[go: up one dir, main page]

EP2886862B1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
EP2886862B1
EP2886862B1 EP13197728.2A EP13197728A EP2886862B1 EP 2886862 B1 EP2886862 B1 EP 2886862B1 EP 13197728 A EP13197728 A EP 13197728A EP 2886862 B1 EP2886862 B1 EP 2886862B1
Authority
EP
European Patent Office
Prior art keywords
compressed air
motor
drive shaft
crankcase
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13197728.2A
Other languages
German (de)
French (fr)
Other versions
EP2886862A1 (en
Inventor
Sebastian Hütter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaeser Kompressoren AG
Original Assignee
Kaeser Kompressoren AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaeser Kompressoren AG filed Critical Kaeser Kompressoren AG
Priority to ES13197728T priority Critical patent/ES2834456T3/en
Priority to EP13197728.2A priority patent/EP2886862B1/en
Priority to BR112016013952-6A priority patent/BR112016013952B1/en
Priority to CN201480074375.0A priority patent/CN106164487B/en
Priority to PCT/EP2014/078112 priority patent/WO2015091587A1/en
Priority to US15/105,819 priority patent/US10677236B2/en
Publication of EP2886862A1 publication Critical patent/EP2886862A1/en
Application granted granted Critical
Publication of EP2886862B1 publication Critical patent/EP2886862B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/06Mobile combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0094Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/128Crankcases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed

Definitions

  • the present invention is concerned with a compressor, in particular a compressor with a reciprocating compressor.
  • Mobile compressors are used, for example, on construction sites or for manual activities in which compressed air is required for connected compressed air tools.
  • a frequently used type of compressor is the piston compressor, in which air is sucked into one or more cylinders, compressed by a piston and expelled again as compressed air.
  • the amount of air delivered by piston compressors is usually adapted to the respective compressed air requirement by regulating the drive speed of the machine driving the compressor.
  • a compressor with a compressed air sensor is shown, depending on the measured value of which the speed control of a reciprocating compressor runs.
  • piston compressors Due to their cyclical operation, piston compressors do not have a continuous output of compressed air, but generate compressed air in pulses. Therefore, a certain compressed air buffer volume is usually kept in order to dampen the compressed air pulses through the compressor. This buffer volume is conventionally kept in separate storage containers so that compressed air can be made available to a compressed air consumer connected to the storage container at a uniformly high pressure.
  • the pamphlet DE 10 2009 052 510 A1 deals with a speed-controlled piston compressor, which has a light and compact compressed air tank made of plastic.
  • U.S. 6,089,835 A a reciprocating compressor with a compressed air tank, which is formed by a shell housing placed on the outside of the motor housing.
  • the Pamphlet U.S. 5,370,504 A shows a piston compressor in which the compressor cylinders are completely embedded in a storage tank for compressed air.
  • the pamphlet WO 2007/041818 A1 discloses a centrifugal compressor having a compression chamber, a drive motor and a compression rotor on a shaft driven by the drive motor.
  • the radial compressor comprises a housing, in the outer wall of which a compressed air storage tank is arranged.
  • a reciprocating compressor is provided with a motor, a drive shaft connected to the motor and driven by it, a crank drive connected to the drive shaft, at least one compressed air generating device with a piston movable in a cylinder, which is driven by the crank drive , and which is designed to generate compressed air in a compression chamber of the cylinder, a crankcase, which has an inner chamber wall in the form of a hollow body which at least partially accommodates the drive shaft, an outer chamber wall spaced radially from the drive shaft from the inner chamber wall, an end wall, and has a partition wall, and a compressed air storage container which is designed to receive compressed air generated by the compressed air generating device, wherein the compressed air storage container through the inner chamber wall, the outer chamber wall, the end wall and the partition and is formed.
  • a basic idea of the invention consists in embedding the storage container for compressed air generated by the compressor in the crankcase of the compressor by using the space around the drive shaft. This results in a great advantage in that a separate storage container can be dispensed with, which in turn contributes to considerable weight and cost savings.
  • the entire structure of the compressor becomes more compact, so that the compressor remains handy and portable despite the large storage volume.
  • the compressor can furthermore have at least one longitudinal rib which is formed in one piece with the crankcase on the outside of the compressed air storage tank.
  • the compressor can furthermore have a motor support, which accommodates and holds the motor, the crankcase being formed around the motor at a distance from the motor support, and the compressed air storage tank at least partially surrounding the motor between the crankcase and the motor support extends around.
  • the compressed air storage container can enclose the drive shaft in an angular range of 360 °.
  • the ratio of the distance between the axis of rotation of the drive shaft up to the point on the inner wall of the compressed air storage container that is most vertically spaced from the drive shaft to the distance between the axis of rotation of the drive shaft and the top dead center of a piston of the compressed air generating device can be between 0.2 and 1 .
  • the ratio of the distance between the axis of rotation of the drive shaft to the point on the inner wall of the compressed air storage container that is most vertically spaced from the drive shaft to the maximum axial extension of the compressed air storage container 25 can be between 0.3 and 2.5.
  • the compressed air generating device can have at least one compression chamber, and the volume ratio between the volume of the compressed air storage container and the sum of the geometric stroke volumes of the compressor chambers of the compressed air generating device can be between 5 and 25.
  • Fig. 1 shows a schematic representation of a compressor 100 in sectional view.
  • the compressor 100 generally has a motor 40 which can be supported in a motor support 41.
  • the motor 40 can be, for example, an electric motor with speed control. It may be possible to use synchronous motors such as brushless direct current motors or asynchronous motors.
  • the engine 40 drives a drive shaft 24 that extends away from the engine 40 in a crankcase 20.
  • the drive shaft 24 can be arranged essentially concentrically to the cross section of the crankcase shape 20 in the center thereof.
  • the drive shaft 24 is used to drive a crank drive 6, which moves a piston 4 up and down in a cylinder 5, ie the crank drive 6 translates the rotational movement of the drive shaft 24 into a linear movement along the direction of extension of the piston 4 in the cylinder 5 the crank drive 6 have a counterweight, a crank web, a connecting rod, a connecting rod bearing and / or a piston pin.
  • a compression chamber 11 is formed at the head end of the cylinder housing, in which air can be compressed according to the main function of the compressor 100.
  • a fan wheel 45 can then be arranged on the crank drive 6.
  • a core component of the crankcase 20 is the compressed air storage tank 25, the in Fig. 1 is designed as an integral component of the crankcase 20.
  • the crankcase 20 has an inner chamber wall 26a, which can be designed, for example, cylindrical with a circular or polygonal cross section, and which receives the part of the drive shaft 24 close to the engine and supports it in a rotating manner.
  • At least one bearing 28b is therefore arranged in a first bearing seat within the chamber wall 26a.
  • the bearing 28b in the first bearing seat can support a part of the drive shaft 24 remote from the motor between the motor 40 and the crank mechanism 6, ie the bearing 28b supports the crank mechanism 6 overhung.
  • a further bearing 28a can be formed in a second bearing seat within the chamber wall 26a, which can support a part of the drive shaft 24 close to the motor between motor 40 and crank mechanism 6, i.e. the bearing 28a supports the motor 40 on the fly.
  • both bearings 28a and 28b are located in the section of the crankcase 20 which forms the compressed air storage tank 25, the bearing seats of the bearings 28a and 28b can be better aligned with one another. This enables an improved concentricity of the bearing seats to one another. It is possible to machine both bearing seats of the bearings 28a and 28b in the crankcase 20 from one side, especially when the radial extent of the bearing 28a is less than that of the bearing 28b.
  • FIG. 2 To illustrate the geometry of the compressed air storage container 25 is shown in Fig. 2 an exemplary cross section of the compressor 100 along the cross section line AA in FIG Fig. 1 shown.
  • the compressed air storage tank is arranged essentially in a ring around the drive shaft 24.
  • the compressed air storage tank 25 can enclose a minimum angle of 200 °, preferably of at least 240 °, around the drive shaft 24.
  • the crankcase 20 and thus the compressed air storage tank 25 is shown in principle as a hollow cylinder.
  • the compressed air storage container 25 is limited in the radial direction with respect to the axis of rotation of the drive shaft 24 by the inner chamber wall 26a on the one hand and an outer chamber wall 26b on the other hand.
  • the outer chamber wall 26b represents an outer wall of the crankcase 20, which completely accommodates the inner chamber wall 26a in its interior.
  • the topology of the external Chamber wall 26b and the housing formed by the inner chamber wall 26a essentially resembles two cylinders mounted one inside the other, for example circular cylinders, prismatic cylinders or cylinders with a polygonal cross-sectional area.
  • the top surfaces of the cylinder jacket surfaces formed by the outer chamber wall 26b and the inner chamber wall 26a can then be closed by one or more partition walls 34 on the other side or one or more end walls 23 on the other side to form the volume of the compressed air storage tank 25.
  • the partition wall 34 or the partition walls 34 have a main direction of extent which is essentially perpendicular to the axial direction of the drive shaft 24.
  • the end wall 23 has a main direction of extent which is essentially perpendicular to the axial direction of the drive shaft 24 and is spaced from the partition 34 or partition walls 34 by a length which substantially corresponds to the longitudinal extent of the compressed air storage tank 25.
  • the compressed air storage tank 25 can be interrupted in the lateral direction by one or more struts 33.
  • the compressed air storage tank 25 can be stabilized on the one hand, and can be divided into several partial storage volumes on the other hand.
  • These partial storage volumes can be connected to one another via compressed air lines or other connecting lines such as bottlenecks.
  • compressed air coolers and / or valves can advantageously be arranged in the connecting lines.
  • three struts 33 are shown, which divide the completely circumferential compressed air storage tank 25 into three equal partial storage volumes, each of which sweeps 120 ° of the crankcase 20.
  • the struts 33 can for example be formed integrally with the crankcase 20, for example in a common metal casting.
  • FIG. 10 shows a detailed illustration of the compressor 100 from FIG Fig. 1 in longitudinal section.
  • the compressor 100 is in the example Fig. 3 shown as a dry-compressing piston compressor 100 with adjustable speed, which works on the principle of reciprocating piston compression.
  • a dry compressing compressor use an oil-lubricated compressor.
  • the compression can, as in Fig. 3 shown as an example, take place in one stage - but it may also be possible to carry out the compression in several stages.
  • the compressor according to Fig. 3 has a cylinder 5 in a compressor section 1 on the right in the figure, in which a piston 4 for compressing air from the environment is arranged. Air from the environment can be sucked into the compression chamber 11 through an intake opening 3 with an intake valve through an intake air filter 2. This takes place when the piston 4 moves downwards.
  • the linear working movement for the piston 5 is generated via a crank mechanism 6 which is connected to the rotor 43 of the motor 40 via a drive shaft 24.
  • the drive shaft 24 can be mounted rotatably with respect to the crankcase 20 via two bearings 28a and 28b, for example permanently lubricated roller bearings with fixed / loose bearings.
  • the crankcase 20 has a crank drive section 21 which at least partially encloses the crank drive 6, and a storage section 22 which adjoins the crank drive section 21 and is arranged axially between this and the motor 40.
  • the partition 34 separates the compressed air storage tank 25 inside the crankcase 20 from the crank drive section 21, that is, the crank drive 6 itself is not located in the air storage volume of the compressed air storage tank 25.
  • the storage section 22 is thus formed disjoint with the crank drive section 21.
  • the cylinder 5 and the piston 4 are not arranged within the storage section 22, that is to say that the volume of the compressed air storage container does not include the cylinder 5 and the piston 4.
  • the storage section 22 comprises an inner chamber wall 26a, which is hollow or tubular, is arranged around the drive shaft 24 and accommodates the area of the drive shaft 24 leading through the storage section 22 and at least one of the two bearings 28a and 28b.
  • the inner chamber wall 26a can have recesses for one or more bearing seats of the bearings 28a and 28b. In addition, more than two bearings 28a and 28b can be provided.
  • the storage section 22 further comprises an outer chamber wall 26b, which can be arranged concentrically around the inner chamber wall 26a and at a distance therefrom.
  • the inner chamber wall 26a and the outer chamber wall 26b are preferably integral with the crankcase 20, i. designed as an integral part of the crankcase 20.
  • the inner chamber wall 26a and the outer chamber wall 26b define, together with one or more partition walls 34, the plane of extension of which is essentially perpendicular to the axis of rotation of the drive shaft 24, a compressed air storage container 25 of the compressor 100.
  • the compressed air storage container 25 is concentric to the drive shaft 24, at least in sections, annular around the inner chamber wall 26a arranged. In other words, the compressed air storage container 25 thus encloses the drive shaft 24 at least in a partial angular range.
  • the compressed air storage container 25 is arranged completely, that is to say in an angular range of 360 °, around the drive shaft 24.
  • the compressed air storage tank 25 is sealed off by an end wall 23 of the crankcase 20 with respect to the engine area or the engine support 41.
  • the compressed air storage tank 25 thus defines a control volume via the corresponding dimensions of the chamber walls 26a and 26b and the axial distance L3 between the partition walls 34 and the end wall 23 of the crankcase 20, which is used to receive and temporarily store compressed air generated by the piston compressor.
  • the motor support 41 can take over the torque support between the rotor and stator of the motor 40.
  • the motor support 41 can be a component that completely or only partially surrounds the motor 40 and can have closed boundary walls with struts, pillars or the like.
  • the motor support 41 can also function as a completely closed motor housing.
  • the motor support 41 can also form the end wall 23, which in the example of FIG Fig. 3 is arranged between motor 40 and storage section 22. However, it can also be provided to arrange the end wall 23 on the outside of the motor 40, so that the motor 40 at least partially through the Storage section 22 is included, that is to say that the volume of the compressed air storage tank 25 extends in the axial direction of the drive shaft 24 at least partially completely or in a partial angular range around the motor 40.
  • the sucked air is compressed in the compression chamber 11 in a compressor work cycle during the upward movement of the piston 4 and discharged via the outlet opening 7 and an outlet valve arranged therein.
  • the compressed air that is expelled via the outlet opening 7 can be discharged into a compressed air line 8, which can include an area with a cooling line 9 for cooling purposes.
  • a cooling line 9 for cooling purposes.
  • the compressed air passes through the check valve 10 into a compressed air storage container 25 of the compressor 100.
  • Both the crankcase 20 and the engine support 41 can be reinforced by ribs 32. These ribs 32, which can also be attached in a similar form on the outside of the crankcase 20 and / or the motor support 41, contribute to better heat dissipation from the compressed air. It is also possible to optimize the mechanical stability of the compressor 100 in this way.
  • a compressed air delivery line for example a compressed air hose for a compressed air-operated tool, through which the compressed air can be taken from the compressed air storage container 25 as required, can be connected via a compressed air coupling 31.
  • a compressor control 60 can call up the pressure of the compressed air measured by a pressure sensor 27 arranged on the compressed air storage container 25 via a control line 61. Should the measured actual pressure in the compressed air storage tank 25 deviate from the setpoint pressure stored in the compressor control 60, a setpoint speed signal for the motor 40 can be determined from the control deviation, which the compressor control 60 sends as a control signal via a control line 62 to an engine control, for example the frequency converter 70 of an electric motor 40 are output. The frequency converter 70 regulates the speed of the motor 40 as a function of the transmitted control signal.
  • the motor 40 is an electronically commutated synchronous external rotor motor in which the frequency converter 70 is attached directly to the stator 44.
  • the stator 44 carries the stator winding 46 and can be connected to the motor support 41 by means of screws, for example. Via the alternating magnetic field generated in the stator winding 46, the torque required for compressing the compressor 100 is generated in a known manner in interaction with the permanent magnets 48 in the rotor 43 of the motor 40.
  • Fig. 4 shows a longitudinal section through a compact variable-speed piston compressor 100 with an alternative motor design. It differs from the 100 in Fig. 1 essentially that the motor 40 is an internal rotor motor with an external frequency converter.
  • Fig. 5 is a more detailed illustration of the compressor's Fig. 4 shown.
  • the motor 40 has an external frequency converter 70, which is connected to the motor 40 via a motor connection cable 47. If, for assembly reasons, the engine 40 cannot be attached to the crankcase 20 with the engine mount 41, the compressor can use the Fig. 5
  • a cover can be provided as an end wall 23. On the one hand, the cover 23 can fasten the motor 40 to the motor support 41, which can then take on a housing function for the motor 40. On the other hand, the cover 23 can fluidically close the compressed air storage container 25 located in the crankcase 20.
  • the maximum radial extension L2 (distance of the axis of rotation of the drive shaft 24 to the point on the inner wall of the compressed air storage container 25 that is most vertically spaced from the drive shaft 24) in a certain ratio to the compressor length L1 (distance of the axis of rotation of the drive shaft 24 to the top dead center of the piston) stand.
  • the dimension L2 can be less than or equal to the compressor length L1.
  • a ratio of L2 / L1 2/3 is advantageous here.
  • the ratio L2 / L1 can be between 0.2 and 1, preferably between 0.4 and 0.66. Viewed in absolute terms, the dimension L2 can be less than 150 mm in order to ensure, for example, the compactness and thus the hand portability of the compressor 100.
  • the maximum radial extent L2 can be in a certain ratio to the maximum axial extent L3 of the compressed air storage container 25. If the compressed air storage tank 25 is arranged between the crank mechanism 6 and the motor 40, the ratio L2 / L3 can be between 0.3 and 2.5, preferably between 0.5 and 1.33.
  • the volume ratio between the volume V R of the compressed air storage tank 25 and the geometric stroke volume V H of the compressor chamber 11 (or the sum V H of all the stroke volumes V Hi of all the compressor chambers 11 in the case of several cylinders 5) can be set in order to optimally dampen the compressed air pulsations to be able to eliminate.
  • the ratio V R / V H can be between 5 and 25.
  • crankcase 20 together with all chamber walls 26a, 26b and end walls 23 and partition walls 34 can be in the Figs. 1 to 5 be formed completely integrally, for example by a casting process with a lost shape or a rapid prototyping process such as selective laser melting, 3D printing, additive layer manufacturing, electron beam melting, laser deposition welding or similar processes.
  • a casting process with a lost shape or a rapid prototyping process such as selective laser melting, 3D printing, additive layer manufacturing, electron beam melting, laser deposition welding or similar processes.
  • the crankcase 20 and its relevant components such as walls, partition walls and end walls can be produced, for example, in a die-casting process, for example from a light metal such as aluminum or magnesium.
  • FIG. 6 , 7 and 8 show schematic representations of further variants of a compressor 100.
  • the compressors 100 of FIG Fig. 6 and 7th differ from the compressors 100 of the Fig. 1 and 4th essentially in that the second bearing 28a is accommodated in the motor 40 - in Fig. 6 on the side of the engine 40 remote from the crankcase, in Fig. 7 on the side of the engine 40 close to the crankcase.
  • the compressor 100 of Fig. 8 has a crankcase 20 which, together with the motor support 41, forms a compressed air storage tank 25 which is expanded axially on the drive shaft.
  • the compressed air storage tank 25 extends around the engine 40 in the interior of the crankcase 20, which is spaced from the engine support 41 accordingly.
  • the ratio L2 / L1 of the maximum radial expansion L2 to the maximum axial expansion L1 of the Compressed air storage container 25 between 0.12 and 1, preferably between 0.2 and 0.5.
  • the compressed air storage tank 25 can surround the motor 40 in a partial angular range of less than 360 ° or completely, that is to say to a circumference of 360 °. It may furthermore be possible that the compressed air storage tank 25 completely surrounds the motor 40 with respect to the angular range around the drive shaft 24, but only partially surrounds the motor 40 in the axial direction of the motor axis of rotation, that is, is not completely formed as far as the end of the motor support 40 remote from the crankcase .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

