EP2834490B1 - Estimating the thermal condition of an engine - Google Patents
Estimating the thermal condition of an engine Download PDFInfo
- Publication number
- EP2834490B1 EP2834490B1 EP13715353.2A EP13715353A EP2834490B1 EP 2834490 B1 EP2834490 B1 EP 2834490B1 EP 13715353 A EP13715353 A EP 13715353A EP 2834490 B1 EP2834490 B1 EP 2834490B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- module
- temperatures
- engine
- correction
- coolant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/162—Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/164—Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2037/00—Controlling
- F01P2037/02—Controlling starting
Definitions
- the present invention generally relates to the temperature monitoring of motor vehicle engines, and more particularly to a cooling circuit for a combustion engine, as well as a method of controlling such a cooling circuit.
- Cooling control is however only possible by knowing and controlling the thermal state of the motor. This can be obtained by measuring the temperature of the cooling fluid as it circulates in the circuit, which is the most representative information of this thermal state, but this temperature measurement is only relevant if the cooling fluid circulates sufficiently in the engine.
- the efficiency of the engine is lower because of its too low temperature.
- DE102009056783 A1 discloses a cooling circuit implementing a thermodynamic model for calculating a coolant temperature. As this model is based on the fact that the circulation pump runs continuously, the value obtained at the model output is significantly different from the value measured when the circulation pump is not running.
- the invention relates for this purpose to a cooling circuit for a combustion engine according to claim 1, comprising a control device adapted to temporarily maintain the cooling circuit in a non-active state following a start of the combustion engine. and thus temporarily preventing circulation of a cooling fluid in the cooling circuit,
- this control device being characterized in that it comprises an iterative temperature estimation module capable of delivering on (N + 1) channels on the one hand N estimated values of the respective temperatures of a plurality of thermal nodes considered as essential engine locations for monitoring the thermal state of said engine and on the other hand an (N + 1) th value which is an estimated value of the coolant temperature, where N is an integer, an input data presentation module, fit providing the iterative temperature estimation module with a first series of M input signals, respectively associated with M operating parameters of the motor, and a second series of (N + 1) input signals, constituted by the (N + 1) preceding available estimated values, present at the output of said iterative temperature estimation module, M representing an integer, a comparison module, able to provide a difference signal between the
- the advantageous solution thus proposed consists in modeling the heat exchanges in the engine by a system with several nodes. thermals each characterizing a temperature of a physical solid or liquid element of the engine, then iteratively perform estimates of these temperatures and corrections of the estimated temperatures.
- One of the thermal nodes corresponds to the coolant temperature sensor, and the corrections made during the successive iterations are based on the difference between the estimated coolant temperature and the measurement provided by this sensor.
- the robustness of the process is related to the fact that this deviation, being zero at the optimum operating speed of the engine, can be used reliably as a basis for the progressive correction of the estimated temperatures until the end of the start-up period.
- the iterative temperature estimation module comprises the implementation of a thermal exchange modeling occurring between the N thermal nodes considered in the engine.
- the input data presentation module it comprises an initialization module, intended to provide the iterative temperature estimation module with said first series of M input signals, and a delay module. , provided to provide said iterative temperature estimation module with said second series of (N + 1) input signals.
- a single correction stage is provided, and it then comprises on the one hand an adjustment module, said adjustment being obtained by applying a function to the difference signal available at the output of the comparison module and said function being a linear function, such as a multiplication by a gain value, or a nonlinear function, such as a correspondence from a table or a mapping, and secondly a correction module, said correction being respectively performed in each of the (N + 1) output channels of the iterative temperature estimation module from (N + 1) output signals of said module. 'adjustment.
- control device of said circuit comprises a second correction stage, adapted to perform on the M input signals of the M input channels of the estimation module. iterative temperature a second correction based on the result of said comparison.
- the latter successively comprises a module for calculating the integral of the difference signal delivered by the comparison module, a clipping module of the output signal of said calculation module.
- integral an adjustment module, said adjustment being obtained by applying a function to the output signal of said clipping module and said function being a linear function, such as a multiplication by a gain value, or a non-function linear, such as a correspondence from a table or a map, and a correction module, said correction being respectively performed in each of the M input channels of the iterative estimation module of temperatures from M output signals of said adjustment module.
- the invention also relates to a method of controlling a cooling circuit for a combustion engine according to claim 5, wherein the cooling circuit is temporarily maintained in a non-active state following a start of the engine. thereby temporarily preventing a circulation of a cooling fluid in the cooling circuit, which method is characterized in that it comprises an iterative temperature estimation step, designed to perform an iterative estimate of the value of the coolant temperature and iterative estimates of the temperature values in a plurality N of thermal nodes considered as essential engine locations for monitoring the thermal state of said engine, an input data presenting step, provided for present at the iterative temperature estimation stage on the one hand a first ser ie M input signals, respectively associated with M operating parameters of the motor, and secondly a second series of (N + 1) input signals, constituted by the (N + 1) last estimated values available after the previous step of iterative temperature estimation, a comparison step, wherein a difference signal between the estimated value of the coolant temperature and a measured value of said temperature is provided, and a first step of correcting the N +
- it further comprises a second step of correcting the M input signals, in which a second correction is performed on the M input signals before the iterative estimation step of temperatures, based on the result of said comparison.
- the invention also relates to a computer program comprising a set of program code instructions recorded on a computer-readable medium, for carrying out the steps of this method of estimating temperatures when said program is running on a computer. .
- This invention is applicable to any motor vehicle equipped with a combustion engine and which comprises, on board, a combustion engine cooling circuit according to the characteristics defined above.
- the figure 1 shows very schematically a cooling circuit 11 of a combustion engine 100.
- the cooling circuit 11 comprises ducts 12 in which a cooling fluid (generally water with an antifreeze) can circulate.
- the conduits on the one hand enter the motor 100, so that the fluid, while circulating, can cool it, and on the other hand feed a radiator 13, so that the cooling fluid can itself be cooled by transfer of the heat it has accumulated to the outside of the vehicle.
- a not shown sensor, placed in the engine on the path of the cooling fluid, provides a measurement of the temperature of this fluid.
- the cooling circuit 11 also comprises a pump 14 intended, according to the adjustment imposed on it, to vary the flow rate of the cooling fluid in the cooling circuit (as a function of input data, denoted ID, such as engine load, amount of fuel injected, air flow, etc.).
- This input data ID is received by a control device 15.
- This control device can be implemented by corresponding wired circuits, but in the embodiment described below, this device is of preferably a computer, incorporating a processor or a microprocessor, which comprises or software for performing the series of instructions.
- This control device is, in particular, able to determine at regular intervals the optimum flow rate of the pump which, depending on the received parameter values, allows the cooling of the engine and its maintenance in the thermal state corresponding to its optimal operation.
- control device 15 When the engine is started, however, the operation of the control device is different. When powering up for a start of the vehicle engine, the control device 15 requires that the cooling circuit is temporarily kept inactive. In the embodiment described, where the control device 15 is a computer incorporating a control software or software, this result is obtained using a specific instruction present in the computer memory and activated during the detection of power up for startup.
- the idle time of the cooling circuit is more or less long depending on the duration of the stop which preceded the start, which means that the controller 15 is able to adjust the initial conditions based on a history (stored in memory) of the conditions that preceded this start.
