[go: up one dir, main page]

EP2904625B1 - Gleichspannungsleistungsschalter - Google Patents

Gleichspannungsleistungsschalter Download PDF

Info

Publication number
EP2904625B1
EP2904625B1 EP12808730.1A EP12808730A EP2904625B1 EP 2904625 B1 EP2904625 B1 EP 2904625B1 EP 12808730 A EP12808730 A EP 12808730A EP 2904625 B1 EP2904625 B1 EP 2904625B1
Authority
EP
European Patent Office
Prior art keywords
switching
parallel
switching direction
path
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12808730.1A
Other languages
English (en)
French (fr)
Other versions
EP2904625A1 (de
Inventor
Dominik ERGIN
Hans-Joachim Knaak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to PL12808730T priority Critical patent/PL2904625T3/pl
Publication of EP2904625A1 publication Critical patent/EP2904625A1/de
Application granted granted Critical
Publication of EP2904625B1 publication Critical patent/EP2904625B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/547Combinations of mechanical switches and static switches, the latter being controlled by the former
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/546Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the AC cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the AC cycle for interrupting DC

Definitions

  • the invention relates to a device for switching direct currents in a pole of a direct voltage network comprising two terminal connectable with the terminal terminals, between which extends an operating current path with a mechanical switch which can be bridged by a Abschaltzweig in which a power switching unit is arranged, the one Series connection of two-pole submodules having at least one switchable power semiconductor switch, and commutation means for commutating the current from the operating current path in the Abschaltzweig, wherein the submodules of the power switching unit form a first and a second switching direction group, each for switching off currents in a unidirectional switching direction are set, wherein the switching direction of the first switching direction group is oriented opposite to the switching direction of the second switching direction group.
  • Such a device is for example from the WO 2011/057675 known.
  • the illustrated there DC voltage switch has an operating current path with a mechanical switch and a Abschaltzweig, which is connected in parallel to the operating current path.
  • Abschaltzweig a series circuit of power semiconductor switches is arranged, each of which a freewheeling diode is connected in parallel in opposite directions.
  • the existing of power semiconductor switch and freewheeling diode switching units are arranged antiserial, so that there are switching direction groups. Each switching group is capable of carrying currents in both directions, but only switching off in one direction.
  • two antiserial to each other arranged switching direction groups are provided, so that in the Abschaltzweig currents can be turned off in both directions.
  • commutation means are arranged in the form of an electronic auxiliary switch.
  • an operating current flows through the operating current path and thus via the closed mechanical switch, since the power semiconductor switch the Abschaltzweiges represent an increased resistance to the DC current.
  • the electronic auxiliary switch is transferred to its disconnected position.
  • the resistance increases in the operating current path, so that the direct current commutes in the Abschaltzweig.
  • the fast mechanical disconnector can then be opened without current.
  • arresters are provided which are connected in parallel to the power semiconductor switch of the turn-off branch.
  • the prior art device has the disadvantage that doubles in a switching capability of currents in both directions of the power semiconductor overhead. For each direction of flow a switching group is provided. Each switching group must be able to switch both the high short-circuit currents and to withstand the resulting high voltages. The additional effort required to achieve the switching capability in both directions is thus enormous.
  • the object of the invention is to provide a device of the type mentioned, which is inexpensive.
  • the invention solves this problem in that the first switching group for switching off load and short-circuit currents and the second switching direction group is set up exclusively for switching off load currents, and protection means for protecting the second switching direction group are provided in the event of a short circuit.
  • the invention is based on the idea that short-circuit currents often only have to be switched off in one direction, whereas load currents have to be conducted and switched in both directions.
  • the second switching group is designed in the context of the invention only to the requirement of the current carrying capacity of the load current.
  • This semiconductor path designed for lower currents must therefore be protected against possible fault currents.
  • protection means are provided which provide protection of the second switching group, for example, when a short circuit occurs.
  • the first switching direction group is set up to conduct and switch even high short-circuit currents.
  • short-circuit currents can therefore be switched off in only one direction.
  • the load currents can be switched off in both directions.
  • the semiconductor expense for the design of the second switching group has thus reduced considerably compared to the previously known prior art device.
  • the switch according to the invention is therefore less expensive. In this case, the device of the invention is the most in practice requirements. Thus, within the scope of the invention, a practical low-cost power semiconductor switch is provided.
  • the protection means comprise a parallel path for bridging the second switching direction group.
  • the short-circuit current is conducted via the parallel path, so that the second switching direction group designed to carry lower currents is protected.
  • a mechanical switch is arranged in the parallel path.
  • the said switch In the case of a short circuit, the said switch is closed, so that a low-inductive bypass path is provided for protecting the second switching direction group.
  • the mechanical switch In order to switch the load current with the second switching direction group, the mechanical switch is opened in the parallel path.
  • a diode and / or a thyristor are arranged in the parallel path.
  • Each diode arranged in the parallel path and each thyristor arranged there has a forward direction which corresponds to the switching direction of the first switching direction group.
  • Each diode and each thyristor is designed to carry high short-circuit currents. The short-circuit currents which can be switched off by the first switching group are thus passed through the diode and the thyristor, which are designed for these high currents and thus are not destroyed.
  • the parallel path has a greater conductivity in the forward direction of the diode and / or the thyristor than the path bridged by it, including the second switching direction group. According to this further development, it is ensured that the short-circuit current is not conducted via the freewheeling diodes of the second switching direction group due to a possibly lower ohmic resistance. In other words, the power semiconductors of the parallel path have a higher conductivity than the freewheeling diodes of the second switching direction group.
  • the commutation means are arranged in the turn-off branch and set up to generate a circulating current which flows over the bridged section of the operating current path and the turn-off branch and which is opposite to the current in the mechanical switch.
  • the constant operating current can be conducted in a loss-free manner over the operating path in normal operation, in which only a low-impedance mechanical switch is arranged.
  • Power electronic auxiliary switches in the operating current path with high losses in the wake have become superfluous.
  • the arranged in Abschaltzweig commutation are, for example, part of the power switching unit of the second switching direction group and therefore protected by the protective means from excessive currents.
  • the commutation means are designed for the maximum fault current and expediently arranged in the first switching direction group. After commutation of the current, the mechanical switch is opened. As soon as it provides sufficient dielectric strength, the commutation means can be used to switch off the currents flowing via the turn-off branch.
  • the commutation means are preferably two-pole submodules which are connected in series with one another in the turn-off branch, for example as part of the first switching direction group.
  • each submodule has an energy store, such as a capacitor, to which a power semiconductor circuit is connected in parallel.
  • These submodules can form, for example, a half or full bridge circuit.
  • the inverse energy storage voltage can then also be generated. In this way, circulating currents can be generated which flow in both directions in said mesh.
  • commutation in the form of a power electronic auxiliary switch in the operating current path.