Technisches GebietTechnical area

Die vorliegende Erfindung befasst sich mit einem Kompressor, insbesondere einem Kompressor mit einem Hubkolbenverdichter.The present invention is concerned with a compressor, in particular a compressor with a reciprocating compressor.

Hintergrund der ErfindungBackground of the invention

Mobile Kompressoren werden beispielsweise auf Baustellen oder für handwerkliche Tätigkeiten eingesetzt, in denen Druckluft für angeschlossene Druckluftwerkzeuge benötigt wird. Ein häufig eingesetzter Kompressortyp ist der Kolbenkompressor, bei dem Luft in einen oder mehrere Zylinder angesaugt, durch einen Kolben verdichtet und als Druckluft wieder ausgestoßen wird. Die Luftliefermenge von Kolbenkompressoren wird üblicherweise über eine Regelung der Antriebsdrehzahl der den Verdichter antreibenden Maschine an den jeweiligen Druckluftbedarf angepasst. In der Druckschrift DE 10 2004 007 882 B4 ist beispielsweise ein Kompressor mit einem Druckluftsensor gezeigt, in Abhängigkeit von dessen Messwert die Drehzahlregelung eines Kolbenverdichters abläuft.Mobile compressors are used, for example, on construction sites or for manual activities in which compressed air is required for connected compressed air tools. A frequently used type of compressor is the piston compressor, in which air is sucked into one or more cylinders, compressed by a piston and expelled again as compressed air. The amount of air delivered by piston compressors is usually adapted to the respective compressed air requirement by regulating the drive speed of the machine driving the compressor. In the pamphlet DE 10 2004 007 882 B4 For example, a compressor with a compressed air sensor is shown, depending on the measured value of which the speed control of a reciprocating compressor runs.

