EP2850226B1 - Elektrolysezelle zur herstellung von seltenerdmetallen - Google Patents
Elektrolysezelle zur herstellung von seltenerdmetallen Download PDFInfo
- Publication number
- EP2850226B1 EP2850226B1 EP13790439.7A EP13790439A EP2850226B1 EP 2850226 B1 EP2850226 B1 EP 2850226B1 EP 13790439 A EP13790439 A EP 13790439A EP 2850226 B1 EP2850226 B1 EP 2850226B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rare earth
- electrolytic cell
- cathode
- anode
- earth metals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 85
- 150000002910 rare earth metals Chemical class 0.000 title claims description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000003792 electrolyte Substances 0.000 claims description 56
- 239000000463 material Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 31
- 238000005868 electrolysis reaction Methods 0.000 claims description 30
- 230000004044 response Effects 0.000 claims description 8
- 150000002909 rare earth metal compounds Chemical class 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 239000000047 product Substances 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 239000004411 aluminium Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 11
- 229910052779 Neodymium Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 10
- -1 neodymium ions Chemical class 0.000 description 9
- 230000008014 freezing Effects 0.000 description 8
- 238000007710 freezing Methods 0.000 description 8
- 229910052777 Praseodymium Inorganic materials 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910001122 Mischmetal Inorganic materials 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 6
- 229910052684 Cerium Inorganic materials 0.000 description 5
- 150000004673 fluoride salts Chemical class 0.000 description 5
- 229910052746 lanthanum Inorganic materials 0.000 description 5
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 5
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 150000003841 chloride salts Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical class 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910000722 Didymium Inorganic materials 0.000 description 2
- 241000224487 Didymium Species 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229910001632 barium fluoride Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000982 rare earth metal group alloy Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910020187 CeF3 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910002319 LaF3 Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910017557 NdF3 Inorganic materials 0.000 description 1
- 229910019322 PrF3 Inorganic materials 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- PXAWCNYZAWMWIC-UHFFFAOYSA-N [Fe].[Nd] Chemical compound [Fe].[Nd] PXAWCNYZAWMWIC-UHFFFAOYSA-N 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010402 computational modelling Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical class [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- XRADHEAKQRNYQQ-UHFFFAOYSA-K trifluoroneodymium Chemical compound F[Nd](F)F XRADHEAKQRNYQQ-UHFFFAOYSA-K 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/005—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/34—Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/007—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells comprising at least a movable electrode
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
Definitions
- the present disclosure relates generally to electrolytic cells, in particular electrolytic cells adapted to produce rare earth metals, such as neodymium, praseodymium, cerium, lanthanum and mixtures thereof, by an electrolysis process in a molten fluoride or chloride electrolyte bath.
- rare earth metals such as neodymium, praseodymium, cerium, lanthanum and mixtures thereof.
- Electrolytic cells for production of aluminium in a molten fluoride or chloride salt bath are well known and many of their design features address important considerations.
- ACD anode-cathode distance
- Maintaining a constant ACD may prove difficult where molten aluminium pools on the surface of the cathode and is under hydrodynamic forces imposed by strong magnetic fields.
- the cathodes may be suspended above the cell floor onto which the molten aluminium pools.
- the cathodes may be provided with channels into which the molten aluminium may collect, thereby draining the molten aluminium from the cathode surface as soon as it forms to maintain a constant ACD.
- the electrolytic cell is configured to liberate carbon dioxide gas, which evolves at the anode surface during the electrolysis, from the interelectrode space to substantially prevent 'back reaction' with the aluminium metal as it forms on the cathode surface, thereby reducing the efficiency of the electrolysis process.
- Neodymium and praseodymium, mixtures thereof, and other rare earth metals are also currently made commercially by an electrolysis process in a molten mixed fluoride salt bath.
- the anodes and cathodes are disposed in a vertical orientation and the molten metal is collected into a receiving vessel on the floor of the cell.
- the interelectrode space is not affected by the molten metal accumulation, but it is nevertheless subject to change by the continuous electrolytic consumption of the carbon anode surfaces.
- the cathodes are typically comprised of an inert metal, such as molybdenum or tungsten.
- the product rare earth metal is reactive with carbon at the process temperature. Carbon is a highly undesirable impurity for certain rare earth metal product applications. Decreasing the possibility of contact between fugitive carbon in the cell and the metal and/or the residence time of product metal in the cell are desirable design attributes that are not apparent in the current commercial cell designs. This particular problem is not a factor in the design of electrolytic cells for aluminium production because aluminium does not react with carbon under these conditions.
- the electrolysis cells generally operate in a limited current range of 5-10 kiloamperes, commensurate with low production capacity.
- feed material is delivered to the cell manually, without a known reference to the current oxide concentration in the cell.
- the existing technology uses vertical electrode arrangements. Such arrangements are not amenable to achieving a high Faraday efficiency. For example, gas bubbles which evolve and rise from the anode surface are likely to be entrained in the electrolyte flows and make contact with the product metal forming on the cathode plates, thereby reducing the process yield consequent to back-oxidation of the product metal.