  • the power electronic auxiliary switch for example, an IGBT with opposite parallel freewheeling diode.
  • the submodules of the power switching unit at least partially each have a power semiconductor switch which can be switched on and off and a freewheeling diode connected in parallel in opposite directions.
  • Such submodules do not serve as commutation means.
  • an oppositely parallel freewheeling diode and backward conductive power semiconductor switches can be used.
  • the two-pole submodules are arranged in series, wherein the freewheeling diodes can only conduct the current flowing through the turn-off branch in one direction. The currents can only be switched off in the forward direction of the respective power semiconductor switch.
  • the submodules are arranged antiserially, so that two switching direction groups are formed.
  • the submodules of the power switching unit each have at least partially an energy store and a parallel connected to the energy storage series circuit of two switched on and off power semiconductor switches with oppositely arranged parallel thereto freewheeling diodes, wherein a submodule connection terminal with a potential point between the on and off power semiconductor switches and the other terminal are connected to a pole of the energy storage.
  • Such submodules form a so-called half-bridge circuit.
  • Submodules with a half-bridge circuit can be used with appropriate orientation as a commutating means, as already stated above.
  • the submodules of the power switching unit at least partially an energy storage and two parallel connected to the energy storage series circuits with two switched on and off power semiconductor switches with oppositely parallel freewheeling diode, a first terminal with the potential point between the two power semiconductor switches of the first Series connection and a second submodule connection terminal is connected to the potential point between the two power semiconductor switches of the second series circuit.
  • the power switching unit comprises at least partially submodules with full bridge circuit.
  • Such submodules can carry and switch currents in both directions. They are also able to generate voltages in the loop formed by Abschaltzweig and operating current path, which provide in said mesh a circular current for commutating the currents from the operating current path in the Abschaltzweig.
  • each submodule is connected to one another via a diode or a thyristor.
  • the diode or the thyristor therefore allows bridging of the submodule and thus constitute protection means integrated in the submodules.
  • the power switching unit has varistors and / or arresters connected in parallel with at least one submodule.
  • the varistors and / or arresters are at least partially connected in parallel to an energy store.
  • a charging branch is expediently provided which is connected either to a ground potential or to an opposite pole polarized opposite to the pole.
  • the charging branch is connected at its end facing away from the opposite pole or ground potential to the turn-off branch.
  • an ohmic resistance is arranged in the charging branch.
  • FIG. 1 shows a DC circuit breaker 1 already described, which has a first terminal 2 and a second terminal 3, with which the DC voltage circuit breaker 1 can be connected in series in a non-illustrated pole of a DC voltage network.
  • an operating current path 4 to which a turn-off branch 5 is connected in parallel extends.
  • a first branch point 6 and a second branch point 7 are formed.
  • a mechanical switch 8 is arranged in the operating current path 4.
  • the turn-off branch 5 has a power switching unit 9 with a first switching direction group 10 and a second switching direction group 11.
  • Each switching direction group 10, 11 has a series connection of two-pole submodules 12, of which only one is shown for each switching direction group 10 and 11.
  • Each submodule 12 has, for example, a power semiconductor switch 13 which can be switched on and off, to which a freewheeling diode 14 is connected in parallel in opposite directions.
  • Conversely not shown arrester are arranged parallel to the submodules 12, with which a stored energy in the network and released during switching energy can be reduced.
  • a short-circuit current now flows from the branching point 6 to the branching point 7 via the turn-off branch 5, this is conducted via the series-connected power semiconductor switches 13 of the first switching direction group 10 and via the series-connected freewheeling diodes 14 of the second switching direction group 11.
  • a current flow in this direction can only be switched off by the switching direction group 10.
  • the power semiconductor switch 13 of this group are transferred by a control signal in its blocking position.
  • a current flows from Branch point 7 via the Abschaltzweig 5 to the branching point 6 this is performed via the series-connected power semiconductor switch 13 of the second switching direction group 11 and the series-connected freewheeling diodes 14 of the first switching direction group 10.
  • a current in this direction can only be switched off by the second switching direction group.
  • the power semiconductor switches 13 of the second switching group 11 are transferred to their disconnected position.
  • commutating means include, for example, arranged in the operating current path auxiliary switch, which also forms two switching direction groups, so that its power semiconductor switch 13 block a current flow in both directions and thus provide for a commutation in the Abschalzweig.
  • the fast mechanical switch 8 can then be opened and then the current through the power switching unit 9 are turned off.
  • the commutation means can be arranged in the turn-off branch 5 and to generate this voltage, in which mesh formed from the operating current path 4 and the turn-off branch 5 is set up.
  • Two-pole submodules each having an energy store and a power semiconductor circuit, which preferably form a full bridge circuit with one another, serve to generate a voltage.
  • a zero voltage or the inverse energy storage voltage can now be generated.
  • a circulating current can be generated in the said mesh, which is opposite to the current flowing over the operating current path 4. It comes to commutation of the total current in the Abschaltzweig 5.
  • other not mentioned here commutation can be used.
  • FIG. 2 shows an embodiment of the device 15 according to the invention, all the features of the DC power switch 1 according to FIG. 1 have, so that the comments made here apply as well, with the difference that the second switching direction group 11 is set up only for switching and guiding of load currents.
  • the first switching group 10 for example, a maximum withstand voltage, which corresponds to twice the rated voltage.
  • the maximum turn-off current of the first switching group 10 is for example eight times the rated current.
  • the second switching group 11, for example has a maximum withstand voltage, which corresponds to 1.2 times the rated voltage, the maximum cut-off current being equal to the rated current.
  • protection means are provided, which here comprise a parallel path 16 in which a mechanical switch 17 is arranged.
  • load currents can now be switched off and performed in both directions.
  • the load current is commutated into the turn-off branch 5 with the aid of the commutation means described above. If the load current flows from the terminal 3 to the terminal 2, it is switched off by the second switching group 11.
  • the first switching direction group 10 takes over the switching off of load currents flowing from the terminal 2 to the terminal 3.
  • FIG. 3 shows a further embodiment of the device according to the invention
  • the in FIG. 2 shown embodiment corresponds to substantially, but in the parallel path 16 instead of a mechanical switch, a diode D 1 is arranged.
  • the diode D 1 has a forward direction, which is opposite to the switching direction of the second switching direction group 11.
  • the diode D 1 has the same forward direction as the series-connected freewheeling diodes 14 of the second switching direction group 11.
  • the diode D 1 has a greater conductivity than the series connection of the freewheeling diodes of the second switching direction group 11.
  • a single diode D 1 in the parallel path 16 or a single mechanical switch or a single thyristor will not be sufficient, so that a series circuit of such components in the parallel path 16 is arranged.
  • This series connection of thyristors can be integrated into the submodules of the second switching direction group 11, so that compact components are provided. This also reduces the insulation and design effort.
  • the submodules 12 of the power switching unit 9 are equipped with an energy store and a power semiconductor circuit, which together form a half or preferably a full bridge circuit.
  • Each submodule can be between its submodule connection terminals one each as in FIG. 3 have oriented diode or an equally oriented thyristor.
  • the protection means are integrated into the series-connected two-pole submodules of the second switching direction group 11.