Kolbenkompressoren weisen aufgrund ihres getakteten Betriebs keinen kontinuierlichen Druckluftausstoß auf, sondern erzeugen Druckluft in Pulsen. Daher wird üblicherweise ein gewisses Druckluftpuffervolumen vorgehalten, um die Druckluftpulse durch den Verdichter zu dämpfen. Dieses Puffervolumen wird herkömmlich in separaten Speicherbehälter vorgehalten, so dass einem an den Speicherbehälter angeschlossenen Druckluftverbraucher Druckluft mit gleichmäßig hohem Druck zur Verfügung gestellt werden kann. Die Druckschrift DE 10 2009 052 510 A1 beispielsweise befasst sich mit einem drehzahlgeregelten Kolbenverdichter, welcher einen leichten und kompakten Drucklufttank aus Kunststoff aufweist.Due to their cyclical operation, piston compressors do not have a continuous output of compressed air, but generate compressed air in pulses. Therefore, a certain compressed air buffer volume is usually kept in order to dampen the compressed air pulses through the compressor. This buffer volume is conventionally kept in separate storage containers so that compressed air can be made available to a compressed air consumer connected to the storage container at a uniformly high pressure. The pamphlet DE 10 2009 052 510 A1 for example deals with a speed-controlled piston compressor, which has a light and compact compressed air tank made of plastic.

Es existieren verschiedene weitere Ansätze für die Ausgestaltung von Drucklufttanks für Kolbenverdichter: Beispielsweise zeigt die Druckschrift US 6,089,835 A einen Kolbenkompressor mit einem Drucklufttank, der durch ein an die Außenseite des Motorgehäuses aufgesetztes Hüllgehäuse gebildet wird. Die Druckschrift US 5,370,504 A zeigt einen Kolbenkompressor, bei dem die Verdichterzylinder komplett in einen Speichertank für Druckluft eingebettet sind. Die Druckschrift WO 2007/041818 A1 offenbart einen Radialverdichter mit einer Verdichtungskammer, einem Antriebsmotor und einem Verdichtungsrotor auf einer durch den Antriebsmotor angetriebenen Welle. Der Radialverdichter umfasst ein Gehäuse, in dessen Außenwand ein Druckluftspeichertank angeordnet ist.There are various other approaches for the design of compressed air tanks for reciprocating compressors: For example, the publication shows U.S. 6,089,835 A a reciprocating compressor with a compressed air tank, which is formed by a shell housing placed on the outside of the motor housing. The Pamphlet U.S. 5,370,504 A shows a piston compressor in which the compressor cylinders are completely embedded in a storage tank for compressed air. The pamphlet WO 2007/041818 A1 discloses a centrifugal compressor having a compression chamber, a drive motor and a compression rotor on a shaft driven by the drive motor. The radial compressor comprises a housing, in the outer wall of which a compressed air storage tank is arranged.

Es besteht jedoch ein Bedarf nach Lösungen für Kompressoren, die ein geringeres Gewicht und geringere Ausmaße aufweisen, so dass sie sich für den Transport per Hand besser eignen.There is, however, a need for solutions for compressors that are lighter in weight and smaller in size so that they are more suitable for transport by hand.

Zusammenfassung der ErfindungSummary of the invention

Daher wird gemäß einem Aspekt der Erfindung ein Kolbenkompressor bereitgestellt, mit einem Motor, einer mit dem Motor verbundenen und von diesem angetriebenen Antriebswelle, einem mit der Antriebswelle verbundenen Kurbeltrieb, mindestens einer Drucklufterzeugungseinrichtung mit einem in einem Zylinder bewegbaren Kolben, welcher durch den Kurbeltrieb angetrieben wird, und welcher dazu ausgelegt ist, in einem Verdichtungsraum des Zylinders Druckluft zu erzeugen, einem Kurbelgehäuse , welches eine innere Kammerwandung in Form eines Hohlkörpers, der die Antriebswelle zumindest abschnittsweise aufnimmt, eine von der inneren Kammerwandung radial zur Antriebswelle beabstandete äußere Kammerwandung, eine Endwand, und eine Trennwand aufweist, und einem Druckluftspeicherbehälter, welcher dazu ausgelegt ist, von der Drucklufterzeugungseinrichtung erzeugte Druckluft aufzunehmen, wobei der Druckluftspeicherbehälter durch die innere Kammerwandung, die äußere Kammerwandung, die Endwand und die Trennwand gebildet wird.Therefore, according to one aspect of the invention, a reciprocating compressor is provided with a motor, a drive shaft connected to the motor and driven by it, a crank drive connected to the drive shaft, at least one compressed air generating device with a piston movable in a cylinder, which is driven by the crank drive , and which is designed to generate compressed air in a compression chamber of the cylinder, a crankcase, which has an inner chamber wall in the form of a hollow body which at least partially accommodates the drive shaft, an outer chamber wall spaced radially from the drive shaft from the inner chamber wall, an end wall, and has a partition wall, and a compressed air storage container which is designed to receive compressed air generated by the compressed air generating device, wherein the compressed air storage container through the inner chamber wall, the outer chamber wall, the end wall and the partition and is formed.

Eine grundlegende Idee der Erfindung besteht darin, den Speicherbehälter für durch den Kompressor erzeugte Druckluft in das Kurbelgehäuse des Kompressors einzubetten, indem der Platz um die Antriebswelle herum genutzt wird. Dabei ergibt sich ein großer Vorteil darin, dass auf einen separaten Speicherbehälter verzichtet werden kann, was wiederum zu einer erheblichen Gewichts- und Kosteneinsparung beiträgt. Der gesamte Aufbau des Kompressors wird kompakter, so dass der Kompressor trotz großem Speichervolumen handlich und tragbar bleibt.A basic idea of the invention consists in embedding the storage container for compressed air generated by the compressor in the crankcase of the compressor by using the space around the drive shaft. This results in a great advantage in that a separate storage container can be dispensed with, which in turn contributes to considerable weight and cost savings. The entire structure of the compressor becomes more compact, so that the compressor remains handy and portable despite the large storage volume.

Zudem kann durch die Integration des Druckluftspeicherbehälters in das Kurbelgehäuse die notwendige Anzahl an Bauteilen verringert werden, was wieder den Montageaufwand für den Kompressor verringert. Durch die Lagerung der Antriebswelle in einem einstückigen Kurbelgehäuseabschnitt entfällt zudem die aufwändige Justage der einzelnen Lagerstellen zueinander. Des Weiteren können Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Kompressors kann der Kompressor weiterhin mindestens eine Längsrippe aufweisen, welche an der Außenseite des Druckluftspeicherbehälters einstückig mit dem Kurbelgehäuse ausgebildet ist.In addition, by integrating the compressed air storage tank into the crankcase, the necessary number of components can be reduced, which in turn reduces the assembly effort for the compressor. The fact that the drive shaft is supported in a one-piece crankcase section also eliminates the need for complex adjustment of the individual bearings. Furthermore can According to a further embodiment of the compressor according to the invention, the compressor can furthermore have at least one longitudinal rib which is formed in one piece with the crankcase on the outside of the compressed air storage tank.

Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Kompressors kann der Kompressor weiterhin einen Motorträger aufweisen, welcher den Motor aufnimmt und haltert, wobei das Kurbelgehäuse von dem Motorträger beabstandet um den Motor herum ausgebildet ist, und wobei sich der Druckluftspeicherbehälter zumindest teilweise um den Motor zwischen Kurbelgehäuse und Motorträger herum erstreckt.According to a further embodiment of the compressor according to the invention, the compressor can furthermore have a motor support, which accommodates and holds the motor, the crankcase being formed around the motor at a distance from the motor support, and the compressed air storage tank at least partially surrounding the motor between the crankcase and the motor support extends around.

Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Kompressors kann der Druckluftspeicherbehälter die Antriebswelle in einem Winkelbereich von 360° umschließen.According to a further embodiment of the compressor according to the invention, the compressed air storage container can enclose the drive shaft in an angular range of 360 °.

Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Kompressors kann das Verhältnis des Abstands der Rotationsachse der Antriebswelle bis zum senkrecht von der Antriebswelle am weitesten beabstandeten Punkt der Innenwand des Druckluftspeicherbehälters zum Abstand der Rotationsachse der Antriebswelle zum oberen Totpunkt eines Kolbens der Drucklufterzeugungseinrichtung zwischen 0,2 und 1 betragen.According to a further embodiment of the compressor according to the invention, the ratio of the distance between the axis of rotation of the drive shaft up to the point on the inner wall of the compressed air storage container that is most vertically spaced from the drive shaft to the distance between the axis of rotation of the drive shaft and the top dead center of a piston of the compressed air generating device can be between 0.2 and 1 .

Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Kompressors kann das Verhältnis des Abstands der Rotationsachse der Antriebswelle bis zum senkrecht von der Antriebswelle am weitesten beabstandeten Punkt der Innenwand des Druckluftspeicherbehälters zur maximalen axialen Erstreckung des Druckluftspeicherbehälters 25 zwischen 0,3 und 2,5 betragen.According to a further embodiment of the compressor according to the invention, the ratio of the distance between the axis of rotation of the drive shaft to the point on the inner wall of the compressed air storage container that is most vertically spaced from the drive shaft to the maximum axial extension of the compressed air storage container 25 can be between 0.3 and 2.5.

Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Kompressors kann die Drucklufterzeugungseinrichtung mindestens einen Verdichterraum aufweisen, und das Volumenverhältnis zwischen dem Volumen des Druckluftspeicherbehälters und der Summe der geometrischen Hubvolumina der Verdichterräume der Drucklufterzeugungseinrichtung kann zwischen 5 und 25 betragen.According to a further embodiment of the compressor according to the invention, the compressed air generating device can have at least one compression chamber, and the volume ratio between the volume of the compressed air storage container and the sum of the geometric stroke volumes of the compressor chambers of the compressed air generating device can be between 5 and 25.

Kurze Zusammenfassung der ZeichnungenBrief summary of the drawings

Die Erfindung wird im Folgenden genauer im Zusammenhang und in Bezug auf die beispielhaften Ausführungsformen wie in den beigefügten Zeichnungen beschrieben.The invention will be described in more detail below in connection and with reference to the exemplary embodiments as in the accompanying drawings.

Die beigefügten Zeichnungen dienen dem besseren Verständnis der vorliegenden Erfindung und illustrieren beispielhafte Ausführungsvarianten der Erfindung. Sie dienen zur Erläuterung von Prinzipien, Vorteilen, technischen Effekten und Variationsmöglichkeiten. Selbstverständlich sind andere Ausführungsformen und viele der beabsichtigten Vorteile der Erfindung ebenso denkbar, insbesondere mit Blick auf die im Folgenden dargestellte ausführliche Beschreibung der Erfindung. Die Elemente in den Zeichnungen sind nicht notwendigerweise maßstabsgetreu dargestellt und aus Gründen der Übersichtlichkeit teils vereinfacht oder schematisiert dargestellt. Gleiche Bezugszeichen bezeichnen dabei gleiche oder gleichartige Komponenten oder Elemente.

