EP2827068B1 - Cascading heat pump - Google Patents
Cascading heat pump Download PDFInfo
- Publication number
- EP2827068B1 EP2827068B1 EP13306044.2A EP13306044A EP2827068B1 EP 2827068 B1 EP2827068 B1 EP 2827068B1 EP 13306044 A EP13306044 A EP 13306044A EP 2827068 B1 EP2827068 B1 EP 2827068B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- circuit
- condenser
- evaporator
- heat pump
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 238000010438 heat treatment Methods 0.000 claims description 28
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000010257 thawing Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000008236 heating water Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D11/00—Central heating systems using heat accumulated in storage masses
- F24D11/02—Central heating systems using heat accumulated in storage masses using heat pumps
- F24D11/0214—Central heating systems using heat accumulated in storage masses using heat pumps water heating system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B7/00—Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/12—Heat pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/12—Heat pump
- F24D2200/123—Compression type heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
Definitions
- the present invention applies to the technical field of heat pumps and more specifically relates to a heat pump for producing water at high temperature, that is to say around 80 ° C, y included for outdoor temperature operation of - 15 ° C.
- heat pumps are an interesting alternative from both an economic and an environmental point of view.
- One of the remaining questions is related to their ability to produce very hot water, especially to adapt them to current heating systems, so that they can become a credible alternative.
- many heating systems are planned to operate with water at steady state and high temperature, up to 80 ° C as mentioned, which is not allowed by most conventional heat pumps.
- the most common heat pumps installed in support of heating systems are air / water pumps, which are therefore dependent on outside temperatures, and lose their ability to produce hot water at high temperatures. periods when such production is required.
- the objective assigned to the heat pump of the present invention is the production of water at high temperature even when the external conditions are severe in terms of cold. Correlatively, this heating power must be constant, in order to be able to substitute a heat pump for a conventional boiler.
- the solutions that have been proposed to solve this problem are mainly of two kinds.
- the use of a steam injection cycle which consists in cooling the gases during compression to allow the compressor to reach higher pressures without reaching the maximum discharge temperature, is a possibility.
- the cooling of the gases is obtained by a liquid-vapor mixture resulting from the expansion of the liquid refrigerant at the outlet of the condenser to bring it to a steady state. intermediate pressure.
- the liquid is cooled by this mixture at the outlet of the condenser, and heats up to become vapor. It is this steam which, injected into the compressor, cools the compressed gases.
- This technology makes it possible in practice to reach temperatures of the order of 65.degree. C., which are therefore insufficient with respect to the objectives previously set for the invention.
- the heat pump of the invention consists of two successive heat pumps constituting two separate hydraulic circuits, the first to obtain water at a maximum temperature of the order of 55 ° C, and the second, in cascade with the first one, making it possible to reach a temperature of at least 80 ° C.
- the first heat pump being of air / water type while the second is of the water / water type
- the problem solved by the invention lies in the practical realization of their coupling and / or more generally in the management of their association, knowing that the global heat pump of the invention must be able to transmit the energy produced by the first hydraulic circuit to the network of heating when the setpoint on the heating water is lower than 55 ° C, while the energy produced by the first circuit must be transmitted to the second circuit when the setpoint on the heating water is greater than 55 ° C. It must also be possible to supply energy to the first hydraulic circuit during its defrosting cycle, knowing that under certain conditions, a layer of ice may form between the fins of the external heat exchanger of the air / heat pumps. water, thus decreasing their effectiveness.
- the compressor of the heat pump must reverse its cycle so that the finned exchanger becomes condenser and ceases to be an evaporator, to heat the fins and defrost it.
- the internal condenser therefore becomes an evaporator, which means that it must be supplied with energy so that defrosting can take place.
- the invention consists primarily in that the two hydraulic circuits formed of the two cascaded heat pumps are connected by an intermediate water circuit comprising a volume of buffer water.
- the secondary of the condenser of the first circuit is connected in parallel to the heating network and the primary of the evaporator of the second circuit whose output is also connected to the heating network, a tank and means of selecting the heating network or the second circuit being arranged between the two hydraulic circuits.
- This intermediate circuit serves in particular to store the energy required for deicing. It also confers the desired inertia between the two circuits, allowing the compensation of the power variations of the first heat pump, operating at a lower temperature.
- the objective is in fact to absorb any variations in the outer group in said heat pump constituting the first hydraulic circuit. It also offers the possibility of using only the "first stage", ie the first hydraulic circuit, to heat the water and supply it to the heating network, which is not possible without the existence of this intermediate circuit.
- the selection means may consist of a three-way valve placed at one of the branches of the parallel branches to the primary of the evaporator of the second circuit and the heating network.
- This three-way valve in practice controls a possibility of direct derivation to the heating network, without resorting to the totality of the means of the system. It makes it possible to meet one of the constraints initially set, namely the possibility for the heat pump of the invention to supply the heating circuit directly at the outlet of the first hydraulic circuit, if the temperature of 55 ° C. produced in output of the latter is considered sufficient to meet the instructions.
- the tank of the intermediate circuit may consist of a tank forming a buffer tank, which is placed between the outlet of the primary of the evaporator of the second circuit and the inlet of the secondary of the condenser of the first circuit.
