[go: up one dir, main page]

EP2889955B1 - Structure antennaire compacte pour télécommunications par satellites - Google Patents

Structure antennaire compacte pour télécommunications par satellites Download PDF

Info

Publication number
EP2889955B1
EP2889955B1 EP14200359.9A EP14200359A EP2889955B1 EP 2889955 B1 EP2889955 B1 EP 2889955B1 EP 14200359 A EP14200359 A EP 14200359A EP 2889955 B1 EP2889955 B1 EP 2889955B1
Authority
EP
European Patent Office
Prior art keywords
elementary
antenna
emitting
ghz
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14200359.9A
Other languages
German (de)
English (en)
Other versions
EP2889955A1 (fr
Inventor
Friedman Tchoffo Talom
Guillaume Fondi de Niort
Sophia Thizon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2889955A1 publication Critical patent/EP2889955A1/fr
Application granted granted Critical
Publication of EP2889955B1 publication Critical patent/EP2889955B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points

Definitions

  • the present invention relates to an antenna structure for telecommunications, a platform comprising the antenna structure and a method for satellite communication between two stations using the antenna structure.
  • the electromagnetic waves of the Ka band have a frequency between 27 gigahertz (GHz) and 31 GHz while in reception, the electromagnetic waves of the Ka band have a frequency between 17.3 GHz and 21 GHz. .2GHz.
  • the Ka band for transmission is denoted Tx while the Ka band for reception is denoted Rx.
  • the polarizations of the waves in transmission and in reception are generally of the opposite or non-opposing circular type.
  • the antenna should be oriented in order to point the satellite making it possible to establish the link.
  • parabolic antenna type solutions are generally not preferred. Especially since in this case, the depth of the antenna is constrained by the focal length of the source illuminating the parabola.
  • an electronic scanning antenna which can comprise two separate antenna panels respectively for the emission of a wave whose central frequency is around 30 GHz and for the reception. of a wave centered around 20 GHz.
  • the electronically scanned antenna obtained may have a large bulk corresponding to the radiating surfaces of each of the operating modes (transmission/reception). Furthermore, the efficiency of such an antenna can be insufficient as a function of the elementary antenna used and of the associated power supply circuit, in particular when it comes to patch-type antennas.
  • antennal structures are also known from documents US 6,441,800 B1 , from the article of DANIEL JP et al. entitled “Research on planar antennas and arrays: 'Radiant structures'” , from the article of SMITH D et al. titled “Dual Polarized Microstrip Antenna Design for a Polarization Shift Keying Microwave Transponder” , from the article of SHENG YE et al. titled “High-Gain Planar Antenna Arrays for Mobile Satellite Communications [Antenna Applications Corner]” and document DE 10 2011 066457 A1 .
  • an antenna structure is proposed for telecommunications, in particular by satellite, according to claim 1.
  • the antenna structure comprises one or more of the characteristics of claims 2 and 3 taken individually or in any technically possible combination.
  • the invention also relates to a platform, in particular aerial, comprising at least one antenna structure as described above.
  • the present invention also relates to a method of telecommunication, in particular by satellite, between two stations comprising at least one of the following steps: a step of emitting electromagnetic waves having a frequency of between 27 GHz and 31 GHz by a structure antenna as previously described and a step for receiving electromagnetic waves having a frequency between 17.3 GHz and 21.2 GHz by an antenna structure as previously described.
  • an antenna structure 10 comprising a transmission surface 11Tx and a reception surface 11Rx as shown in figure 1 .
  • the emission surface 11Tx has a generally rectangular shape and the reception surface 11Rx also has a generally rectangular shape.
  • Each surface for transmission 11Tx and reception 11Rx accommodates a plurality of elementary antennas 12Tx (for transmission) and 12Rx (for reception).
  • the whole of the emission surface 11Tx and of the plurality of elementary antennas 12Tx forms a emission panel 13Tx while the whole of the reception surface 11Rx and of the plurality of elementary antennas 12Rx forms a panel of 13Rx reception.
  • the structure of the 13Tx transmission panel is detailed by successively describing an elementary 12Tx antenna for transmission ( figures 2 to 4 ), a line comprising a plurality of elementary antennas 12Tx for transmission ( figure 5 to 8 ) and then the 13Tx transmit panel itself ( figures 9 to 13 ).
  • a 12Tx elementary antenna for transmission is shown on the figure 2 .
  • the elementary antenna 12Tx is capable of emitting an electromagnetic wave whose wavelength is denoted ⁇ 0, this wavelength ⁇ 0 corresponding to a central frequency of the band comprised between 27 GHz and 31 GHz.
  • the elementary antenna 12Tx comprises two patches 14Tx, 16Tx at least partially superimposed.
  • Each 14Tx, 16Tx patch is circular in shape.
  • the first patch 14Tx comprises a first metallized layer 18Tx and a first insulating layer 20Tx, the first metallized layer 18Tx being arranged on the insulating layer 20Tx.
  • the first metallized layer 18Tx is circular in shape and has a first diameter d1Tx.
  • the shape of the first metallized layer 18Tx gives the first patch 14Tx a circular shape.
  • the second patch 16Tx also comprises a second metallized layer and a second insulating layer 24Tx, the second metallized layer being arranged on the second insulating layer 24Tx.
  • the second metallized layer comprises a circular part 26Tx and two current supply ports 28Tx, 30Tx.
  • the circular part 26Tx is circular in shape and has a second diameter denoted d2Tx.
  • the first access 28Tx comprises two first sections 32Tx and 34Tx, a first proximal section 32Tx in contact with the circular part 26Tx and a first section 34Tx distal with respect to the circular part 26Tx.
  • the first proximal section 32Tx is rectilinear and extends along a direction called the first proximal direction.
  • the first proximal section 32Tx is normal with respect to the portion of the circular part 26Tx with which the first proximal section 32Tx is in contact.
  • the first distal section 34Tx is straight and extends in the extension of the proximal section 32Tx along a direction called the first distal direction.
  • the first proximal and distal directions form an angle greater than 90° between them.
  • the angle between the first proximal direction and the first distal direction is between 120° and 145°.
  • the second access 30Tx comprises two second sections 38Tx and 40Tx, a second proximal section 38Tx in contact with the circular part 26Tx and a second section 40Tx distal with respect to the circular part 26Tx.
  • the second proximal section 38Tx is rectilinear and extends along a direction called the second proximal direction.
  • the second proximal section 38Tx is normal with respect to the portion of the circular part 26Tx with which the second proximal section 38Tx is in contact.
  • each access 28Tx, 30Tx is in an angular sector having an angle with respect to the center of the circular part less than 180°.
  • the distance between the two accesses 28Tx and 30Tx is less than 0.5* ⁇ 0 to allow the realization of the pointing function by phase shift with the least degradation of the secondary lobes in order to remain compatible with the normalization templates.
  • the distance between the two ports 28Tx and 30Tx is less than or equal to 0.42* ⁇ 0.
  • the second distal section 40Tx is straight and extends in the extension of the second proximal section 38Tx along a direction called the second distal direction.
  • the second proximal and distal directions form an angle greater than 90° between them.
  • the angle between the second proximal direction and the second distal direction is between 120° and 145°.
  • the shape of the second metallized layer gives the second patch 16Tx a general circular shape so that it is considered in a simplified way in the following that the second patch 16Tx has a circular shape.
  • the second diameter d2Tx of the circular part 26Tx is the diameter of the second patch 16Tx.
  • the first diameter d1Tx and the second diameter d2Tx can be identical.
  • the two patches 14Tx and 16Tx are at least partially superimposed. This means that the two patches 14Tx and 16Tx are at least partially aligned along a first direction Z.
  • the two patches 14Tx and 16Tx are superimposed. This means that the projection of the circular part 26Tx on the plane comprising the first metallized layer 18Tx coincides with the first metallized layer 18Tx.
  • the circular part 26Tx and the first metallized layer 18Tx are parallel.
  • the two patches 14Tx and 16Tx are thus spaced apart along a first direction Z by a distance denoted ezTx.
  • the spacing distance ezTx between the two patches 14Tx and 16Tx along the first direction Z is between 0.5 millimeters (mm) and 2.0 mm. According to the invention, the spacing distance ezTx between the two patches 14Tx and 16Tx along the first direction Z is between 0.75 mm and 1.5 mm.
  • the spacing distance ezTx between the two patches 14Tx and 16Tx along the first direction Z, the diameter d1Tx and d2Tx of the patches 14Tx and 16Tx make it possible to determine the frequency or frequencies at which (or at which) the elementary antenna 12Tx is capable of transmitting.
  • the elementary antenna 12Tx is dimensioned to emit frequencies comprised between 27 GHz and 31 GHz (Tx band). This means that such an elementary antenna 12Tx has first and second diameters d1Tx, d2Tx of between 2.5 mm and 4 mm. The upper limit corresponds to the product of 0.4 by the wavelength ⁇ 0 that the elementary antenna 12Tx is capable of transmitting.
  • a constraint is imposed on the geometry of the second patch 16Tx.
  • the second patch 16Tx is then writable in a rectangle whose extension exTx along a second X direction is between 4.0 mm and 4.4 mm and the extension eyTx along a third Y direction is between between 3.8mm and 4.2mm.
  • the two directions X and Y are perpendicular to each other and to the first direction Z.
  • the figures 3 and 4 show that over the entire band of interest (in this case, it is the Tx band), the ellipticity rate is relatively low as well as the standing wave rate (noted for simplicity by the corresponding acronym, i.e. TOS, in all the figures in which this rate appears).
  • the 12Tx elementary antenna therefore has a wide band, i.e. a band greater than 5% around the central operating frequency, with circular polarization and very good radiation efficiency (in particular the axial ratio for such a small antenna is better than in the state of the art and the apodization of the radiation pattern for the emitted wave is facilitated when networking).