- control device means all the functions which are useful for the implementation of the invention, but this does not exclude that the control device can also include, in hardware form or in software form, other subsets called to control, control or manage, in the motor vehicle, other functions not having a direct relationship with the implementation of the invention. These subsets and these other functions are then not mentioned in the present description, although present in the control device.
- the control device shown on the figure 2 First, it comprises an iterative temperature estimation module 20, for the purpose of making temperature estimations at a number of engine locations considered essential for monitoring the thermal state of the engine.
- This objective is achieved by means of a thermal modeling of the engine, intended to express the heat exchange in the engine and comprising for this purpose the different temperatures at said locations as variables of the modeling process.
- thermo nodes A number N of locations considered essential in the engine are selected. These locations of particular interest, called temperature nodes, correspond in the embodiment described to solid physical elements (for example, a cylinder head, a piston, a housing, etc.) or liquid (for example, oil, water, air, etc.), not shown.
- the temperatures of these nodes are initialized to the value of the outside ambient temperature, if the engine had been stopped for a long time and thus completely cooled, or to higher temperatures which had been memorized at the last stop, in case of a short stop that has not allowed the engine to cool completely.
- the iterative temperature estimation module 20 receives a number of inputs distributed as follows.
- the controller 15 includes an initialization module 21 providing the module 20 with a first series of M input signals, which are values of M engine operating parameters necessary to perform the thermal modeling of the engine. These input signals, supplied on input channels in parallel, are denoted by Input_1, ..., ..., Input_M, with the index i of the input concerned varying from 1 to M. They These include vehicle speed, engine speed, engine torque, fuel quantity, heat flow, outdoor temperature, fan speed, combustion mode, etc.
- the module 20 receives on the other hand a second series of input signals, which includes the initial values (at startup, during the first iteration), or the values previously estimated (during subsequent iterations) of the temperatures in each of the temperature nodes defined above, and looped back to the input of the module 20.
- These input signals in number N, are denoted T ° _1 (t-1), ..., ..., T ° _N ( t-1) before the iterative estimate of temperatures has occurred.
- the N values of the temperature of the nodes after the iterative estimation of temperatures has taken place are denoted T ° _1 (t), ..., ..., T ° _N (t).
- the index j of the input concerned varies from 1 to N, and t denotes the successive instants of estimation from the initial moment.
- the module 20 finally receives an additional input T ° _capteur (t-1) which is included in said second series of input signals and consists of the initial value (at start, during the first iteration) or the previously estimated value ( during subsequent iterations) of the coolant temperature, taking into account the operation of this module 20, which is now described.
- the nodes are modeled, by applying the laws of thermodynamics, in the form of a mathematical representation constituted by a state equation.
- This equation takes into account, on the one hand, for each node, the interaction with the environment of the engine, by involving the M input signals, M being an integer, constituting the main inputs of the model (the M values of parameters provided by the initialization module 21) and secondly, to take account of the evolution of the heat balance, the (N + 1) initial or estimated values corresponding respectively to the N initial temperature values or estimated for the N nodes and supplemented by the initial or estimated temperature value for the cooling fluid.
- the temperature of the cooling fluid is not representative of the thermal state of the engine. This temperature of the cooling fluid is therefore, on the one hand, an incorrect basis for monitoring this thermal state.
- anomalies could appear, for example drifts relating to the parameters taken into account, or defective initializations, due to a bad initialization of the engine. memories.
- a temperature sensor 22 provides the measured temperature of the cooling fluid, denoted T ° _ measurement.
- the difference signal Diff (t) thus obtained is sent to a correction stage located in a so-called proportional action channel.
- This floor of correction comprises an adjustment module 24 and a correction module 25.
- the adjustment module 24 is intended to develop the necessary corrections to ensure the progressive convergence of the temperatures estimated by the module 20 to temperatures close to the actual temperatures at the different nodes. of the motor.
- the module 24 comprises (N + 1) calculation units 24_ (1),..., 24_ (j),..., 24_ (N + 1) in parallel, representing a linear function (action of a constant gain, for example) or a non-linear function (use of maps, for example).
- the correction module 25 comprises for this purpose (N + 1) adders 25_ (1) to 25_ (N + 1) respectively arranged in the output channels of the module 20.
- the temperatures estimated by the iterative temperature estimation module 20 and corrected by the action of the correction module 25 are transferred to the input of the module 20 via a delay module 26.
- the delay module 26 and the initialization module 21 constitute, considered together, an input data presentation module.
- the (N + 1) delays introduced in parallel in each of the output channels of the module 20 make it possible to deliver, synchronously with the M input signals presented, the temperatures of the (N + 1) nodes at the instant which precedes the one for which the module 20 will provide new estimated values.
- These new estimates will, in turn, be transferred, after another crossing of the delay module 26, at the input of the module 20 for (N + 1) new estimation steps of temperatures T ° _1 (t + 1),. ..., ..., T ° _N (t + 1), T ° _captor (t + 1) at the next instant, and so on.
- the operation continues in the manner just described, by successive iterations, until the difference between the temperature of the cooling fluid measured by the sensor 22 and the estimated temperature T ° _capteur (t) estimated present at the input of the delay module 26 is below a predetermined threshold, previously fixed.
- a predetermined threshold previously fixed.
- the temperature of the cooling fluid as estimated by the module 20 is substantially equal to the measured temperature and can again be considered as representative of the thermal state of the engine.
- the control device 15 which had temporarily kept the cooling system in an inactive state, terminating this inactivity and allowing the flow of coolant to be established, which, at the same time, marks the end of the start-up period and the cooling operations. iterative and correction estimates made during this period.
- the exemplary embodiment of the cooling circuit control device which has just been described with reference to the figure 2 is an implementation of a method which, according to the principle of the invention, comprises the following steps. Since the combustion engine of a motor vehicle is in the starting phase, the engine control method consists first of imposing the temporary maintenance (that is to say, only during the whole start-up period) of the cooling circuit. in a non-active state by preventing the flow of cooling fluid in this circuit.
- a first step is first of all provided for iteratively estimating temperatures at a plurality of engine locations (for example, at the number of N) considered as essential points for monitoring its thermal state, as well as a estimation of the temperature of the cooling fluid.
- This objective is achieved by means of a thermal modeling of the engine, intended to express the heat exchanges in the engine and comprising for this purpose different temperatures as variables of the modeling process.
- This iterative temperature estimation step is performed from input data which are on the one hand M input signals associated with M operating parameters of the motor and on the other hand (N + 1) input signals constituted by the (N + 1) values estimated during the previous iteration.
- control method further comprises a step of comparing the estimated value for the temperature of the cooling fluid and a measured value of said temperature, followed by a step of correcting the (N + 1) signals resulting from said estimates, based on the result of this comparison step.
- the method may further comprise a second step of correcting the M input signals associated with the M operating parameters, also on the basis of the result of the comparing step.
- control device which incorporates for this purpose a computer program comprising a set of program code instructions.
- This program is recorded on a support, which is readable by a computer or a processor supervising the implementation of the steps of the method.
- This control method can be used in a motor vehicle comprising a cooling circuit as described above.
- This embodiment variant consists of the establishment of a second correction stage (31, 32, 33, 34), located in a so-called integral action path and represented in broken line on the figure 2 .