- the balloon used may be a simple buffer tank as conventionally marketed.
- the invention also comprises a second variant, in which the tank consists of a decoupling bottle implanted between the secondary of the condenser of the first hydraulic circuit and the primary of the evaporator of the second hydraulic circuit.
- the flow rate of water in the condenser of the first circuit may be different from that of the evaporator of the second circuit, which is not the case in the solution used in the previous variant.
- At least one recirculation pump can be arranged between the two hydraulic circuits, for example interposed between the tank and the secondary inlet of the condenser of the first circuit.
- another circulation pump can be placed between the secondary outlet of the condenser of the second circuit and the heating network.
- a circulation pump can finally also be placed between the primary outlet of the evaporator of the second circuit and the decoupling bottle, in the variant which is based on the decoupling bottle.
- the high-temperature heat pump of the invention is actually made of two heat pumps (P1) and (P2) (or hydraulic circuits) arranged in cascade.
- the first heat pump (P1) is a heat pump air / water, monobloc or not, whose evaporator (1) is located outside the building, symbolized by the brick wall.
- This evaporator is connected in a conventional manner to a condenser (2) via on the one hand a compressor (3) and on the other hand an expander (4).
- the second heat pump (P2) which is in this case a water / water heat pump, consists of an evaporator (5) connected to an outlet condenser (6) via on the one hand a compressor (7) and on the other hand an expander (8).
- the intermediate circuit of the version appearing in figure 1 is based on a buffer tank (9) disposed between said two heat pumps (P1, P2), this tank (9) being connected to the secondary inlet of the condenser (2) of the first hydraulic circuit (P1) via a pump circulation (10).
- This buffer tank (9) for example has a capacity of the order of 150 liters, and is fed with water obtained at the outlet of the primary of the evaporator (5) of the second hydraulic circuit (P2) and by the return pipes from the heating network.
- a three-way valve (11) makes it possible to directly connect said heating network to the secondary outlet of the condenser (2) of the first hydraulic circuit (P1), if the temperature of the supply water of the heating network does not have to be greater than 55 ° C. Conversely, when the temperature requirement of the water supplying the heating network is greater, the three-way valve (11) connects the secondary outlet of the condenser (2) to the circuit arranged in parallel, and more specifically to the input of the evaporator primary (5) of the second heating circuit (P2) to add a heating stage for ultimately producing water at the correct temperature with respect to the heating set point.
- This three-way valve (11) could however also be arranged at the other branch of said parallel circuits, upstream of the tank (9).
- a circulation pump (12) is provided upstream of the heating network and at the secondary outlet of the condenser (6) of the second hydraulic circuit (P2).
- the function of the intermediate water circuit consisting mainly of the buffer tank (9) is to provide the desired thermal inertia between the two circuits, in order to absorb any variations in the air / water heat pump ( P1), forming in this case the hydraulic circuit subjected to variations of the outside temperature.
- This intermediate circuit also makes it possible, as previously mentioned, to supply energy to the first hydraulic circuit (P1) during its defrosting cycle, during which the operating cycle is reversed: the condenser (2) becomes an evaporator while the evaporator (1) becomes a condenser so as to heat the fins of the exchanger which constitutes it in practice.
- the temperatures at the outlet of the primary of the evaporator (5) and at the inlet of the secondary of the condenser (2) of the first hydraulic circuit (P1) are substantially equal to the temperature of the water which is contained in the buffer tank (9) when it plays its role of guarantor of inertia.
- FIG. figure 2 which illustrates the second variant of the invention which is described
- the same components when they are found there, comprise the same numerical references as in the variant of FIG. figure 1 .
- the major difference between figure 2 and the figure 1 resides in the replacement of the buffer tank (9) of the figure 1 by a decoupling bottle (13) interfacing between the first hydraulic circuit or air / water heat pump (P1) and the second hydraulic circuit or internal water / water heat pump (P2).
- This variant also meets the needs for interfacing between the two cascading heat pumps as identified to be functions performed by the connecting element, one of the differences being that the flow of water in the condenser ( 2) of the first hydraulic circuit (P1) can in this case be different from the flow of water in the evaporator (5) of the second hydraulic circuit (P2), which is not possible in the solution of the figure 1 with a buffer tank (9).
- the water flow rate is constant throughout the intermediate circuit interposed between the two cascade heat pumps, and there is only one circulation pump (10).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
La présente invention s'applique au domaine technique des pompes à chaleur et elle a plus spécifiquement trait à une pompe à chaleur destinée à produire de l'eau à haute température, c'est-à-dire aux alentours de 80°C, y compris pour un fonctionnement à température extérieure de l'ordre de - 15°C.The present invention applies to the technical field of heat pumps and more specifically relates to a heat pump for producing water at high temperature, that is to say around 80 ° C, y included for outdoor temperature operation of - 15 ° C.