- US 5 810 993 A describes a method of producing neodymium in an electrolytic cell designed to operate without the occurrence of anode effects, therefore avoiding the generation and release of highly polluting perfluorinated carbon (PFC) gases.
- the objectives are achieved firstly by providing a multitude of anode plates such that the anodic current density remains well below that at which the anode effect may occur, and secondly by physically separating the vertical cathodes from the vertical anodes using an inert barrier material which remains porous to neodymium ions, such that a higher concentration of dissolved neodymium oxide can be maintained in the anode region than in the cathode region.
- the disclosed invention has a number of deficiencies and impracticalities however. There is no demonstration in the cited examples that the barrier material (boron nitride) is indeed permeable to neodymium ions as would be required for a continuous electrolysis process. Further, the proposed anode design is complex and the wear rate of the anode plates may be expected to be highly non-uniform and wasteful. The compartmental separation of the anodic and cathodic zones further results in a large interelectrode separation distance, and a resulting inefficient energy consumption. Further, the invention proposes use of carbon as the inert cathode material, while it is well known that carbon will react with and contaminate the product metal.
- US 4 684 448 A discloses a process and an apparatus for producing a neodymium-iron alloy by electrolysis reduction of neodymium fluoride in a bath of molten electrolyte conducted between one or more iron cathode and one or more carbon anode.
- US 3 909 375 A discloses production of metals by electrolysis of their respective metal halides wherein the metals are deposited on one of a pair of spaced substantially parallel electrodes, the opposed surfaces of which are inclined at an angle of between 5° and 30° to the vertical. Gas liberated in the inter-electrode space is discharged upwardly into a gas separation chamber disposed above the inter-electrode space.
- the invention provides an electrolytic cell according to claim 1. Further developments of the invention are defined in the dependent claims.
- an electrolytic cell for production of rare earth metals comprising:
- a system for electrolytically producing rare earth metals comprising:
- Embodiments disclosed allow improved control capability for anode-cathode distance (ACD) and consequently process temperature, improved control of electrolyte bath height in the electrolytic cell and anode immersion, better mixing of the electrolyte to enhance dissolution of the feed material, and higher Faraday efficiency by limiting opportunity for back reaction of anode gas with produced metal.
- ACD anode-cathode distance
- the description broadly relates to an electrolytic cell arranged to produce rare earth metals by an electrolysis process in a molten electrolytic salt bath.
- the rare earth metals produced in the electrolytic cell disclosed herein include those rare earth metals having a melting point less than 1100 °C.
- Exemplary rare earth metals include, but are not limited to, Ce, La, Nd, Pr, Sm, Eu, and alloys thereof including didymium and mischmetal.
- the electrolytic cell disclosed herein is also suitable for the production of alloys of rare earth metals with iron.
- the molten electrolytic salt bath behaves as a solvent for the feed material.
- the electrolyte for use in the molten electrolytic salt bath may comprise halide salts, in particular fluoride salts.
- halide salts in particular fluoride salts.
- 'fluoride salts' include, but are not limited to, metal fluoride salts including rare earth metal fluorides such as LaF 3 , CeF 3 , NdF 3 , and PrF 3 , alkali metal fluorides such as LiF, KF, and alkaline earth metal fluorides such as CaF 2 , BaF 2 .
- feed material for the electrolysis process will depend on the desired rare earth metal product and the composition of the electrolyte.
- the feed material that is subjected to the electrolysis process may comprise oxides of the rare earth metals.
- rare earth metal oxide broadly refers to any oxide or any precursors of such oxides of a rare earth metal, including rare earth metal hydroxides, carbonates or oxalates.
- Rare earth metals are a set of seventeen chemical elements in the periodic table, specifically the fifteen lanthanides plus scandium and yttrium. Scandium and yttrium are considered rare earth metals since they tend to occur in the same ore deposits as the lanthanides and exhibit similar chemical properties.
- the lanthanides include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
- Suitable examples of feed material for electrolytic production of neodymium or praseodymium include neodymium oxide (Nd 2 O 3 ) or praseodymium oxide (Pr 6 O 11 ).
- the feed material may comprise two or more oxides of rare earth metals (e.g. Nd 2 O 3 and Pr 6 O 11 ) in the desired stoichiometric ratio of the desired alloy.
- Mischmetal may be prepared from oxides of several rare earth metals, such as Ce, La, Nd, Pr, wherein the ratio of rare earth metals in the mischmetal corresponds to the ratio of rare earth metal oxides in the feed material.
- the feed material may comprise chloride salts of the rare earth metals.
- the electrolyte comprises one or more rare earth metal fluorides and lithium fluoride.
- the one or more rare earth metal fluorides may be present in the electrolyte in a range of about 70-95 wt% with the balance as lithium fluoride.
- the electrolyte may further comprise up to 20 wt% calcium fluoride and/or barium fluoride.
