[go: up one dir, main page]

EP2813480A1 - Cement system, comprising accelerator particles coated with cross-linked shellac - Google Patents

Cement system, comprising accelerator particles coated with cross-linked shellac Download PDF

Info

Publication number
EP2813480A1
EP2813480A1 EP13171949.4A EP13171949A EP2813480A1 EP 2813480 A1 EP2813480 A1 EP 2813480A1 EP 13171949 A EP13171949 A EP 13171949A EP 2813480 A1 EP2813480 A1 EP 2813480A1
Authority
EP
European Patent Office
Prior art keywords
shellac
accelerator
cementitious system
cementitious
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13171949.4A
Other languages
German (de)
French (fr)
Inventor
Wolfgang Seidl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Construction Research and Technology GmbH
Original Assignee
Construction Research and Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Construction Research and Technology GmbH filed Critical Construction Research and Technology GmbH
Priority to EP13171949.4A priority Critical patent/EP2813480A1/en
Priority to ES14725453T priority patent/ES2802258T3/en
Priority to PCT/EP2014/060406 priority patent/WO2014198505A1/en
Priority to BR112015031159-8A priority patent/BR112015031159B1/en
Priority to US14/893,194 priority patent/US9428419B2/en
Priority to MX2015017008A priority patent/MX2015017008A/en
Priority to CA2914239A priority patent/CA2914239C/en
Priority to AU2014280481A priority patent/AU2014280481B2/en
Priority to JP2016518894A priority patent/JP6448630B2/en
Priority to CN201480033786.5A priority patent/CN105308000B/en
Priority to EP14725453.6A priority patent/EP3008030B1/en
Publication of EP2813480A1 publication Critical patent/EP2813480A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/34Natural resins, e.g. rosin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/104Natural resins, e.g. tall oil
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/12Multiple coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/147Alkali-metal sulfates; Ammonium sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0062Cross-linked polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/14Hardening accelerators