La production d'eau chaude par pompe à chaleur répond à un besoin qui s'exprime avec force de nos jours, celui d'utiliser des énergies renouvelables, auxquelles notre avenir semble conditionné et qui sont économiquement intéressantes pour les particuliers. A l'inverse, les énergies traditionnelles notamment à base de combustibles fossiles, outre les nombreux inconvénients qu'elles posent en termes d'environnement, n'ont plus qu'un avenir limité du fait de leur épuisement programmé, et verront probablement de ce fait leur prix s'envoler à mesure de leur raréfaction.The production of hot water by heat pumps responds to a need that is being expressed today, that of using renewable energies, to which our future seems conditioned and which are economically interesting for individuals. Conversely, traditional energies, particularly those based on fossil fuels, in addition to the numerous disadvantages they pose in terms of the environment, have only a limited future because of their programmed exhaustion, and will probably see makes their price soar as they become scarce.
Pour la production d'eau chaude, autant sanitaire que pour des besoins de chauffage, les pompes à chaleur constituent une alternative intéressante tant du point de vue économique que selon une approche environnementale. L'une des questions qui subsistent est liée à leur capacité à produire de l'eau très chaude notamment en vue de les adapter aux systèmes de chauffage actuels, afin qu'elles puissent s'imposer comme une solution de remplacement crédible. Ainsi, à ce jour, beaucoup d'installations de chauffage sont prévues pour fonctionner avec de l'eau à régime et température élevés, pouvant aller jusqu'à 80°C comme mentionné, ce que ne permettent pas la plupart des pompes à chaleur classiques. Sous nos climats, les pompes à chaleur les plus couramment installées à l'appui de systèmes de chauffage sont des pompes air/eau, par conséquent tributaires des températures extérieures, et qui perdent de leur capacité à produire de l'eau à température élevée aux périodes où une telle production est pourtant requise.For hot water production, both for sanitary purposes and for heating purposes, heat pumps are an interesting alternative from both an economic and an environmental point of view. One of the remaining questions is related to their ability to produce very hot water, especially to adapt them to current heating systems, so that they can become a credible alternative. Thus, to date, many heating systems are planned to operate with water at steady state and high temperature, up to 80 ° C as mentioned, which is not allowed by most conventional heat pumps. In our climate, the most common heat pumps installed in support of heating systems are air / water pumps, which are therefore dependent on outside temperatures, and lose their ability to produce hot water at high temperatures. periods when such production is required.
L'objectif assigné à la pompe à chaleur de la présente invention est la production d'eau à haute température même lorsque les conditions extérieures sont sévères en termes de froid. Corrélativement, cette puissance calorifique doit être constante, afin de pouvoir substituer une pompe à chaleur à une chaudière classique.The objective assigned to the heat pump of the present invention is the production of water at high temperature even when the external conditions are severe in terms of cold. Correlatively, this heating power must be constant, in order to be able to substitute a heat pump for a conventional boiler.
Il existe certes déjà des pompes à chaleur à haute température, c'est-à-dire capables de produire de l'eau à la température précitée. Ainsi en est-il des pompes à chaleur qui utilisent un cycle à compression de vapeur mono-étagé, qui permettent en théorie de produire de l'eau à 80°C, mais avec un coefficient de performance qui se dégrade lorsque la température de l'eau augmente, et/ou pour une température d'air extérieur pas trop froide, la puissance calorifique disponible étant fortement tributaire de la température de la source froide. L'un des inconvénients principaux de ce type de pompes à chaleur réside dans la propension de la température de refoulement, au niveau du compresseur, à atteindre rapidement des valeurs élevées, ce qui n'est acceptable ni pour les composants, ni pour l'huile, ni pour le fluide frigorigène.There are indeed already heat pumps at high temperature, that is to say able to produce water at the above temperature. This is the case with heat pumps that use a single-stage vapor compression cycle, which theoretically produces water at 80 ° C, but with a coefficient of performance that degrades when the temperature of water increases, and / or for a not too cold outside air temperature, the heat output available being highly dependent on the temperature of the cold source. One of the main disadvantages of this type of heat pump lies in the propensity of the discharge temperature, at the compressor, to quickly reach high values, which is not acceptable for the components or for the oil, nor for the refrigerant.
Les solutions qui ont été proposées pour résoudre ce problème sont principalement de deux ordres. L'utilisation d'un cycle à injection de vapeur, qui consiste à refroidir les gaz lors de la compression pour permettre au compresseur d'atteindre des pressions plus élevées sans atteindre la température de refoulement maximale, est une possibilité. Le refroidissement des gaz est obtenu par un mélange liquide-vapeur issu de la détente du fluide frigorigène liquide en sortie du condenseur pour l'amener à une pression intermédiaire. Le liquide est refroidi par ce mélange en sortie du condenseur, et se réchauffe jusqu'à devenir vapeur. C'est cette vapeur qui, injectée au compresseur, refroidit les gaz comprimés. Cette technologie permet en pratique d'atteindre des températures de l'ordre de 65°C, par conséquent insuffisantes par rapport aux objectifs fixés auparavant pour l'invention.The solutions that have been proposed to solve this problem are mainly of two kinds. The use of a steam injection cycle, which consists in cooling the gases during compression to allow the compressor to reach higher pressures without reaching the maximum discharge temperature, is a possibility. The cooling of the gases is obtained by a liquid-vapor mixture resulting from the expansion of the liquid refrigerant at the outlet of the condenser to bring it to a steady state. intermediate pressure. The liquid is cooled by this mixture at the outlet of the condenser, and heats up to become vapor. It is this steam which, injected into the compressor, cools the compressed gases. This technology makes it possible in practice to reach temperatures of the order of 65.degree. C., which are therefore insufficient with respect to the objectives previously set for the invention.