- the operating temperature of the electrolytic cell will depend on the target rare earth metal product or rare earth metal alloy, the composition of the electrolyte, and consequently the respective freezing points of the rare earth metal, alloy and electrolyte.
- the operating temperature of the electrolytic cell may be in the range of 5 - 50 °C above the freezing point of the electrolyte, and preferably 10 - 20 °C above the melting point of the electrolyte.
- the composition of the electrolyte is selected so that the liquidus of the electrolyte may be in a range of 5 - 50 °C above the freezing point of the metal.
- the freezing point is variable depending on the composition of the mischmetal and the relative ratios of the rare earth metals therein, but nonetheless is around 800 °C.
- the electrolyte may include barium or calcium fluorides as described above to achieve an electrolyte liquidus in the range of 5 - 50 °C above the freezing point of the mischmetal.
- the electrolyte may optionally comprise one or more rare earth metal chloride and lithium chloride salts.
- the cell 10 includes a housing 12 having a floor 14, a sump 16, one or more cathodes 18, and one or more pairs of anodes 20.
- the housing 12 is formed from anti-corrosive materials which are inert in view of the electrolyte composition and operating conditions, as has been described in the preceding paragraphs.
- the anti-corrosive materials used to internally line the housing 12 should be resistant to forming an alloy with the rare earth metals produced therein.
- the housing 12 may be lined internally with refractory materials. Suitable refractory materials include, but are not limited to, carbon, silicon carbide, silicon nitride, boron nitride, or certain stainless steels such as will be well known to those skilled in the art.
- the inclined floor 14 has one or more inclined channels 22 disposed therein along which molten rare earth metals produced in the electrolytic cell 10 can drain.
- the one or more inclined channels 22 are inclined from the horizontal at an angle ⁇ of up to about 10°.
- the channel 22 has a rectangular cross-section. It will be appreciated, however, that in alternative embodiments, the cross-section of the channel 26 may take other forms, such as a V-shape or a U-shape.
- the floor 14 may be provided with more than one inclined channel 22, as shown in Figure 2 .
- the channels 22 are configured in adjacent lateral parallel alignment with one another.
- the channel(s) 22 may be aligned along or spaced equidistantly from a central longitudinal axis of the floor 14 in the housing 12.
- the channel(s) 22 in the floor 14 may be located proximal to an underside 24 of the one or more cathodes 18 to receive molten rare earth metals produced on the one or more cathodes 18.
- the floor 14, or an upper surface of the floor 14, may be formed from anti-corrosive materials similar to or the same as those materials selected for the lining of the cell housing 12. All surfaces having direct contact with the rare earth metal product, including the channel(s) 22 and the sump 16 should be resistant to forming alloys with the rare earth metals produced in the electrolytic bath. Suitable lining materials for the channel(s) 22 and the sump 16 include, but are not limited to, metals such as tungsten, molybdenum, or tantalum.
- the sump 16 is configured to receive, in use, molten rare earth metal produced on the one or more cathodes 18 which collects in the channel and drains towards the lower end 26 of the channel 22.
- the sump 16 is spaced apart and isolated from the one or more cathodes 18 and the one or more anodes 20.
- the sump 16 may be provided with a heater to maintain a temperature above the liquidus of the molten rare earth metal.
- the sump 16 may also be provided with a port (not shown) from which molten rare earth metal may be tapped as required.
- the sump 16 may be formed from inert metals similar to those used for the housing 12.
- the arrangement allows for continuous removal of molten rare earth metal product from the floor 14 of the cell 10 which prevents pooling of the molten rare earth metal product and consequently provides several advantages.
- a pool of molten rare earth metal product is allowed to form, particularly on the floor of the cell or at a cathodic surface, it is common for the molten rare earth metal product to become contaminated with 'sludge' which comprises undissolved and partially molten rare earth feed material, reaction intermediates, and byproducts.
- the sludge in the absence of molten rare earth metal product, the sludge remains in contact with the molten electrolyte and is thereby provided with an opportunity for re-dissolution in the molten electrolyte.
- the molten rare earth metal product collected in the sump 16 is spaced apart from and isolated from the one or more cathodes 18 and the one or more anodes 20. Consequently, the molten rare earth metal is protected from reaction and/or contamination with fugitive carbon arising from the one or more anodes 20, and back reactions with off gases from the one or more anodes 20.
- the one or more cathodes 18 are suspended in the electrolyte bath 11 contained within the cell housing 12 above the channel 22 in substantially vertical alignment therewith.
- the cathodes 18 comprise plates of cathodic material having an upper surface 28 and opposing elongate surfaces 30, with the underside 24 being disposed above the channel 22 in so that molten rare earth metal produced on the opposing surfaces 30 may fall under gravity directly into the underlying channel 22.
- the opposing surfaces 30 of the cathodes 18 are supported by an inert refractory filler material 32 which further avoids the formation of an inactive electrolyte zone in the cell 10.