Fig. 1
zeigt eine schematische Darstellung eines Kompressors in Schnittansicht gemäß einer Ausführungsform der Erfindung.
Fig. 2
zeigt eine schematische Illustration eines Querschnitts durch den Kompressor in Fig. 1.
Fig. 3
zeigt eine detaillierte Illustration des Kompressors in Fig. 1 gemäß einer weiteren Ausführungsform der Erfindung.
Fig. 4
zeigt eine schematische Darstellung eines Kompressors in Schnittansicht mit gemäß einer weiteren Ausführungsform der Erfindung.
Fig. 5
zeigt eine detaillierte Illustration des Kompressors in Fig. 4 gemäß einer weiteren Ausführungsform der Erfindung.
Fig. 6
zeigt eine schematische Darstellung eines Kompressors in Schnittansicht gemäß einer weiteren Ausführungsform der Erfindung.
Fig. 7
zeigt eine schematische Darstellung eines Kompressors in Schnittansicht gemäß einer weiteren Ausführungsform der Erfindung.
Fig. 8
zeigt eine schematische Darstellung eines Kompressors in Schnittansicht gemäß einer weiteren Ausführungsform der Erfindung.
The accompanying drawings serve for a better understanding of the present invention and illustrate exemplary embodiments of the invention. They serve to explain principles, advantages, technical effects and possible variations. Of course, other embodiments and many of the intended advantages of the invention are also conceivable, especially in view of the detailed description of the invention presented below. The elements in the drawings are not necessarily shown true to scale and, for the sake of clarity, are in some cases shown in a simplified or schematic manner. The same reference symbols denote the same or similar components or elements.
Fig. 1
shows a schematic representation of a compressor in sectional view according to an embodiment of the invention.
Fig. 2
FIG. 13 shows a schematic illustration of a cross section through the compressor in FIG Fig. 1 .
Fig. 3
shows a detailed illustration of the compressor in FIG Fig. 1 according to a further embodiment of the invention.
Fig. 4
shows a schematic representation of a compressor in sectional view according to a further embodiment of the invention.
Fig. 5
shows a detailed illustration of the compressor in FIG Fig. 4 according to a further embodiment of the invention.
Fig. 6
shows a schematic representation of a compressor in sectional view according to a further embodiment of the invention.
Fig. 7
shows a schematic representation of a compressor in sectional view according to a further embodiment of the invention.
Fig. 8
shows a schematic representation of a compressor in sectional view according to a further embodiment of the invention.

Obwohl hierin spezielle Ausführungsformen beschrieben und dargestellt sind, ist es für einen Fachmann klar, dass eine Fülle weiterer, alternativer und/oder äquivalenter Implementierungen für die Ausführungsformen gewählt werden können, ohne im Wesentlichen vom Grundgedanken der vorliegenden Erfindung abzuweichen. Im Allgemeinen sollen alle Variationen, Modifikationen und Abwandlungen der hierin beschriebenen Ausführungsbeispiele ebenfalls von der Erfindung als abgedeckt gelten.Although specific embodiments are described and illustrated herein, it is clear to a person skilled in the art that a multitude of further, alternative and / or equivalent implementations can be selected for the embodiments without essentially deviating from the basic concept of the present invention. In general, all variations, modifications and alterations of the exemplary embodiments described herein are also intended to be covered by the invention.

Ausführliche Beschreibung der AusführungsformenDetailed description of the embodiments

Fig. 1 zeigt eine schematische Darstellung eines Kompressors 100 in Schnittansicht. Der Kompressor 100 weist generell einen Motor 40 auf, der in einem Motorträger 41 gehaltert werden kann. Der Motor 40 kann beispielsweise ein Elektromotor mit Drehzahlregelung sein. Es kann dabei möglich sein Synchronmotoren wie bürstenlose Gleichstrommotoren oder Asynchronmotoren einzusetzen. Der Motor 40 treibt eine Antriebswelle 24 an, die sich vom Motor 40 weg in einem Kurbelgehäuse 20 erstreckt. Dabei kann die Antriebswelle 24 im Wesentlichen konzentrisch zum Querschnitt der Kurbelgehäuseform 20 in deren Mitte angeordnet sein. Die Antriebswelle 24 dient zum Antrieb eines Kurbeltriebs 6, welcher einen Kolben 4 in einem Zylinder 5 auf- und abbewegt, d.h. der Kurbeltrieb 6 übersetzt die Rotationsbewegung der Antriebswelle 24 in eine lineare Bewegung entlang der Erstreckungsrichtung des Kolbens 4 in dem Zylinder 5. Dazu kann der Kurbeltrieb 6 ein Gegengewicht, eine Kurbelwange, ein Pleuel, eine Pleuellagerung und/oder einen Kolbenbolzen aufweisen. Dabei wird am Kopfende des Zylindergehäuses ein Verdichterraum 11 gebildet, in dem gemäß der Hauptfunktion des Kompressors 100 Luft verdichtet werden kann. An den Kurbeltrieb 6 anschließend kann ein Lüfterrad 45 angeordnet werden. Fig. 1 shows a schematic representation of a compressor 100 in sectional view. The compressor 100 generally has a motor 40 which can be supported in a motor support 41. The motor 40 can be, for example, an electric motor with speed control. It may be possible to use synchronous motors such as brushless direct current motors or asynchronous motors. The engine 40 drives a drive shaft 24 that extends away from the engine 40 in a crankcase 20. The drive shaft 24 can be arranged essentially concentrically to the cross section of the crankcase shape 20 in the center thereof. The drive shaft 24 is used to drive a crank drive 6, which moves a piston 4 up and down in a cylinder 5, ie the crank drive 6 translates the rotational movement of the drive shaft 24 into a linear movement along the direction of extension of the piston 4 in the cylinder 5 the crank drive 6 have a counterweight, a crank web, a connecting rod, a connecting rod bearing and / or a piston pin. In this case, a compression chamber 11 is formed at the head end of the cylinder housing, in which air can be compressed according to the main function of the compressor 100. A fan wheel 45 can then be arranged on the crank drive 6.

Ein Kernbestandteil des Kurbelgehäuses 20 ist der Druckluftspeicherbehälter 25, der in Fig. 1 als integrale Komponente des Kurbelgehäuses 20 ausgebildet ist. Dazu weist das Kurbelgehäuse 20 eine innere Kammerwandung 26a auf, die beispielsweise zylindrisch mit kreisrundem oder polygonalem Querschnitt ausgebildet sein kann, und welche den motornahen Teil der Antriebswelle 24 aufnimmt und rotierend lagert. Innerhalb der Kammerwandung 26a ist daher zumindest ein Lager 28b in einem ersten Lagersitz angeordnet. Das Lager 28b im ersten Lagersitz kann einen motorfernen Teil der Antriebswelle 24 zwischen Motor 40 und Kurbeltrieb 6 abstützen, d.h. das Lager 28b lagert den Kurbeltrieb 6 fliegend.A core component of the crankcase 20 is the compressed air storage tank 25, the in Fig. 1 is designed as an integral component of the crankcase 20. For this purpose, the crankcase 20 has an inner chamber wall 26a, which can be designed, for example, cylindrical with a circular or polygonal cross section, and which receives the part of the drive shaft 24 close to the engine and supports it in a rotating manner. At least one bearing 28b is therefore arranged in a first bearing seat within the chamber wall 26a. The bearing 28b in the first bearing seat can support a part of the drive shaft 24 remote from the motor between the motor 40 and the crank mechanism 6, ie the bearing 28b supports the crank mechanism 6 overhung.

Zudem kann ein weiteres Lager 28a in einem zweiten Lagersitz innerhalb der Kammerwandung 26a ausgebildet sein, welches einen motornahen Teil der Antriebswelle 24 zwischen Motor 40 und Kurbeltrieb 6 abstützen kann, d.h. das Lager 28a lagert den Motor 40 fliegend. Dadurch, dass beide Lager 28a und 28b sich in dem Abschnitt des Kurbelgehäuses 20 befinden, der den Druckluftspeicherbehälter 25 ausbildet, können die Lagersitze der Lager 28a und 28b besser zueinander ausgerichtet werden. Dies ermöglicht eine verbesserte Konzentrizität der Lagersitze zueinander. Es ist dabei möglich, beide Lagersitze der Lager 28a und 28b im Kurbelgehäuse 20 von einer Seite zu bearbeiten, insbesondere dann, wenn die radiale Ausdehnung des Lagers 28a geringer als die des Lagers 28b ist.In addition, a further bearing 28a can be formed in a second bearing seat within the chamber wall 26a, which can support a part of the drive shaft 24 close to the motor between motor 40 and crank mechanism 6, i.e. the bearing 28a supports the motor 40 on the fly. Because both bearings 28a and 28b are located in the section of the crankcase 20 which forms the compressed air storage tank 25, the bearing seats of the bearings 28a and 28b can be better aligned with one another. This enables an improved concentricity of the bearing seats to one another. It is possible to machine both bearing seats of the bearings 28a and 28b in the crankcase 20 from one side, especially when the radial extent of the bearing 28a is less than that of the bearing 28b.

Zur Verdeutlichung der Geometrie des Druckluftspeicherbehälters 25 ist in Fig. 2 ein beispielhafter Querschnitt des Kompressors 100 entlang der Querschnittlinie AA in Fig. 1 dargestellt. Die Anordnung des Druckluftspeicherbehälters erfolgt dabei im Wesentlichen ringförmig um die Antriebswelle 24. Dabei kann der Druckluftspeicherbehälter 25 einen Mindestwinkel von 200°, vorzugsweise von mindestens 240° um die Antriebswelle 24 einschließen. Im Beispiel der Fig. 2 ist das Kurbelgehäuse 20 und damit der Druckluftspeicherbehälter 25 prinzipiell hohlzylinderförmig dargestellt. Der Druckluftspeicherbehälter 25 wird dabei durch die innere Kammerwandung 26a einerseits und eine äußere Kammerwandung 26b andererseits in radialer Richtung bezüglich der Drehachse der Antriebswelle 24 begrenzt.To illustrate the geometry of the compressed air storage container 25 is shown in Fig. 2 an exemplary cross section of the compressor 100 along the cross section line AA in FIG Fig. 1 shown. The compressed air storage tank is arranged essentially in a ring around the drive shaft 24. The compressed air storage tank 25 can enclose a minimum angle of 200 °, preferably of at least 240 °, around the drive shaft 24. In the example of Fig. 2 the crankcase 20 and thus the compressed air storage tank 25 is shown in principle as a hollow cylinder. The compressed air storage container 25 is limited in the radial direction with respect to the axis of rotation of the drive shaft 24 by the inner chamber wall 26a on the one hand and an outer chamber wall 26b on the other hand.