Il a également été imaginé d'utiliser des cycles au Co2, matériau qui a la particularité de posséder une température critique de l'ordre de 30°C (pour une pression de l'ordre 74 bars) et un cycle transcritique puisqu'il se situe en partie au-dessus dudit point critique. Le fluide frigorigène est compressé, puis refroidi dans un refroidisseur de gaz dans lequel il entre à une température d'environ 120°C pour une pression de l'ordre de 110 bars. Il est ensuite détendu puis évaporé pour compléter le cycle. Le problème des pompes à chaleur qui obéissent à ce cycle est qu'elles sont plus onéreuses que celles qui sont construites à partir d'autres technologies de pompe à chaleur.It has also been imagined to use Co 2 cycles, a material which has the particularity of having a critical temperature of the order of 30 ° C. (for a pressure of the order of 74 bars) and a transcritical cycle since lies partly above said critical point. The refrigerant is compressed and then cooled in a gas cooler into which it enters a temperature of about 120 ° C for a pressure of about 110 bar. It is then relaxed and evaporated to complete the cycle. The problem with heat pumps that obey this cycle is that they are more expensive than those built from other heat pump technologies.
Une alternative également connue est d'utiliser un cycle dit en cascade, réalisé en pratique par deux circuits hydrauliques implémentant chacun le cycle habituel des pompes à chaleur, et disposés l'un à la suite de l'autre, le premier fonctionnant à des températures plus basses que le second. C'est cette technologie qui a été retenue pour la présente invention.An alternative also known is to use a so-called cascading cycle, realized in practice by two hydraulic circuits each implementing the usual cycle of heat pumps, and arranged one after the other, the first operating at temperatures lower than the second. It is this technology that has been retained for the present invention.
Un exemple de pompe à chaleur selon le préambule de la revendication 1 est montré dans le document
En substance, la pompe à chaleur de l'invention est constituée de deux pompes à chaleur successives constituant deux circuits hydrauliques distincts, la première permettant d'obtenir de l'eau à une température au maximum de l'ordre de 55°C, et la seconde, en cascade avec la première, permettant d'atteindre une température d'au moins 80°C. La première pompe à chaleur étant de type air/eau alors que la seconde est du type eau/eau, le problème résolu par l'invention réside dans la réalisation pratique de leur couplage et/ou plus généralement dans la gestion de leur association, sachant que la pompe à chaleur globale de l'invention doit pouvoir transmettre l'énergie produite par le premier circuit hydraulique au réseau de chauffage lorsque la consigne sur l'eau de chauffage est inférieure à 55°C, alors que l'énergie produite par le premier circuit doit être transmis au second circuit lorsque la consigne sur l'eau de chauffage est supérieure à 55°C. Il doit par ailleurs être possible de fournir de l'énergie au premier circuit hydraulique lors de son cycle de dégivrage, sachant que dans certaines conditions, une couche de glace peut se former entre les ailettes de l'échangeur extérieur des pompes à chaleur air/eau, diminuant ainsi leur efficacité. Pour procéder au dégivrage, le compresseur de la pompe à chaleur doit inverser son cycle pour que l'échangeur à ailettes devienne condenseur et cesse d'être un évaporateur, afin de réchauffer les ailettes et donc de le dégivrer. Lors de cette phase intermédiaire, le condenseur intérieur devient par conséquent évaporateur, ce qui signifie qu'il faut lui apporter l'énergie pour que le dégivrage puisse s'effectuer.In essence, the heat pump of the invention consists of two successive heat pumps constituting two separate hydraulic circuits, the first to obtain water at a maximum temperature of the order of 55 ° C, and the second, in cascade with the first one, making it possible to reach a temperature of at least 80 ° C. The first heat pump being of air / water type while the second is of the water / water type, the problem solved by the invention lies in the practical realization of their coupling and / or more generally in the management of their association, knowing that the global heat pump of the invention must be able to transmit the energy produced by the first hydraulic circuit to the network of heating when the setpoint on the heating water is lower than 55 ° C, while the energy produced by the first circuit must be transmitted to the second circuit when the setpoint on the heating water is greater than 55 ° C. It must also be possible to supply energy to the first hydraulic circuit during its defrosting cycle, knowing that under certain conditions, a layer of ice may form between the fins of the external heat exchanger of the air / heat pumps. water, thus decreasing their effectiveness. To defrost, the compressor of the heat pump must reverse its cycle so that the finned exchanger becomes condenser and ceases to be an evaporator, to heat the fins and defrost it. During this intermediate phase, the internal condenser therefore becomes an evaporator, which means that it must be supplied with energy so that defrosting can take place.