- the cathodes 18 are configured in adjacent alignment with one another whereby opposing elongate surfaces 30 of adjacent cathodes 18 are respectively longitudinally aligned with one another and respective opposing end surfaces of adjacent cathodes 18 face one another. It will be appreciated by persons skilled in the art that spacing between facing opposing end surfaces of adjacent cathodes 18 is as narrow as possible.
- the plates of cathodic material are correspondingly sized so that, in the arrangement as described above, an effective length of the adjacently disposed cathodes 18 is substantially the same as or marginally shorter than the length of the channel 22.
- a single cathode 18 having a similar length as the channel 22 may be employed in the electrolytic cell 10 as disclosed herein.
- the opposing elongate surfaces 30 of the cathodes 18 are downwardly and outwardly inclined at an angle from the vertical, whereby a cross-sectional shape of the cathode 18 is substantially triangular.
- the opposing elongate surfaces 30 may be inclined from the vertical by angle ⁇ of up to about 45°, and preferably from 2° to 10°.
- the angle of inclination is selected on the basis of optimised bubble-driven flow of electrolyte to achieve good mixing with feed material, and maintenance of high Faraday yield.
- the desired angle ⁇ may be determined by computational modelling for the specific cell geometry.
- the cathodes 18 may be formed from an electrically conductive material with sufficient resistive heat properties to ensure free flow of the molten rare earth metals at temperatures marginally greater than their melting points. Such materials should be resistant to forming alloys with the rare earth metals produced in the electrolytic bath. Suitable materials include, but are not limited to, metals such as tungsten, molybdenum, or tantalum.
- the cathode 18 may be formed from iron. It will be appreciated by persons skilled in the art that in these particular embodiments, the cathode 18 will be consumed during the electrolytic process for production of the iron-rare earth metal alloy.
- a plurality of pairs of anodes 20 are suspended within the cell housing 12. Each anode 20 in the pair is spaced apart from respective opposing elongate surfaces 30 of the cathodes 18.
- the anodes 20 comprise plates of consumable anodic material having an upper surface 32, a lower surface 34, opposing distal and proximal elongate surfaces 36a, 36b and opposing ends 38.
- Distal elongate surface 36a of each anode 20 may be substantially vertical or may be inclined from the vertical.
- the proximal elongate surface 36b is inclined from the vertical.
- the proximal elongate side 36b may be inclined from the vertical by angle ⁇ ' of up to about 45°, and preferably from 2° to 10°, tapering toward the lower surface 34 of the anode 20.
- proximal elongate surfaces 36b of the anodes 18 face respective opposing elongate surfaces 30 of the cathodes 18. Both surfaces 36b and 30 are inclined from the vertical by corresponding angle ⁇ ' such that the said surfaces 36b and 30 are spaced apart in parallel alignment with one another so as to define a substantially constant anode-cathode distance therebetween.
- the anodes 20 are configured in adjacent alignment with one another whereby opposing elongate surfaces 36a, 36b of adjacent anodes 20 are respectively longitudinally aligned with one another and respective opposing ends 38 of adjacent anodes 20 face one another. It will be appreciated by persons skilled in the art that spacing between facing opposing ends 38 of adjacent anodes 20 is as narrow as possible.
- the plates of anodic material are correspondingly sized so that, in the arrangement as described above, an effective length of the adjacently disposed anodes 20 is substantially the same as or marginally shorter than the length of the channel 22.
- a single pair of anodes 20 having a similar length as the channel 22 may be employed in the electrolytic cell 10 as disclosed herein.
- Suitable examples of consumable anodic material include, but are not limited to, carbon-based materials in particular high purity carbon, electrode grade graphite, calcined petroleum coke-coal tar pitch formulations. Such formulations will be well known to those skilled in electrolytic production of rare earth metals and other metals such as aluminium.
- the anodes are consumed as the electrolysis process progresses and the angle of inclination ⁇ of proximal elongate side 36b remains substantially constant. Gas bubbles released from the anode 20 are therefore retained close to the proximal elongate surface 36b as the gas bubbles rise to the electrolyte surface, by virtue of the inclined profile of proximal elongate surface 36b, as illustrated in Figure 2 .
- this reduces the opportunity for contact of the evolved gas with metal forming on the cathode 18, hence improving Faraday efficiency and avoiding insoluble sludges formed by back reaction therewith.
- the ACD in the electrolytic cell may be between about 30 mm to about 200 mm, although an ACD of between about 50 mm to about 100 mm is preferred.
- the person skilled in the art may readily determine an appropriate ACD depending on the desired heat generation in the electrolyte zone, electrolyte flows for optimum solubility of the feed material, and optimisation of the process yield (Faraday efficiency).
- the anode is consumed during electrolysis and consequently the ACD may increase as electrolysis progresses.
- the electrolysis cell 10 disclosed herein may be provided with a device 40 operatively associated with the one or more anodes 20 to control the ACD, in particular to maintain a substantially constant ACD.