  • the two patches 14Tx and 16Tx are arranged so that the second metal layer faces the first insulating layer 20Tx.
  • the two patches 14Tx and 16Tx are arranged so that the second metallic layer faces the first metallic layer 18Tx.
  • the 50Tx network comprises twenty-four elementary 12Tx antennas.
  • Each 12Tx elementary antenna of the figure 5 is identical to the elementary 12Tx antenna described with reference to picture 2 .
  • some antennas are different.
  • the 12Tx elementary antennas are arranged regularly along a line thus forming the 50Tx array.
  • the 12Tx elementary antennas are connected together to form the 50Tx network.
  • the connection is made via two straight lines which ensure the supply of the unitary network.
  • the 50Tx network as well formed on transmission has two ports which allow, depending on the power supply, to radiate an electromagnetic wave in the desired frequency band according to the desired circular polarization.
  • the 50Tx grating exhibits an extension ex2Tx along the second X direction of between 4 mm and 6 mm.
  • the extension ex2Tx along the second direction X is between 4.5 mm and 5.5 mm.
  • the 50Tx grating also exhibits an extension ey2Tx along the third Y direction between 160 mm and 190 mm.
  • the extension ey2Tx along the third direction Y is between 165 mm and 185 mm.
  • each elementary antenna 12Tx of the 50Tx array is powered by an electromagnetic wave.
  • Each elementary antenna 12Tx picks up the electric field resulting from this electromagnetic wave so that the 50Tx network emits a wave in the desired frequency band.
  • the 50Tx network has a gain of the order of 20 dB, which testifies to the good radiation efficiency of the antenna structure with regard to its dimensions, that is to say the ex2Tx extension along the second direction X and the extension ey2Tx along the third direction Y.
  • the figure 9 illustrates the 13Tx transmit panel of the figure 1 .
  • the elements identical to the embodiment of the figure 5 are not described again. Only the differences are highlighted.
  • the 13Tx transmit panel has eight 50Tx arrays instead of a single 50Tx array.
  • the number of antennas for the 50Tx array is chosen according to a dimensional constraint applied along the third direction Y.
  • Each 50Tx network is parallel to the other 50Tx networks.
  • the 12Tx elementary antennas are staggered. Such an arrangement makes it possible to maintain the performance in terms of stability of the rate of ellipticity during the networking of the overall structure as well as during the realization of pointing by phase shift.
  • the emission panel 13Tx has an extension ex3Tx along the second direction X between 40 mm and 50 mm.
  • the extension ex3Tx along the second direction X is between 45 mm and 48 mm.
  • the extension ex3Tx along the second direction X is linked to the number of 50Tx array antennas considered.
  • the extension ex3Tx along the second direction X corresponds to approximately nine times the size of an elementary antenna.
  • the 13Tx emission panel also has an extension ey3Tx along the third Y direction between 160 mm and 190 mm.
  • the extension ey3Tx along the third Y direction is between 165 mm and 185 mm.
  • the extension ey3Tx along the third direction Y is linked to the number of elementary antennas 12Tx considered.
  • the emission panel 13Tx has a gain of the order of 28 dB, which corresponds to an effective compact antenna structure at the operating frequency considered.
  • the structure of the 13Rx reception panel of the figure 1 is detailed by successively describing an elementary antenna 12Rx for reception ( figures 14 to 16 ), a line comprising a plurality of elementary antennas 12Rx for reception ( figures 17 to 20 ) and then the 13Rx receiving panel itself ( figures 21 to 24 ).
  • the figure 14 illustrates a 12Rx elementary antenna for reception.
  • the elements identical to the elementary 12Tx antenna for transmitting the picture 2 are not described again. Only the differences are highlighted.
  • the reference signs of the elements of the elementary antenna 12Rx for reception are followed by a suffix Rx instead of the suffix Tx for the corresponding elements of the elementary antenna 12Rx.
  • a 12Rx elementary antenna for reception is shown on the figure 14 .
  • the elementary antenna 12Rx is capable of receiving an electromagnetic wave whose wavelength is denoted ⁇ 0, this wavelength ⁇ 0 corresponding to a frequency comprised between 17.3 GHz and 21.2 GHz.
  • the elementary antenna 12Rx is sized to receive frequencies between 17.3 GHz and 21.2 GHz (Rx band). This means that such an elementary antenna 12Rx has first and second diameters d1Rx, d2Rx of between 4.5 mm and 7 mm.
  • the second patch 16Rx is then writable in a rectangle whose extension exRx along the second direction X is between 6.6 mm and 7.0 mm and the extension eyRx along the third direction Y is between 6 .0mm and 6.4mm.
  • the performances and advantages granted by the elementary antenna 12Rx for reception are similar to the performances and advantages granted by the elementary antenna 12Tx for transmission as shown by the study of the figures 15 and 16 .
  • the figure 17 illustrates a 50Rx network for reception according to the invention.
  • the 50Rx network comprises eighteen elementary antennas 12Rx.
  • the number of antennas for the 50Rx array is chosen according to a dimensional constraint applied along the third direction Y.
  • Each 12Rx elementary antenna of the figure 17 is identical to the elementary antenna 12Rx described with reference to the figure 14 .
  • some antennas are different.
  • the elementary antennas 12Rx are arranged regularly along a line thus forming the network 50Rx. Furthermore, the elementary antennas 12Rx are connected together to form the network 50Rx. The connection is made via a straight line which supplies the unit network.
  • the 50Rx network thus formed on reception has two ports which make it possible, depending on the power supply, to receive an electromagnetic wave in the desired frequency band according to the desired circular polarization.
  • the 50Rx grating exhibits an ex2Rx extension along the second X direction of between 6 mm and 8.5 mm.
  • the ex2Rx extension along the second X direction is between 7.6 mm and 8.0 mm.
  • the 50Rx grating also exhibits an extension ey2Rx along the third Y direction between 180 mm and 200 mm.
  • the extension ey2Rx along the third Y direction is between 185 mm and 195 mm.
  • the extension ey2Rx along the third direction Y is linked to the number of elementary antennas 12Rx considered.
  • the performance in terms of ellipticity rate and standing wave rate granted by the 50Rx network are similar to the performance and advantages granted by the elementary antenna 12Rx according to the example of the figure 14 as shown by the study of figures 18 and 19 .
  • the 50Rx network has a gain of the order of 18 dB, which corresponds to an effective compact antenna structure at the operating frequency considered.
  • the figure 21 illustrates the 13Rx receiving panel of the figure 1 .
  • the elements identical to the embodiment of the figure 17 are not described again. Only the differences are highlighted.
  • the 13Rx receiving panel has eight 50Rx arrays instead of a single 50Rx array.
  • Each 50Rx array is parallel to the other 50Rx arrays.
  • the elementary antennas 12Rx are arranged in staggered rows. Such an arrangement makes it possible to maintain the performance in terms of stability of the ellipticity rate during the networking of the overall structure as well as the realization of the pointing by phase shift.
  • the 13Rx receiving panel has an ex3Rx extension along the second X direction of between 60 mm and 80 mm.
  • the ex3Rx extension along the second direction X is between 65 mm and 75 mm.
  • the ex3Rx extension along the second X direction is related to the number of 50Tx networks considered.
  • the 13Rx receiving panel also has an extension ey3Rx along the third Y direction between 190 mm and 210 mm.
  • the ey3Rx extension along the third Y direction is comprised between 195mm and 205mm.
  • the extension ey3Rx along the third direction Y is linked to the number of elementary antennas 12Tx considered.
  • the antenna structure 10 has a reduced size as well as a reduced weight compared to the antenna structures of the state of the art for identical performance in terms of radiation. This reduced weight makes it possible to reduce the constraints in particular in the case where the complete antenna is accompanied by a mechanical positioner.
  • this antenna structure 10 on a single-layer substrate makes it easy to insert on the rear side at the ground plane level, with the least constraint and impact on the radiation performance, the coupler devices, power supply and phase shift to ensure the control and choice of polarization as well as of phase and amplitude law making it possible to orient the radiation diagram in the desired direction in electronic scanning configuration.
  • the antenna structure 10 is also capable of transmitting or receiving circularly polarized electromagnetic waves without using an additional polarizer. This improved compactness is accompanied by a gain in lightness and a gain in radiation performance over a wide frequency band compatible with the targeted application. Furthermore, the antenna structure 10 is easy to make and can be manufactured at low cost.
  • the proposed antenna structure 10 can be used for telecommunications applications between two stations, in particular by satellite. It should be noted that in this case, the radiation pattern of the antenna structure 10 thus produced complies with the templates specified for use with certain satellites.
  • Such an antenna structure 10 can advantageously be used in a platform, in particular aerial of the helicopter or drone type.
  • the compactness of the antenna structure 10 makes it possible to reduce the constraints on the installation of equipment in the platform.
  • the antenna structure 10 presented with reference to the figure 1 is an example of antenna structure 10 exhibiting the compactness properties described above.
  • Other similar antenna structures 10 can also be envisaged, in particular with a different number of elementary reception 12Rx and/or transmission 12Tx antennas and a different arrangement thereof.
  • These different antenna structures 10 are antenna structures for telecommunications, in particular satellite, having a reduced size in terms of depth and pointing capabilities by using an electronic scanning principle while allowing high-speed communication of good quality to be obtained.
  • quality in particular in terms of gain, ellipticity rate and secondary lobes compatible with normative templates.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