- the difference signal Diff (t) obtained at the output of the comparison module 23 is sent to this second correction stage, which comprises an integral calculation module 31, a saturation module 32, a (second) adjustment module 33 and a (second) correction module 34.
- the module 31 calculates the integral of the output signal of the comparison module 23.
- the saturation module 32 imposes a limitation on possible overruns of the integral calculation module 31.
- the adjustment 33 is similar to the first adjustment module 24 and comprises for example, like him but in number M this time, calculation units 33_ (1), ..., 33_ (i), ..., 33_ (M ) in parallel, representing a linear function (action of a constant gain, for example) or a non-linear function (use of maps, for example).
- the second correction module 34 is similar to the first correction module and comprises for example, like itself but in number M this time, adders 34_ (1) to 34_ (M) respectively arranged in the input channels of the module 20, between the outputs of the input data presentation module and the corresponding inputs of the module 20. This second correction module 34 makes it possible to apply a so-called integral correction to the input signals of the module 20.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
La présente invention concerne, d'une manière générale, la surveillance en température des moteurs de véhicules automobiles, et plus particulièrement, un circuit de refroidissement pour un moteur à combustion, ainsi qu'un procédé de commande d'un tel circuit de refroidissement.The present invention generally relates to the temperature monitoring of motor vehicle engines, and more particularly to a cooling circuit for a combustion engine, as well as a method of controlling such a cooling circuit.
Dans un moteur de véhicule automobile, les combustions répétées conduisent à un échauffement qui se diffuse à l'ensemble des pièces du moteur. Pour éviter la détérioration du moteur et le maintenir à une température adaptée lui permettant d'avoir un rendement optimal, le moteur est pourvu d'un circuit de refroidissement, lui-même équipé d'un dispositif de régulation pour maintenir les conditions thermiques de ce rendement optimal. La demande de brevet français publiée sous le n°
La régulation du refroidissement n'est cependant possible qu'en connaissant et maîtrisant l'état thermique du moteur. Cela peut être obtenu en mesurant la température du fluide de refroidissement lorsqu'il circule dans le circuit, qui est l'information la plus représentative de cet état thermique, mais cette mesure de température n'est pertinente que si le fluide de refroidissement circule suffisamment dans le moteur. Dans un état de démarrage du moteur, lorsque celui-ci est froid, ou déjà partiellement refroidi même après un temps d'arrêt peu prolongé, le rendement du moteur est plus faible en raison de sa température trop basse. Dans ce cas, il est prévu de ne pas établir tout de suite la circulation du fluide de refroidissement dans le circuit de refroidissement, ou de limiter très fortement son débit, pour accélérer la montée en température du moteur (cette situation n'étant que temporaire, puisque des moyens sont alors prévus pour rétablir la circulation du fluide de refroidissement lorsque le moteur a sensiblement atteint sa température optimale de fonctionnement).Cooling control is however only possible by knowing and controlling the thermal state of the motor. This can be obtained by measuring the temperature of the cooling fluid as it circulates in the circuit, which is the most representative information of this thermal state, but this temperature measurement is only relevant if the cooling fluid circulates sufficiently in the engine. In a starting state of the engine, when it is cold, or already partially cooled even after a prolonged downtime, the efficiency of the engine is lower because of its too low temperature. In this case, it is planned not to establish immediately the circulation of the cooling fluid in the cooling circuit, or to very strongly limit its flow, to accelerate the rise in temperature of the engine (this situation being only temporary , since means are then provided to restore the circulation of the cooling fluid when the engine has substantially reached its optimum operating temperature).
Comme le fluide de refroidissement ne circule plus ou pratiquement plus dans cet état de démarrage, sa température, en fait, ne constitue plus qu'une indication locale au voisinage du capteur de température ayant permis de la mesurer et ne peut plus représenter de manière fiable la température moyenne du moteur. Cette perte d'information pénalise le fonctionnement du dispositif de régulation du refroidissement, ainsi d'ailleurs que toutes les fonctions qui, à bord du véhicule, sont consommatrices de la température du moteur.Le document
Il existe de ce fait un besoin pour une solution permettant de disposer à nouveau d'une information de température du fluide de refroidissement qui soit fiable, même en l'absence de circulation du fluide de refroidissement.There is therefore a need for a solution to reliably provide cooling fluid temperature information even in the absence of coolant circulation.
L'invention concerne à cet effet un circuit de refroidissement pour un moteur à combustion selon la revendication 1, comprenant un dispositif de commande apte à maintenir temporairement le circuit de refroidissement dans un état non actif à la suite d'un démarrage du moteur à combustion et à empêcher ainsi temporairement une circulation d'un fluide de refroidissement dans le circuit de refroidissement, ce dispositif de commande étant caractérisé en ce qu'il comprend un module d'estimation itérative de températures, apte à délivrer sur (N + 1) voies de sortie d'une part N valeurs estimées des températures respectives d'une pluralité de noeuds thermiques considérés comme des emplacements du moteur essentiels pour la surveillance de l'état thermique dudit moteur et d'autre part une (N + 1)-ième valeur qui est une valeur estimée de la température du fluide de refroidissement, N représentant un nombre entier, un module de présentation de données d'entrée, apte à fournir au module d'estimation itérative de températures une première série de M signaux d'entrée, respectivement associés à M paramètres de fonctionnement du moteur, et une deuxième série de (N + 1) signaux d'entrée, constitués par les (N + 1) précédentes valeurs estimées disponibles, présentes en sortie dudit module d'estimation itérative de températures, M représentant un nombre entier, un module de comparaison, apte à fournir un signal de différence entre la valeur estimée de la température du fluide de refroidissement et une valeur mesurée de ladite température, et un premier étage de correction, apte à effectuer sur les (N + 1) voies de sortie du module d'estimation itérative de températures une correction sur la base du signal de différence résultant de ladite comparaison.The invention relates for this purpose to a cooling circuit for a combustion engine according to
La solution avantageuse ainsi proposée consiste à modéliser les échanges thermiques dans le moteur par un système à plusieurs noeuds thermiques caractérisant chacun une température d'un élément physique solide ou liquide du moteur, puis à effectuer de manière itérative des estimations de ces températures et des corrections des températures estimées. L'un des noeuds thermiques correspond au capteur de la température du fluide de refroidissement, et les corrections effectuées au cours des itérations successives sont basées sur l'écart entre la température estimée du fluide de refroidissement et la mesure fournie par ce capteur. La robustesse du processus est liée au fait que cet écart, étant nul en régime optimal de fonctionnement du moteur, peut être utilisé de manière fiable comme base pour la correction progressive des températures estimées, jusqu'à la fin de la période de démarrage.The advantageous solution thus proposed consists in modeling the heat exchanges in the engine by a system with several nodes. thermals each characterizing a temperature of a physical solid or liquid element of the engine, then iteratively perform estimates of these temperatures and corrections of the estimated temperatures. One of the thermal nodes corresponds to the coolant temperature sensor, and the corrections made during the successive iterations are based on the difference between the estimated coolant temperature and the measurement provided by this sensor. The robustness of the process is related to the fact that this deviation, being zero at the optimum operating speed of the engine, can be used reliably as a basis for the progressive correction of the estimated temperatures until the end of the start-up period.