Or, dans l'association de deux pompes à chaleur en cascade, l'utilisation d'un échangeur évapo-condenseur médian répond aux fonctions principales demandées à l'élément de liaison entre les deux circuits hydrauliques associés, mais ne permet pas de fournir l'énergie nécessaire au dégivrage du groupe extérieur ; ni d'assurer l'inertie thermique apte à réaliser en pratique l'interfaçage entre les deux circuits hydrauliques.However, in the combination of two cascade heat pumps, the use of a median evapo-condenser exchanger responds to the main functions required of the connection element between the two associated hydraulic circuits, but does not make it possible to provide energy required for defrosting the outdoor unit; nor to ensure the thermal inertia able to achieve in practice the interfacing between the two hydraulic circuits.
L'invention consiste à titre principal en ce que les deux circuits hydrauliques formés des deux pompes à chaleur en cascade sont reliés par un circuit d'eau intermédiaire comportant un volume d'eau tampon. Concrètement, selon l'invention, le secondaire du condenseur du premier circuit est relié en parallèle au réseau de chauffage et au primaire de l'évaporateur du second circuit dont la sortie est également reliée au réseau de chauffage, une cuve ainsi que des moyens de sélection du réseau de chauffage ou du second circuit étant disposés entre les deux circuits hydrauliques.The invention consists primarily in that the two hydraulic circuits formed of the two cascaded heat pumps are connected by an intermediate water circuit comprising a volume of buffer water. Concretely, according to the invention, the secondary of the condenser of the first circuit is connected in parallel to the heating network and the primary of the evaporator of the second circuit whose output is also connected to the heating network, a tank and means of selecting the heating network or the second circuit being arranged between the two hydraulic circuits.
Ce circuit intermédiaire, et plus particulièrement la cuve qui fait office de volume tampon, sert notamment au stockage de l'énergie requise pour le dégivrage. Il confère également l'inertie souhaitée entre les deux circuits, permettant la compensation des variations de puissance de la première pompe à chaleur, fonctionnant à plus basse température. L'objectif est en réalité d'absorber les éventuelles variations au niveau du groupe extérieur, dans ladite pompe à chaleur constituant le premier circuit hydraulique. Il offre de plus la possibilité d'utiliser seulement le « premier étage », c'est-à-dire le premier circuit hydraulique, pour chauffer l'eau et la fournir au réseau de chauffage, ce qui n'est pas possible sans l'existence de ce circuit intermédiaire.This intermediate circuit, and more particularly the tank which acts as a buffer volume, serves in particular to store the energy required for deicing. It also confers the desired inertia between the two circuits, allowing the compensation of the power variations of the first heat pump, operating at a lower temperature. The objective is in fact to absorb any variations in the outer group in said heat pump constituting the first hydraulic circuit. It also offers the possibility of using only the "first stage", ie the first hydraulic circuit, to heat the water and supply it to the heating network, which is not possible without the existence of this intermediate circuit.
Selon une possibilité, les moyens de sélection peuvent consister en une vanne trois voies placée à l'un des embranchements des dérivations parallèles vers le primaire de l'évaporateur du second circuit et le réseau de chauffage.According to one possibility, the selection means may consist of a three-way valve placed at one of the branches of the parallel branches to the primary of the evaporator of the second circuit and the heating network.
Cette vanne trois voies contrôle en pratique une possibilité de dérivation directe vers le réseau de chauffage, sans recourir à la totalité des moyens du système. Elle permet en effet de répondre à une des contraintes fixées initialement, à savoir la possibilité pour la pompe à chaleur de l'invention d'alimenter le circuit de chauffage directement en sortie du premier circuit hydraulique, si la température de 55°C produite en sortie de ce dernier est considérée comme suffisante pour répondre à la consigne.This three-way valve in practice controls a possibility of direct derivation to the heating network, without resorting to the totality of the means of the system. It makes it possible to meet one of the constraints initially set, namely the possibility for the heat pump of the invention to supply the heating circuit directly at the outlet of the first hydraulic circuit, if the temperature of 55 ° C. produced in output of the latter is considered sufficient to meet the instructions.
Selon une première variante possible, la cuve du circuit intermédiaire peut consister en une cuve formant ballon tampon, qui est placée entre la sortie du primaire de l'évaporateur du second circuit et l'entrée du secondaire du condenseur du premier circuit. Dans cette hypothèse, le ballon utilisé peut être un simple ballon tampon tel que classiquement commercialisé.According to a first possible variant, the tank of the intermediate circuit may consist of a tank forming a buffer tank, which is placed between the outlet of the primary of the evaporator of the second circuit and the inlet of the secondary of the condenser of the first circuit. In this case, the balloon used may be a simple buffer tank as conventionally marketed.
L'invention comporte également une seconde variante, dans laquelle la cuve consiste en une bouteille de découplage implantée entre le secondaire du condenseur du premier circuit hydraulique et le primaire de l'évaporateur du second circuit hydraulique. Dans une telle solution, le débit d'eau dans le condenseur du premier circuit peut être différent de celui de l'évaporateur du second circuit, ce qui n'est pas le cas dans la solution utilisée dans la variante précédente.The invention also comprises a second variant, in which the tank consists of a decoupling bottle implanted between the secondary of the condenser of the first hydraulic circuit and the primary of the evaporator of the second hydraulic circuit. In such a solution, the flow rate of water in the condenser of the first circuit may be different from that of the evaporator of the second circuit, which is not the case in the solution used in the previous variant.