Definitions

  • the present invention relates to a cementitious system comprising crosslinked shellac-coated accelerator particles, the use of an additive component containing the crosslinked shellac-coated accelerator particles, and a cement slurry comprising the cementitious system and water.
  • the processing profile of a cementitious system is of central importance in the application because it significantly influences the process of processing and the construction progress.
  • accelerators are, for example, calcium chloride, calcium formate or aluminum sulfate ( P. Hewlett, Lea's Chemistry of Cement and Concrete, Chapter 15.6, 4th edition, 1988, Elsevier , or Cheung et al., Cement and Concrete Research 41, 2011, 1289-1309 ).
  • the addition of accelerators may, depending on the effectiveness and dosage, reduce the processing time of a cementitious system to the point that it can no longer be processed because the accelerator becomes active immediately after addition of the mixing water. For this reason, some accelerators, such as sodium metaaluminate (NaAlO 2 ), are virtually unavailable in cementitious systems because they cause too much stiffening.
  • accelerators have been encapsulated for various applications.
  • a separate, external triggering event is necessary for the release of the accelerator, for example a temperature change ( JP2002284555A1 . US6840318B2 . GB1579356 . US7896068B2 ), Ultrasound ( US8047282B2 ) or a pH change ( RU2307145C ).
  • a temperature change JP2002284555A1 . US6840318B2 . GB1579356 . US7896068B2
  • Ultrasound US8047282B2
  • RU2307145C a pH change
  • an internal trigger is needed, which is indeed activated by mixing with water, but only after a certain time releases the accelerator.
  • the release time should be able to be controllably changed within certain limits in order to adapt them for different applications.
  • a suitable internal triggering mechanism is the build-up of osmotic pressure within a coated particle which, after some time, causes the coating to rupture due to swelling in the core, thereby providing rapid drug release.
  • some such systems are known, such as from Ghosh, T., et al., Journal of Applied Pharmaceutical Science, 1, 2011, p. 38-49 or B. Amsden, J. Pharm. Pharmaceut. Sci., 10, 2007, pp. 129-143
  • this concept can not be transferred to a cementitious system with pH values of 12 to 13, because the functionality of such coatings no longer exists under these conditions.
  • PCT / EP2012 / 073339 describes coated particles of a controlled release active ingredient at pH values of 10-14 in which the active ingredient is selected from one or more building chemical additives for influencing an inorganic binder, characterized in that the coating of the particles includes shellac.
  • the coating of the particles includes shellac.
  • PCT / EP2012 / 073339 describe no cementitious systems comprising such cross-linked shellac-coated accelerator particles.
  • An accelerator should be modified so that, when present in a cementitious system, a long processing time in combination with accelerated stiffening / hardening is achieved.
  • suitable cementitious systems should be provided to solve this problem.
  • the above object has been achieved with the features of the independent claims.
  • the dependent claims relate to preferred embodiments.
  • the above-mentioned object was achieved according to the invention by first converting an accelerator into particles and then applying a coating of shellac, which was subsequently cross-linked. These cross-linked shellac coated accelerator particles are then used as part of a cementitious system.
  • a first aspect of the present invention accordingly relates to a cementitious system comprising cross-linked shellac coated accelerator particles.
  • Shellac is a natural substance that is extracted from the excrement of the lacustrine louse ("kerria lacca") by various cleaning processes. From a chemical point of view, shellac is an oligomeric ester composed of about 8 monomeric units and one end of the oligomer carries a free carboxylic acid group. One half of the monomers consists of 9, 10, 16-trihydroxypalmitic acid, which is also referred to as "aleuritic acid”. The other half is composed of different terpene acids, which can carry more different chemical groups. The content of free carboxyl groups in shellac is defined by the so-called “acid number", which corresponds to that amount of potassium hydroxide necessary to neutralize one gram of shellac.
  • Shellac is rendered water-soluble by deprotonation of the carboxylic acid, so that it can be obtained as an ammoniacal aqueous solution with a solids content of about 25%, for example from Harke Group, Mühlheim an der Ruhr, under the name "Aquagold®".
  • the same type shellac in powder form for example, at the company. Stroever, Bremen, with the type designation "SSB 57" and dissolved with stirring and gentle heating in ammoniacal solution.
  • the physical transformation of the accelerator into round and smooth particles is the basis for a high-quality coating with a uniform layer thickness and a homogeneous reaction behavior. If the accelerator particles have corners, edges or holes after forming, no uniform coating thickness can be achieved in the subsequent coating process, which in consequence can lead to an inhomogeneous release of the accelerator.
  • Coating the accelerator particles with cross-linked shellac causes them to rupture under the alkaline conditions of the cementitious system by building up osmotic pressure within the particles after a certain time and releasing the accelerator. Due to the coating, no accelerator is released for a certain time after mixing the cementitious system with water, so that the processing properties are initially unaffected. In addition, partial release of the accelerator during osmotic pressure buildup after release causes rapid reaction with the surrounding cementitious matrix.
  • the advantages achieved with the present invention thus consist in particular in that the processing properties of a cementitious system are not adversely affected at first by the use of crosslinked shellac-coated accelerator particles, but in the further course achieved by release of the accelerator rapid stiffening / solidification becomes.
  • the stiffening / solidification of a cementitious system can be deliberately changed, resulting in the formulation of cementitious systems further scope.
  • Another advantage is that the release is triggered by an internal mechanism, whereby the cementitious system according to the invention as a conventional cementitious system can be applied without the need for additional external triggers.
  • the cementitious system expediently comprises an inorganic binder selected from Portland cement, high-alumina cement, calcium sulfoaluminate cement, Portland composite cement according to classes CEM II to V, hydraulic binders, latently hydraulic binders, pozzolanic binders, alkalactivatable aluminosilicate binders and gypsum, and mixtures thereof.