Selon un mode de réalisation préférentiel de l'invention, le module d'estimation itérative de températures comprend la mise en oeuvre d'une modélisation des échanges thermiques se produisant entre les N noeuds thermiques considérés dans le moteur.According to a preferred embodiment of the invention, the iterative temperature estimation module comprises the implementation of a thermal exchange modeling occurring between the N thermal nodes considered in the engine.
Dans une réalisation particulière du module de présentation de données d'entrée, celui-ci comprend un module d'initialisation, prévu pour fournir au module d'estimation itérative de températures ladite première série de M signaux d'entrée, et un module de retardement, prévu pour fournir audit module d'estimation itérative de températures ladite deuxième série de (N + 1) signaux d'entrée.In a particular embodiment of the input data presentation module, it comprises an initialization module, intended to provide the iterative temperature estimation module with said first series of M input signals, and a delay module. , provided to provide said iterative temperature estimation module with said second series of (N + 1) input signals.
Dans un premier mode de réalisation du circuit de refroidissement selon l'invention, un seul étage de correction est prévu, et celui-ci comprend alors d'une part un module d'ajustement, ledit ajustement étant obtenu par application d'une fonction au signal de différence disponible en sortie du module de comparaison et ladite fonction étant une fonction linéaire, telle qu'une multiplication par une valeur de gain, ou une fonction non linéaire, telle qu'une correspondance à partir d'un tableau ou d'une cartographie, et d'autre part un module de correction, ladite correction étant respectivement effectuée dans chacune des (N + 1) voies de sortie du module d'estimation itérative de températures à partir de (N + 1) signaux de sortie dudit module d'ajustement.In a first embodiment of the cooling circuit according to the invention, a single correction stage is provided, and it then comprises on the one hand an adjustment module, said adjustment being obtained by applying a function to the difference signal available at the output of the comparison module and said function being a linear function, such as a multiplication by a gain value, or a nonlinear function, such as a correspondence from a table or a mapping, and secondly a correction module, said correction being respectively performed in each of the (N + 1) output channels of the iterative temperature estimation module from (N + 1) output signals of said module. 'adjustment.
Dans une variante perfectionnée du circuit de refroidissement, le dispositif de commande dudit circuit comprend un deuxième étage de correction, apte à effectuer sur les M signaux d'entrée des M voies d'entrée du module d'estimation itérative de températures une deuxième correction sur la base du résultat de ladite comparaison.In an improved variant of the cooling circuit, the control device of said circuit comprises a second correction stage, adapted to perform on the M input signals of the M input channels of the estimation module. iterative temperature a second correction based on the result of said comparison.
Selon une réalisation avantageuse de ce deuxième étage de correction, celui-ci comprend successivement un module de calcul de l'intégrale du signal de différence délivré par le module de comparaison, un module d'écrêtage du signal de sortie dudit module de calcul d'intégrale, un module d'ajustement, ledit ajustement étant obtenu par application d'une fonction au signal de sortie dudit module d'écrêtage et ladite fonction étant une fonction linéaire, telle qu'une multiplication par une valeur de gain, ou une fonction non linéaire, telle qu'une correspondance à partir d'un tableau ou d'une cartographie, et un module de correction, ladite correction étant respectivement effectuée dans chacune des M voies d'entrée du module d'estimation itérative de températures à partir de M signaux de sortie dudit module d'ajustement.According to an advantageous embodiment of this second correction stage, the latter successively comprises a module for calculating the integral of the difference signal delivered by the comparison module, a clipping module of the output signal of said calculation module. integral, an adjustment module, said adjustment being obtained by applying a function to the output signal of said clipping module and said function being a linear function, such as a multiplication by a gain value, or a non-function linear, such as a correspondence from a table or a map, and a correction module, said correction being respectively performed in each of the M input channels of the iterative estimation module of temperatures from M output signals of said adjustment module.
L'invention a également pour objet un procédé de commande d'un circuit de refroidissement pour un moteur à combustion selon la revendication 5, dans lequel le circuit de refroidissement est maintenu temporairement dans un état non actif à la suite d'un démarrage du moteur à combustion en empêchant ainsi temporairement une circulation d'un fluide de refroidissement dans le circuit de refroidissement, ce procédé étant caractérisé en ce qu'il comprend une étape d'estimation itérative de températures, prévue pour effectuer une estimation itérative de la valeur de la température du fluide de refroidissement et des estimations itératives des valeurs de température en une pluralité N de noeuds thermiques considérés comme des emplacements du moteur essentiels pour la surveillance de l'état thermique dudit moteur, une étape de présentation de données d'entrée, prévue pour présenter à l'étape d'estimation itérative de températures d'une part une première série de M signaux d'entrée, respectivement associés à M paramètres de fonctionnement du moteur, et d'autre part une deuxième série de (N + 1) signaux d'entrée, constitués par les (N + 1) dernières valeurs estimées disponibles après la précédente étape d'estimation itérative de températures, une étape de comparaison, dans laquelle un signal de différence entre la valeur estimée de la température du fluide de refroidissement et une valeur mesurée de ladite température est fourni, et une première étape de correction des (N + 1) estimations de sortie, dans laquelle une première correction est effectuée sur les (N + 1) signaux de sortie disponibles après l'étape d'estimation itérative de températures, sur la base du résultat de ladite comparaison.The invention also relates to a method of controlling a cooling circuit for a combustion engine according to claim 5, wherein the cooling circuit is temporarily maintained in a non-active state following a start of the engine. thereby temporarily preventing a circulation of a cooling fluid in the cooling circuit, which method is characterized in that it comprises an iterative temperature estimation step, designed to perform an iterative estimate of the value of the coolant temperature and iterative estimates of the temperature values in a plurality N of thermal nodes considered as essential engine locations for monitoring the thermal state of said engine, an input data presenting step, provided for present at the iterative temperature estimation stage on the one hand a first ser ie M input signals, respectively associated with M operating parameters of the motor, and secondly a second series of (N + 1) input signals, constituted by the (N + 1) last estimated values available after the previous step of iterative temperature estimation, a comparison step, wherein a difference signal between the estimated value of the coolant temperature and a measured value of said temperature is provided, and a first step of correcting the N + 1) output estimates, in which a first correction is performed on the (N + 1) output signals available after the iterative temperature estimation step, based on the result of said comparison.
Dans une variante de mise en oeuvre de ce procédé, il comprend en outre une deuxième étape de correction des M signaux d'entrée, dans laquelle une deuxième correction est effectuée sur les M signaux d'entrée avant l'étape d'estimation itérative de températures, sur la base du résultat de ladite comparaison.In an alternative embodiment of this method, it further comprises a second step of correcting the M input signals, in which a second correction is performed on the M input signals before the iterative estimation step of temperatures, based on the result of said comparison.
L'invention concerne aussi un programme d'ordinateur comprenant un jeu d'instructions de code de programme enregistré sur un support lisible par un ordinateur, pour mettre en oeuvre les étapes de ce procédé d'estimation de températures lorsque ledit programme fonctionne sur un ordinateur.The invention also relates to a computer program comprising a set of program code instructions recorded on a computer-readable medium, for carrying out the steps of this method of estimating temperatures when said program is running on a computer. .