Landscapes

  • Electronic Switches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Schalten von Gleichströmen in einem Pol eines Gleichspannungsnetzes umfassend zwei seriell mit dem Pol verbindbaren Anschlussklemmen, zwischen denen sich ein Betriebsstrompfad mit einem mechanischen Schalter erstreckt, der durch einen Abschaltzweig überbrückbar ist, in dem eine Leistungsschalteinheit angeordnet ist, die eine Reihenschaltung von zweipoligen Submodulen mit wenigstens einem ein- und abschaltbaren Leistungshalbleiterschalter aufweist, und Kommutierungsmitteln zum Kommutieren des Stroms von dem Betriebsstrompfad in den Abschaltzweig, wobei die Submodule der Leistungsschalteinheit eine erste und eine zweite Schaltrichtungsgruppe ausbilden, die jeweils zum Abschalten von Strömen in einer unidirektionalen Schaltrichtung eingerichtet sind, wobei die Schaltrichtung der ersten Schaltrichtungsgruppe entgegengesetzt zur Schaltrichtung der zweiten Schaltrichtungsgruppe orientiert ist.
  • Eine solche Vorrichtung ist beispielsweise aus der WO 2011/057675 bekannt. Der dort verdeutlichte Gleichspannungsschalter weist einen Betriebsstrompfad mit einem mechanischen Schalter sowie einem Abschaltzweig auf, der dem Betriebsstrompfad parallel geschaltet ist. In dem Abschaltzweig ist eine Reihenschaltung von Leistungshalbleiterschaltern angeordnet, denen jeweils eine Freilaufdiode gegensinnig parallel geschaltet ist. Die aus Leistungshalbleiterschalter und Freilaufdiode bestehenden Schalteinheiten sind antiseriell angeordnet, so dass Schaltrichtungsgruppen vorliegen. Jede Schaltrichtungsgruppe ist in der Lage, Ströme in beiden Richtungen zu führen, jedoch nur in einer Richtung abzuschalten. In dem Abschaltzweig sind daher zwei antiseriell zueinander angeordnete Schaltrichtungsgruppen vorgesehen, so dass in dem Abschaltzweig Ströme in beiden Richtungen abgeschaltet werden können. Im Betriebsstrompfad sind Kommutierungsmittel in Gestalt eines elektronischen Hilfsschalters angeordnet. Im malbetrieb fließt ein Betriebsstrom über den Betriebsstrompfad und somit über den geschlossenen mechanischen Schalter, da die Leistungshalbleiterschalter des Abschaltzweiges einen erhöhten Widerstand für den Gleichstrom darstellen. Zum Unterbrechen beispielsweise eines Kurzschlussstromes, wird der elektronische Hilfsschalter in seine Trennstellung überführt. Hierdurch steigt der Widerstand im Betriebsstrompfad an, so dass der Gleichstrom in den Abschaltzweig kommutiert. Der schnelle mechanische Trennschalter kann dann stromlos geöffnet werden. Zur Aufnahme der im Gleichspannungsnetz gespeicherten und beim Schalten abzubauenden Energie sind Ableiter vorgesehen, die dem Leistungshalbleiterschalter des Abschaltzweiges parallel geschaltet sind.
  • Der vorbekannten Vorrichtung haftet der Nachteil an, dass sich bei einer Schaltfähigkeit von Strömen in beiden Richtungen der Leistungshalbleiteraufwand verdoppelt. Für jede Stromrichtung ist eine Schaltrichtungsgruppe vorgesehen. Dabei muss jede Schaltrichtungsgruppe in der Lage sein, sowohl die hohen Kurzschlussströme zu schalten, als auch den entstehenden hohen Spannungen Stand zu halten. Der Mehraufwand zum Erreichen der Schaltfähigkeit in beiden Richtungen ist somit enorm.
  • Eine weitere Vorrichtung zum bidirektionalen Schalten von Gleichströmen ist in der WO 2011/095212 A2 offenbart. Dort sind im Abschaltzweig in Reihe angeordnete Basiseinheiten vorgesehen, die jeweils zwei Halbleiterschalter mit entgegengesetzten Durchlassrichtungen umfassen.
  • Aus der DE 10 2010 007 452 A1 ist eine Schaltentlastung für einen Trennschalter bekannt.
  • Aufgabe der Erfindung ist es, eine Vorrichtung der eingangs genannten Art bereitzustellen, die kostengünstig ist.
  • Die Erfindung löst diese Aufgabe dadurch, dass die erste Schaltrichtungsgruppe zum Abschalten von Last- und Kurzschlussströmen und die zweite Schaltrichtungsgruppe ausschließlich zum Abschalten von Lastströmen eingerichtet ist und Schutzmittel zum Schutz der zweiten Schaltrichtungsgruppe im Kurzschlussfall vorgesehen sind.
  • Die Erfindung basiert auf der Idee, dass Kurzschlussströme oftmals nur in einer Richtung abgeschaltet werden müssen, wohingegen Lastströme in beiden Richtungen geführt und geschaltet werden müssen. Im Rahmen der Erfindung wird daher das bisherige Schaltkonzept dahin erweitert, dass die notwendige bidirektionale Laststromschaltfähigkeit durch eine erste und zweite Schaltrichtungsgruppe bereitgestellt wird. Die zweite Schaltrichtungsgruppe ist jedoch im Rahmen der Erfindung nur auf die Anforderung der Stromträgfähigkeit des Laststromes ausgelegt. Dieser für geringere Ströme ausgelegte Halbleiterpfad muss daher vor möglichen Fehlerströmen geschützt werden. Hierfür sind Schutzmittel vorgesehen, die beispielsweise beim Auftreten eines Kurzschlusses einen Schutz der zweiten Schaltrichtungsgruppe bereitstellen. Die erste Schaltrichtungsgruppe ist zum Führen und Schalten auch hoher Kurzschlussströme eingerichtet. Im Rahmen der Erfindung können Kurzschlussströme daher in nur einer Richtung abgeschaltet werden. Die Lastströme sind hingegen in beiden Richtungen abschaltbar. Der Halbleiteraufwand zur Ausgestaltung der zweiten Schaltrichtungsgruppe hat sich gegenüber der eingangs genannten vorbekannten Vorrichtung somit beträchtlich verringert. Der erfindungsgemäße Schalter ist daher kostengünstiger. Dabei wird die erfindungsgemäße Vorrichtung den meisten in der Praxis gestellten Anforderungen gerecht. Somit ist im Rahmen der Erfindung ein praxistauglicher kostengünstiger Leistungshalbleiterschalter bereitgestellt.