De préférence, dans les deux variantes, au moins une pompe de recirculation peut être disposée entre les deux circuits hydrauliques, par exemple interposée entre la cuve et l'entrée du secondaire du condenseur du premier circuit.Preferably, in both variants, at least one recirculation pump can be arranged between the two hydraulic circuits, for example interposed between the tank and the secondary inlet of the condenser of the first circuit.
Selon une possibilité additionnelle, une autre pompe de circulation peut être placée entre la sortie du secondaire du condenseur du second circuit et le réseau de chauffage.According to an additional possibility, another circulation pump can be placed between the secondary outlet of the condenser of the second circuit and the heating network.
Pour assurer au mieux la circulation correcte de l'eau, une pompe de circulation peut enfin également être placée entre la sortie du primaire de l'évaporateur du second circuit et la bouteille de découplage, dans la variante qui est basée sur la bouteille de découplage.To best ensure the correct circulation of water, a circulation pump can finally also be placed between the primary outlet of the evaporator of the second circuit and the decoupling bottle, in the variant which is based on the decoupling bottle. .
L'invention va à présent être décrite au moyen des figures disposées en annexe, pour lesquelles :
- la
figure 1 est une représentation schématique de la première variante d'une pompe à chaleur à haute température selon la présente invention, dans sa version à ballon tampon interfaçant la première pompe à chaleur ou premier circuit hydraulique et la seconde pompe à chaleur ou second circuit hydraulique ; et - la
figure 2 est une représentation schématique d'une seconde version comportant un circuit hydraulique intermédiaire basé sur une bouteille de découplage.
- the
figure 1 is a schematic representation of the first variant of a high temperature heat pump according to the present invention, in its buffer version interfacing the first heat pump or first hydraulic circuit and the second heat pump or second hydraulic circuit; and - the
figure 2 is a schematic representation of a second version comprising an intermediate hydraulic circuit based on a decoupling bottle.
En référence à la
Le circuit intermédiaire de la version apparaissant en
Une vanne trois voies (11) permet de raccorder directement ledit réseau du chauffage à la sortie du secondaire du condenseur (2) du premier circuit hydraulique (P1), si la température de l'eau d'alimentation du réseau de chauffage ne doit pas être supérieure à 55°C. A l'inverse, lorsque le besoin en température de l'eau alimentant ledit réseau de chauffage est supérieur, la vanne trois voies (11) raccorde la sortie du secondaire du condenseur (2) au circuit disposé en parallèle, et plus précisément à l'entrée du primaire de l'évaporateur (5) du second circuit de chauffage (P2), pour ajouter un étage de chauffage permettant de produire in fine de l'eau à température correcte par rapport à la consigne de chauffage. Cette vanne trois voies (11) pourrait cependant aussi être disposée à l'autre embranchement desdits circuits parallèles, en amont de la cuve (9).A three-way valve (11) makes it possible to directly connect said heating network to the secondary outlet of the condenser (2) of the first hydraulic circuit (P1), if the temperature of the supply water of the heating network does not have to be greater than 55 ° C. Conversely, when the temperature requirement of the water supplying the heating network is greater, the three-way valve (11) connects the secondary outlet of the condenser (2) to the circuit arranged in parallel, and more specifically to the input of the evaporator primary (5) of the second heating circuit (P2) to add a heating stage for ultimately producing water at the correct temperature with respect to the heating set point. This three-way valve (11) could however also be arranged at the other branch of said parallel circuits, upstream of the tank (9).
Une pompe de circulation (12) est prévue en amont du réseau de chauffage, et en sortie du secondaire du condenseur (6) du second circuit hydraulique (P2). La fonction du circuit d'eau intermédiaire constitué à titre principal du ballon tampon (9) est d'apporter l'inertie thermique souhaitée entre les deux circuits, afin d'absorber les éventuelles variations au niveau de la pompe à chaleur air/eau (P1), formant en l'occurrence le circuit hydraulique soumis aux variations de la température extérieure.A circulation pump (12) is provided upstream of the heating network and at the secondary outlet of the condenser (6) of the second hydraulic circuit (P2). The function of the intermediate water circuit consisting mainly of the buffer tank (9) is to provide the desired thermal inertia between the two circuits, in order to absorb any variations in the air / water heat pump ( P1), forming in this case the hydraulic circuit subjected to variations of the outside temperature.