- Said device 40 may comprise a horizontal positioning apparatus in operative communication with the one or more anodes 20.
- the horizontal positioning apparatus may laterally translate the one or more anodes 20 toward the cathode 18 in response to a rate at which the anode 20 is consumed so that the ACD may remain substantially constant.
- the rate of anode consumption may be determined by reference to current flow.
- the horizontal positioning apparatus may translate the one or more anodes 20 in response to variation in cell resistance from a predetermined value.
- the electrolysis cell 10 disclosed herein may be provided with a displacement device 42 to control the height of the electrolyte bath in the housing 12, in particular to maintain a substantially constant height of the electrolyte bath in the housing 12 .
- the displacement device 42 may comprise an inert body which is suspended in the housing 12 and positionable in a vertical direction. In use, the inert body may be downwardly or upwardly translated in response to specific cell operation so that the height of the electrolyte bath may remain substantially constant.
- the inert body may take any suitable form, for example a bar as illustrated in the Figures.
- the displacement device 42 may formed from similar refractory materials as the inner linings of the housing 12 as described previously.
- the electrolysis process may be performed by charging the molten electrolyte to the electrolytic cell 10 as described herein.
- An alternating current may be supplied between the cathodes 18 and the anodes 20 and the resistance of the electrodes 18, 20 raises the operating temperature of the electrolytic cell 10 to a predetermined temperature.
- the feed material is then charged to the electrolytic cell 10 and dissolves in the molten electrolyte.
- a direct current in a range of 5-100 kiloamperes is supplied to the anodes 20, whereupon electrolysis of the dissolved feed material commences.
- the feed material is reduced to molten rare earth metal(s) on the opposing elongate surfaces 30 of the cathode 18.
- Feed material may be regularly charged to the electrolytic cell 10 into areas of high electrolyte flow, at a rate corresponding more or less to the consumption rate. It will be appreciated by those familiar with the art that the feed rate may be finely controlled to achieve a target cell resistance corresponding to the desired concentration of feed in the electrolyte.
- the electrolysis process may be performed under an inert or low oxygen atmosphere within the electrolytic cell 10.
- the inert atmosphere may be established and maintained by supplying an inert gas or gas mixtures to the electrolytic cell 10 to exclude air therefrom and thereby prevent undesirable reactions with the molten electrolyte and/or the electrodes 18, 20.
- Suitable examples of inert gases include, but are not limited to, helium, argon, and nitrogen.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
Claims (12)
- Eine Elektrolysezelle zur Erzeugung von Seltene-Erden-Metallen, die folgende Merkmale aufweist:ein Zellengehäuse, das mit einem oder mehreren geneigten Kanälen versehen ist, die in einem Boden des Zellengehäuses angeordnet sind, wobei geschmolzene Seltene-Erden-Metalle, die in der Elektrolysezelle erzeugt werden, entlang dieses Kanals oder dieser Kanäle abfließen können;eine oder mehrere Kathoden, die in dem Zellengehäuse in im Wesentlichen vertikaler Ausrichtung mit dem einen oder den mehreren Kanälen aufgehängt sind, wobei jeweilige gegenüberliegende Oberflächen der einen oder mehreren Kathoden in einem Winkel von der Vertikalen nach unten und nach außen geneigt sind,ein oder mehrere Paare verzehrbarer Anoden, die in dem Zellengehäuse aufgehängt sind, wobei jede Anode in dem einen oder den mehreren Paaren eine zugewandte Oberfläche aufweist, die von der Vertikalen geneigt ist, und in Parallelausrichtung mit jeweiligen gegenüberliegenden geneigten Oberflächen der einen oder der mehreren Kathoden beabstandet ist, um eine im Wesentlichen konstante Entfernung zwischen Anode und Kathode dazwischen zu definieren;einen Sammelbehälter zum Aufnehmen von geschmolzenen Seltene-Erden-Metallen aus dem Kanal, wobei der Sammelbehälter von der einen oder den mehreren Kathoden und der einen oder den mehreren Anoden beabstandet und getrennt ist; undeine Vorrichtung, die der einen oder den mehreren Anoden wirksam zugeordnet ist, um die Entfernung zwischen den Anoden und den gegenüberliegenden Seiten der Kathode ansprechend auf ein Anodenverzehren zu steuern.
- Die Elektrolysezelle gemäß Anspruch 1, die ferner eine Verschiebungsvorrichtung aufweist, um eine Höhe des Elektrolytbads, das in dem Zellengehäuse beinhaltet ist, zu steuern.
- Die Elektrolysezelle gemäß Anspruch 2, bei der die Verschiebungsvorrichtung einen trägen Körper aufweist, der in dem Gehäuse aufgehängt und in einer vertikalen Richtung positionierbar ist.
- Die Elektrolysezelle gemäß Anspruch 1, bei der die Vorrichtung, die der einen oder den mehreren Anoden wirksam zugeordnet ist, ein Horizontalpositionierungsgerät aufweist.