Die äußere Kammerwandung 26b stellt eine Außenwand des Kurbelgehäuses 20 dar, welches die innere Kammerwandung 26a vollständig in ihrem Inneren aufnimmt. Mit anderen Worten, die Topologie des durch die äußere Kammerwandung 26b und die innere Kammerwandung 26a gebildeten Gehäuses im Wesentlichen gleicht zwei ineinander gelagerten Zylindern, beispielsweise Kreiszylindern, prismatischen Zylindern oder Zylindern mit polygonaler Querschnittsfläche. Die Deckflächen der zwischen den durch die äußere Kammerwandung 26b und die innere Kammerwandung 26a gebildeten Zylindermantelflächen können dann durch ein oder mehrere Trennwände 34 auf der anderen Seite bzw. ein oder mehrere Endwände 23 auf der anderen Seite zur Bildung des Volumens des Druckluftspeicherbehälters 25 abgeschlossen werden.The outer chamber wall 26b represents an outer wall of the crankcase 20, which completely accommodates the inner chamber wall 26a in its interior. In other words, the topology of the external Chamber wall 26b and the housing formed by the inner chamber wall 26a essentially resembles two cylinders mounted one inside the other, for example circular cylinders, prismatic cylinders or cylinders with a polygonal cross-sectional area. The top surfaces of the cylinder jacket surfaces formed by the outer chamber wall 26b and the inner chamber wall 26a can then be closed by one or more partition walls 34 on the other side or one or more end walls 23 on the other side to form the volume of the compressed air storage tank 25.

Die Trennwand 34 bzw. die Trennwände 34 weisen dabei eine Haupterstreckungsrichtung auf, die im Wesentlichen senkrecht zur axialen Richtung der Antriebswelle 24 verläuft. Ebenso weist die Endwand 23 eine Haupterstreckungsrichtung auf, die im Wesentlichen senkrecht zur axialen Richtung der Antriebswelle 24 verläuft, und von der Trennwand 34 bzw. den Trennwänden 34 um eine Länge beabstandet ist, die im Wesentlichen der Längserstreckung des Druckluftspeicherbehälters 25 entspricht.The partition wall 34 or the partition walls 34 have a main direction of extent which is essentially perpendicular to the axial direction of the drive shaft 24. Likewise, the end wall 23 has a main direction of extent which is essentially perpendicular to the axial direction of the drive shaft 24 and is spaced from the partition 34 or partition walls 34 by a length which substantially corresponds to the longitudinal extent of the compressed air storage tank 25.

In lateraler Richtung kann der Druckluftspeicherbehälter 25 durch einer oder mehrere Verstrebungen 33 unterbrochen sein. Dadurch kann der Druckluftspeicherbehälter 25 einerseits stabilisiert, andererseits in mehrere Teilspeichervolumina unterteilt werden. Diese Teilspeichervolumina können über Druckluftleitungen oder andere Verbindungsleitungen wie beispielsweise Engstellen miteinander verbunden werden. Dazu können vorteilhafterweise in den Verbindungsleitungen Druckluftkühler und/oder Ventile angeordnet werden. Im Beispiel der Fig. 2 sind drei Verstrebungen 33 gezeigt, die den vollständig umlaufenden Druckluftspeicherbehälter 25 in drei gleiche Teilspeichervolumina aufteilen, die jeweils 120° des Kurbelgehäuses 20 überstreichen. Selbstverständlich sind andere Aufteilungen mit mehr oder weniger Teilspeichervolumina oder asymmetrischer Aufteilung ebenso möglich. Die Verstrebungen 33 können beispielsweise integral mit dem Kurbelgehäuse 20 ausgebildet werden, zum Beispiel in einem gemeinsamen Metallgussteil.The compressed air storage tank 25 can be interrupted in the lateral direction by one or more struts 33. As a result, the compressed air storage tank 25 can be stabilized on the one hand, and can be divided into several partial storage volumes on the other hand. These partial storage volumes can be connected to one another via compressed air lines or other connecting lines such as bottlenecks. For this purpose, compressed air coolers and / or valves can advantageously be arranged in the connecting lines. In the example of Fig. 2 three struts 33 are shown, which divide the completely circumferential compressed air storage tank 25 into three equal partial storage volumes, each of which sweeps 120 ° of the crankcase 20. Of course, other divisions with more or less partial storage volumes or asymmetrical division are also possible. The struts 33 can for example be formed integrally with the crankcase 20, for example in a common metal casting.

Fig. 3 zeigt eine detaillierte Illustration des Kompressors 100 aus Fig. 1 im Längsschnitt. Der Kompressor 100 ist im Beispiel der Fig. 3 als trockenverdichtender, in der Drehzahl regelbarer Kolbenkompressor 100 dargestellt, welcher nach dem Prinzip der Hubkolbenverdichtung arbeitet. Es ist dabei jedoch ebenso möglich, statt eines trockenverdichtenden Kompressors einen ölgeschmierten Kompressor einzusetzen. Die Verdichtung kann dabei, wie in Fig. 3 beispielhaft dargestellt, einstufig erfolgen - es kann jedoch auch möglich sein, die Verdichtung in mehreren Stufen durchzuführen. Fig. 3 FIG. 10 shows a detailed illustration of the compressor 100 from FIG Fig. 1 in longitudinal section. The compressor 100 is in the example Fig. 3 shown as a dry-compressing piston compressor 100 with adjustable speed, which works on the principle of reciprocating piston compression. However, it is also possible to use one instead of a dry compressing compressor use an oil-lubricated compressor. The compression can, as in Fig. 3 shown as an example, take place in one stage - but it may also be possible to carry out the compression in several stages.

Der Kompressor gemäß Fig. 3 weist in einem in der Figur rechtsseitigen Verdichterabschnitt 1 einen Zylinder 5 auf, in welchem ein Kolben 4 zum Komprimieren von Luft aus der Umgebung angeordnet ist. Durch einen Ansaugluftfilter 2 kann Luft aus der Umgebung über eine Einlassöffnung 3 mit Einlassventil in den Verdichtungsraum 11 eingesaugt werden. Dies erfolgt bei einer Abwärtsbewegung des Kolbens 4.The compressor according to Fig. 3 has a cylinder 5 in a compressor section 1 on the right in the figure, in which a piston 4 for compressing air from the environment is arranged. Air from the environment can be sucked into the compression chamber 11 through an intake opening 3 with an intake valve through an intake air filter 2. This takes place when the piston 4 moves downwards.

Die lineare Arbeitsbewegung für den Kolben 5 wird über einen Kurbeltrieb 6 erzeugt, welcher über eine Antriebswelle 24 mit dem Rotor 43 des Motors 40 verbunden ist. Die Antriebswelle 24 kann über zwei Lager 28a und 28b, beispielsweise dauergeschmierte Wälzlager mit Fest-Loslagerungen, drehbar gegenüber dem Kurbelgehäuse 20 gelagert werden. Das Kurbelgehäuse 20 besitzt einen Kurbeltriebsabschnitt 21, der den Kurbeltrieb 6 zumindest teilweise umschließt, und einen Speicherabschnitt 22, der sich an den Kurbeltriebsabschnitt 21 anschließt und axial zwischen diesem und dem Motor 40 angeordnet ist.The linear working movement for the piston 5 is generated via a crank mechanism 6 which is connected to the rotor 43 of the motor 40 via a drive shaft 24. The drive shaft 24 can be mounted rotatably with respect to the crankcase 20 via two bearings 28a and 28b, for example permanently lubricated roller bearings with fixed / loose bearings. The crankcase 20 has a crank drive section 21 which at least partially encloses the crank drive 6, and a storage section 22 which adjoins the crank drive section 21 and is arranged axially between this and the motor 40.

Es ist bevorzugt vorgesehen, dass die Trennwand 34 den Druckluftspeicherbehälter 25 im Inneren des Kurbelgehäuses 20 von dem Kurbeltriebsabschnitt 21 trennt, das heißt der Kurbeltrieb 6 selbst liegt nicht im Luftspeichervolumen des Druckluftspeicherbehälters 25. Der Speicherabschnitt 22 ist damit mit dem Kurbeltriebsabschnitt 21 disjunkt ausgebildet. Insbesondere ist es auch vorgesehen, dass der Zylinder 5 und der Kolben 4 nicht innerhalb des Speicherabschnitts 22 angeordnet sind, das heißt, dass das Volumen des Druckluftspeicherbehälters den Zylinder 5 und den Kolben 4 nicht umfasst.It is preferably provided that the partition 34 separates the compressed air storage tank 25 inside the crankcase 20 from the crank drive section 21, that is, the crank drive 6 itself is not located in the air storage volume of the compressed air storage tank 25. The storage section 22 is thus formed disjoint with the crank drive section 21. In particular, it is also provided that the cylinder 5 and the piston 4 are not arranged within the storage section 22, that is to say that the volume of the compressed air storage container does not include the cylinder 5 and the piston 4.

Der Speicherabschnitt 22 umfasst eine innere Kammerwandung 26a, welche hohlkörper- oder rohrförmig ausgebildet ist, um die Antriebswelle 24 herum angeordnet ist und den durch den Speicherabschnitt 22 führenden Bereich der Antriebswelle 24 sowie mindestens eines der beiden Lager 28a und 28b aufnimmt. Die innere Kammerwandung 26a kann Ausnehmungen für einen oder mehrere Lagersitze der Lager 28a und 28b aufweisen. Außerdem können mehr als zwei Lager 28a und 28b vorgesehen werden.The storage section 22 comprises an inner chamber wall 26a, which is hollow or tubular, is arranged around the drive shaft 24 and accommodates the area of the drive shaft 24 leading through the storage section 22 and at least one of the two bearings 28a and 28b. The inner chamber wall 26a can have recesses for one or more bearing seats of the bearings 28a and 28b. In addition, more than two bearings 28a and 28b can be provided.

Weiterhin umfasst der Speicherabschnitt 22 eine äußere Kammerwandung 26b, welche konzentrisch um die innere Kammerwandung 26a herum und von dieser beabstandet angeordnet sein kann. Die innere Kammerwandung 26a und die äußere Kammerwandung 26b sind vorzugsweise integral mit dem Kurbelgehäuse 20, d.h. als einstückiger Teilbereich des Kurbelgehäuses 20 ausgebildet.The storage section 22 further comprises an outer chamber wall 26b, which can be arranged concentrically around the inner chamber wall 26a and at a distance therefrom. The inner chamber wall 26a and the outer chamber wall 26b are preferably integral with the crankcase 20, i. designed as an integral part of the crankcase 20.