  • La présente invention concerne une structure antennaire pour télécommunications, une plateforme comprenant la structure antennaire et un procédé de communication par satellites entre deux stations utilisant la structure antennaire.
  • Dans le domaine des communications satellitaires, l'obtention d'une communication de bonne qualité implique des performances particulières pour les ondes électromagnétiques produites par la structure antennaire utilisée dans la communication en termes de gain et de niveau de lobes secondaires (rapport entre l'intensité des lobes secondaires et l'intensité du lobe principal). Ceci est d'autant plus vrai pour les communications satellitaires dites « haut débit », c'est-à-dire ne transmettant pas uniquement de la voix.
  • Dans le cas particulier de la bande électromagnétique Ka, deux bandes de fréquence distinctes sont impliquées. En effet, en émission, les ondes électromagnétiques de la bande Ka ont une fréquence comprise entre 27 gigahertz (GHz) et 31 GHz tandis qu'en réception, les ondes électromagnétiques de la bande Ka ont une fréquence comprise entre 17,3 GHz et 21,2 GHz. Dans la suite de la description, la bande Ka pour l'émission est notée Tx tandis que la bande Ka pour la réception est notée Rx. En outre, les polarisations des ondes en émission et en réception sont généralement de type circulaires opposées ou non.
  • Ces fréquences et ces polarisations circulaires en réception et en émission imposent des contraintes sur la structure antennaire. De plus, dans le contexte de liaison satellitaire, il convient d'orienter l'antenne afin de pointer le satellite permettant d'établir la liaison. En outre, pour réduire la signature visuelle (l'encombrement physique), les solutions de type antennes paraboliques ne sont généralement pas privilégiées. D'autant plus que dans ce cas, la profondeur de l'antenne est contrainte par la focale de la source illuminant la parabole.
  • Parmi les structures antennaires permettant de respecter ces différentes contraintes, il est connu d'utiliser une antenne à balayage électronique pouvant comprendre deux panneaux antennaires disjoints respectivement pour l'émission d'une onde dont la fréquence centrale est autour de 30 GHz et pour la réception d'une onde centrée autour de 20 GHz.
  • Toutefois, l'antenne à balayage électronique obtenue peut présenter un encombrement important correspondant aux surfaces rayonnantes de chacun des modes de fonctionnement (émission/réception). En outre, l'efficacité d'une telle antenne peut être insuffisante en fonction de l'antenne élémentaire utilisée et du circuit d'alimentation associés notamment lorsqu'il s'agit d'antennes de type patch.
  • De plus, la mise en œuvre d'une polarisation circulaire dans un premier sens dans la partie émission et d'une polarisation circulaire dans un deuxième sens opposé ou non au premier sens pour la partie de réception s'avère difficile dans le cas de l'emploi d'un polariseur, ce qui réduit la flexibilité d'utilisation de l'antenne à balayage considérée.
  • Il est également connu d'autres structures antennaires des documents US 6 441 800 B1 , de l'article de DANIEL J P et al. intitulé « Research on planar antennas and arrays : 'Structures rayonnantes' », de l'article de SMITH D et al. intitulé « Dual Polarised Microstrip Antenna Design for a Polarisation Shift Keying Microwave Transponder », de l'article de SHENG YE et al. intitulé « High-Gain Planar Antenna Arrays for Mobile Satellite Communications [Antenna Applications Corner] » et du document DE 10 2011 066457 A1 .
  • Il existe donc un besoin pour une structure antennaire pour télécommunications, en particulier satellitaire dans la bande Ka, présentant un encombrement réduit en terme de profondeur et de capacité de pointage en utilisant un principe de balayage électronique tout en permettant l'obtention d'une communication haut débit de bonne qualité, notamment en termes de gain, de taux d'ellipticité et de lobes secondaires compatibles des gabarits normatifs.
  • A cet effet, il est proposé une structure antennaire pour télécommunications, notamment par satellite, selon la revendication 1.
  • Suivant des modes de réalisation particuliers, la structure antennaire comprend une ou plusieurs des caractéristiques des revendications 2 et 3 prise(s) isolement ou suivant toutes les combinaisons techniquement possibles.
  • En outre, l'invention se rapporte aussi à une plateforme, notamment aérienne, comprenant au moins une structure antennaire telle que décrite précédemment.
  • La présente invention a également pour objet un procédé de télécommunication notamment par satellite, entre deux stations comprenant au moins l'une des étapes suivantes : une étape d'émission d'ondes électromagnétiques présentant une fréquence comprise entre 27 GHz et 31 GHz par une structure antennaire telle que précédemment décrite et une étape de réception d'ondes électromagnétiques présentant une fréquence comprise entre 17,3 GHz et 21,2 GHz par une structure antennaire telle que précédemment décrite.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit, de modes de réalisation de l'invention, donnée à titre d'exemple uniquement et en référence aux dessins qui sont :
    • figure 1, un schéma d'une structure antennaire propre à fonctionner sur la bande Ka,
    • figure 2, un schéma en perspective d'une antenne élémentaire fonctionnant sur la bande Tx ;
    • figures 3 et 4, des graphiques montrant respectivement l'évolution du taux d'ellipticité et du taux d'ondes stationnaires de l'antenne élémentaire de la figure 2 sur la bande Tx en fonction de la fréquence de fonctionnement ;
    • figure 5, un schéma d'un réseau comprenant un ensemble d'antennes élémentaires selon la figure 2 ;
    • figures 6 et 7, des graphiques montrant l'évolution du taux d'ellipticité et du taux d'ondes stationnaires du réseau de la figure 5 en fonction de la fréquence de fonctionnement ;
    • figure 8, un graphique montrant l'évolution du gain de la structure antennaire selon la figure 5 en fonction de l'angle d'élévation ;
    • figure 9, un schéma d'un panneau fonctionnant sur la bande Tx et comprenant des réseaux selon la figure 5 ;
    • figures 10 et 11, des graphiques montrant l'évolution du gain du panneau de la figure 9 en fonction de l'angle d'élévation et pour un angle d'azimut donné ;
    • figure 12, un graphique montrant l'évolution du taux d'ellipticité du panneau de la figure 9 en fonction de la fréquence de fonctionnement ;
    • figure 13, un graphique montrant l'évolution du gain du panneau de la figure 9 en fonction de l'angle d'azimut lorsqu'un dépointage est mis en oeuvre ;
    • figure 14, un schéma en perspective d'une antenne élémentaire fonctionnant en bande Rx ;
    • figures 15 et 16, des graphiques montrant l'évolution du taux d'ellipticité et du taux d'ondes stationnaires pour l'antenne élémentaire de la figure 14 sur la bande Rx en fonction de la fréquence de fonctionnement ;
    • figure 17, un schéma d'un réseau comprenant un ensemble d'antennes élémentaires selon la figure 14 ;
    • figures 18 et 19, des graphiques montrant l'évolution du taux d'ellipticité et du taux d'ondes stationnaires du réseau de la figure 17 en fonction de la fréquence de fonctionnement ;
    • figure 20, un graphique montrant l'évolution du gain du réseau de la figure 17 en fonction de l'angle d'élévation ;
    • figure 21, un schéma d'un panneau fonctionnant sur la bande Rx et comprenant des réseaux selon la figure 17 ;
    • figures 22 et 23, des graphiques montrant l'évolution du gain du panneau de la figure 21 en fonction de l'angle d'élévation et respectivement de l'angle d'azimut, et
    • figure 24, un graphique montrant l'évolution du taux d'ellipticité du panneau de la figure 21 en fonction de la fréquence de fonctionnement.