  • Zweckmäßigerweise umfassen die Schutzmittel einen Parallelpfad zum Überbrücken der zweiten Schaltrichtungsgruppe. Im Fehlerfall, also beim Auftreten hoher Ströme, wird gemäß dieser vorteilhaften Ausgestaltung der Erfindung der Kurzschlussstrom über den Parallelpfad geführt, so dass die zweite zum Führen geringerer Ströme ausgelegte Schaltrichtungsgruppe geschützt ist.
  • Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung ist in dem Parallelpfad ein mechanischer Schalter angeordnet. Im Kurzschlussfall ist der besagte Schalter geschlossen, so dass ein niederinduktiver Überbrückungspfad zum Schutz der zweiten Schaltrichtungsgruppe bereitgestellt ist. Um den Laststrom mit der zweiten Schaltrichtungsgruppe zu schalten, wird der mechanische Schalter im Parallelpfad geöffnet.
  • Gemäß einer diesbezüglich abweichenden Variante der Erfindung sind in dem Parallelpfad eine Diode und/oder ein Thyristor angeordnet. Jede in dem Parallelpfad angeordnete Diode und jeder dort angeordnete Thyristor weist eine Durchlassrichtung auf, die der Schaltrichtung der ersten Schaltrichtungsgruppe entspricht. Dabei ist jede Diode und jeder Thyristor zum Führen hoher Kurzschlussströme ausgelegt. Die Kurzschlussströme, die von der ersten Schaltrichtungsgruppe abgeschaltet werden können, werden somit über die Diode und den Thyristor geführt, die für diese hohen Ströme ausgelegt sind und somit nicht zerstört werden.
  • Zweckmäßigerweise weist der Parallelpfad eine größere Leitfähigkeit in Durchlassrichtung der Diode und/oder des Thyristors auf, als der von ihm überbrückte Pfad einschließlich der zweiten Schaltrichtungsgruppe. Gemäß dieser Weiterentwicklung ist sichergestellt, dass der Kurzschlussstrom aufgrund eines möglicherweise geringeren ohmschen Widerstands nicht über die Freilaufdioden der zweiten Schaltrichtungsgruppe geführt werden. Mit anderen Worten weisen die Leistungshalbleiter des Parallelpfades eine höhere Leitfähigkeit auf, als die Freilaufdioden der zweiten Schaltrichtungsgruppe.
  • Zweckmäßigerweise sind die Kommutierungsmittel im Abschaltzweig angeordnet und zum Erzeugen eines über den überbrückten Abschnitts des Betriebsstrompfades und den Abschaltzweig fließenden Kreisstromes eingerichtet, der dem Strom im mechanischen Schalter entgegengesetzt ist. Durch die Anordnung der Kommutierungsmittel im Abschaltzweig kann der konstante Betriebsstrom im Normalbetrieb verlustfrei über den Betriebspfad geführt werden, in dem lediglich ein niederohmiger mechanischer Schalter angeordnet ist. Leistungselektronische Hilfsschalter im Betriebsstrompfad mit hohen Verlusten im Gefolge sind demnach überflüssig geworden. Die im Abschaltzweig angeordneten Kommutierungsmittel sind, beispielsweise Teil der Leistungsschalteinheit der zweiten Schaltrichtungsgruppe und daher durch die Schutzmittel vor zu hohen Strömen geschützt. Die Kommutierungsmittel sind auf den maximalen Fehlerstrom ausgelegt und zweckmäßigerweise in der ersten Schaltrichtungsgruppe angeordnet. Nach der Kommutierung des Stromes wird der mechanische Schalter geöffnet. Sobald dieser eine ausreichende Spannungsfestigkeit bereitstellt, können die Kommutierungsmittel zum Abschalten der über den Abschaltzweig fließenden Ströme eingesetzt werden.
  • Bevorzugt handelt es sich bei den Kommutierungsmitteln um zweipolige Submodule, die in Reihenschaltung miteinander in den Abschaltzweig beispielsweise als Teil der ersten Schaltrichtungsgruppe geschaltet sind. Dabei weist jedes Submodul einen Energiespeicher, wie beispielsweise einen Kondensator, auf, dem eine Leistungshalbleiterschaltung parallel geschaltet ist. Diese Submodule können beispielsweise eine Halb- oder Vollbrückenschaltung ausbilden. An den beiden Submodulklemmen eines jeden Submoduls kann dann entweder die an dem Energiespeicher abfallende Spannung, eine Nullspannung und bei einer Vollbrückenschaltung auch die inverse Energiespeicherspannung erzeugt werden. Auf diese Art und Weise können Kreisströme erzeugt werden, die in beiden Richtungen in der besagten Masche fließen.
  • Selbstverständlich ist es im Rahmen der Erfindung auch möglich, Kommutierungsmittel in Gestalt eines leistungselektronischen Hilfsschalters im Betriebsstrompfad anzuordnen. Der leistungselektronische Hilfsschalter ist beispielsweise ein IGBT mit gegensinnig paralleler Freilaufdiode. Wird der besagte IGBT in seine Sperrstellung überführt, erhöht sich der Widerstand im Betriebsstrompfad, so dass der Strom in den Abschaltzweig kommutiert.
  • Gemäß einer bevorzugten Ausgestaltung der Erfindung weisen die Submodule der Leistungsschalteinheit zumindest teilweise jeweils einen ein- und abschaltbaren Leistungshalbleiterschalter und eine gegensinnig parallel dazu geschaltete Freilaufdiode auf. Solche Submodule dienen nicht als Kommutierungsmittel. Statt einer gegensinnig parallelen Freilaufdiode können auch rückwärts leitfähige Leistungshalbleiterschalter eingesetzt werden. Die zweipoligen Submodule sind in Reihe angeordnet, wobei die Freilaufdioden den über den Abschaltzweig fließenden Strom nur in einer Richtung führen können. Abschaltbar sind die Ströme nur in der Durchlassrichtung des jeweiligen Leistungshalbleiterschalters. Zur bidirektionalen Abschaltfähigkeit sind die Submodule antiseriell angeordnet, so dass zwei Schaltrichtungsgruppen ausgebildet sind.
  • Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung weisen die Submodule der Leistungsschalteinheit zumindest teilweise jeweils einen Energiespeicher und eine parallel zum Energiespeicher geschaltete Reihenschaltung aus zwei ein- und abschaltbaren Leistungshalbleiterschaltern mit gegensinnig parallel hierzu angeordneten Freilaufdioden auf, wobei eine Submodulanschlussklemme mit einem Potenzialpunkt zwischen den ein- und abschaltbaren Leistungshalbleiterschaltern und die andere Anschlussklemme mit einem Pol des Energiespeichers verbunden sind. Solche Submodule bilden eine so genannte Halbbrückenschaltung aus. Submodule mit einer Halbbrückenschaltung können bei zweckmäßiger Orientierung auch als Kommutierungsmittel eingesetzt werden, wie oben bereits ausgeführt ist.
