromium VI free and cobalt-free passivation Active EP2907894B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP14155058.2A EP2907894B2 (en) 2014-02-13 2014-02-13 Method for production of a substrate with a chromium VI free and cobalt-free passivation
ES14155058T ES2732264T3 (en) 2014-02-13 2014-02-13 Procedure for the preparation of a substrate provided with a cobalt-free and chromium-VI free passivation
RU2015104265A RU2652324C2 (en) 2014-02-13 2015-02-09 Method for production of substrate with chromium vi free and cobalt-free passivation
BR102015002873-3A BR102015002873B1 (en) 2014-02-13 2015-02-10 Process for manufacturing a substrate provided with a cobalt-free and chromium-free passivation vi
KR1020150020590A KR101897771B1 (en) 2014-02-13 2015-02-11 Method for the manufacture of a substrate provided with a chromium VI-free and cobalt-free passivation
MX2015001916A MX369943B (en) 2014-02-13 2015-02-12 Method for the manufacture of a substrate provided with a chromium vi-free and cobalt-free passivation.
CN201510079622.2A CN104846361B (en) 2014-02-13 2015-02-13 Method for manufacturing a substrate provided with a chromium VI-free and cobalt-free passivation
US14/621,434 US10011907B2 (en) 2014-02-13 2015-02-13 Method for the manufacture of a substrate provided with a chromium VI-free and cobalt-free passivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14155058.2A EP2907894B2 (en) 2014-02-13 2014-02-13 Method for production of a substrate with a chromium VI free and cobalt-free passivation

Publications (3)

Publication Number Publication Date
EP2907894A1 EP2907894A1 (en) 2015-08-19
EP2907894B1 EP2907894B1 (en) 2019-04-10
EP2907894B2 true EP2907894B2 (en) 2025-03-19

Family

ID=50101758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14155058.2A Active EP2907894B2 (en) 2014-02-13 2014-02-13 Method for production of a substrate with a chromium VI free and cobalt-free passivation

Country Status (8)

Country Link
US (1) US10011907B2 (en)
EP (1) EP2907894B2 (en)
KR (1) KR101897771B1 (en)
CN (1) CN104846361B (en)
BR (1) BR102015002873B1 (en)
ES (1) ES2732264T3 (en)
MX (1) MX369943B (en)
RU (1) RU2652324C2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966195B1 (en) 2014-07-07 2024-04-17 RTX Corporation Method for single-bath post treatment of substrate
ES2721434T3 (en) * 2014-12-30 2019-07-31 Doerken Ewald Ag Passivation composition comprising a silane modified silicate compound
CN105256298A (en) * 2015-11-02 2016-01-20 常熟风范电力设备股份有限公司 Efficient and environment-friendly chromate-free passivation solution and preparation method thereof
CN105401141A (en) * 2015-11-04 2016-03-16 合肥海源机械有限公司 Gel aluminum alloy cured film forming solution and preparation method thereof
KR101786358B1 (en) * 2016-06-14 2017-10-18 주식회사 포스코 Solution composition for surface treating of steel sheet, zinc-based metal plated steel sheet using the same, and manufacturing method of the same
US10138566B2 (en) * 2017-01-13 2018-11-27 Macdermid Acumen, Inc. Sealing anodized aluminum using a low-temperature nickel-free process
CN109112510A (en) * 2017-06-22 2019-01-01 海门市源美美术图案设计有限公司 A kind of aluminum non-chromium passivator
EP3428314B1 (en) * 2017-07-14 2019-11-13 Ewald Dörken Ag Composition and method for passivating galvanized components
CN107815676B (en) * 2017-11-24 2020-05-12 沈阳帕卡濑精有限总公司 Multifunctional trivalent chromium passivator capable of continuously and rapidly treating surface of strip steel and preparation method and application thereof
US20210062346A1 (en) * 2018-02-19 2021-03-04 Chemetall Gmbh Process for selective phosphating of a composite metal construction
US20200340122A1 (en) * 2019-04-26 2020-10-29 Bulk Chemicals, Inc. Process and composition for passivating metal surfaces
DE102019219391A1 (en) * 2019-12-11 2021-06-17 Robert Bosch Gmbh Process for the production of a membrane for an ultrasonic sensor and membrane for an ultrasonic transducer
CN110983411A (en) * 2020-01-07 2020-04-10 昆明理工大学 Preparation method of natural color conversion film on surface of aluminum alloy
WO2022050948A1 (en) * 2020-09-04 2022-03-10 Hewlett-Packard Development Company, L.P. Housings for electronic devices
WO2022055472A1 (en) * 2020-09-08 2022-03-17 Hewlett-Packard Development Company, L.P. Housings for electronic devices
CN115584496B (en) * 2022-10-25 2024-10-29 福建省金龙稀土股份有限公司 Surface treatment method for permanent magnet, permanent magnet and protective film thereof
CN116065145B (en) * 2022-12-27 2024-08-23 浙江鑫盛永磁科技股份有限公司 Preparation and passivation treatment method of neodymium iron boron magnetic steel passivation solution