  • Dans le cadre d'une application de télécommunications, notamment par satellites dans la bande Ka, il est proposé une structure antennaire 10 comportant une surface d'émission 11Tx et une surface de réception 11Rx telle que représentée à la figure 1.
  • Dans l'exemple présenté, la surface d'émission 11Tx présente une forme générale rectangulaire et la surface de réception 11Rx présente également une forme générale rectangulaire. Chaque surface d'émission 11Tx et de réception 11Rx accueille une pluralité d'antennes élémentaires 12Tx (pour l'émission) et 12Rx (pour la réception).
  • L'ensemble de la surface d'émission 11Tx et de la pluralité d'antennes élémentaires 12Tx forme un panneau d'émission 13Tx alors que l'ensemble de la surface de réception 11Rx et de la pluralité d'antennes élémentaires 12Rx forme un panneau de réception 13Rx.
  • Dans la suite, la structure du panneau d'émission 13Tx est détaillée en décrivant successivement une antenne élémentaire 12Tx pour l'émission (figures 2 à 4), une ligne comportant une pluralité d'antennes élémentaires 12Tx pour l'émission (figure 5 à 8) puis le panneau d'émission 13Tx lui-même (figures 9 à 13).Une antenne élémentaire 12Tx pour l'émission est représentée sur la figure 2. Cela implique que l'antenne élémentaire 12Tx est propre à émettre une onde électromagnétique dont la longueur d'onde est notée λ0, cette longueur d'onde λ0 correspondant à une fréquence centrale de la bande comprise entre 27 GHz et 31 GHz.
  • L'antenne élémentaire 12Tx comporte deux patchs 14Tx, 16Tx au moins partiellement superposés.
  • Chaque patch 14Tx, 16Tx est de forme circulaire.
  • Le premier patch 14Tx comporte une première couche métallisée 18Tx et une première couche isolante 20Tx, la première couche métallisée 18Tx étant agencée sur la couche isolante 20Tx.
  • La première couche métallisée 18Tx est de forme circulaire et présente un premier diamètre d1Tx.
  • La forme de la première couche métallisée 18Tx confère au premier patch 14Tx une forme circulaire.
  • Le deuxième patch 16Tx comporte également une deuxième couche métallisée et une deuxième couche isolante 24Tx, la deuxième couche métallisée étant agencée sur la deuxième couche isolante 24Tx.
  • La deuxième couche métallisée comporte une partie circulaire 26Tx et deux accès 28Tx, 30Tx d'alimentation en courant.
  • La partie circulaire 26Tx est de forme circulaire et présente un deuxième diamètre noté d2Tx. Le premier accès 28Tx comporte deux premiers tronçons 32Tx et 34Tx, un premier tronçon proximal 32Tx en contact avec la partie circulaire 26Tx et un premier tronçon distal 34Tx par rapport à la partie circulaire 26Tx.
  • Le premier tronçon proximal 32Tx est rectiligne et s'étend le long d'une direction dite première direction proximale. Le premier tronçon proximal 32Tx est normal par rapport à la portion de la partie circulaire 26Tx avec laquelle le premier tronçon proximal 32Tx est en contact.
  • Le premier tronçon distal 34Tx est rectiligne et s'étend dans le prolongement du tronçon proximal 32Tx le long d'une direction dite première direction distale. Les premières directions proximale et distale font un angle supérieur à 90° entre elles. De préférence, l'angle entre la première direction proximale et la première direction distale est compris entre 120° et 145°.
  • De même, le deuxième accès 30Tx comporte deux deuxièmes tronçons 38Tx et 40Tx, un deuxième tronçon proximal 38Tx en contact avec la partie circulaire 26Tx et un deuxième tronçon distal 40Tx par rapport à la partie circulaire 26Tx.
  • Le deuxième tronçon proximal 38Tx est rectiligne et s'étend le long d'une direction dite deuxième direction proximale. Le deuxième tronçon proximal 38Tx est normal par rapport à la portion de la partie circulaire 26Tx avec laquelle le deuxième tronçon proximal 38Tx est en contact.
  • Selon l'exemple de la figure 2, les deux directions proximales forment un angle entre elles inférieur à 180°. Ainsi, chaque accès 28Tx, 30Tx est dans un secteur angulaire présentant un angle par rapport au centre de la partie circulaire inférieur à 180°.
  • Autrement formulé, la distance entre les deux accès 28Tx et 30Tx est inférieure à 0,5*λ0 pour permettre la réalisation de la fonction de pointage par déphasage avec le moins de dégradation des lobes secondaires afin de rester compatibles des gabarits de normalisation. Préférentiellement, la distance entre les deux accès 28Tx et 30Tx est inférieure ou égale à 0.42*λ0.
  • Le deuxième tronçon distal 40Tx est rectiligne et s'étend dans le prolongement du deuxième tronçon proximal 38Tx le long d'une direction dite deuxième direction distale. Les deuxièmes directions proximale et distale font un angle supérieur à 90° entre elles. De préférence, l'angle entre la deuxième direction proximale et la deuxième direction distale est compris entre 120° et 145°.
  • La forme de la deuxième couche métallisée confère au deuxième patch 16Tx une forme générale circulaire de sorte qu'il est considéré de manière simplifiée dans la suite que le deuxième patch 16Tx présente une forme circulaire.
  • Ainsi, notamment, il est considéré que le deuxième diamètre d2Tx de la partie circulaire 26Tx est le diamètre du deuxième patch 16Tx.
  • De préférence, le premier diamètre d1Tx et le deuxième diamètre d2Tx peuvent être identiques.
  • Les deux patchs 14Tx et 16Tx sont au moins partiellement superposés. Cela signifie que les deux patchs 14Tx et 16Tx sont au moins partiellement alignés le long d'une première direction Z.
  • Selon l'exemple particulier de la figure 2, les deux patchs 14Tx et 16Tx sont superposés. Cela signifie que la projection de la partie circulaire 26Tx sur le plan comprenant la première couche métallisée 18Tx est confondue avec la première couche métallisée 18Tx.
  • En outre, la partie circulaire 26Tx et la première couche métallisée 18Tx sont parallèles. Les deux patchs 14Tx et 16Tx sont ainsi espacés selon une première direction Z d'une distance notée ezTx.
  • De préférence, mais pas nécessairement selon l'invention, la distance ezTx d'espacement entre les deux patchs 14Tx et 16Tx le long de la première direction Z est comprise entre 0,5 millimètre (mm) et 2,0 mm. Selon l'invention, la distance ezTx d'espacement entre les deux patchs 14Tx et 16Tx le long de la première direction Z est comprise entre 0,75 mm et 1,5 mm.
  • De manière connue en soi, la distance ezTx d'espacement entre les deux patchs 14Tx et 16Tx le long de la première direction Z, le diamètre d1Tx et d2Tx des patchs 14Tx et 16Tx permettent de déterminer la ou les fréquences à laquelle (ou auxquelles) l'antenne élémentaire 12Tx est propre à émettre.
  • L'antenne élémentaire 12Tx est dimensionnée pour émettre des fréquences comprises entre 27 GHz et 31 GHz (bande Tx). Cela signifie qu'une telle antenne élémentaire 12Tx présente des premier et deuxième diamètres d1Tx, d2Tx compris entre 2,5 mm et 4 mm. La borne supérieure correspond au produit de 0,4 par la longueur d'onde λ0 que l'antenne élémentaire 12Tx est propre à émettre.
  • De manière alternative, au lieu d'une condition sur les diamètres d1Tx, d2Tx, il est imposé une contrainte sur la géométrie du deuxième patch 16Tx. Le deuxième patch 16Tx est alors inscriptible dans un rectangle dont l'extension exTx le long d'une deuxième direction X est comprise entre 4,0 mm et 4,4 mm et l'extension eyTx le long d'une troisième direction Y est comprise entre 3,8 mm et 4,2 mm. Les deux directions X et Y sont perpendiculaires entre elles et à la première direction Z.
  • Les performances de l'antenne élémentaire 12Tx pour l'émission sont maintenant décrites en référence aux figures 3 et 4.