- Die Elektrolysezelle gemäß Anspruch 4, bei der das Horizontalpositionierungsgerät ausgebildet ist, um bei Verwendung die eine oder die mehreren Anoden ansprechend auf eine Rate, mit der die Anoden verzehrt werden, seitlich in Richtung der Kathode zu verschieben.
- Die Elektrolysezelle gemäß einem der vorherigen Ansprüche, bei der der eine oder die mehreren Kanäle in derselben von der Horizontalen in einem Winkel von bis zu etwa 10° geneigt sind.
- Die Elektrolysezelle gemäß einem der vorherigen Ansprüche, bei der der eine oder die mehreren Kanäle eine Querschnittsform aufweisen, die rechteckig, V-förmig oder U-förmig ist.
- Die Elektrolysezelle gemäß einem der vorherigen Ansprüche, bei der die gegenüberliegenden Seiten der Kathode und die zugewandten Seiten der Anode von der Vertikalen um bis zu 45° geneigt sind.
- Die Elektrolysezelle gemäß Anspruch 8, bei der die gegenüberliegenden Seiten der Kathode und die zugewandten Seiten der Anode von der Vertikalen um 2° bis 10° geneigt sind.
- Ein System zum Erzeugen von Seltene-Erden-Metallen durch Elektrolyse, das folgende Merkmale aufweist:eine Elektrolysezelle gemäß einem der vorherigen Ansprüche;ein Zuführmaterial, das eine oder mehrere Seltene-Erden-Metall-Verbindungen aufweist, das einer Elektrolyse unterzogen werden kann, um Seltene-Erden-Metalle zu erzeugen;ein geschmolzenes Elektrolyt, in dem das Zuführmaterial löslich ist; undeine Gleichstromquelle, die ausgebildet ist, um einen Strom zwischen einer Anode und einer Kathode in der Elektrolysezelle hindurchzuleiten, um das Zuführmaterial einer Elektrolyse zu unterziehen und dadurch ein geschmolzenes Seltene-Erden-Metall-Produkt in der Elektrolysezelle zu erzeugen.
- Ein Verfahren zum Erzeugen von Seltene-Erden-Metallen durch Elektrolyse, das folgende Schritte aufweist:Bereitstellen einer Elektrolysezelle gemäß einem der Ansprüche 2 bis 10;Beladen der Elektrolysezelle mit einem Zuführmaterial, das eine oder mehrere Seltene-Erden-Metall-Verbindungen aufweist, das einer Elektrolyse unterzogen werden kann, um Seltene-Erden-Metalle zu erzeugen, und einem Elektrolytbad, das geschmolzenes Elektrolyt aufweist, in dem das Zuführmaterial löslich ist;Hindurchleiten eines Gleichstroms zwischen zumindest einer verzehrbaren Anode und einer Kathode in der Elektrolysezelle, um das Zuführmaterial einer Elektrolyse zu unterziehen und dadurch ein geschmolzenes Seltene-Erden-Metall-Produkt an der Kathode zu erzeugen; undVerschieben des geschmolzenen Elektrolyts in der Elektrolysezelle, um eine Höhe des Elektrolytbads in der Elektrolysezelle aufrechtzuerhalten.
- Ein Verfahren zum Erzeugen von Seltene-Erden-Metallen durch Elektrolyse, das folgende Schritte aufweist:Bereitstellen einer Elektrolysezelle gemäß einem der Ansprüche 1 bis 10;Beladen der Elektrolysezelle mit einem Zuführmaterial, das eine oder mehrere Seltene-Erden-Metall-Verbindungen aufweist, das einer Elektrolyse unterzogen werden kann, um Seltene-Erden-Metalle zu erzeugen, und einem geschmolzenen Elektrolyt, in dem das Zuführmaterial löslich ist;Hindurchleiten eines Gleichstroms zwischen zumindest einer verzehrbaren Anode und einer Kathode in der Elektrolysezelle, um das Zuführmaterial einer Elektrolyse zu unterziehen und dadurch ein geschmolzenes Seltene-Erden-Metall-Produkt an der Kathode zu erzeugen; undVerschieben der oder jeder verzehrbaren Anode in Richtung der Kathode ansprechend auf eine Rate eines Anodenverzehrens, um eine konstante Entfernung zwischen Kathode und Anode in der Elektrolysezelle aufrechtzuerhalten.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2012902017A AU2012902017A0 (en) | 2012-05-16 | Electrolytic cell for production of rare earth metals | |
AU2013204396A AU2013204396B2 (en) | 2012-05-16 | 2013-04-12 | Electrolytic cell for production of rare earth metals |
PCT/AU2013/000500 WO2013170299A1 (en) | 2012-05-16 | 2013-05-15 | Electrolytic cell for production of rare earth metals |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2850226A1 EP2850226A1 (de) | 2015-03-25 |
EP2850226A4 EP2850226A4 (de) | 2015-09-02 |