Die innere Kammerwandung 26a und die äußere Kammerwandung 26b definieren zusammen mit einer oder mehreren Trennwänden 34, deren Erstreckungsebene im Wesentlichen senkrecht zur Drehachse der Antriebswelle 24 verläuft, einen Druckluftspeicherbehälter 25 des Kompressors 100. Der Druckluftspeicherbehälter 25 ist konzentrisch zur Antriebswelle 24 zumindest abschnittsweise ringförmig um die innere Kammerwandung 26a angeordnet. Mit anderen Worten, der Druckluftspeicherbehälter 25 umschließt die Antriebswelle 24 damit zumindest in einen Teilwinkelbereich. Im Beispiel der Fig. 3 ist der Druckluftspeicherbehälter 25 vollständig, das heißt in einem Winkelbereich von 360°, um die Antriebswelle 24 herum angeordnet. Es kann jedoch auch möglich sein, nur Teilwinkelbereiche von weniger als 360° um die Antriebswelle 24 herum vorzusehen, in denen winklige Kammern für die Funktion des Druckluftspeicherbehälters 25 durch die Kammerwandungen 26a und 26b sowie die Trennwände 34 definiert werden. Motorseitig wird der Druckluftspeicherbehälter 25 durch eine Endwand 23 des Kurbelgehäuses 20 gegenüber dem Motorbereich bzw. dem Motorträger 41 dicht abgeschlossen. Damit definiert der Druckluftspeicherbehälter 25 über die entsprechenden Ausmaße der Kammerwandungen 26a und 26b sowie den axialen Abstand L3 der Trennwände 34 zur Endwand 23 des Kurbelgehäuses 20 ein Regelvolumen, welches zur Aufnahme und Zwischenspeicherung von durch den Kolbenverdichter erzeugter Druckluft dient.The inner chamber wall 26a and the outer chamber wall 26b define, together with one or more partition walls 34, the plane of extension of which is essentially perpendicular to the axis of rotation of the drive shaft 24, a compressed air storage container 25 of the compressor 100. The compressed air storage container 25 is concentric to the drive shaft 24, at least in sections, annular around the inner chamber wall 26a arranged. In other words, the compressed air storage container 25 thus encloses the drive shaft 24 at least in a partial angular range. In the example of Fig. 3 the compressed air storage container 25 is arranged completely, that is to say in an angular range of 360 °, around the drive shaft 24. However, it may also be possible to provide only partial angular areas of less than 360 ° around the drive shaft 24, in which angular chambers for the functioning of the compressed air storage container 25 are defined by the chamber walls 26a and 26b and the partition walls 34. On the engine side, the compressed air storage tank 25 is sealed off by an end wall 23 of the crankcase 20 with respect to the engine area or the engine support 41. The compressed air storage tank 25 thus defines a control volume via the corresponding dimensions of the chamber walls 26a and 26b and the axial distance L3 between the partition walls 34 and the end wall 23 of the crankcase 20, which is used to receive and temporarily store compressed air generated by the piston compressor.

Der Motorträger 41 kann die Drehmomentabstützung zwischen Rotor und Stator des Motors 40 übernehmen. Der Motorträger 41 kann ein Bauteil sein, das den Motor 40 vollständig oder nur teilweise umgibt und kann geschlossene Begrenzungswände mit Streben, Pfeiler oder ähnlichem aufweisen. Dabei kann der Motorträger 41 auch als komplett geschlossenes Motorgehäuse fungieren.The motor support 41 can take over the torque support between the rotor and stator of the motor 40. The motor support 41 can be a component that completely or only partially surrounds the motor 40 and can have closed boundary walls with struts, pillars or the like. The motor support 41 can also function as a completely closed motor housing.

Der Motorträger 41 kann zudem die Endwand 23 ausbilden, die im Beispiel der Fig. 3 zwischen Motor 40 und Speicherabschnitt 22 angeordnet ist. Es kann jedoch auch vorgesehen sein, die Endwand 23 an der Außenseite des Motors 40 anzuordnen, so dass der Motor 40 zumindest teilweise durch den Speicherabschnitt 22 umfasst ist, das heißt dass das Volumen des Druckluftspeicherbehälters 25 sich in axialer Richtung der Antriebswelle 24 zumindest teilweise vollständig oder in einem Teilwinkelbereich um den Motor 40 herum erstreckt.The motor support 41 can also form the end wall 23, which in the example of FIG Fig. 3 is arranged between motor 40 and storage section 22. However, it can also be provided to arrange the end wall 23 on the outside of the motor 40, so that the motor 40 at least partially through the Storage section 22 is included, that is to say that the volume of the compressed air storage tank 25 extends in the axial direction of the drive shaft 24 at least partially completely or in a partial angular range around the motor 40.

Nach einem Ansaugarbeitstakt des Kolbens 4 wird in einem Verdichterarbeitstakt während der Aufwärtsbewegung des Kolbens 4 die angesaugte Luft im Verdichtungsraum 11 verdichtet und über die Auslassöffnung 7 und ein darin angeordnetes Auslassventil abgegeben. Die verdichtete Luft, die über die Auslassöffnung 7 ausgestoßen wird, kann in eine Druckluftleitung 8 abgegeben werden, die zu Zwecken der Kühlung einen Bereich mit einer Abkühlleitung 9 umfassen kann. Über die Abkühlleitung 9 gelangt die Druckluft durch das Rückschlagventil 10 in einen Druckluftspeicherbehälter 25 des Kompressors 100.After a suction work cycle of the piston 4, the sucked air is compressed in the compression chamber 11 in a compressor work cycle during the upward movement of the piston 4 and discharged via the outlet opening 7 and an outlet valve arranged therein. The compressed air that is expelled via the outlet opening 7 can be discharged into a compressed air line 8, which can include an area with a cooling line 9 for cooling purposes. Via the cooling line 9, the compressed air passes through the check valve 10 into a compressed air storage container 25 of the compressor 100.

Die Abdichtung gegenüber der Umgebung kann zweckmäßigerweise über Dichtungen 29 und 30, beispielsweise O-Ringe erfolgen. Sowohl das Kurbelgehäuse 20 als auch der Motorträger 41 können durch Rippen 32 verstärkt sein. Diese Rippen 32, welche in ähnlicher Form auch auf der Außenseite des Kurbelgehäuses 20 und/oder des Motorträgers 41 angebracht werden können, tragen zur besseren Wärmeabfuhr aus der Druckluft bei. Zudem ist es möglich, die mechanische Stabilität des Kompressors 100 dadurch zu optimieren.The seal with respect to the environment can expediently take place via seals 29 and 30, for example O-rings. Both the crankcase 20 and the engine support 41 can be reinforced by ribs 32. These ribs 32, which can also be attached in a similar form on the outside of the crankcase 20 and / or the motor support 41, contribute to better heat dissipation from the compressed air. It is also possible to optimize the mechanical stability of the compressor 100 in this way.

Über eine Druckluftkupplung 31 kann eine Druckluftabgabeleitung, beispielsweise ein Druckluftschlauch für ein druckluftbetriebenes Werkzeug, angeschlossen werden, durch welchen die Druckluft aus dem Druckluftspeicherbehälter 25 nach Bedarf entnommen werden kann.A compressed air delivery line, for example a compressed air hose for a compressed air-operated tool, through which the compressed air can be taken from the compressed air storage container 25 as required, can be connected via a compressed air coupling 31.

Während des Kompressorbetriebs kann eine Kompressorsteuerung 60 den von einem an dem Druckluftspeicherbehälter 25 angeordneten Drucksensor 27 gemessenen Druck der Druckluft über eine Steuerleitung 61 abrufen. Sollte der gemessene Ist-Druck im Druckluftspeicherbehälter 25 von dem in der Kompressorsteuerung 60 gespeicherten Soll-Druck abweichen, kann aus der Regelabweichung ein Solldrehzahlsignal für den Motor 40 ermittelt werden, welches die Kompressorsteuerung 60 als Ansteuersignal über eine Steuerleitung 62 an eine Motorsteuerung, beispielsweise an den Frequenzumrichter 70 eines Elektromotors 40, ausgegeben werden. Der Frequenzumrichter 70 regelt in Abhängigkeit des übermittelten Ansteuersignals die Drehzahl des Motors 40.During the compressor operation, a compressor control 60 can call up the pressure of the compressed air measured by a pressure sensor 27 arranged on the compressed air storage container 25 via a control line 61. Should the measured actual pressure in the compressed air storage tank 25 deviate from the setpoint pressure stored in the compressor control 60, a setpoint speed signal for the motor 40 can be determined from the control deviation, which the compressor control 60 sends as a control signal via a control line 62 to an engine control, for example the frequency converter 70 of an electric motor 40 are output. The frequency converter 70 regulates the speed of the motor 40 as a function of the transmitted control signal.

Im Beispiel der Fig. 3 handelt es sich bei dem Motor 40 um einen elektronisch kommutierten Synchron-Außenläufermotor, bei dem der Frequenzumrichter 70 direkt an den Stator 44 angebaut ist. Der Stator 44 trägt die Statorwicklung 46 und kann beispielsweise über Schrauben mit dem Motorträger 41 verbunden sein. Über das in der Statorwicklung 46 erzeugte magnetische Wechselfeld wird das für die Verdichtung des Kompressors 100 benötigte Drehmoment in bekannter Weise im Zusammenspiel mit den Permanentmagneten 48 im Rotor 43 des Motors 40 erzeugt.In the example of Fig. 3 the motor 40 is an electronically commutated synchronous external rotor motor in which the frequency converter 70 is attached directly to the stator 44. The stator 44 carries the stator winding 46 and can be connected to the motor support 41 by means of screws, for example. Via the alternating magnetic field generated in the stator winding 46, the torque required for compressing the compressor 100 is generated in a known manner in interaction with the permanent magnets 48 in the rotor 43 of the motor 40.

Fig. 4 zeigt einen Längsschnitt durch einen kompakten drehzahlregelbaren Kolbenkompressor 100 mit alternativer Motorbauweise. Er unterscheidet sich von dem Kompressor 100 in Fig. 1 im Wesentlichen darin, dass der Motor 40 ein Innenläufermotor mit externem Frequenzumrichter ist. In Fig. 5 ist eine detailliertere Illustration des Kompressors der Fig. 4 gezeigt. Hier weist der Motor 40 einen externen Frequenzumrichter 70 auf, der mit dem Motor 40 über ein Motoranschlusskabel 47 verbunden ist. Falls sich aus Montagegründen der Motor 40 nicht mit dem Motorträger 41 am Kurbelgehäuse 20 befestigen lässt, kann bei dem Kompressor der Fig. 5 zusätzlich ein Deckel als Endwand 23 vorgesehen sein. Der Deckel 23 kann zum einen den Motor 40 am Motorträger 41 befestigen, welcher dann eine Gehäusefunktion für den Motor 40 übernehmen kann. Zum anderen kann der Deckel 23 den im Kurbelgehäuse 20 befindlichen Druckluftspeicherbehälter 25 fluidisch verschließen. Fig. 4 shows a longitudinal section through a compact variable-speed piston compressor 100 with an alternative motor design. It differs from the 100 in Fig. 1 essentially that the motor 40 is an internal rotor motor with an external frequency converter. In Fig. 5 is a more detailed illustration of the compressor's Fig. 4 shown. Here the motor 40 has an external frequency converter 70, which is connected to the motor 40 via a motor connection cable 47. If, for assembly reasons, the engine 40 cannot be attached to the crankcase 20 with the engine mount 41, the compressor can use the Fig. 5 In addition, a cover can be provided as an end wall 23. On the one hand, the cover 23 can fasten the motor 40 to the motor support 41, which can then take on a housing function for the motor 40. On the other hand, the cover 23 can fluidically close the compressed air storage container 25 located in the crankcase 20.