  • Les figures 3 et 4 montrent que sur toute la bande d'intérêt (dans ce cas, il s'agit de la bande Tx), le taux d'ellipticité est relativement faible ainsi que le taux d'ondes stationnaires (noté pour simplifier par l'acronyme correspondant, à savoir TOS, dans toutes les figures dans lequel ce taux apparaît).
  • L'antenne élémentaire 12Tx présente donc une large bande, soit une bande supérieure à 5% autour de la fréquence centrale de fonctionnement, à polarisation circulaire et une très bonne efficacité de rayonnement (notamment le rapport axial pour une aussi petite antenne est meilleur que dans l'état de la technique et l'apodisation du diagramme de rayonnement pour l'onde émise est facilitée lors de la mise en réseau).
  • Il est à noter que le mode de réalisation illustré, les deux patchs 14Tx et 16Tx sont agencés de sorte que la deuxième couche métallique fait face à la première couche isolante 20Tx.
  • En variante, les deux patchs 14Tx et 16Tx sont agencés de sorte que la deuxième couche métallique fait face à la première couche métallique 18Tx.
  • Il est également proposé un réseau 50Tx tel qu'illustré par la figure 5, comprenant une pluralité d'antennes élémentaires 12Tx pour l'émission.
  • Selon l'exemple particulier de la figure 5, le réseau 50Tx comprend vingt-quatre antennes élémentaires 12Tx.
  • De façon générale, une association d'un nombre plus important d'antennes élémentaires 12Tx est possible en fonction des dimensions globales et des performances souhaitées notamment au niveau gain du réseau 50Tx.
  • Chaque antenne élémentaire 12Tx de la figure 5 est identique à l'antenne élémentaire 12Tx décrite en référence à la figure 2.
  • En variante, certaines antennes sont différentes.
  • Les antennes élémentaires 12Tx sont agencées régulièrement le long d'une ligne formant ainsi le réseau 50Tx. En outre, les antennes élémentaires 12Tx sont connectées entre elles pour former le réseau 50Tx. La connexion se fait par l'intermédiaire de deux lignes rectilignes qui assurent l'alimentation du réseau unitaire. Le réseau 50Tx ainsi formé à l'émission possède deux accès qui permettent, en fonction de l'alimentation, de rayonner une onde électromagnétique dans la bande de fréquence souhaitée selon la polarisation circulaire désirée.
  • Dans l'exemple de la figure 5, le réseau 50Tx présente une extension ex2Tx le long de la deuxième direction X comprise entre 4 mm et 6 mm. De préférence, l'extension ex2Tx le long de la deuxième direction X est comprise entre 4,5 mm et 5,5 mm.
  • Dans l'exemple de la figure 5, le réseau 50Tx présente également une extension ey2Tx le long de la troisième direction Y comprise entre 160 mm et 190 mm. De préférence, l'extension ey2Tx le long de la troisième direction Y est comprise entre 165 mm et 185 mm.
  • En fonctionnement, chaque antenne élémentaire 12Tx du réseau 50Tx est alimentée par une onde électromagnétique. Chaque antenne élémentaire 12Tx capte le champ électrique issu de cette onde électromagnétique pour que le réseau 50Tx émette une onde dans la bande de fréquence souhaitée.
  • Les performances en termes de taux d'ellipticité et de taux d'ondes stationnaires et avantages octroyés par le réseau 50Tx sont similaires aux performances et avantages octroyés par l'antenne élémentaire 12Tx de la figure 2 ainsi que le montre l'étude des figures 6 et 7.
  • En outre, il apparaît sur la figure 8 que le réseau 50Tx présente un gain de l'ordre de 20 dB, ce qui témoigne de la bonne efficacité de rayonnement de la structure antennaire au regard de ses dimensions, c'est-à-dire de l'extension ex2Tx le long de la deuxième direction X et de l'extension ey2Tx le long de la troisième direction Y.
  • La figure 9 illustre le panneau d'émission 13Tx de la figure 1. Les éléments identiques au mode de réalisation de la figure 5 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.
  • Le panneau d'émission 13Tx comporte huit réseaux 50Tx au lieu d'un seul réseau 50Tx.
  • De façon générale, une association d'un nombre plus important de réseaux 50Tx est possible en fonction des dimensions globales et des performances souhaitées notamment au niveau gain et ouverture de rayonnement.
  • En l'occurrence, le nombre d'antennes pour le réseau 50Tx est choisi en fonction d'une contrainte dimensionnelle appliquée le long de la troisième direction Y.
  • Chaque réseau 50Tx est parallèle aux autres réseaux 50Tx.
  • Les antennes élémentaires 12Tx sont agencées en quinconce. Un tel agencement permet de conserver les performances en terme de stabilité du taux d'ellipticité lors de la mise en réseau de la structure globale ainsi que lors de la réalisation du pointage par déphasage.
  • En outre, dans l'exemple de la figure 9, le panneau d'émission 13Tx présente une extension ex3Tx le long de la deuxième direction X comprise entre 40 mm et 50 mm. De préférence, l'extension ex3Tx le long de la deuxième direction X est comprise entre 45 mm et 48 mm. L'extension ex3Tx le long de la deuxième direction X est liée au nombre d'antennes réseaux 50Tx considéré. Dans le cas présenté sur la figure 9, l'extension ex3Tx le long de la deuxième direction X correspond à environ neuf fois la taille d'une antenne élémentaire.
  • Dans l'exemple de la figure 9, le panneau d'émission 13Tx présente également une extension ey3Tx le long de la troisième direction Y comprise entre 160 mm et 190 mm. De préférence, l'extension ey3Tx le long de la troisième direction Y est comprise entre 165 mm et 185 mm. L'extension ey3Tx le long de la troisième direction Y est liée au nombre d'antennes élémentaires 12Tx considéré.
  • Les performances en termes de taux d'ellipticité et avantages octroyés par le panneau d'émission 13Tx sont similaires aux performances et avantages octroyés par l'antenne élémentaire 12Tx de la figure 2 ainsi que le montre l'étude de la figure 12.
  • En outre, il apparaît sur les figures 10 et 11 que le panneau d'émission 13Tx présente un gain de l'ordre de 28 dB, ce qui correspond à une structure antennaire compacte efficace à la fréquence de fonctionnement considérée.
  • De plus, lorsqu'un dépointage est effectué, il peut être montré par comparaison notamment des figures 11 et 13 que le gain de 26 dB est obtenu dans une direction relativement éloignée déterminée par un angle d'azimut de 30°. Le panneau d'émission 13Tx proposé est donc robuste au dépointage avec de très faible remontée des lobes secondaires.
  • Dans la suite, la structure du panneau de réception 13Rx de la figure 1 est détaillée en décrivant successivement une antenne élémentaire 12Rx pour la réception (figures 14 à 16), une ligne comportant une pluralité d'antennes élémentaires 12Rx pour la réception (figures 17 à 20) puis le panneau de réception 13Rx lui-même (figures 21 à 24).
  • La figure 14 illustre une antenne élémentaire 12Rx pour la réception. Les éléments identiques à l'antenne élémentaire 12Tx pour l'émission de la figure 2 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.
  • Les signes de références des éléments de l'antenne élémentaire 12Rx pour la réception sont suivis d'un suffixe Rx au lieu du suffixe Tx pour les éléments correspondants de l'antenne élémentaire 12Rx.
  • Une antenne élémentaire 12Rx pour la réception est représentée sur la figure 14. Cela implique que l'antenne élémentaire 12Rx est propre à recevoir une onde électromagnétique dont la longueur d'onde est notée λ0, cette longueur d'onde λ0 correspondant à une fréquence comprise entre 17,3 GHz et 21,2 GHz.
  • Aussi, l'antenne élémentaire 12Rx est dimensionnée pour recevoir des fréquences comprises entre 17,3 GHz et 21,2 GHz (bande Rx). Cela signifie qu'une telle antenne élémentaire 12Rx présente des premier et deuxième diamètres d1Rx, d2Rx compris entre 4,5 mm et 7 mm.