EP2850226B1 true EP2850226B1 (de) | 2018-07-18 |
Family
ID=49582891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13790439.7A Active EP2850226B1 (de) | 2012-05-16 | 2013-05-15 | Elektrolysezelle zur herstellung von seltenerdmetallen |
Country Status (11)
Country | Link |
---|---|
US (1) | US20150159286A1 (de) |
EP (1) | EP2850226B1 (de) |
JP (1) | JP6312657B2 (de) |
KR (1) | KR102023751B1 (de) |
CN (1) | CN104520476B (de) |
AU (1) | AU2013204396B2 (de) |
BR (1) | BR112014028357B1 (de) |
CA (1) | CA2879712C (de) |
MX (1) | MX375315B (de) |
RU (1) | RU2620319C2 (de) |
WO (1) | WO2013170299A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112538640B (zh) * | 2020-12-21 | 2025-02-07 | 桂林智工科技有限责任公司 | 稀土金属及合金电解还原智能化生产线 |
JP7494106B2 (ja) | 2020-12-25 | 2024-06-03 | 東邦チタニウム株式会社 | 溶融塩電解装置及び、金属マグネシウムの製造方法 |
CN114214670B (zh) * | 2022-01-13 | 2023-03-31 | 内蒙古科技大学 | 一体化稀土金属电解工艺和稀土电解装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3383294A (en) * | 1965-01-15 | 1968-05-14 | Wood Lyle Russell | Process for production of misch metal and apparatus therefor |
US3909375A (en) * | 1972-04-17 | 1975-09-30 | Conzinc Riotinto Ltd | Electrolytic process for the production of metals in molten halide systems |
JPS545371B2 (de) * | 1972-10-11 | 1979-03-16 | ||
US4405433A (en) * | 1981-04-06 | 1983-09-20 | Kaiser Aluminum & Chemical Corporation | Aluminum reduction cell electrode |
EP0101153A3 (de) * | 1982-06-18 | 1984-04-11 | Alcan International Limited | Aluminium-elektrolytische Reduktionszellen |
US4602990A (en) * | 1983-02-17 | 1986-07-29 | Commonwealth Aluminum Corporation | Low energy aluminum reduction cell with induced bath flow |
US4622111A (en) * | 1983-04-26 | 1986-11-11 | Aluminum Company Of America | Apparatus and method for electrolysis and inclined electrodes |
US4596637A (en) * | 1983-04-26 | 1986-06-24 | Aluminum Company Of America | Apparatus and method for electrolysis and float |
JPS6187888A (ja) * | 1984-10-03 | 1986-05-06 | Sumitomo Light Metal Ind Ltd | ネオジム−鉄母合金の製造方法並びにその製造装置 |
US4684448A (en) | 1984-10-03 | 1987-08-04 | Sumitomo Light Metal Industries, Ltd. | Process of producing neodymium-iron alloy |
JP2596976B2 (ja) * | 1988-06-22 | 1997-04-02 | 昭和電工株式会社 | ネオジム又はネオジム合金の製造方法 |
WO1992003598A1 (en) * | 1990-08-20 | 1992-03-05 | Comalco Aluminium Limited | Ledge-free aluminium smelting cell |
JPH06192878A (ja) * | 1992-12-24 | 1994-07-12 | Sumitomo Metal Mining Co Ltd | ガリウム金属の精製用電解槽 |
RU2075868C1 (ru) * | 1994-06-02 | 1997-03-20 | ТОО "Электрохимические технологии металлов" | Способ получения скандия высокой чистоты |
US5810993A (en) * | 1996-11-13 | 1998-09-22 | Emec Consultants | Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases |
WO1999002764A1 (en) * | 1997-07-08 | 1999-01-21 | Moltech Invent S.A. | A drained cathode cell for the production of aluminium |
SK11232000A3 (sk) * | 1998-02-11 | 2001-03-12 | Moltech Invent S. A. | Elektrolyzér na výrobu hliníka s drenážovanou katódou so zlepšeným rozložením oxidu hlinitého |
US6258246B1 (en) * | 1998-05-19 | 2001-07-10 | Moltech Invent S.A. | Aluminium electrowinning cell with sidewalls resistant to molten electrolyte |
US6306279B1 (en) * | 2000-04-07 | 2001-10-23 | Alcoa Inc. | Anode cathode distance adjustment device |
NO20010927D0 (no) * | 2001-02-23 | 2001-02-23 | Norsk Hydro As | FremgangsmÕte og apparatur for fremstilling av metall |
DE60202536T2 (de) * | 2001-09-07 | 2005-06-02 | Moltech Invent S.A. | Aluminium elektrogewinnungszellen mit geneigten kathoden |
GB0204671D0 (en) * | 2002-02-28 | 2002-04-10 | British Nuclear Fuels Plc | Electrochemical cell for metal production |
RU2401884C2 (ru) * | 2008-09-19 | 2010-10-20 | Общество С Ограниченной Ответственностью "Лёгкие Металлы" | Электролизер полякова для производства алюминия |
AR076567A1 (es) * | 2009-05-12 | 2011-06-22 | Metalysis Ltd | Metodo y aparato para reduccion de materia prima solida |
-
2013
- 2013-04-12 AU AU2013204396A patent/AU2013204396B2/en active Active
- 2013-05-15 CN CN201380037636.7A patent/CN104520476B/zh active Active
- 2013-05-15 EP EP13790439.7A patent/EP2850226B1/de active Active