Ce circuit intermédiaire permet également, comme mentionné auparavant, de fournir de l'énergie au premier circuit hydraulique (P1) lors de son cycle de dégivrage, au cours duquel le cycle de fonctionnement est inversé : le condenseur (2) devient évaporateur alors que l'évaporateur (1) devient condenseur de manière à réchauffer les ailettes de l'échangeur qui le constitue en pratique. Les températures en sortie du primaire de l'évaporateur (5) et en entrée du secondaire du condenseur (2) du premier circuit hydraulique (P1) sont sensiblement égales à la température de l'eau qui est contenue dans le ballon tampon (9), lorsque celui-ci joue son rôle de garant de l'inertie.This intermediate circuit also makes it possible, as previously mentioned, to supply energy to the first hydraulic circuit (P1) during its defrosting cycle, during which the operating cycle is reversed: the condenser (2) becomes an evaporator while the evaporator (1) becomes a condenser so as to heat the fins of the exchanger which constitutes it in practice. The temperatures at the outlet of the primary of the evaporator (5) and at the inlet of the secondary of the condenser (2) of the first hydraulic circuit (P1) are substantially equal to the temperature of the water which is contained in the buffer tank (9) when it plays its role of guarantor of inertia.
En référence à la
Cette variante répond également aux besoins d'interfaçages entre les deux pompes à chaleur en cascade tels qu'identifiés comme devant être des fonctions assurées par l'élément de liaison, l'une des différences étant que le débit d'eau dans le condenseur (2) du premier circuit hydraulique (P1) peut dans ce cas être différent du débit d'eau dans l'évaporateur (5) du second circuit hydraulique (P2), ce qui n'est pas possible dans la solution de la
La description ci-dessus reflète les exemples illustrés aux
Claims (5)
- A heat pump intended to supply hot water to a heating grid and including two heat pumps making up two hydraulic circuits (P1, P2) coupled in a cascade, a first hydraulic circuit for the lower temperatures and a second hydraulic circuit for the higher temperatures, each including an evaporator (1, 5) and a condenser (2, 6) separated on the one hand by a compressor (3, 7) located between the outlet of the secondary of the evaporator (1, 5) and the inlet of the primary of the condenser (2, 6) and on the other hand by an expander (4, 8) placed between the outlet of the primary of the condenser (2, 6) and the inlet of the secondary of the evaporator (1, 5), the secondary of the condenser (2) of the first circuit (P1) being connected in parallel to the heating grid and to the primary of the evaporator (5) of the second circuit (P2), the outlet of which is also connected to the heating grid, selection means (11) of the heating grid or the second circuit (P2) being arranged between the two hydraulic circuits (P1, P2), characterized in that said tank consists either of a buffer store (9) placed between the outlet of the primary of the evaporator (5) of the second circuit (P2) and the inlet of the secondary of the condenser (2) of the first circuit (P1), or in a decoupling canister (13) installed between the secondary of the condenser (2) of the first circuit (P1) and the primary of the evaporator (5) of the second circuit (P2).
- The heat pump with two hydraulic circuits (P1, P2) coupled in a cascade according to the preceding claim, characterized in that the selection means consist of a three-way valve (11) placed at one of the branches of the parallel bypasses toward the primary of the evaporator (5) of the second circuit (P2) and the heating grid.
- The heat pump with two hydraulic circuits (P1, P2) coupled in a cascade according to one of the preceding claims, characterized in that at least one recirculation pump (10) is arranged between the two hydraulic circuits (P1, P2), for example interposed between the tank (9, 13) and the inlet of the secondary of the condenser (2) of the first circuit (P1).
- The heat pump with two hydraulic circuits (P1, P2) coupled in a cascade according to one of the preceding claims, characterized in that a recirculation pump (12) is placed between the outlet of the secondary of the condenser (6) of the second circuit (P2) and the heating grid.
- The heat pump with two hydraulic circuits (P1, P2) coupled in a cascade according to one of the preceding claims, characterized in that a recirculation pump (14) is placed between the outlet of the primary of the evaporator (5) of the second circuit (P2) and the decoupling canister (13).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13306044.2A EP2827068B1 (en) | 2013-07-19 | 2013-07-19 | Cascading heat pump |
ES13306044T ES2754074T3 (en) | 2013-07-19 | 2013-07-19 | Cascade heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13306044.2A EP2827068B1 (en) | 2013-07-19 | 2013-07-19 | Cascading heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2827068A1 EP2827068A1 (en) | 2015-01-21 |
EP2827068B1 true EP2827068B1 (en) | 2019-08-28 |
Family
ID=48874232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13306044.2A Active EP2827068B1 (en) | 2013-07-19 | 2013-07-19 | Cascading heat pump |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2827068B1 (en) |
ES (1) | ES2754074T3 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3047301A1 (en) * | 2016-01-29 | 2017-08-04 | Stephane Boulet | DEVICE FOR OPTIMIZING THE PERFORMANCE OF A HEAT PUMP HEATING FACILITY BY ADDING AN AUXILIARY HEAT PUMP THAT CAPTURES THERMAL ENERGY IN A RECHARGEABLE MEDIUM |
WO2017195275A1 (en) * | 2016-05-10 | 2017-11-16 | 三菱電機株式会社 | Heat pump system |
FR3052541B1 (en) * | 2016-06-10 | 2018-06-29 | Soc Ind De Chauffage Sic | HEATING SYSTEM WITH INTEGRATED HYDRAULIC SHIELD |
CN111056582B (en) * | 2020-01-08 | 2024-09-20 | 浙江工业大学 | Double-effect air heat dissipation cascade heat pump sea water desalting device |