  • Gemäß einer weiteren zweckmäßigen Ausgestaltung der Erfindung weisen die Submodule der Leistungsschalteinheit zumindest teilweise einen Energiespeicher und zwei parallel zum Energiespeicher geschaltete Reihenschaltungen mit jeweils zwei ein- und abschaltbaren Leistungshalbleiterschaltern mit gegensinnig paralleler Freilaufdiode auf, wobei eine erste Anschlussklemme mit dem Potenzialpunkt zwischen den beiden Leistungshalbleiterschaltern der ersten Reihenschaltung und eine zweite Submodulanschlussklemme mit dem Potenzialpunkt zwischen den beiden Leistungshalbleiterschaltern der zweiten Reihenschaltung verbunden ist. Gemäß dieser vorteilhaften Weiterentwicklung der Erfindung umfasst die Leistungsschalteinheit zumindest teilweise Submodule mit Vollbrückenschaltung. Solche Submodule können Ströme in beiden Richtungen führen und schalten. Sie sind darüber hinaus in der Lage, Spannungen in die aus Abschaltzweig und Betriebsstrompfad gebildeten Masche zu erzeugen, die in der besagten Masche einen Kreisstrom zum Kommutieren der Ströme vom Betriebsstrompfad in den Abschaltzweig sorgen.
  • Zweckmäßigerweise sind die Anschlussklemmen eines jeden Submoduls über eine Diode oder einen Thyristor miteinander verbindbar. Die Diode oder der Thyristor ermöglicht daher ein Überbrücken des Submoduls und stellen somit in die Submodule integrierte Schutzmittel dar.
  • Zum Abbau einer netzgespeicherten und beim Schalten abzubauenden Energie weist die Leistungsschalteinheit Varistoren und/oder Ableiter in Parallelschaltung zu wenigstens einem Submodul auf.
  • Zweckmäßigerweise sind die Varistoren und/oder Ableiter zumindest teilweise einem Energiespeicher parallel geschaltet.
  • Um die erfindungsgemäße Vorrichtung einfach in Betrieb nehmen zu können, ist zweckmäßigerweise ein Ladezweig vorgesehen, der entweder mit einem Erdpotenzial oder einem entgegengesetzt zum Pol polarisierten Gegenpol verbunden ist. Der Ladezweig ist an seinem vom Gegenpol oder Erdpotenzial abgewandten Ende mit dem Abschaltzweig verbunden. Zweckmäßigerweise ist im Ladezweig ein ohmscher Widerstand angeordnet.
  • Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirkende Bauteile verweisen und wobei
  • Figur 1
    ein Ausführungsbeispiel eines bidirektionalen Gleichspannungsleistungsschalters schematisch,
    Figur 2
    ein erstes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung und
    Figur 3
    ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung zeigen.
  • Figur 1 zeigt einen bereits beschriebenen Gleichspannungsleistungsschalter 1, der eine erste Anschlussklemme 2 sowie eine zweite Anschlussklemme 3 aufweist, mit denen der Gleichspannungsleistungsschalter 1 seriell in einen nicht dargestellten Pol eines Gleichspannungsnetzes geschaltet werden kann. Zwischen den Anschlussklemmen 2 und 3 erstreckt sich ein Betriebsstrompfad 4, dem ein Abschaltzweig 5 parallel geschaltet ist. Dabei sind ein erster Verzweigungspunkt 6 sowie ein zweiter Verzweigungspunkt 7 ausgebildet. In dem Betriebsstrompfad 4 ist ein mechanischer Schalter 8 angeordnet.
  • Der Abschaltzweig 5 verfügt über eine Leistungsschalteinheit 9 mit einer ersten Schaltrichtungsgruppe 10 und einer zweiten Schaltrichtungsgruppe 11. Jede Schaltrichtungsgruppe 10, 11 weist eine Reihenschaltung aus zweipoligen Submodulen 12 auf, von denen für jede Schaltrichtungsgruppe 10 und 11 jeweils nur eines dargestellt ist. Jedes Submodul 12 verfügt beispielsweise über einen ein- und abschaltbaren Leistungshalbleiterschalter 13, dem eine Freilaufdiode 14 gegensinnig parallel geschaltet ist. Parallel zu den Submodulen 12 sind figürlich nicht dargestellte Ableiter angeordnet, mit denen eine im Netz gespeicherte und beim Schalten freiwerdende Energie abgebaut werden kann. Fließt nun ein Kurzschlussstrom vom Verzweigungspunkt 6 zum Verzweigungspunkt 7 über den Abschaltzweig 5, wird dieser über die in Reihe geschalteten Leistungshalbleiterschalter 13 der ersten Schaltrichtungsgruppe 10 sowie über die in Reihe geschalteten Freilaufdioden 14 der zweiten Schaltrichtungsgruppe 11 geführt. Ein Stromfluss in dieser Richtung kann lediglich von der Schaltrichtungsgruppe 10 abgeschaltet werden. Hierzu werden die Leistungshalbleiterschalter 13 dieser Gruppe durch ein Steuersignal in ihre Sperrstellung überführt. Fließt ein Strom vom Verzweigungspunkt 7 über den Abschaltzweig 5 zum Verzweigungspunkt 6 wird dieser über die in Reihe geschalteten Leistungshalbleiterschalter 13 der zweiten Schaltrichtungsgruppe 11 sowie die in Reihe geschalteten Freilaufdioden 14 der ersten Schaltrichtungsgruppe 10 geführt. Ein Strom in dieser Richtung kann lediglich von der zweiten Schaltrichtungsgruppe abgeschaltet werden. Hierzu werden die Leistungshalbleiterschalter 13 der zweiten Schaltrichtungsgruppe 11 in ihre Trennstellung überführt. Um den Strom vom Betriebsstrompfad 4 in den Abschaltzweig 5 und somit über die Leistungsschalteinheit 9 zu kommutieren, sind figürlich nicht dargestellte Kommutierungsmittel vorgesehen. Diese umfassen beispielsweise einen im Betriebsstrompfad angeordneten Hilfsschalter, der ebenfalls zwei Schaltrichtungsgruppen ausbildet, so dass dessen Leistungshalbleiterschalter 13 einen Stromfluss in beiden Richtungen sperren und somit für eine Kommutierung in dem Abschalzweig sorgen. Der schnelle mechanische