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2097024A (en) 1981-04-16 1982-10-27 Hooker Chemicals Plastics Corp Treating metal surfaces to improve corrosion resistance
EP0337411A2 (en) 1988-04-12 1989-10-18 SurTec GmbH Process for preparing an acidic passivating bath for zinc, zinc alloys an cadmium surfaces, containing chromium III and fluoride
DE4138218A1 (en) 1991-11-21 1993-05-27 Doerken Ewald Ag NIGHT DIP FOR THE TREATMENT OF CHROMATED OR PASSIVATED ZINCING LAYERS
WO1995024517A1 (en) 1994-03-07 1995-09-14 University Of Cincinnati Metal pretreated with an aqueous solution containing a dissolved inorganic silicate or aluminate, an organofunctional silane and a non-functional silane for enhanced corrosion resistance
DE19638176A1 (en) 1996-09-18 1998-04-16 Surtec Produkte Und Systeme Fu Corrosion resistant hexavalent chromium-free chromate coating
EP0922785A2 (en) 1996-10-30 1999-06-16 Nihon Hyomen Kagaku Kabushiki Kaisha Treating solution and treating method for forming protective coating films on metals
WO1999051793A1 (en) 1998-04-01 1999-10-14 Kunz Gmbh Agent for sealing metallic ground coats, especially ground coats consisting of zinc or zinc alloys
US20060054248A1 (en) 2004-09-10 2006-03-16 Straus Martin L Colored trivalent chromate coating for zinc
WO2008151829A1 (en) 2007-06-14 2008-12-18 Atotech Deutschland Gmbh Anticorrosive treatment for conversion layers
US20100133113A1 (en) 2007-03-05 2010-06-03 Atotech Deutschland Gmbh Chromium(vi)-free black passivation of surfaces containing zinc
DE102009042861A1 (en) 2009-09-24 2011-03-31 AnJo Oberflächentechnik GmbH Composition, useful to passivate zinc and its alloy, comprises passivation solution comprising chromium(III)-compound, soluble nitrates, fluorides and organic acids, and an activation solution comprising e.g. tin(II)- or tin(IV)-salts
DE102011013319A1 (en) 2011-03-07 2012-09-13 AnJo Oberflächentechnik GmbH Composition for application solution for performing passivation of zinc and its alloy, comprises passivation solution having chromium compound, soluble nitrate and organic acid, and activation solution having tin salt and phosphonic acid
EP2784188A1 (en) 2013-03-26 2014-10-01 ATOTECH Deutschland GmbH Process for corrosion protection of iron containing materials
US8951363B2 (en) 2009-07-03 2015-02-10 Atotech Deutschland Gmbh Anti-corrosive treatment for surfaces made of zinc and zinc alloys