Cette invention est applicable à tout véhicule automobile équipé d'un moteur à combustion et qui comprend, à son bord, un circuit de refroidissement de moteur à combustion conforme aux caractéristiques définies ci-dessus.This invention is applicable to any motor vehicle equipped with a combustion engine and which comprises, on board, a combustion engine cooling circuit according to the characteristics defined above.
Une description détaillée en référence à des dessins illustre maintenant l'invention qui vient d'être brièvement exposée.A detailed description with reference to drawings now illustrates the invention which has just been briefly described.
-
La
figure 1 illustre de façon très simplifiée un moteur à combustion et les principaux éléments de son circuit de refroidissement.Thefigure 1 illustrates very simply a combustion engine and the main elements of its cooling system. -
La
figure 2 illustre un exemple de réalisation d'un dispositif de commande de circuit de refroidissement selon la présente invention.Thefigure 2 illustrates an exemplary embodiment of a cooling circuit controller according to the present invention.
La
Le circuit de refroidissement 11 comprend également une pompe 14, destinée, selon le réglage qui lui est imposé, à faire varier le débit de circulation du fluide de refroidissement dans le circuit de refroidissement (en fonction de données d'entrée, notées ID, telles que la charge du moteur, la quantité de carburant injectée, le débit d'air, etc.). Ces données d'entrée ID sont reçues par un dispositif de commande 15. Les fonctions exécutées par ce dispositif de commande peuvent être mises en oeuvre par des circuits câblés correspondants, mais, dans le mode de réalisation décrit ci-dessous, ce dispositif est de préférence un calculateur, incorporant un processeur ou un micro-processeur, qui comprend un ou des logiciels assurant l'exécution de séries d'instructions. Ce dispositif de commande est, notamment, apte à déterminer à intervalles réguliers le débit optimal de la pompe qui, en fonction des valeurs de paramètres reçues, permet le refroidissement du moteur et son maintien dans l'état thermique correspondant à son fonctionnement optimal.The
Ce régime de régulation optimal est celui obtenu lorsque la période de démarrage du moteur est terminée, et cette situation ne sera pas davantage décrite. Au démarrage du moteur, par contre, le fonctionnement du dispositif de commande est différent. Lors d'une mise sous tension pour un démarrage du moteur du véhicule, le dispositif de commande 15 impose que le circuit de refroidissement soit temporairement maintenu inactif. Dans le mode de réalisation décrit, où le dispositif de commande 15 est un calculateur incorporant un ou des logiciels de commande, ce résultat est obtenu à l'aide d'une instruction spécifique présente en mémoire dans le calculateur et activée lors de la détection de la mise sous tension pour le démarrage. La durée d'inactivité du circuit de refroidissement, liée, on l'a vu, au temps d'échauffement nécessaire des pièces du moteur, est plus ou moins longue selon la durée de l'arrêt qui a précédé le démarrage, ce qui signifie que le dispositif de commande 15 est en mesure d'ajuster les conditions initiales en fonction d'un historique (conservé en mémoire) des conditions qui ont précédé ce démarrage.This optimal control regime is that obtained when the engine start period is over, and this situation will not be further described. When the engine is started, however, the operation of the control device is different. When powering up for a start of the vehicle engine, the
La
Le dispositif de commande représenté sur la
Plus précisément, la modélisation est réalisée de la façon suivante. Un certain nombre N d'emplacements considérés comme essentiels dans le moteur sont sélectionnés. Ces emplacements d'intérêt particulier, appelés des noeuds de température, correspondent dans l'exemple de réalisation décrit à des éléments physiques solides (par exemple, une culasse, un piston, un carter, etc.) ou liquides (par exemple, huile, eau, air, etc.), non représentés. Au démarrage du moteur, les températures de ces noeuds sont initialisées à la valeur de la température ambiante extérieure, si le moteur était à l'arrêt depuis longtemps et donc complètement refroidi, ou à des températures supérieures qui avaient été mémorisées lors du dernier arrêt, en cas d'arrêt peu prolongé n'ayant pas permis au moteur de se refroidir complètement.More precisely, the modeling is carried out as follows. A number N of locations considered essential in the engine are selected. These locations of particular interest, called temperature nodes, correspond in the embodiment described to solid physical elements (for example, a cylinder head, a piston, a housing, etc.) or liquid (for example, oil, water, air, etc.), not shown. When the engine is started, the temperatures of these nodes are initialized to the value of the outside ambient temperature, if the engine had been stopped for a long time and thus completely cooled, or to higher temperatures which had been memorized at the last stop, in case of a short stop that has not allowed the engine to cool completely.
Le module 20 d'estimation itérative de températures reçoit un certain nombre d'entrées réparties comme suit. Le dispositif de commande 15 comprend un module d'initialisation 21 fournissant au module 20 une première série de M signaux d'entrée, qui sont des valeurs de M paramètres de fonctionnement du moteur nécessaires pour réaliser la modélisation thermique du moteur. Ces signaux d'entrée, fournis sur des voies d'entrée en parallèle, sont notés Entrée_1, ..., ...,Entrée_M, avec l'indice i de l'entrée concernée variant de 1 à M. Ils correspondent notamment à la vitesse du véhicule, au régime du moteur, au couple moteur, à la quantité de carburant, au flux thermique, à la température extérieure, à la vitesse du ventilateur, au mode de combustion, etc.The iterative
Le module 20 reçoit d'autre part une deuxième série de signaux d'entrée, qui comprend les valeurs initiales (au démarrage, lors de la première itération), ou bien les valeurs précédemment estimées (lors des itérations suivantes) des températures en chacun des noeuds de température définis plus haut, et rebouclés vers l'entrée du module 20. Ces signaux d'entrée, en nombre N, sont notés T°_1(t-1), ..., ..., T°_N(t-1) avant que l'estimation itérative de températures ait eu lieu. Les N valeurs des températures des noeuds après que l'estimation itérative de températures a eu lieu sont notées T°_1(t), ..., ..., T°_N(t). L'indice j de l'entrée concernée varie de 1 à N, et t désigne les instants successifs d'estimation à partir de l'instant initial.The
Le module 20 reçoit enfin une entrée supplémentaire T°_capteur(t-1) qui est incluse dans ladite deuxième série de signaux d'entrée et consiste en la valeur initiale (au démarrage, lors de la première itération) ou la valeur précédemment estimée (lors des itérations suivantes) de la température du fluide de refroidissement, compte tenu du fonctionnement de ce module 20, qui est maintenant décrit.The
Dans le module 20 d'estimation itérative de températures, les noeuds sont modélisés, par application des lois de la thermodynamique, sous la forme d'une représentation mathématique constituée par une équation d'état. Cette équation prend en compte d'une part, pour chaque noeud, l'interaction avec l'environnement du moteur, en faisant intervenir les M signaux d'entrée, M étant un nombre entier, constituant les entrées principales du modèle (les M valeurs de paramètres fournies par le module d'initialisation 21) et d'autre part, pour tenir compte de l'évolution du bilan thermique, les (N + 1) valeurs initiales ou estimées, correspondant respectivement aux N valeurs de température initiales ou estimées pour les N noeuds et complétées par la valeur de température initiale ou estimée pour le fluide de refroidissement.In the iterative