Sowohl für den Kompressor 100 der Fig. 1 bis 3 als auch den Kompressor 100 der Fig. 4 und 5 kann die maximale radiale Ausdehnung L2 (Abstand der Rotationsachse der Antriebswelle 24 bis zum senkrecht von der Antriebswelle 24 am weitesten beabstandeten Punkt der Innenwand des Druckluftspeicherbehälters 25) in einem bestimmten Verhältnis zur Verdichterlänge L1 (Abstand der Rotationsachse der Antriebswelle 24 zum oberen Totpunkt des Kolbens) stehen. Im einfachsten Fall kann die Ausdehnung L2 kleiner oder gleich der Verdichterlänge L1 sein. Vorteilhaft ist dabei ein Verhältnis von L2/L1 ≤ 2/3. Das Verhältnis L2/L1 kann dabei zwischen 0,2 und 1, vorzugsweise zwischen 0,4 und 0,66 liegen. Absolut gesehen kann die Ausdehnung L2 kleiner als 150 mm sein, um beispielsweise die Kompaktheit und damit die Handtragbarkeit des Kompressors 100 zu gewährleisten.Both for the compressor 100 of the Figs. 1 to 3 as well as the compressor 100 of the Fig. 4 and 5 the maximum radial extension L2 (distance of the axis of rotation of the drive shaft 24 to the point on the inner wall of the compressed air storage container 25 that is most vertically spaced from the drive shaft 24) in a certain ratio to the compressor length L1 (distance of the axis of rotation of the drive shaft 24 to the top dead center of the piston) stand. In the simplest case, the dimension L2 can be less than or equal to the compressor length L1. A ratio of L2 / L1 2/3 is advantageous here. The ratio L2 / L1 can be between 0.2 and 1, preferably between 0.4 and 0.66. Viewed in absolute terms, the dimension L2 can be less than 150 mm in order to ensure, for example, the compactness and thus the hand portability of the compressor 100.

Ebenso kann die maximale radiale Ausdehnung L2 in einem bestimmten Verhältnis zur maximalen axialen Erstreckung L3 des Druckluftspeicherbehälters 25 stehen. Falls der Druckluftspeicherbehälter 25 zwischen Kurbeltrieb 6 und Motor 40 angeordnet ist, kann das Verhältnis L2/L3 zwischen 0,3 und 2,5, vorzugsweise zwischen 0,5 und 1,33 liegen.Likewise, the maximum radial extent L2 can be in a certain ratio to the maximum axial extent L3 of the compressed air storage container 25. If the compressed air storage tank 25 is arranged between the crank mechanism 6 and the motor 40, the ratio L2 / L3 can be between 0.3 and 2.5, preferably between 0.5 and 1.33.

Zudem kann auch das Volumenverhältnis zwischen dem Volumen VR des Druckluftspeicherbehälters 25 und dem geometrischen Hubvolumen VH des Verdichterraums 11 (bzw. der Summe VH aller Hubvolumina VHi aller Verdichterräume 11 bei mehreren Zylindern 5) festgelegt sein, um die Dämpfung der Druckluftpulsationen optimal eliminieren zu können. Dabei kann das Verhältnis VR/VH zwischen 5 und 25 liegen.In addition, the volume ratio between the volume V R of the compressed air storage tank 25 and the geometric stroke volume V H of the compressor chamber 11 (or the sum V H of all the stroke volumes V Hi of all the compressor chambers 11 in the case of several cylinders 5) can be set in order to optimally dampen the compressed air pulsations to be able to eliminate. The ratio V R / V H can be between 5 and 25.

Das Kurbelgehäuse 20 samt aller Kammerwandungen 26a, 26b sowie Endwänden 23 und Trennwänden 34 kann in den Fig. 1 bis 5 vollständig integral ausgebildet werden, beispielsweise durch ein Gießverfahren mit verlorener Form oder ein Rapid-Prototyping-Verfahren wie beispielsweise selektives Laserschmelzen, 3D-Druck, Additive Layer Manufacturing, Elektronenstrahlschmelzen, Laserauftragsschweißen oder ähnliche Verfahren. Es kann alternativ auch möglich sein, die Kammerwandungen 26a, 26b aus mehreren Teilen zusammenzusetzen, die zueinander abgedichtet und verbunden, vorzugsweise verschraubt, werden. Das Kurbelgehäuse 20 und dessen relevante Komponenten wie Wandungen, Trennwände und Endwände können beispielsweise in einem Druckgussverfahren hergestellt werden, beispielsweise aus einem Leichtmetall wie Aluminium oder Magnesium.The crankcase 20 together with all chamber walls 26a, 26b and end walls 23 and partition walls 34 can be in the Figs. 1 to 5 be formed completely integrally, for example by a casting process with a lost shape or a rapid prototyping process such as selective laser melting, 3D printing, additive layer manufacturing, electron beam melting, laser deposition welding or similar processes. Alternatively, it may also be possible to assemble the chamber walls 26a, 26b from several parts which are sealed and connected, preferably screwed, to one another. The crankcase 20 and its relevant components such as walls, partition walls and end walls can be produced, for example, in a die-casting process, for example from a light metal such as aluminum or magnesium.

Fig. 6, 7 und 8 zeigen schematische Darstellungen von weiteren Varianten eines Kompressors 100. Die Kompressoren 100 der Fig. 6 und 7 unterscheiden sich von den Kompressoren 100 der Fig. 1 und 4 im Wesentlichen darin, dass das zweite Lager 28a im Motor 40 untergebracht ist - in Fig. 6 an der kurbelgehäusefernen Seite des Motors 40, in Fig. 7 an der kurbelgehäusenahen Seite des Motors 40. Der Kompressor 100 der Fig. 8 weist ein Kurbelgehäuse 20 auf, das mit dem Motorträger 41 zusammen einen antriebswellenaxial erweiterten Druckluftspeicherbehälter 25 ausbildet. Der Druckluftspeicherbehälter 25 erstreckt sich um den Motor 40 herum im Inneren des Kurbelgehäuses 20, das vom Motorträger 41 entsprechend beabstandet ist. Dabei kann das Verhältnis L2/L1 von maximaler radialer Ausdehnung L2 zu maximaler axialer Ausdehnung L1 des Druckluftspeicherbehälters 25 zwischen 0,12 und 1, vorzugsweise zwischen 0,2 und 0,5 betragen. Fig. 6 , 7 and 8 show schematic representations of further variants of a compressor 100. The compressors 100 of FIG Fig. 6 and 7th differ from the compressors 100 of the Fig. 1 and 4th essentially in that the second bearing 28a is accommodated in the motor 40 - in Fig. 6 on the side of the engine 40 remote from the crankcase, in Fig. 7 on the side of the engine 40 close to the crankcase. The compressor 100 of Fig. 8 has a crankcase 20 which, together with the motor support 41, forms a compressed air storage tank 25 which is expanded axially on the drive shaft. The compressed air storage tank 25 extends around the engine 40 in the interior of the crankcase 20, which is spaced from the engine support 41 accordingly. The ratio L2 / L1 of the maximum radial expansion L2 to the maximum axial expansion L1 of the Compressed air storage container 25 between 0.12 and 1, preferably between 0.2 and 0.5.

Der Druckluftspeicherbehälter 25 kann den Motor 40 dabei in einem Teilwinkelbereich von weniger als 360° oder vollständig, das heißt in einem Umfang vom 360° umgeben. Es kann weiterhin möglich sein, dass der Druckluftspeicherbehälter 25 den Motor 40 bezüglich des Winkelbereichs um die Antriebswelle24 herum vollständig umgibt, den Motor 40 aber in axialer Richtung der Motordrehachse nur teilweise umschließt, das heißt, nicht vollständig bis zum kurbelgehäusefernen Ende des Motorträgers 40 ausgebildet ist.The compressed air storage tank 25 can surround the motor 40 in a partial angular range of less than 360 ° or completely, that is to say to a circumference of 360 °. It may furthermore be possible that the compressed air storage tank 25 completely surrounds the motor 40 with respect to the angular range around the drive shaft 24, but only partially surrounds the motor 40 in the axial direction of the motor axis of rotation, that is, is not completely formed as far as the end of the motor support 40 remote from the crankcase .

BezugszeichenlisteList of reference symbols

11
VerdichterabschnittCompressor section
22
LuftansaugfilterAir intake filter
33
EinlassöffnungInlet opening
44th
Kolbenpiston
55
Zylindercylinder
66th
KurbeltriebCrank drive
77th
AuslassöffnungOutlet opening
88th
DruckluftleitungCompressed air line
99
AbkühlleitungCooling line
1010
Rückschlagventilcheck valve
1111
VerdichtungsraumCompression space
2020th
KurbelgehäuseCrankcase
2121st
KurbeltriebsabschnittCrank drive section
2222nd
SpeicherabschnittMemory section
2323
EndwandEnd wall
2424
Antriebswelledrive shaft
2525th
DruckluftspeicherCompressed air storage
26a26a
Innere KammerwandungInner chamber wall
26b26b
Äußere KammerwandungOuter chamber wall
2727
DrucksensorPressure sensor
28a28a
Erstes LagerFirst camp
28b28b
Zweites LagerSecond camp
2929
Dichtungpoetry
3030th
Dichtungpoetry
3131
DruckluftkupplungCompressed air coupling
3232
Ripperib
3333
VerstrebungBracing
3434
Trennwandpartition wall
4040
Motorengine
4141
MotorträgerEngine mount
4343
Rotorrotor
4444
Statorstator
4545
LüfterradFan wheel
4646
StatorwicklungStator winding
4747
MotoranschlusskabelMotor connection cable
4848
PermanentmagnetePermanent magnets
6060
KompressorsteuerungCompressor control
6161
SteuerleitungControl line
6262
SteuerleitungControl line
7070
Frequenzumrichterfrequency converter
L1L1
VerdichterlängeCompressor length
L2L2
KurbelgehäuseinnenradiusCrankcase inner radius
L3L3
SpeicherlängeStorage length

Claims (15)