  • De manière alternative, au lieu d'une condition sur les diamètres d1Rx, d2Rx, il est imposé une contrainte sur le deuxième patch 16Rx. Le deuxième patch 16Rx est alors inscriptible dans un rectangle dont l'extension exRx le long de la deuxième direction X est comprise entre 6,6 mm et 7,0 mm et l'extension eyRx le long de la troisième direction Y est comprise entre 6,0 mm et 6,4 mm.
  • Les performances de l'antenne élémentaire 12Rx pour la réception sont maintenant décrites en référence aux figures 15 et 16.
  • Les performances et avantages octroyés par l'antenne élémentaire 12Rx pour la réception sont similaires aux performances et avantages octroyés par l'antenne élémentaire 12Tx pour l'émission ainsi que le montre l'étude des figures 15 et 16.
  • La figure 17 illustre un réseau 50Rx pour la réception selon l'invention. Selon l'exemple particulier de la figure 17, le réseau 50Rx comprend dix-huit antennes élémentaires 12Rx.
  • De façon générale, une association d'un nombre plus important d'antennes élémentaires 12Rx est possible en fonction des dimensions globales et des performances souhaitées notamment au niveau gain du réseau 50Rx.
  • En l'occurrence, le nombre d'antennes pour le réseau 50Rx est choisi en fonction d'une contrainte dimensionnelle appliquée le long de la troisième direction Y.
  • Chaque antenne élémentaire 12Rx de la figure 17 est identique à l'antenne élémentaire 12Rx décrite en référence à la figure 14.
  • En variante, certaines antennes sont différentes.
  • Les antennes élémentaires 12Rx sont agencées régulièrement le long d'une ligne formant ainsi le réseau 50Rx. En outre, les antennes élémentaires 12Rx sont connectées entre elles pour former le réseau 50Rx. La connexion se fait par l'intermédiaire d'une ligne rectiligne qui assure l'alimentation du réseau unitaire. Le réseau 50Rx ainsi formé à la réception possède deux accès qui permettent, en fonction de l'alimentation, de recevoir une onde électromagnétique dans la bande de fréquence souhaitée selon la polarisation circulaire désirée.
  • Dans l'exemple de la figure 17, le réseau 50Rx présente une extension ex2Rx le long de la deuxième direction X comprise entre 6 mm et 8,5 mm. De préférence, l'extension ex2Rx le long de la deuxième direction X est comprise entre 7,6 mm et 8,0 mm.
  • Dans l'exemple de la figure 17, le réseau 50Rx présente également une extension ey2Rx le long de la troisième direction Y comprise entre 180 mm et 200 mm. De préférence, l'extension ey2Rx le long de la troisième direction Y est comprise entre 185 mm et 195 mm. L'extension ey2Rx le long de la troisième direction Y est liée au nombre d'antennes élémentaire 12Rx considéré.
  • Les performances en termes de taux d'ellipticité et de taux d'ondes stationnaires octroyés par le réseau 50Rx sont similaires aux performances et avantages octroyés par l'antenne élémentaire 12Rx selon l'exemple de la figure 14 ainsi que le montre l'étude des figures 18 et 19.
  • En outre, il apparaît sur la figure 20 que le réseau 50Rx présente un gain de l'ordre de 18 dB, ce qui correspond à une structure antennaire compacte efficace à la fréquence de fonctionnement considérée.
  • La figure 21 illustre le panneau de réception 13Rx de la figure 1. Les éléments identiques au mode de réalisation de la figure 17 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.
  • Le panneau de réception 13Rx comporte huit réseaux 50Rx au lieu d'un seul réseau 50Rx.
  • De façon générale, une association d'un nombre plus important de réseaux 50Rx est possible en fonction des dimensions globales et des performances souhaitées notamment au niveau gain et ouverture de rayonnement.
  • Chaque réseau 50Rx est parallèle aux autres réseaux 50Rx.
  • Les antennes élémentaires 12Rx sont agencées en quinconce. Un tel agencement permet de conserver les performances en terme de stabilité du taux d'ellipticité lors de la mise en réseau de la structure globale ainsi que la réalisation du pointage par déphasage.
  • En outre, dans l'exemple de la figure 21, le panneau de réception 13Rx présente une extension ex3Rx le long de la deuxième direction X comprise entre 60 mm et 80 mm. De préférence, l'extension ex3Rx le long de la deuxième direction X est comprise entre 65 mm et 75 mm. L'extension ex3Rx le long de la deuxième direction X est liée au nombre de réseaux 50Tx considéré.
  • Dans l'exemple de la figure 21, le panneau de réception 13Rx présente également une extension ey3Rx le long de la troisième direction Y comprise entre 190 mm et 210 mm. De préférence, l'extension ey3Rx le long de la troisième direction Y est comprise entre 195 mm et 205 mm. L'extension ey3Rx le long de la troisième direction Y est liée au nombre d'antennes élémentaires 12Tx considéré.
  • Les performances en termes de taux d'ellipticité et de gain et avantages octroyés par le panneau de réception 13Rx sont similaires aux performances et avantages octroyés par le réseau 50Rx de la figure 17 ainsi que le montre l'étude des figures 22 à 24.
  • Dans tous les modes de réalisation, du fait que l'antenne élémentaire 12 est large bande, de polarisation circulaire et présente une bonne efficacité de rayonnement, la structure antennaire 10 présente un encombrement réduit ainsi qu'un poids réduit par rapport aux structures antennaires de l'état de la technique pour des performances en terme de rayonnement identiques. Ce poids réduit permet de réduire les contraintes notamment dans le cas où l'antenne complète est accompagnée d'un positionneur mécanique.
  • De plus, la réalisation de cette structure antennaire 10 sur un substrat simple couche permet aisément d'insérer du côté arrière au niveau plan de masse, avec le moins de contrainte et d'impact sur les performances de rayonnement, les dispositifs de coupleur, alimentation et déphasage pour assurer le contrôle et choix de polarisation ainsi que de loi de phase et d'amplitude permettant d'orienter le diagramme de rayonnement dans la direction souhaitée en configuration de balayage électronique.
  • La structure antennaire 10 est également capable d'émettre ou recevoir des ondes électromagnétiques polarisées circulairement sans utilisation d'un polariseur additionnel. Cette meilleure compacité s'accompagne d'un gain en légèreté et d'un gain en performance de rayonnement sur une large bande de fréquence compatibles avec l'application visée. En outre, la structure antennaire 10 est de réalisation aisée et peut être fabriquée à bas coût.
  • Ainsi, la structure antennaire 10 proposée est utilisable pour des applications de télécommunications entre deux stations, notamment par satellite. Il est à noter que dans ce cas, le diagramme de rayonnement de la structure antennaire 10 ainsi réalisée est conforme aux gabarits spécifiés pour être utilisé avec certains satellites.
  • Une telle structure antennaire 10 est avantageusement utilisable dans une plateforme, notamment aérienne de type hélicoptère ou drone. Dans le cadre de cette utilisation, la compacité de la structure antennaire 10 permet de réduire les contraintes sur les implantations d'équipements dans la plateforme.
  • La structure antennaire 10 présentée en référence à la figure 1 est un exemple de structure antennaire 10 présentant les propriétés de compacité décrites précédemment. D'autres structures antennaires 10 similaires sont également envisageables, notamment avec un nombre d'antennes élémentaires de réception 12Rx et/ou d'émission 12Tx différents et un agencement différent de celles-ci.
  • Ces différentes structures antennaires 10 sont des structures antennaires pour télécommunications, en particulier satellitaire, présentant un encombrement réduit en terme de profondeur et des capacités de pointage en utilisant un principe de balayage électronique tout en permettant l'obtention d'une communication haut débit de bonne qualité, notamment en termes de gain, de taux d'ellipticité et de lobes secondaires compatibles des gabarits normatifs.