La résolution d'une telle équation, qui comprend (M + N + 1) variables, est, mathématiquement, relativement complexe, mais elle peut être simplifiée en étant ramenée à celle d'une équation différentielle d'ordre 1. Cette résolution fait appel aux différents coefficients d'échange thermique entre les éléments physiques du moteur, qui ont été préalablement déterminés par des essais et mémorisés, par exemple sous forme de tables ou de cartographies. Si les (M + N + 1) entrées à l'instant initial sont les M signaux d'entrée Entrée_1 à Entrée_M et les (N + 1) valeurs T°_1(0), ..., ..., T°_N(0) et T°capteur(0), la modélisation à l'instant suivant conduit donc à des valeurs mises à jour (délivrées respectivement sur (N+1) voies de sortie du module 20) qui sont notées respectivement T°_1(1), ..., ..., T°_N(1) et T°_capteur(1), et ainsi de suite. Pour les itérations suivantes, on obtient en effet, de façon similaire, à partir des M signaux d'entrée présents sur les M voies d'entrée et des (N + 1) valeurs de températures disponibles à l'instant (t-1) à la fin de l'itération précédente, (N + 1) nouvelles valeurs à l'instant t suivant, sur les (N + 1) voies de sortie.The resolution of such an equation, which includes (M + N + 1) variables, is, mathematically, relatively complex, but it can be simplified by being reduced to that of a differential equation of
Toutefois, on l'a vu ci-dessus, en période de démarrage, la température du fluide de refroidissement n'est pas représentative de l'état thermique du moteur. Cette température du fluide de refroidissement constitue donc, d'une part, une base incorrecte pour surveiller cet état thermique. D'autre part, lorsqu'on met en oeuvre la modélisation décrite pour effectuer le bilan thermique du moteur, des anomalies pourraient apparaître, par exemple des dérives relatives aux paramètres pris en compte, ou bien des initialisations défectueuses, dues à une mauvaise initialisation de mémoires. Pour remédier à ces inconvénients, il est prévu, conformément à l'invention, d'utiliser l'écart constaté entre la température du fluide de refroidissement estimée par le module 20 d'estimation itérative de températures et sa température réelle mesurée pour mettre en place une stratégie de correction, basée sur la valeur de cet écart : en effet, en régime optimal de fonctionnement du moteur, cet écart serait nul, il est donc envisageable, en période de démarrage, d'utiliser la valeur de cet écart comme élément de correction dans le processus itératif.However, as noted above, during the start-up period, the temperature of the cooling fluid is not representative of the thermal state of the engine. This temperature of the cooling fluid is therefore, on the one hand, an incorrect basis for monitoring this thermal state. On the other hand, when implementing the modeling described to perform the thermal balance of the engine, anomalies could appear, for example drifts relating to the parameters taken into account, or defective initializations, due to a bad initialization of the engine. memories. To overcome these drawbacks, it is provided, in accordance with the invention, to use the difference found between the temperature of the cooling fluid estimated by the iterative
Un capteur de température 22 fournit la température mesurée du fluide de refroidissement, notée T°_mesure. Un module de comparaison 23, ici un soustracteur, compare cette valeur T°_mesure fournie par le capteur 22 et la valeur correspondante T°_capteur(t) estimée par le module 20 d'estimation itérative de températures. Le signal d'écart Diff(t) ainsi obtenu est envoyé vers un étage de correction situé dans une voie dite d'action proportionnelle. Cet étage de correction comprend un module d'ajustement 24 et un module de correction 25. Le module d'ajustement 24 est destiné à élaborer les corrections nécessaires pour assurer la convergence progressive des températures estimées par le module 20 vers des températures proches des températures réelles aux différents noeuds du moteur. Le module 24 comprend à cet effet (N+1) unités de calcul 24_(1), ..., 24_(j), ..., 24_(N+1) en parallèle, représentant une fonction linéaire (action d'un gain constant, par exemple) ou une fonction non linéaire (utilisation de cartographies, par exemple). Le module de correction 25, prévu en sortie du module d'ajustement 24, permet alors d'appliquer une correction dite proportionnelle aux (N + 1) températures de sortie du module 20. Le module de correction 25 comprend à cet effet (N + 1) additionneurs 25_(1) à 25_(N+1) disposés respectivement dans les voies de sortie du module 20.A
Les températures estimées par le module 20 d'estimation itérative de températures et corrigées par l'action du module de correction 25 sont transférées vers l'entrée du module 20 par l'intermédiaire d'un module de retardement 26. Le module de retardement 26 et le module d'initialisation 21 constituent, considérés ensemble, un module de présentation de données d'entrée. Les (N + 1) retards introduits en parallèle dans chacune des voies de sortie du module 20 permettent de délivrer, de façon synchronisée avec les M signaux d'entrée présentés, les températures des (N + 1) noeuds à l'instant qui précède celui pour lequel le module 20 va fournir de nouvelles valeurs estimées. Ces nouvelles estimations vont, à leur tour, être transférées, après une nouvelle traversée du module de retardement 26, en entrée du module 20 pour (N+1) nouvelles étapes d'estimation des températures T°_1(t+1), ...., ..., T°_N(t+1), T°_capteur(t+1) à l'instant suivant, et ainsi de suite.The temperatures estimated by the iterative
Le fonctionnement se poursuit de la manière qui vient d'être décrite, par itérations successives, jusqu'à ce que l'écart entre la température du fluide de refroidissement mesurée par le capteur 22 et la température estimée T°_capteur(t) estimée présente à l'entrée du module de retardement 26 soit inférieur à un seuil déterminé, préalablement fixé. Lorsqu'un tel seuil est atteint, la température du fluide de refroidissement telle qu'estimée par le module 20 est pratiquement égale à la température mesurée et peut à nouveau être considérée comme représentative de l'état thermique du moteur. Le dispositif de commande 15, qui avait temporairement maintenu le circuit de refroidissement dans un état non actif, met fin à cette inactivité et autorise l'établissement de la circulation du fluide de refroidissement, ce qui, en même temps, marque la fin de la période de démarrage et des opérations d'estimation itérative et de correction effectuées pendant cette période.The operation continues in the manner just described, by successive iterations, until the difference between the temperature of the cooling fluid measured by the
L'exemple de réalisation du dispositif de commande de circuit de refroidissement qui vient d'être décrit en référence à la
Pendant cette période de démarrage, le procédé de commande prévoit la réalisation des étapes suivantes. Une première étape est tout d'abord prévue pour effectuer une estimation itérative de températures en une pluralité d'emplacements du moteur (par exemple, au nombre de N) considérés comme des points essentiels pour la surveillance de son état thermique, ainsi qu'une estimation de la température du fluide de refroidissement. Cet objectif est atteint au moyen d'une modélisation thermique du moteur, destinée à exprimer les échanges thermiques dans le moteur et comprenant à cet effet différentes températures comme variables du processus de modélisation.During this start-up period, the control method provides for the realization of the following steps. A first step is first of all provided for iteratively estimating temperatures at a plurality of engine locations (for example, at the number of N) considered as essential points for monitoring its thermal state, as well as a estimation of the temperature of the cooling fluid. This objective is achieved by means of a thermal modeling of the engine, intended to express the heat exchanges in the engine and comprising for this purpose different temperatures as variables of the modeling process.