  1. Piston compressor (100), having:
    a motor (40);
    a drive shaft (24) that is connected to the motor (40) and is driven by this motor;
    a crankshaft (6) that is connected to the drive shaft (24);
    at least one compressed air generating device (4; 5; 11) having a piston (4) that can move in a cylinder (5) and is driven by means of the crankshaft (6) and is embodied for the purpose of generating compressed air in a compression chamber (11) of the cylinder (5);
    a crankcase (20), which comprises
    an inner chamber wall (26a) in the form of a hollow body that receives the drive shaft at least in sections,
    an outer chamber wall (26b) that is spaced radially with respect to the drive shaft (24) from the inner chamber wall (26a),
    an end wall (23), and
    a dividing wall (34); and
    a compressed air storage container (25), which is embodied for the purpose of receiving the compressed air that is generated by the compressed air generating device (4; 5; 11), wherein the compressed air storage container (25) is formed by means of the inner chamber wall (26a), the outer chamber wall (26b), the end wall (23) and the dividing wall (34).
  2. Piston compressor (100) according to claim 1, furthermore having:
    a motor carrier (41), which receives the motor (40) and is connected to the crankcase (20) while forming the end wall (23) between the crankcase (20) and motor (40).
  3. Piston compressor (100) according to one of claims 1 and 2, furthermore having:
    at least one first bearing arrangement (28b), which bears the drive shaft (24) and which is arranged within the hollow body that is formed by means of the inner chamber wall (26a).
  4. Piston compressor (100) according to claim 3, furthermore having:
    at least one second bearing arrangement (28a), which bears the drive shaft (24) and which is arranged within the hollow body that is formed by means of the inner chamber wall (26a) between the motor (40) and the first bearing arrangement (28b).
  5. Piston compressor (100) according to one of claims 1 to 4, wherein the crankcase (20) is embodied in a monolithic manner with the inner chamber wall (26a), the outer chamber wall (26b) and the dividing wall (34).
  6. Piston compressor (100) according to claim 5, wherein the monolithic crankcase (20) is embodied as a light metal casting part.
  7. Piston compressor (100) according to one of claims 1 to 6, furthermore having:
    at least one strut (33), which extends axially with respect to the drive shaft (24) between the inner chamber wall (26a) and the outer chamber wall (26b).
  8. Piston compressor (100) according to claim 7, wherein the at least one strut (33) divides the compressed air storage container (25) into at least two part storage regions.
  9. Piston compressor (100) according to claim 8, wherein the at least two part storage regions are connected to one another so that fluid can pass from one storage region to another by means of compressed air lines, valves, and/or bottlenecks.
  10. Piston compressor (100) according to one of claims 1 to 9, furthermore having:
    a motor carrier (41), which receives the motor (40),
    wherein the crankcase (20) is embodied around the motor (40) spaced from the motor carrier (41), and
    wherein the compressed air storage container (25) extends at least in part around the motor (40) between the crankcase (20) and motor carrier (41).
  11. Piston compressor (100) according to one of claims 1 to 9, wherein the end wall (23) is arranged in the axial direction of the drive shaft (24) between the crankcase (20) and motor (40).
  12. Piston compressor (100) according to one of claims 1 to 11, wherein the compressed air storage container (25) encompasses the drive shaft (24) in an angular range of 360°.
  13. Piston compressor (100) according to one of claims 1 to 12, wherein the ratio of the distance (L2) to the distance (L1) is between 0.2 and 1, said distance (L2) being the distance between the rotational axis of the drive shaft (24) and the point on the inner wall of the compressed air storage container (25), said point being spaced furthest perpendicularly from the drive shaft (24), and said distance (L1) being the distance between the rotational axis of the drive shaft (24) and the upper dead centre of the piston (4) of the compressed air generating device (4; 5; 11).
  14. Piston compressor (100) according to one of claims 1 to 13, wherein the ratio of the distance (L2) to the maximum axial extent (L3) of the compressed air storage container (25) is between 0.3 and 2.5, said distance (L2) being the distance between the rotational axis of the drive shaft (24) and the point on the inner wall of the compressed air storage container (25), said point being spaced furthest perpendicularly from the drive shaft (24).
  15. Piston compressor (100) according to one of claims 1 to 14, wherein the compressed air generating device (4; 5; 11) comprises at least one compression chamber (11) and wherein the volume ratio between the volumes (VR) of the compressed air storage container (25) and the sum of the geometric piston displacements (VH) of the compression chambers (11) of the compressed air generating device (4; 5; 11) is between 5 and 25.
EP13197728.2A 2013-12-17 2013-12-17 Compressor Active EP2886862B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES13197728T ES2834456T3 (en) 2013-12-17 2013-12-17 Compressor
EP13197728.2A EP2886862B1 (en) 2013-12-17 2013-12-17 Compressor
BR112016013952-6A BR112016013952B1 (en) 2013-12-17 2014-12-17 PISTON COMPRESSOR
CN201480074375.0A CN106164487B (en) 2013-12-17 2014-12-17 Compressor
PCT/EP2014/078112 WO2015091587A1 (en) 2013-12-17 2014-12-17 Compressor
US15/105,819 US10677236B2 (en) 2013-12-17 2014-12-17 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13197728.2A EP2886862B1 (en) 2013-12-17 2013-12-17 Compressor

Publications (2)

Publication Number Publication Date
EP2886862A1 EP2886862A1 (en) 2015-06-24
EP2886862B1 true EP2886862B1 (en) 2020-09-02

Family

ID=49880422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13197728.2A Active EP2886862B1 (en) 2013-12-17 2013-12-17 Compressor

Country Status (6)

Country Link
US (1) US10677236B2 (en)
EP (1) EP2886862B1 (en)
CN (1) CN106164487B (en)
BR (1) BR112016013952B1 (en)
ES (1) ES2834456T3 (en)
WO (1) WO2015091587A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107601B4 (en) 2017-04-10 2019-11-07 Gardner Denver Deutschland Gmbh Method for controlling a screw compressor
DE102017107602B3 (en) 2017-04-10 2018-09-20 Gardner Denver Deutschland Gmbh Compressor system with internal air-water cooling
DE102017107599A1 (en) 2017-04-10 2018-10-11 Gardner Denver Deutschland Gmbh Pulsation silencer for compressors
WO2020018067A1 (en) * 2018-07-16 2020-01-23 Dresser-Rand Company Valve unloader assembly
DE102019102387A1 (en) 2019-01-30 2020-07-30 Gardner Denver Deutschland Gmbh Cooling arrangement and method for cooling an at least two-stage compressed air generator
AT17743U1 (en) * 2022-02-07 2023-01-15 Anhui meizhi compressor co ltd Hermetically sealed refrigerant compressor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8747731A0 (en) * 1987-03-16 1987-03-16 Stanzani Franco MOTOR COMPRESSOR GROUP STRUCTURE FOR REFRIGERANTS
US5370504A (en) 1991-06-28 1994-12-06 Kioritz Corporation Ambulant reciprocating compressor having plural pressure collection chambers
US6089835A (en) 1997-12-25 2000-07-18 Hitachi Koki Co., Ltd. Portable compressor
US6148716A (en) * 1998-12-16 2000-11-21 Impact Mst Incorporated Low noise high efficiency positive displacement pump
DE19961646C1 (en) * 1999-12-21 2001-11-15 Knorr Bremse Systeme Low-vibration, two-stage plunger compressor
US20030129065A1 (en) * 2002-01-10 2003-07-10 Ming-Kuo Hu Air compressor, air storage, and high pressure cleaning machine structure
DE102004007882B4 (en) 2003-03-31 2009-12-10 Hitachi Koki Co., Ltd. Air compressor and procedures for its controlling
JP4069450B2 (en) * 2003-06-24 2008-04-02 日立工機株式会社 Air compressor and control method thereof
JP4033087B2 (en) * 2003-09-10 2008-01-16 日立工機株式会社 Air compressor and control method thereof
JP2007104738A (en) * 2005-09-30 2007-04-19 Ebara Corp Brushless synchronous motor and its drive controller
BRPI0504326A (en) * 2005-10-11 2007-06-26 Brasil Compressores Sa aerostatic bearing fluid compressor, aerostatic bearing compressor control system and aerostatic bearing compressor control method
US8287245B2 (en) * 2006-07-06 2012-10-16 Bristol Compressors International, Inc. System and method for control of devices internal to a hermetic compressor
US7559299B2 (en) * 2007-01-19 2009-07-14 Eastway Fair Company Limited Monolithic cylinder-crankcase
CN200999710Y (en) * 2007-02-02 2008-01-02 西安交通大学 Oil-free piston compressor for recovery of fluorine-containing gas working medium
DE102007042318B4 (en) * 2007-09-06 2017-11-30 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Compact dry running piston compressor
JP5362247B2 (en) * 2008-04-10 2013-12-11 Ntn株式会社 Grease composition and grease-filled bearing
DE102009052510A1 (en) 2009-11-11 2011-05-12 Kübrich Ingenieurgesellschaft Mbh & Co. Kg Compressor for generating compressed air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112016013952B1 (en) 2022-01-25
CN106164487A (en) 2016-11-23
US20160319809A1 (en) 2016-11-03
US10677236B2 (en) 2020-06-09
BR112016013952A2 (en) 2017-08-08
CN106164487B (en) 2018-04-03
EP2886862A1 (en) 2015-06-24
ES2834456T3 (en) 2021-06-17
WO2015091587A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
EP2886862B1 (en) Compressor
DE69628755T2 (en) LIQUID PUMP
DE4323159C1 (en) Two-stroke internal combustion engine - has engine block below lowest piston ring when piston is in BDC and is divided into crankcase and cylinder housing
DE2225327B2 (en) VACUUM PUMP WITH SPIRAL ROTATION LIST
EP3402629B1 (en) Honing machine
DE102016010669A1 (en) Motor-pump device
WO2017080591A1 (en) Electric motor vehicle axial-flow liquid pump
EP0320963A2 (en) Volumetric fluid pump working like a pump with rotary pistons
DE69403020T2 (en) Displacement machine with magnetic guidance
DE2212020A1 (en) ROTARY LISTON MACHINE
WO2012055734A2 (en) Vacuum pump
DE102014226347B3 (en) Vacuum pump and method for operating the vacuum pump
EP3981983A1 (en) Compressor for compressing gases
DE102014207071B4 (en) Internal combustion engine with a crankcase and a coolant pump
DE10349752B4 (en) A motor pump assembly
DE2619474A1 (en) POWER GENERATOR
DE60132296T2 (en) METHOD FOR PRODUCING A FLOATING ARRANGEMENT
DE102006053246A1 (en) compressor unit
DE621320C (en) Free-flight piston machine with counter-rotating masses
DE102015108925B3 (en) Electrically driven liquid filter pump and electrically driven liquid positive displacement pump for use in the liquid filter pump
DE102004055360B4 (en) Motor-compressor assembly
WO2009059835A2 (en) Radial piston pump comprising a prismatic base body for a fuel injection system
EP0611878B1 (en) Method for constructing a multi-part cylinder block
DE112022004014T5 (en) compressor
DE102015220132A1 (en) Compressor device, drive device, motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200406

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1309114

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015082

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015082

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2834456

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240129

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 11

Ref country code: CH

Payment date: 20240102

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20241219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241224

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20241220

Year of fee payment: 12