DE102021214258A1 (en) | 2021-12-13 | 2023-06-15 | Volkswagen Aktiengesellschaft | Heat pump cascade and method for heating or cooling a coolant using a heat pump cascade |
DE102022132793A1 (en) | 2022-12-09 | 2024-06-20 | Viessmann Climate Solutions Se | Procedure for operating a heating system and heating system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120136889A (en) * | 2011-06-10 | 2012-12-20 | 삼성전자주식회사 | Heat pump boiler and heat pump boiler control method |
-
2013
- 2013-07-19 ES ES13306044T patent/ES2754074T3/en active Active
- 2013-07-19 EP EP13306044.2A patent/EP2827068B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2827068A1 (en) | 2015-01-21 |
ES2754074T3 (en) | 2020-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2827068B1 (en) | Cascading heat pump | |
FR2520095A1 (en) | HEAT PUMP SYSTEM AND METHOD FOR SELECTIVELY HEATING WATER AND HEATING OR COOLING AIR | |
WO2021240111A1 (en) | Installation for heating a cryogenic fuel | |
FR3014182A1 (en) | ADVANCED SYSTEM FOR ENERGY STORAGE BY COMPRESSED AIR | |
WO2008003841A1 (en) | Air conditioning system operating on a supercritical cycle for use in motor vehicles | |
WO2012101342A1 (en) | Heating/air conditioning unit including an external heat exchanger and an external subcooler in order to increase the heating and cooling capacities | |
FR2659727A1 (en) | Geothermal installation for supplying heat and water | |
EP3521590B1 (en) | System for cooling engine air with two cooling stages and comprising at least one cylindrical heat exchanger | |
FR2937411A1 (en) | HEAT PUMP. | |
EP3458783A1 (en) | Refrigerant circuit designed for thermal control of an energy source | |
FR2915520A1 (en) | Engine e.g. jet engine, assembly arrangement for aircraft, has heat pipe arranging evaporation end mounted on rectifier stage, and condensation end mounted on nacelle wall that radially determines annular fresh air flow channel | |
WO2002039033A1 (en) | Reversible system for recuperating heat energy | |
EP2251221A1 (en) | Heating, ventilating and/or air conditioning device comprising four heat exchangers | |
FR2978816A1 (en) | INSTALLATION AND METHOD FOR OPTIMIZING THE OPERATION OF A HEAT PUMP INSTALLATION | |
WO2011055045A1 (en) | System for vaporizing a cryogenic fluid using central exchangers | |
FR2934890A1 (en) | Thermodynamic heat pump installation for heating room, has secondary compressor in which secondary heat transfer fluid is reheated by compression before ceding fluid by condensing calories of secondary fluid accumulated by compression | |
FR2915519A1 (en) | Engine assembly part for aircraft, has cooling system with heat pipe with evaporation end mounted on hot portion e.g. valve, to be cooled and condensation end mounted on front end of casing of part, where system cools hot portion | |
FR3079919A1 (en) | REVERSIBLE AIR CONDITIONING DEVICE FOR MOTOR VEHICLE AND MOTOR VEHICLE COMPRISING SUCH A DEVICE. | |
FR2909440A1 (en) | Heat pump installation for e.g. hot water distribution, in building, has pumping unit to circulate exterior fluid in exchanging system along determined direction such that fluid passes via zones for being cooled and heated, respectively | |
FR2994730A1 (en) | HYBRID SYSTEM FOR THE PRODUCTION OF HOT WATER WITH HEAT PUMP AND BOILER. | |
FR3001794B1 (en) | ACTIVE SUB-COOLER FOR AIR CONDITIONING SYSTEM | |
WO2022022920A1 (en) | Facility and method for refrigerating a fluid | |
FR2937410A1 (en) | Heat pump for transporting e.g. refrigerant, in e.g. building, has compressor protection kit collecting excess energy to protect movement setting unit, with temperature of fluid at suction compatible with characteristics of compressor | |
FR3051547B1 (en) | SYSTEM AND METHOD FOR AIR CONDITIONING FOR A COMPARTMENT, IN PARTICULAR A MOTOR VEHICLE HABITACLE | |
EP3907453A1 (en) | Cooling device for installation for liquefying gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20130719 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150721 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180209 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25B 25/00 20060101ALI20181107BHEP Ipc: F25B 7/00 20060101ALI20181107BHEP Ipc: F24D 11/02 20060101AFI20181107BHEP Ipc: F25B 30/02 20060101ALI20181107BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181214 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20190430 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTG | Intention to grant announced |
Effective date: 20190625 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1172880 Country of ref document: AT Kind code of ref document: T Effective date: 20190915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013059683 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191230 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191128 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191128 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191129 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191228 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1172880 Country of ref document: AT Kind code of ref document: T Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2754074 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013059683 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20200922 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20210819 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20210819 Year of fee payment: 9 Ref country code: MC Payment date: 20210812 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20210819 Year of fee payment: 9 Ref country code: BE Payment date: 20210819 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20221004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220801 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220719 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220719 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240719 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240725 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240719 Year of fee payment: 12 |