Cette étape d'estimation itérative de températures est effectuée à partir de données d'entrée qui sont d'une part M signaux d'entrée associés à M paramètres de fonctionnement du moteur et d'autre part (N + 1) signaux d'entrée constitués par les (N + 1) valeurs estimées au cours de la précédente itération.This iterative temperature estimation step is performed from input data which are on the one hand M input signals associated with M operating parameters of the motor and on the other hand (N + 1) input signals constituted by the (N + 1) values estimated during the previous iteration.
Selon l'invention, le procédé de commande comprend en outre une étape de comparaison de la valeur estimée pour la température du fluide de refroidissement et d'une valeur mesurée de ladite température, suivie d'une étape de correction des (N + 1) signaux résultant desdites estimations, sur la base du résultat de cette étape de comparaison. Le procédé peut en outre comprendre une deuxième étape de correction des M signaux d'entrée associés aux M paramètres de fonctionnement, également sur la base du résultat de l'étape de comparaison.According to the invention, the control method further comprises a step of comparing the estimated value for the temperature of the cooling fluid and a measured value of said temperature, followed by a step of correcting the (N + 1) signals resulting from said estimates, based on the result of this comparison step. The method may further comprise a second step of correcting the M input signals associated with the M operating parameters, also on the basis of the result of the comparing step.
Le déroulement de ces étapes est opéré sous le contrôle du dispositif de commande qui incorpore à cet effet un programme d'ordinateur comprenant un jeu d'instructions de code de programme. Ce programme est enregistré sur un support, qui est lisible par un ordinateur ou un processeur supervisant la mise en oeuvre des étapes du procédé.The progress of these steps is carried out under the control of the control device which incorporates for this purpose a computer program comprising a set of program code instructions. This program is recorded on a support, which is readable by a computer or a processor supervising the implementation of the steps of the method.
Ce procédé de commande est utilisable dans un véhicule automobile comprenant un circuit de refroidissement tel que décrit ci-dessus.This control method can be used in a motor vehicle comprising a cooling circuit as described above.
La description qui vient d'être faite en référence aux figures n'est cependant qu'une simple illustration de l'invention. Celle-ci peut être réalisée de différentes façons, en prévoyant par exemple une variante telle qu'indiquée ci-dessous.The description which has just been made with reference to the figures is however only a simple illustration of the invention. This can be done in different ways, for example by providing a variant as indicated below.
Cette variante de réalisation consiste en la mise en place d'un deuxième étage de correction (31, 32, 33, 34), situé dans une voie dite d'action intégrale et représenté en trait interrompu sur la
On notera par ailleurs, que, bien que les dessins montrent diverses entités fonctionnelles sous la forme de blocs différents, ceci n'exclut nullement des implémentations dans lesquelles une seule entité effectue plusieurs fonctions, ou plusieurs entités effectuent collectivement une seule fonction.Note also that, although the drawings show various functional entities in the form of different blocks, this does not exclude implementations in which a single entity performs several functions, or several entities collectively perform a single function.
Les remarques qui précèdent montrent que la description détaillée en référence aux figures illustre l'invention plutôt qu'elle ne la limite. Les signes de références n'ont aucun caractère limitatif. Les verbes « comprendre » et « comporter » éventuellement utilisés n'excluent pas la présence d'autres éléments ou d'autres étapes que ceux listés dans les revendications. Le mot « un » ou « une » précédant un élément ou une étape n'exclut pas la présence d'une pluralité de tels éléments ou de telles étapes.The foregoing remarks show that the detailed description with reference to the figures illustrates the invention rather than limiting it. The reference signs are in no way limiting. The verbs "understand" and "include" possibly used do not exclude the presence of other elements or other steps than those listed in the claims. The word "a" or "an" preceding an element or a step does not exclude the presence of a plurality of such elements or steps.
Claims (7)
- A cooling circuit (11) for an internal combustion engine (100), including a circulation pump of a coolant, a control device (15) able to temporarily maintain the cooling circuit in a non-active state following a start of the internal combustion engine and to thus temporarily prevent a circulation of the coolant in the cooling circuit by stoppage of the pump,
characterized in that said control device (15) includes:an iterative estimation module of temperatures (20), able to deliver during the temporary stopping of circulation of the coolant, on (N + 1) outlet paths on the one hand N estimated values of the respective temperatures of a plurality of thermal nodes each characterizing a temperature of a solid or liquid physical element of the engine concerned as sites of the engine essential for the monitoring of the thermal state of said engine and, on the other hand, a (N +1)th value which is an estimated value of the temperature of the coolant, N representing a whole number, this module including the implementation of a modelling of the thermal exchanges occurring between the N thermal nodes concerned in the engine,a presentation module of input data (21, 26), able to provide, during the temporary stoppage of circulation of the coolant, to the iterative estimation module of temperatures (20) a first series of M input signals, respectively associated with M operating parameters of the engine, and a second series of (N + 1) input signals, constituted by the (N + 1) preceding available estimated values, present at the output of said iterative estimation module of temperatures (20), M representing a whole number,a comparison module (23), able to provide during the temporary stoppage of circulation of the coolant a difference signal between the estimated value of the temperature of the coolant and a measured value of said temperature,a first correction stage (24, 25), able to carry out during the temporary stoppage of circulation of the coolant, on the (N + 1) outlet paths of the iterative estimation module of temperatures (20) a correction based on the difference signal resulting from said comparison, anda second correction stage (31, 32, 33, 34), able to carry out on the M input signals of the M input paths of the iterative estimation module of temperatures (20) a second correction on the basis of the result of said comparison. - The cooling circuit according to Claim 1, in which the input data presentation module (21, 26) includes an initialization module (21), provided to supply to the iterative estimation module of temperatures (20) said first series of M input signals, and a delay module (26), provided to supply to said iterative estimation module of temperatures (20) said second series of (N + 1) input signals.
- The cooling circuit according to Claim 2, in which the first correction stage (24, 25) includes on the one hand an adjustment module (24), said adjustment being obtained by application of a function to the difference signal available at the output of the comparison module (23) and said function being a linear function, such as a multiplication by a gain value, or a non-linear function, such as a correspondence from a table or from a mapping, and on the other hand a correction module (25), said correction being respectively carried out in each of the (N + 1) output paths of the iterative estimation module of temperatures (20) from (N + 1) output signals of said adjustment module (24).
- The cooling circuit according to one of Claims 1 to 3, in which said second correction stage (31, 32, 33, 34) includes successively a calculation module (31) of the integral of the difference signal delivered by the comparison module (23), a clipping module (32) of the output signal of said integral calculation module (31), an adjustment module (33), said adjustment being obtained by application of a function to the output signal of said clipping module (32) and said function being a linear function, such as a multiplication by a gain value, or a non-linear function, such as a correspondence from a table or from a mapping, and a correction module (34), said correction being respectively carried out in each of the M input paths of the iterative estimation module of temperatures (20) from M output signals of said adjustment module (33).