- 2013-05-15 KR KR1020147035388A patent/KR102023751B1/ko active Active
- 2013-05-15 RU RU2014148307A patent/RU2620319C2/ru active
- 2013-05-15 CA CA2879712A patent/CA2879712C/en active Active
- 2013-05-15 US US14/401,617 patent/US20150159286A1/en not_active Abandoned
- 2013-05-15 BR BR112014028357-5A patent/BR112014028357B1/pt active IP Right Grant
- 2013-05-15 WO PCT/AU2013/000500 patent/WO2013170299A1/en active Application Filing
- 2013-05-15 MX MX2014013830A patent/MX375315B/es active IP Right Grant
- 2013-05-15 JP JP2015511863A patent/JP6312657B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
KR102023751B1 (ko) | 2019-09-20 |
EP2850226A1 (de) | 2015-03-25 |
EP2850226A4 (de) | 2015-09-02 |
WO2013170299A1 (en) | 2013-11-21 |
CA2879712C (en) | 2019-12-03 |
RU2620319C2 (ru) | 2017-05-24 |
US20150159286A1 (en) | 2015-06-11 |
MX2014013830A (es) | 2016-08-03 |
JP2015516514A (ja) | 2015-06-11 |
AU2013204396B2 (en) | 2015-01-29 |
CA2879712A1 (en) | 2013-11-21 |
RU2014148307A (ru) | 2016-07-10 |
WO2013170299A8 (en) | 2014-02-27 |
BR112014028357A2 (pt) | 2017-06-27 |
JP6312657B2 (ja) | 2018-04-18 |
CN104520476B (zh) | 2017-12-12 |
BR112014028357B1 (pt) | 2021-05-18 |
MX375315B (es) | 2025-03-06 |
CN104520476A (zh) | 2015-04-15 |
KR20150013316A (ko) | 2015-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111549359B (zh) | 用于提纯铝的系统和方法 | |
EP1364077B1 (de) | Verfahren und elektrolysezelle zur herstellung von metall | |
KR101684813B1 (ko) | 알루미늄 전해를 위해 사용된 전해조 및 상기 전해조를 이용하는 전해방법 | |
JP6465816B2 (ja) | HClを生成する水素ガス拡散陽極の集成装置及び当該集成装置を含む電解セル | |
UA65558C2 (en) | A process for the electrolytic production of metals | |
US20090152104A1 (en) | Molten salt electrolyzer for reducing metal, method for electrolyzing the same, and process for producing refractory metal with use of reducing metal | |
EP2850226B1 (de) | Elektrolysezelle zur herstellung von seltenerdmetallen | |
WO2013170310A1 (en) | Drained cathode electrolysis cell for production of rare earth metals | |
US3725222A (en) | Production of aluminum | |
CN106337193B (zh) | 电解装置及电解方法 | |
AU659247B2 (en) | Cell for the electrolysis of alumina preferably at low temperatures | |
JP2005536637A (ja) | ホール・エルーセルのための酸素発生アノードの利用およびその設計 | |
US4135994A (en) | Process for electrolytically producing aluminum | |
JPH10176296A (ja) | 廃ガス中に過フッ化炭素化合物をともなわないネオジムの電解生成 | |
JP2012172194A (ja) | 電解装置およびそれを用いた電解採取方法 | |
Hryn et al. | Ultra-High-efficiency aluminum production cell | |
EP0613504B1 (de) | Zelle für die elektrolyse von tonerde,vorzugsweise bei niedrigeren temperaturen | |
KR20040069388A (ko) | 비전도성 다공성 세라믹 용기를 이용한 리튬 전구체를포함하는 용융염에서의 리튬 회수장치 및 방법 | |
RU2529264C1 (ru) | Способ получения алюминия | |
JP2024005000A (ja) | 複極、溶融塩電解装置及び金属マグネシウムの製造方法 | |
Parry | THE REMOVAL OF ANIONIC IMPURITIES FROM LIQUID METALS USING FUSED SALT ELECTROLYSIS. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141210 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20150805 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25C 7/00 20060101AFI20150730BHEP Ipc: C25C 3/34 20060101ALI20150730BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170310 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180129 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1019463 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013040540 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180718 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1019463 Country of ref document: AT Kind code of ref document: T Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181019 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181018 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181118 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013040540 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
26N | No opposition filed |
Effective date: 20190423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130515 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240521 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240528 Year of fee payment: 12 |