Schalter 8 kann dann geöffnet und anschließend der Strom durch die Leistungsschalteinheit 9 abgeschaltet werden. Darüber hinaus ist es auch möglich, dass die Kommutierungsmittel im Abschaltzweig 5 angeordnet und zum Erzeugen dieser Spannung, in der aus dem Betriebsstrompfad 4 und dem Abschaltzweig 5 gebildeten Masche eingerichtet sind. Zum Erzeugen einer Spannung dienen beispielsweise zweipolige Submodule mit jeweils einem Energiespeicher und einer Leistungshalbleiterschaltung, die bevorzugt eine Vollbrückenschaltung miteinander ausbilden. An den beiden Anschlussklemmen eines jeden Submoduls kann nun entweder die an dem Energiespeicher abfallende Spannung, eine Nullspannung oder aber die inverse Energiespeicherspannung erzeugt werden. Somit ist ein Kreisstrom in der besagten Masche erzeugbar, der dem über den Betriebsstrompfad 4 fließenden Strom entgegengesetzt ist. Es kommt zur Kommutierung des Gesamtstromes in den Abschaltzweig 5. Im Rahmen der Erfindung sind jedoch auch weitere hier nicht genannte Kommutierungsmittel einsetzbar.
  • Figur 2 zeigt ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung 15, die sämtliche Merkmale des Gleichspannungsleistungsschalters 1 gemäß Figur 1 aufweist, so dass die dazu gemachten Ausführungen hier ebenfalls gelten, mit dem Unterschied, dass die zweite Schaltrichtungsgruppe 11 nur zum Schalten und Führen von Lastströmen eingerichtet ist. So weist die erste Schaltrichtungsgruppe 10 beispielsweise eine maximale Spannungsfestigkeit auf, die dem Doppelten der Nennspannung entspricht. Der maximale Abschaltstrom der ersten Schaltrichtungsgruppe 10 beträgt beispielsweise dem Achtfachen des Nennstromes. Die zweite Schaltrichtungsgruppe 11 weist beispielsweise eine maximale Spannungsfestigkeit auf, die dem 1,2-fachen der Nennspannung entspricht, wobei der maximale Abschaltstrom gleich dem Nennstrom ist. Somit kann die Anzahl der in Reihe zu schaltenden Submodule und die Anzahl der parallel zu schaltenden Leistungshalbleiterschaltern pro Submodule gegenüber der ersten Schaltrichtungsgruppe 10 bei der zweiten Schaltrichtungsgruppe 11 erheblich verringert werden. Dies hat eine beträchtliche Kostenersparnis im Gefolge. Um die zweite Schaltrichtungsgruppe 11 vor einer Zerstörung durch hohe Kurzschlussströme zu schützen, sind Schutzmittel vorgesehen, die hier einen Parallelpfad 16 umfassen, in dem ein mechanischer Schalt 17 angeordnet ist.
  • Mit der erfindungsgemäßen Vorrichtung 2 können nun Lastströme in beiden Richtungen abgeschaltet und geführt werden. Zunächst wird der Laststrom mit Hilfe der oben beschriebenen Kommutierungsmittel in den Abschaltzweig 5 kommutiert. Fließt der Laststrom von der Anschlussklemme 3 zur Anschlussklemme 2, wird dieser von der zweiten Schaltrichtungsgruppe 11 abgeschaltet. Die erste Schaltrichtungsgruppe 10 übernimmt das Abschalten von Lastströmen, die von der Anschlussklemme 2 zur Anschlussklemme 3 fließen.
  • Es wird im Rahmen der Erfindung davon ausgegangen, dass Kurzschlussströme nur von der Anschlussklemme 2 zur Anschlussklemme 3 fließen. Tritt nun ein Kurzschluss in dieser Richtung hinter der Vorrichtung 15 auf, so schließt der mechanische Schalter 17 und schützt damit die leistungselektronischen Bauteile der zweiten Schaltrichtungsgruppe 11. Der Fehlerstrom wird von der ersten Schaltungsgruppe 10 abgeschaltet.
  • Soll nun ein Laststrom, der von Anschlussklemme 3 zur Anschlussklemme 2 fließt, abgeschaltet werden, so ist der Schalter 17 offen. Der Strom kommutiert in die zweite Schaltrichtungsgruppe 11 und kann von dieser abgeschaltet werden.
  • Figur 3 zeigt ein weiteres Ausführungsbeispiel der erfindungsgemäßen Vorrichtung, die dem in Figur 2 gezeigten Ausführungsbeispiel im Wesentlichen entspricht, wobei jedoch im Parallelpfad 16 anstelle eines mechanischen Schalters eine Diode D1 angeordnet ist. Die Diode D1 weist eine Durchlassrichtung auf, die der Schaltrichtung der zweiten Schaltrichtungsgruppe 11 entgegengesetzt ist. Mit anderen Worten weist die Diode D1 die gleiche Durchlassrichtung auf wie die in Reihe geschalteten Freilaufdioden 14 der zweiten Schaltrichtungsgruppe 11. Voraussetzung ist jedoch, dass der Pfad über die Diode D1 niederohmiger ist, als der Pfad durch die Freilaufdioden 14. Mit anderen Worten weist die Diode D1 eine größere Leitfähigkeit auf, als die Reihenschaltung der Freilaufdioden der zweiten Schaltrichtungsgruppe 11.
  • In der Regel wird jedoch eine einzige Diode D1 im Parallelpfad 16 oder ein einziger mechanischer Schalter oder ein einziger Thyristor nicht ausreichend sein, so dass eine Reihenschaltung solcher Bauteile im Parallelpfad 16 angeordnet ist. Diese Reihenschaltung von beispielsweise Thyristoren kann in die Submodule der zweiten Schaltrichtungsgruppe 11 integriert werden, so dass kompakte Bauteile bereitgestellt sind. Dies reduziert darüber hinaus den Isolations- und Konstruktionsaufwand.
  • Gemäß einer bevorzugten Ausgestaltung sind die Submodule 12 der Leistungsschalteinheit 9 mit einem Energiespeicher und einer Leistungshalbleiterschaltung ausgerüstet, die zusammen eine Halb- oder bevorzugt eine Vollbrückenschaltung ausbilden. Dabei kann jedes Submodul zwischen seinen Submodulanschlussklemmen jeweils eine wie in Figur 3 orientierte Diode aufweisen oder aber einen ebenso orientierten Thyristor. Gemäß dieser Ausgestaltung der Erfindung sind die Schutzmittel in die in Reihe geschalteten zweipoligen Submodule der zweiten Schaltrichtungsgruppe 11 integriert.
  • Im Rahmen der Erfindung ist es möglich, einen erheblichen Teil der Leistungselektronik einzusparen, wenn die erfindungsgemäße Vorrichtung 15 Fehlerströme in nur einer Richtung abschalten muss.