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989550A (en) 1975-04-21 1976-11-02 Amchem Products, Inc. Method of forming a hydrophilic coating on an aluminum surface
US4424559A (en) 1981-02-27 1984-01-03 New Brunswick Scientific Co., Inc. Modular instrumentation for monitoring and control of biochemical processes
US4359346A (en) * 1981-04-16 1982-11-16 Occidental Chemical Corporation Trivalent chromium passivate solution and process for yellow passivate film
JPS5880355A (en) 1981-11-06 1983-05-14 Daikin Ind Ltd Composition for forming hydrophilic film
US4578122A (en) 1984-11-14 1986-03-25 Omi International Corporation Non-peroxide trivalent chromium passivate composition and process
US5415688A (en) 1993-09-20 1995-05-16 Ameron, Inc. Water-borne polysiloxane/polysilicate binder
DE10010758A1 (en) * 2000-03-04 2001-09-06 Henkel Kgaa Corrosion protection of zinc, aluminum and/or magnesium surfaces such as motor vehicle bodies, comprises passivation using complex fluorides of Ti, Zr, Hf, Si and/or B and organic polymers
DE10261014B4 (en) 2002-12-24 2005-09-08 Chemetall Gmbh Process for coating metal surfaces with an alkali phosphating solution, aqueous concentrate and use of the metal surfaces coated in this way
CN1252193C (en) * 2003-01-27 2006-04-19 陈新州 Water soluble strong corrosion-resistant, rust-resisting, anti-algae mastic coating
KR100979010B1 (en) 2003-05-29 2010-08-30 주식회사 포스코 High corrosion resistance coating solution for galvanized steel sheet and galvanized steel sheet coated with this solution
KR100573586B1 (en) 2003-12-15 2006-04-24 주식회사 포스코 High corrosion resistance coating solution for galvanized steel sheet and hot dip galvanized steel sheet coated with this solution
JP3784400B1 (en) * 2005-05-27 2006-06-07 日本パーカライジング株式会社 Chemical conversion solution for metal and processing method
US8748007B2 (en) 2006-05-02 2014-06-10 Ppg Industries Ohio, Inc. Coating compositions exhibiting corrosion resistance properties, related coated articles and methods
DE102007045186A1 (en) 2007-09-21 2009-04-09 Continental Teves Ag & Co. Ohg Residue-free, layer-forming, aqueous sealing system for metallic silane-based surfaces
WO2010035819A1 (en) 2008-09-29 2010-04-01 ユケン工業株式会社 Composition for chemical conversion treatment and process for production of member having black coating by using the composition
EP2216371A1 (en) 2009-02-07 2010-08-11 Cognis IP Management GmbH Solvent-free water-soluble silane modified silicates
WO2011147447A1 (en) 2010-05-26 2011-12-01 Atotech Deutschland Gmbh Process for forming corrosion protection layers on metal surfaces
JP6053687B2 (en) 2010-10-27 2016-12-27 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH Aqueous composition for pretreatment of a metal surface before further coating or for treating said surface
EP2492371A1 (en) 2011-02-24 2012-08-29 Dr.Ing. Max Schlötter GmbH & Co. KG Cobalt-free passivation solution and method for depositing cobalt-free passivation coatings on zinc and zinc alloy surfaces
DE102011111757A1 (en) 2011-08-24 2013-02-28 Coventya Gmbh Sealant and its use and sealed metallic substrate
KR101514194B1 (en) * 2012-04-27 2015-04-21 니혼 파커라이징 가부시키가이샤 Surface-treated galvanized steel sheet having excellent wound and end face corrosion resistance and method for manufacturing same
CN102732869B (en) * 2012-05-30 2014-04-30 合肥华清方兴表面技术有限公司 Chromium-free passivating agent for galvanized plate with organosilane as main component

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2097024A (en) 1981-04-16 1982-10-27 Hooker Chemicals Plastics Corp Treating metal surfaces to improve corrosion resistance
DE3213384A1 (en) 1981-04-16 1982-12-09 Hooker Chemicals & Plastics Corp., 48089 Warren, Mich. AQUEOUS ACID SOLUTION AND METHOD FOR THE TREATMENT OF RECEIVABLE METAL SUBSTRATES FOR THE AWARD OF A PASSIVATION FILM
EP0337411A2 (en) 1988-04-12 1989-10-18 SurTec GmbH Process for preparing an acidic passivating bath for zinc, zinc alloys an cadmium surfaces, containing chromium III and fluoride
DE4138218A1 (en) 1991-11-21 1993-05-27 Doerken Ewald Ag NIGHT DIP FOR THE TREATMENT OF CHROMATED OR PASSIVATED ZINCING LAYERS
WO1995024517A1 (en) 1994-03-07 1995-09-14 University Of Cincinnati Metal pretreated with an aqueous solution containing a dissolved inorganic silicate or aluminate, an organofunctional silane and a non-functional silane for enhanced corrosion resistance
DE19638176A1 (en) 1996-09-18 1998-04-16 Surtec Produkte Und Systeme Fu Corrosion resistant hexavalent chromium-free chromate coating
EP0922785A2 (en) 1996-10-30 1999-06-16 Nihon Hyomen Kagaku Kabushiki Kaisha Treating solution and treating method for forming protective coating films on metals
DE69737195T2 (en) 1996-10-30 2007-04-26 Nihon Hyomen Kagaku K.K. Solution and method for the production of protective layers on metals
US6478886B1 (en) 1998-04-01 2002-11-12 Kunz Gmbh Agent for sealing metallic ground coats, especially ground coats consisting of zinc or zinc alloys
WO1999051793A1 (en) 1998-04-01 1999-10-14 Kunz Gmbh Agent for sealing metallic ground coats, especially ground coats consisting of zinc or zinc alloys
US20060054248A1 (en) 2004-09-10 2006-03-16 Straus Martin L Colored trivalent chromate coating for zinc
US20100133113A1 (en) 2007-03-05 2010-06-03 Atotech Deutschland Gmbh Chromium(vi)-free black passivation of surfaces containing zinc
WO2008151829A1 (en) 2007-06-14 2008-12-18 Atotech Deutschland Gmbh Anticorrosive treatment for conversion layers
US20100180793A1 (en) 2007-06-14 2010-07-22 Atotech Deutschland Gmbh Anti-corrosion treatment for conversion layers
US8951363B2 (en) 2009-07-03 2015-02-10 Atotech Deutschland Gmbh Anti-corrosive treatment for surfaces made of zinc and zinc alloys
DE102009042861A1 (en) 2009-09-24 2011-03-31 AnJo Oberflächentechnik GmbH Composition, useful to passivate zinc and its alloy, comprises passivation solution comprising chromium(III)-compound, soluble nitrates, fluorides and organic acids, and an activation solution comprising e.g. tin(II)- or tin(IV)-salts
DE102011013319A1 (en) 2011-03-07 2012-09-13 AnJo Oberflächentechnik GmbH Composition for application solution for performing passivation of zinc and its alloy, comprises passivation solution having chromium compound, soluble nitrate and organic acid, and activation solution having tin salt and phosphonic acid
EP2784188A1 (en) 2013-03-26 2014-10-01 ATOTECH Deutschland GmbH Process for corrosion protection of iron containing materials