Claims (5)

  1. Structure antennaire (10) pour télécommunications, notamment par satellite, comportant :
    • une surface d'émission (11Tx) comprenant au moins un ensemble d'une pluralité d'antennes élémentaires d'émission (12Tx) formant un réseau (50Tx), et
    • une surface de réception (11Rx) comprenant au moins un ensemble d'une pluralité d'antennes élémentaires de réception (12Rx) formant un réseau (50Rx),
    la structure antennaire (10) étant caractérisée en ce qu'elle est à balayage électronique, et qu'elle est réalisée sur un substrat simple couche comprenant un côté arrière au niveau plan de masse, et qu'elle comprend des dispositifs de coupleur, alimentation et déphasage insérés sur le côté arrière, et :
    - au moins une antenne élémentaire d'émission (12Tx) comporte deux patchs (14Tx, 16Tx) de forme générale circulaire au moins partiellement superposés, ladite au moins une antenne élémentaire d'émission (12Tx) étant dimensionnée pour émettre au moins une onde électromagnétique présentant une fréquence comprise entre 27 GHz et 31 GHz, et
    - au moins une antenne élémentaire de réception (12Rx) comporte deux patchs (14Rx, 16Rx) de forme générale circulaire au moins partiellement superposés, ladite au moins une antenne élémentaire de réception (12Rx) étant dimensionnée pour recevoir au moins une onde électromagnétique présentant une fréquence comprise entre 17,3 GHz et 21,2 GHz ;
    et en ce que la surface d'émission (11Tx) est à polarisation circulaire dans un premier sens, et la surface de réception (11Rx) est à polarisation circulaire dans un deuxième sens opposé au premier sens,
    en ce que
    • chaque patch (14Tx, 16Tx) de ladite au moins une antenne élémentaire d'émission (12Tx) présente un centre, ladite antenne élémentaire d'émission (12Tx) comportant deux accès (28Tx, 30Tx) d'alimentation propres à alimenter un des deux patchs (14Tx, 16Tx), chaque accès (28Tx, 30Tx) étant dans un secteur angulaire présentant un angle par rapport au centre du patch (14Tx, 16Tx) alimenté inférieur à 180°, et/ou
    • chaque patch (14Rx, 16Rx) de ladite au moins une antenne élémentaire de réception (12Rx) présente un centre, ladite antenne élémentaire de réception (12Rx) comportant deux accès (28Rx, 30Rx) d'alimentation propres à alimenter un des deux patchs (14Rx, 16Rx), chaque accès (28Rx, 30Rx) étant dans un secteur angulaire présentant un angle par rapport au centre du patch (14Rx, 16Rx) alimenté inférieur à 180° ;
    en ce que
    • les deux patchs (14Tx, 16Tx) de ladite au moins une antenne élémentaire d'émission (12Tx) sont espacés selon une première direction (Z) d'une distance (ezTx) comprise entre 0,75 millimètre (mm) et 1,5 mm, et/ou
    • les deux patchs (14Rx, 16Rx) de ladite au moins une antenne élémentaire de réception (12Rx) sont espacés selon une première direction (Z) d'une distance (ezRx) comprise entre 0,75 millimètre (mm) et 1,5 mm ; et
    en ce que
    • les diamètres (d1Tx, d2Tx) des deux patchs (14Tx, 16Tx) de ladite au moins une antenne élémentaire d'émission (12Tx) sont identiques, et/ou
    • les diamètres (d1Rx, d2Rx) des deux patchs (14Rx, 16Rx) de ladite au moins une antenne élémentaire de réception (12Rx) sont identiques.
  2. Structure antennaire selon la revendication 1, dans laquelle les antennes élémentaires d'émission (12Tx) et les antennes élémentaires de réception (12Rx) sont agencées en quinconce.
  3. Structure antennaire selon la revendication 1 ou 2, dans laquelle :
    • la surface d'émission (11Tx) est de forme générale rectangulaire et comprend au moins deux ensembles d'une pluralité d'antennes élémentaires d'émission (12Tx) formant chacun un réseau (50Tx), les antennes élémentaires d'émission (12Tx) de chaque ensemble (50Tx) étant le long d'une ligne propre de cet ensemble, chaque ligne étant parallèle aux autres lignes propres, et/ou
    • la surface de réception (11Rx) est de forme générale rectangulaire et comprend au moins deux ensembles d'une pluralité d'antennes élémentaires de réception (12Rx) formant chacun un réseau (50Rx), les antennes élémentaires de réception (12Rx) de chaque ensemble étant le long d'une ligne propre de cet ensemble, chaque ligne étant parallèle aux autres lignes propres.
  4. Plateforme, notamment aérienne, comprenant au moins une structure antennaire (10) selon l'une quelconque des revendications 1 à 3.
  5. Procédé de télécommunication, notamment par satellite, entre deux stations comprenant au moins l'une des étapes suivantes :
    - une étape d'émission d'ondes électromagnétiques présentant une fréquence comprise entre 27 GHz et 31 GHz par une structure antennaire (10) selon l'une quelconque des revendications 1 à 4, et
    - une étape de réception d'ondes électromagnétiques présentant une fréquence comprise entre 17,3 GHz et 21,2 GHz par une structure antennaire (10) l'une quelconque des revendications 1 à 3.
EP14200359.9A 2013-12-26 2014-12-26 Structure antennaire compacte pour télécommunications par satellites Active EP2889955B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1303086A FR3016101B1 (fr) 2013-12-26 2013-12-26 Structure antennaire compacte pour telecommunications par satellites