- A control method of a cooling circuit (11) including a circulation pump of a coolant for an internal combustion engine (100), in which the cooling circuit is maintained temporarily in a non-active state following a start of the internal combustion engine by thus temporarily preventing a circulation of the coolant in the cooling circuit by stoppage of the pump,
characterized in that the method includes during the temporary stoppage of circulation of the coolant:a step of iterative estimation of temperatures, provided to carry out an iterative estimation of the value of the temperature of the coolant and iterative estimations of the temperature values in a plurality N of thermal nodes concerned as essential sites of the engine for the monitoring of the thermal state of said engine, N representing a whole number,a step of presentation of input data, provided to present at the step of iterative estimation of temperatures on the one hand a first series of M input signals, respectively associated with M operating parameters of the engine, and on the other hand a second series of (N + 1) input signals, constituted by the (N + 1) last available estimated values after the preceding step of iterative estimation of temperatures, M representing a whole number,a comparison step, in which a difference signal between the estimated value of the temperature of the coolant and a measured value of said temperature is provided,a first correction step of the (N + 1) output estimations, in which a first correction is carried out on the (N + 1) output signals available after the step of iterative estimation of temperatures, on the basis of the result of said comparison, anda second correction step of the M input signals, in which a second correction is carried out on the M input signals before the step of iterative estimation of temperatures, on the basis of the result of said comparison. - A computer program including a set of program code instructions stored on a computer-readable medium, implementing the steps of the method of estimation of temperatures according to Claim 5 when said program operates on a computer.
- A motor vehicle including, on board, an internal combustion engine cooling circuit according to any one of Claims 1 to 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1253063A FR2989112B1 (en) | 2012-04-04 | 2012-04-04 | ESTIMATING THE THERMAL CONDITION OF AN ENGINE |
PCT/FR2013/050594 WO2013150207A1 (en) | 2012-04-04 | 2013-03-20 | Estimating the thermal condition of an engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2834490A1 EP2834490A1 (en) | 2015-02-11 |
EP2834490B1 true EP2834490B1 (en) | 2017-05-03 |
Family
ID=48083521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13715353.2A Active EP2834490B1 (en) | 2012-04-04 | 2013-03-20 | Estimating the thermal condition of an engine |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2834490B1 (en) |
FR (1) | FR2989112B1 (en) |
WO (1) | WO2013150207A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3091557B1 (en) * | 2019-01-09 | 2020-12-04 | Continental Automotive | Thermal control for vehicle engine |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2796987B1 (en) * | 1999-07-30 | 2002-09-20 | Valeo Thermique Moteur Sa | DEVICE FOR REGULATING THE COOLING OF A MOTOR VEHICLE HEAT ENGINE |
US6321695B1 (en) * | 1999-11-30 | 2001-11-27 | Delphi Technologies, Inc. | Model-based diagnostic method for an engine cooling system |
JP3956663B2 (en) * | 2001-02-15 | 2007-08-08 | 株式会社デンソー | Cooling water temperature estimation device for internal combustion engine |
US7409928B2 (en) * | 2006-01-27 | 2008-08-12 | Gm Global Technology Operations, Inc. | Method for designing an engine component temperature estimator |
DE102009056783B4 (en) * | 2009-12-03 | 2014-01-02 | Continental Automotive Gmbh | Method and device for determining a simplified modeled coolant temperature value for a cooling circuit of an internal combustion engine |
DE102010035366B4 (en) * | 2010-08-25 | 2014-01-02 | Audi Ag | Method and device for diagnosing a coolant pump for an internal combustion engine |
-
2012
- 2012-04-04 FR FR1253063A patent/FR2989112B1/en not_active Expired - Fee Related
-
2013
- 2013-03-20 WO PCT/FR2013/050594 patent/WO2013150207A1/en active Application Filing
- 2013-03-20 EP EP13715353.2A patent/EP2834490B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR2989112A1 (en) | 2013-10-11 |
FR2989112B1 (en) | 2014-04-25 |
WO2013150207A1 (en) | 2013-10-10 |
EP2834490A1 (en) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2516819B1 (en) | Motor vehicle cooling device | |
EP2744677B1 (en) | Cooling system for an electrically driven vehicle | |
FR2954462A1 (en) | OPTIMIZATION OF A GLOBAL HEATING CAPACITY OF AN AIR CONDITIONING SYSTEM | |
EP2932063B1 (en) | Method for managing a power train implementing an estimation of the engine temperature at the end of a stop time of an element of the power train | |
WO2020144292A1 (en) | Thermal control for vehicle motor | |
EP2834490B1 (en) | Estimating the thermal condition of an engine | |
EP2310648B1 (en) | Method for controlling the flow of a cooling liquid | |
FR2989113A1 (en) | Coolant circuit for cooling combustion engine of car, has controller whose estimation module determines estimated temperature of coolant from thermal condition and equation representing thermal exchange in circuit during start-up period | |
EP2494161B1 (en) | System and method for controlling the cooling circuit of an internal-combustion engine | |
FR2928193A1 (en) | Gearbox i.e. mechanical gearbox, thermally protecting method for motor vehicle, involves carrying out intervening operation on unit of vehicle outside gearbox when temperature in gearbox exceeds critical threshold to reduce heat quantity | |
EP3120012A1 (en) | Method for managing the operation of a starter of a heat engine in order to prevent possible overheating at startup | |
EP3066329B1 (en) | Process of testing and electronic control unit | |
EP2556229B1 (en) | Method for estimating the initial temperature of a mechanical member of a vehicle at the start-up of the vehicle | |
FR3018556B1 (en) | METHOD FOR PREDICTING THE THERMAL CONDITION OF A STARTER | |
FR3080239A1 (en) | DEVICE AND METHOD FOR ESTIMATING AND CORRECTING A MEASUREMENT ERROR OF A POSITION SENSOR OF A ROTOR OF A ROTATING ELECTRIC MACHINE | |
EP3907394B1 (en) | Method for thermal control of a hybrid vehicle | |
FR2910062A1 (en) | Stressed component's e.g. bonnet, mechanical reliability controlling method for e.g. motor vehicle's oil engine, involves emitting alert or applying power reduction strategy to limit progression of damage to assure life time for component | |
WO2020249477A1 (en) | Method for thermal control of an engine | |
FR3064604A1 (en) | METHOD FOR CONTROLLING A MULTI-CHANGING BAY, CONTROL SYSTEM FOR MULTI-CHANNEL BAY AND MULTI-CHANNEL BAY | |
FR2989111A1 (en) | Coolant circuit for cooling combustion engine of car, has control device for maintaining circuit in non-active state, and standardization and decision modules and memory unit that evaluate whether corrected parameter is valid or not | |
FR3040332A1 (en) | THERMAL MANAGEMENT CIRCUIT OF A MOTOR VEHICLE COMPRISING A RANKINE LOOP AND ASSOCIATED STEERING METHOD | |
FR2996253A1 (en) | Device for calculating oil temperature model for thermal engine of motor car, has cooling circuit fixed to heater, and calibration module calculating center of gravity between oil temperatures between which substitute temperature is set |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141007 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160126 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161110 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 890264 Country of ref document: AT Kind code of ref document: T Effective date: 20170515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013020592 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20170703 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: PSA AUTOMOBILES SA |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 890264 Country of ref document: AT Kind code of ref document: T Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170803 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170804 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170903 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013020592 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20180312 Ref country code: FR Ref legal event code: CD Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR Effective date: 20180312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130320 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240319 Year of fee payment: 12 Ref country code: GB Payment date: 20240220 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240220 Year of fee payment: 12 |