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DINGWERTH B.: "The second conversion coating - final finishing black passivates with trivalent chromium based post-dip solutions", GALVANOTECHNIK, vol. 5, May 2008 (2008-05-01), pages 1080 - 1096
Silica Sols and Colloidal Silica - Major Reference Works, Wiley Online Library
SONNTAG B. ET AL.: "Chrom (VI) freie Passivierungen für die Automobilindustrie", GALVANOTECHNIK, vol. 10, no. BD, 94, 2003, pages 2 - 7
Van Ooij et al., p. 323-343, Silanes and other coupling agents .VSP, Utrecht. Niederlande. 1992

Also Published As

Publication number Publication date
US10011907B2 (en) 2018-07-03
CN104846361A (en) 2015-08-19
MX369943B (en) 2019-11-27
RU2015104265A (en) 2016-08-27
CN104846361B (en) 2019-07-19
KR20150095583A (en) 2015-08-21
EP2907894A1 (en) 2015-08-19
ES2732264T3 (en) 2019-11-21
MX2015001916A (en) 2015-09-21
BR102015002873A2 (en) 2016-06-21
EP2907894B1 (en) 2019-04-10
US20150225856A1 (en) 2015-08-13
RU2652324C2 (en) 2018-04-25
KR101897771B1 (en) 2018-10-04
BR102015002873B1 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
EP2907894B2 (en) Method for production of a substrate with a chromium VI free and cobalt-free passivation
EP2255025B1 (en) Process for coating metallic surfaces with a passivating agent
DE102008014465B4 (en) Optimized Ti / Zr passivation agent for metal surfaces and conversion treatment method
EP2507408B1 (en) Multi-stage pre-treatment method for metal components having zinc and iron surfaces
DE102005059314B4 (en) Acid, chromium-free aqueous solution, its concentrate, and a process for the corrosion protection treatment of metal surfaces
DE60127921T2 (en) Process for coating metal surfaces
EP1978131B2 (en) Means for manufacturing corrosion protection coats on metal surfaces
DE69429627T2 (en) METAL TREATMENT WITH ACID, RARE EARTH CLEANING SOLUTIONS CONTAINING ION
WO2001059181A2 (en) Anti-corrosive agents and method for protecting metal surfaces against corrosion
DE102012219296A1 (en) Process for coating metallic surfaces with an aqueous composition of many components
WO2017194187A1 (en) Conversion coatings for metal surfaces
EP3044348B1 (en) Treatment solution containing chromium(iii) for a method for producing an anti-corrosion coating layer, concentrate of such a treatment solution, and method for producing an anti-corrosion coating layer
EP2956569B1 (en) Method for coating metallic surfaces for preventing pinholes on zinc-containing metal surfaces
EP2255028B1 (en) Optimized electrocoating of assembled and partly prephosphated components
EP2900766B1 (en) Passivating alkaline composition on the basis of water glass
EP2743376A1 (en) Aqueous agent and coating method for the corrosion protection treatment of metal substrates
EP3428314B1 (en) Composition and method for passivating galvanized components
EP3044347A1 (en) Method for producing an anticorrosive coating on a metal dispersion dry film or on a surface of a m-scaled metal particle and use of a treatment solution for carrying out such a method
DE19602984A1 (en) Production of protective layer on metal surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20151105

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170802

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1118745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011354

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190410

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190910

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2732264

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014011354

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

26 Opposition filed

Opponent name: ATOTECH DEUTSCHLAND GMBH

Effective date: 20200109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200213

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200213

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ATOTECH DEUTSCHLAND GMBH

Effective date: 20200109

R26 Opposition filed (corrected)

Opponent name: ATOTECH DEUTSCHLAND GMBH

Effective date: 20200109

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APAW Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ATOTECH DEUTSCHLAND GMBH & CO. KG

Effective date: 20200109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240325

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240223

Year of fee payment: 11

Ref country code: GB

Payment date: 20240219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240219

Year of fee payment: 11

Ref country code: IT

Payment date: 20240228

Year of fee payment: 11

Ref country code: FR

Payment date: 20240221

Year of fee payment: 11

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20250319

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014011354

Country of ref document: DE