Publications (2)

Publication Number Publication Date
EP2889955A1 EP2889955A1 (fr) 2015-07-01
EP2889955B1 true EP2889955B1 (fr) 2022-06-15

Family

ID=50828957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14200359.9A Active EP2889955B1 (fr) 2013-12-26 2014-12-26 Structure antennaire compacte pour télécommunications par satellites

Country Status (7)

Country Link
US (1) US9515383B2 (fr)
EP (1) EP2889955B1 (fr)
ES (1) ES2926923T3 (fr)
FR (1) FR3016101B1 (fr)
IL (1) IL236366B (fr)
MY (1) MY167615A (fr)
SG (1) SG10201408635YA (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011055457A1 (de) * 2011-11-17 2013-05-23 Imst Gmbh Antennengruppe mit charakteristischer scheidelinie zwischen strahlerelementen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3207089B2 (ja) * 1995-10-06 2001-09-10 三菱電機株式会社 アンテナ装置
US5905465A (en) * 1997-04-23 1999-05-18 Ball Aerospace & Technologies Corp. Antenna system
US6864853B2 (en) * 1999-10-15 2005-03-08 Andrew Corporation Combination directional/omnidirectional antenna
US6441800B1 (en) * 2001-05-22 2002-08-27 Trw Inc. Single gimbal multiple aperture antenna
DE10316637A1 (de) * 2003-04-11 2004-10-28 Robert Bosch Gmbh Radar-Antennenanordnung
US7800542B2 (en) * 2008-05-23 2010-09-21 Agc Automotive Americas R&D, Inc. Multi-layer offset patch antenna
US8344943B2 (en) * 2008-07-28 2013-01-01 Physical Domains, LLC Low-profile omnidirectional retrodirective antennas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011055457A1 (de) * 2011-11-17 2013-05-23 Imst Gmbh Antennengruppe mit charakteristischer scheidelinie zwischen strahlerelementen

Also Published As

Publication number Publication date
EP2889955A1 (fr) 2015-07-01
FR3016101B1 (fr) 2016-02-05
SG10201408635YA (en) 2015-07-30
IL236366A0 (en) 2015-04-30
ES2926923T3 (es) 2022-10-31
IL236366B (en) 2019-06-30
FR3016101A1 (fr) 2015-07-03
US9515383B2 (en) 2016-12-06
MY167615A (en) 2018-09-20
US20150188231A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
FR2966986A1 (fr) Element rayonnant d'antenne
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
EP2441119A1 (fr) Élément rayonnant d'antenne
FR2810164A1 (fr) Perfectionnement aux antennes source d'emission/reception d'ondes electromagnetiques pour systemes de telecommunications par satellite
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
EP1690317B1 (fr) Antenne en reseau multi-bande a double polarisation
EP3843202B1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
EP2430705B1 (fr) Antenne multifaisceaux compacte
EP1466384B1 (fr) Dispositif pour la reception et/ou l emission d ondes e lectromagnetiques a diversite de rayonnement
EP1188202B1 (fr) Dispositif d'emission et/ou de reception de signaux
EP2610966A1 (fr) Antenne compacte large bande à très faible épaisseur et à double polarisations linéaires orthogonales opérant dans les bandes V/UHF
EP0520908B1 (fr) Antenne réseau linéaire
EP2889955B1 (fr) Structure antennaire compacte pour télécommunications par satellites
EP4046241B1 (fr) Antenne-reseau
FR3013909A1 (fr) Cornet, antennaire elementaire, structure antennaire et procede de telecommunication associes
EP3506429B1 (fr) Formateur de faisceaux quasi-optique, antenne elementaire, systeme antennaire, plateforme et procede de telecommunications associes
FR2958086A1 (fr) Element rayonnant de type pave double mode a couverture angulaire etendue, utilisable en reseau
EP4167378A1 (fr) Dispositif d'antennes radiofrequences isolees
EP3506426B1 (fr) Dispositif de pointage de faisceau pour systeme antennaire, systeme antennaire et plateforme associes
EP4485687A1 (fr) Diagramme de rayonnement adaptable par polarisation d'obstacle
WO2025037062A1 (fr) Système de réseau d'antennes multi-bandes et superdirectif
FR3152094A1 (fr) Système antennaire et antenne réseau correspondante
EP3075032B1 (fr) Structure antennaire compacte pour télécommunications par satellites
FR3013908A1 (fr) Agencement de structures antennaires pour telecommunications par satellites
FR2834836A1 (fr) Dispositif pour la reception et/ou l'emission d'ondes electromagnetiques a diversite de rayonnement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151223

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181017

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220131

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014084020

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1498941

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220916

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2926923

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221031

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220615

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1498941

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014084020

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

26N No opposition filed

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221226

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231215

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20241127

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20241211

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20241128

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20241220

Year of fee payment: 11

Ref country code: FI

Payment date: 20241120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241224

Year of fee payment: 11