Claims (13)

  1. Vorrichtung (15) zum Schalten von Gleichströmen in einem Pol eines Gleichspannungsnetzes umfassend
    - zwei Anschlussklemmen (2,3), zwischen denen sich ein Betriebsstrompfad (4) mit einem mechanischen Schalter (8) erstreckt,
    - der durch einen Abschaltzweig (5) überbrückbar ist,
    - in dem eine Leistungsschalteinheit (9) angeordnet ist, die eine Reihenschaltung von zweipoligen Submodulen (12) mit wenigstens einem ein- und abschaltbaren Leistungshalbleiterschalter (13) aufweist, und
    - Kommutierungsmitteln zum Kommutieren des Stroms von dem Betriebsstrompfad (4) in den Abschaltzweig (5),
    - wobei die Submodule (12) der Leistungsschalteinheit (9) eine erste und eine zweite Schaltrichtungsgruppe (10,11) ausbilden, die jeweils zum Abschalten von Strömen in einer unidirektionalen Schaltrichtung eingerichtet sind, wobei die Schaltrichtung der ersten Schaltrichtungsgruppe (10) entgegengesetzt zur Schaltrichtung der zweiten Schaltrichtungsgruppe (11) orientiert ist,
    dadurch gekennzeichnet, dass
    die erste Schaltrichtungsgruppe (10) zum Abschalten von Last- und Kurzschlussströmen und die zweite Schaltrichtungsgruppe (11) ausschließlich zum Abschalten von Lastströmen eingerichtet ist und Schutzmittel (16,17,D1) zum Schutz der zweiten Schaltrichtungsgruppe (11) im Kurzschlussfall vorgesehen sind.
  2. Vorrichtung (15) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Schutzmittel einen Parallelpfad (16) zum Überbrücken der zweiten Schaltrichtungsgruppe (11) aufweisen.
  3. Vorrichtung (15) nach Anspruch 2,
    dadurch gekennzeichnet, dass
    in dem Parallelpfad (16) ein mechanischer Schalter (17) angeordnet ist.
  4. Vorrichtung (15) nach Anspruch 2,
    dadurch gekennzeichnet, dass
    in dem Parallelpfad (16) eine Diode (D1) und/oder ein Thyristor angeordnet sind.
  5. Vorrichtung (15) nach Anspruch 4,
    dadurch gekennzeichnet, dass
    der Parallelpfad (16) eine größere Leitfähigkeit in Durchlassrichtung der Diode (D1) und/oder des Thyristors aufweist als der von ihm überbrückte Pfad einschließlich der zweiten Schaltrichtungsgruppe (11).
  6. Vorrichtung (15) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kommutierungsmittel im Abschaltzweig (5) angeordnet und zum Erzeugen eines über den überbrückten Abschnitt des Betriebsstrompfades (4) und den Abschaltzweig (5) fließenden Kreisstromes eingerichtet sind, der dem Strom im mechanischen Schalter (8) entgegengesetzt ist.
  7. Vorrichtung (15) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Submodule (12) der Leistungsschalteinheit (9) zumindest teilweise jeweils einen ein- und abschaltbaren Leistungshalbleiterschalter (13) und eine gegensinnig parallel hierzu geschaltete Freilaufdiode (14) aufweisen.
  8. Vorrichtung (15) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Submodule (12) der Leistungsschalteinheit (9) zumindest teilweise jeweils einen Energiespeicher und eine parallel zum Energiespeicher geschaltete Reihenschaltung aus zwei ein- und abschaltbaren Leistungshalbleiterschaltern (13) mit gegensinnig parallel hierzu angeordneten Freilaufdioden (14) aufweisen, wobei eine Submodulanschlussklemme mit einem Potenzialpunkt zwischen den ein- und abschaltbaren Leistungshalbleiterschaltern (13) und die andere Submodulanschlussklemme mit einem Pol des Energiespeichers verbunden sind.
  9. Vorrichtung (15) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Submodule (12) der Leistungsschalteinheit (9) zumindest teilweise einen Energiespeicher und zwei parallel zum Energiespeicher geschaltete Reihenschaltungen mit jeweils zwei ein- und abschaltbaren Leistungshalbleiterschaltern (13) mit gegensinnig paralleler Freilaufdiode (14) aufweisen, wobei eine erste Submodulanschlussklemme mit dem Potenzialpunkt zwischen den beiden Leistungshalbleiterschaltern (13) der ersten Reihenschaltung und eine zweite Submodulanschlussklemme mit dem Potenzialpunkt zwischen den beiden Leistungshalbleiterschaltern (13) der zweiten Reihenschaltung verbunden ist.
  10. Vorrichtung (15) nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, dass
    die Submodulanschlussklemmen eines jeden Submoduls (12) durch einen Thyristor und/oder einer Diode miteinander verbindbar sind.
  11. Vorrichtung (15) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Leistungsschalteinheit (9) Varistoren und/oder Ableiter in Parallelschaltung zu wenigstens einem Submodul (12) umfasst.
  12. Vorrichtung (15) nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    einen mit einem Erdpotenzial oder einem entgegengesetzt zum Pol polarisierten Gegenpol verbundenen Ladezweig.
  13. Vorrichtung (15) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    in dem Ladezweig ein ohmscher Widerstand angeordnet ist.
EP12808730.1A 2012-12-07 2012-12-07 Gleichspannungsleistungsschalter Active EP2904625B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12808730T PL2904625T3 (pl) 2012-12-07 2012-12-07 Wyłącznik napięcia stałego

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/074833 WO2014086432A1 (de) 2012-12-07 2012-12-07 Gleichspannungsleistungsschalter

Publications (2)

Publication Number Publication Date
EP2904625A1 EP2904625A1 (de) 2015-08-12
EP2904625B1 true EP2904625B1 (de) 2018-03-21

Family

ID=47469912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12808730.1A Active EP2904625B1 (de) 2012-12-07 2012-12-07 Gleichspannungsleistungsschalter

Country Status (3)

Country Link
EP (1) EP2904625B1 (de)
PL (1) PL2904625T3 (de)
WO (1) WO2014086432A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3367567A1 (de) * 2017-02-28 2018-08-29 Siemens Aktiengesellschaft Schaltvorrichtung zum auftrennen eines strompfads
DE102018203487B4 (de) * 2018-03-08 2022-06-23 Vitesco Technologies GmbH Fahrzeugbordnetz
CN113498568A (zh) * 2019-01-31 2021-10-12 西门子股份公司 负载与直流电网的连接
DE102019203977B4 (de) * 2019-03-22 2020-12-24 Siemens Aktiengesellschaft Schutzschalteinrichtung für Gleichspannung und Gleichspannungsabzweig mit Schutzschalteinrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8717716B2 (en) 2009-11-16 2014-05-06 Abb Technology Ag Device and method to break the current of a power transmission or distribution line and current limiting arrangement
CA2788751C (en) * 2010-02-03 2016-03-29 Abb Technology Ag Switching module for use in a device to limit and/or break the current of a power transmission or distribution line
DE102010007452A1 (de) * 2010-02-10 2011-08-11 Siemens Aktiengesellschaft, 80333 Schaltentlastung für einen Trennschalter
DE202012100024U1 (de) * 2012-01-04 2012-04-02 Abb Technology Ag HVDC- HYBRID- Leistungsschalter mit Schutzbeschaltung

Also Published As

Publication number Publication date
WO2014086432A1 (de) 2014-06-12
EP2904625A1 (de) 2015-08-12
PL2904625T3 (pl) 2018-08-31

Similar Documents

Publication Publication Date Title
EP2100368B1 (de) Halbleiterschutzelemente zur beherrschung von dc-seitigen kurzschlüssen bei spannungszwischenkreisumrichtern
EP3257147B1 (de) Umrichteranordnung und verfahren zu deren kurzschlussschutz
EP2118993B1 (de) Verfahren zur schadenbegrenzung eines leistungshalbleiter aufweisenden stromrichters bei einem kurzschluss im gleichspannungszwischenkreis
EP2338214B1 (de) Vorrichtung mit einem umrichter
DE10005449B4 (de) Überspannungsschutzvorrichtung für einen Matrixumrichter
EP2810290B1 (de) Vorrichtung zum schalten eines gleichstroms in einem pol eines gleichspannungsnetzes
EP2810289B1 (de) Verfahren zum zuschalten eines gleichspannungsnetzabschnitts mittels eines gleichspannungsschalters
EP3379725A1 (de) Verfahren zum steuern eines gleichstromschalters, gleichstromschalter und gleichspannungssystem
EP2904625B1 (de) Gleichspannungsleistungsschalter
EP3556000A1 (de) Modul für modularen mehrpunktumrichter mit kurzschliesser und kondensatorstrombegrenzung
WO2014139559A9 (de) Hochleistungs-dc-schalter
DE102019203977A1 (de) Schutzschalteinrichtung für Gleichspannung
EP3625862A1 (de) Elektronischer schalter mit überspannungsbegrenzer
EP2929627B1 (de) Gleichspannungsschalter zum schalten einer kurzunterbrechung
EP2580859B1 (de) Doppelmodul für einen modularen mehrstufenumrichter
EP3654477A1 (de) Elektronischer schalter mit überspannungsschutz
EP2907233A1 (de) Submodul mit stromstossbegrenzung
WO2001073932A1 (de) Verfahren zum schutz eines matrixumrichters vor überspannungen und eine aktive überspannungsvorrichtung
EP2845214B1 (de) Vorrichtung zum schalten in einem gleichspannungsnetz
DE102016202661A1 (de) Vorrichtung zum Schalten eines Gleichstroms in einem Pol eines Gleichspannungsnetzes
EP3639360B1 (de) Umrichteranordnung mit phasenmodulableiter sowie verfahren zu deren kurzschlussschutz
EP3935706B1 (de) Gleichstromnetzwerk
DE102004016456A1 (de) Generator mit integriertem Leistungsschalter
EP3878088B1 (de) Anordnung mit einem multilevelstromrichter
EP3753048B1 (de) Schaltungsanordnung, stromrichtermodul und verfahren zum betreiben des stromrichtermoduls

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 981932

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012402

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180723

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012402

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

26N No opposition filed

Effective date: 20190102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181207

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 981932

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180321

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180721

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012012402

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220901 AND 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20241114

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241218

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20241220

Year of fee payment: 13