  • an inorganic binder selected from Portland cement, high-alumina cement, calcium sulfoaluminate cement, Portland composite cement according to classes CEM II to V, hydraulic binders, latently hydraulic binders, pozzolanic binders, alkalactivatable aluminosilicate binders and gypsum, and mixtures thereof.
  • Portland cement is probably the best-known hydraulic binder. It was first mentioned in British Patent BP 5022 and has been under constant development ever since. Modern Portland cement contains about 70 wt .-% CaO + MgO, about 20 wt .-% SiO 2 and about 10 wt .-% Al 2 O 3 + Fe 2 O 3 .
  • cements based on Portland cement and various accompanying substances whose composition is regulated in DIN EN 197-1, Table 1 and which are divided into the cement classes CEM II Portland Composite cement, CEM III blastfurnace cement, CEM IV pozzolan cement and CEM V composite cement V.
  • CEM II Portland Composite cement CEM III blastfurnace cement
  • CEM IV pozzolan cement CEM V composite cement V.
  • blast furnace slag, fly ash, pozzolan, trass, silica fume, limestone and others are used.
  • These cements have in common that they have a basic environment by the proportion of Portland cement after mixing with water.
  • hydraulic binders are those inorganic binders that cure even under water.
  • latent hydraulic binders may be selected from slags, particularly blast furnace slag, blastfurnace slag, granulated blastfurnace, electrothermal phosphor slag, stainless steel slag, and mixtures thereof.
  • slags can be both industrial slags, ie waste products from industrial processes, as well as synthetically trailing slags. The latter is advantageous because industrial slags are not always available in consistent quantity and quality.
  • a latent hydraulic binder is to be understood as meaning preferably an inorganic binder in which the molar ratio of (CaO + MgO): SiO 2 is between 0.8 and 2.5, and particularly preferably between 1.0 and 2, 0 is.
  • Blast furnace slag is a waste product of the blast furnace process.
  • Slag sand is granulated blast furnace slag and blastfurnace slag of finely powdered blastfurnace slag.
  • the blastfurnace flour varies depending on the origin and preparation in its fineness and particle size distribution, the fineness has an influence on the reactivity.
  • Blainewert is typically in the order of 200 to 1000, preferably between 300 and 500 m 2 kg -1 . The finer the grinding, the higher the reactivity.
  • the typical composition of the blast furnace slag has already been mentioned at the beginning.
  • Blast furnace slag generally has 30 to 45 wt .-% CaO, about 4 to 17 wt .-% MgO, about 30 to 45 wt .-% SiO 2 and about 5 to 15 wt .-% Al 2 O 3 typically about 40% by weight CaO, about 10% by weight MgO, about 35% by weight SiO 2 and about 12% by weight Al 2 O 3 .
  • Electro-thermal phosphor slag is a waste product of electrothermal phosphor production. It is less reactive than blast furnace slag and contains about 45 to 50 wt .-% CaO, about 0.5 to 3 wt .-% MgO, about 38 to 43 wt .-% SiO 2 , about 2 to 5 wt .-% Al 2 O 3 and about 0.2 to 3 wt .-% Fe 2 O 3 and fluoride and phosphate.
  • Stainless steel slag is a waste product of various steelmaking processes of widely varying composition (see Caijun Shi, Pavel V. Krivenko, Della Roy, Alkali-Activated Cements and Concretes, Taylor & Francis, London & New York, 2006, pp. 42-51 ).
  • Inorganic binder systems based on reactive water-insoluble compounds based on SiO 2 in combination with Al 2 O 3 , which cure in an aqueous alkaline medium, are also generally known. Such cured binder systems are also referred to as "alkali-activated aluminosilicate binder" or “geopolymers” and are, for example, in US 4,349,386 . WO 85/03699 and US 4,472,199 described.
  • so-called pozzolanic binders such as, for example, metakaolin, fly ash, activated clay or mixtures thereof can be used as the reactive oxide mixture.
  • the alkaline medium for activation of the binder usually consists of aqueous solutions of alkali metal carbonates, alkali fluorides, alkali metal hydroxides and / or soluble water glass.
  • EP2504296 A1 describes systems in which the binder cures in the form of a hybrid matrix in which a calcium silicate hydrate matrix and a geopolymer matrix are in appropriate proportion and interpenetrate so that the overall matrix is both acid resistant and alkali resistant.
  • the pozzolanic binder is selected, for example, from amorphous silica, preferably precipitated silica, fumed silica and microsilica, glass flour, fly ash, preferably lignite fly ash and coal fly ash, metakaolin, natural pozzolans such as tuff, trass and volcanic ash, natural and synthetic zeolites, and mixtures thereof.
  • amorphous silica preferably precipitated silica, fumed silica and microsilica
  • glass flour fly ash, preferably lignite fly ash and coal fly ash, metakaolin, natural pozzolans such as tuff, trass and volcanic ash, natural and synthetic zeolites, and mixtures thereof.
  • fly ash preferably lignite fly ash and coal fly ash
  • metakaolin natural pozzolans
  • suitable pozzolanic binder is found for example Caijun Shi, Pavel V. Krivenko, Della Roy, Alkali-Activated Cements and Concretes, Taylor & Francis
  • the amorphous silica is preferably an X-ray amorphous silica, ie a silica which does not show crystallinity in the powder diffraction process.
  • glass flour is also to be regarded as amorphous silica.
  • the amorphous silica according to the invention expediently has a content of at least 80% by weight, preferably at least 90% by weight, of SiO 2 .
  • Precipitated silica is obtained on a large scale via precipitation processes starting from water glass.
  • Precipitated silica is also called silica gel, depending on the manufacturing process.
  • Pyrogenic silica is produced by reaction of chlorosilanes such as silicon tetrachloride in the oxyhydrogen flame. Pyrogenic silica is an amorphous SiO 2 powder with a particle diameter of 5 to 50 nm and a specific surface area of 50 to 600 m 2 g -1 .
  • Microsilica is a by-product of silicon or ferrosilicon production and also consists largely of amorphous SiO 2 powder.
  • the particles have diameters in the order of 0.1 microns.
  • the specific surface area is on the order of 15 to 30 m 2 g -1 .
  • commercially available quartz sand is crystalline and has comparatively large particles and a comparatively small specific surface area. It serves according to the invention as an inert additive.
  • Fly ashes are caused, among other things, by the burning of coal in power plants.
  • Fly ash class C contains according to WO 08/012438 about 10% by weight of CaO
  • flyashes of class F contain less than 8% by weight, preferably less than 4% by weight and typically about 2% by weight of CaO.
  • Metakaolin is formed during the dehydrogenation of kaolin. While kaolin releases physically bound water at 100 to 200 ° C, dehydroxylation occurs at 500 to 800 ° C with collapse of the lattice structure and formation of metakaolin (Al 2 Si 2 O 7 ). Pure metakaolin accordingly contains about 54% by weight of SiO 2 and about 46% by weight of Al 2 O 3 .
  • gypsum is understood as meaning the modifications CaSO 4 (anhydrite), CaSO 4 .0.5 H 2 O (hemihydrate) and CaSO 4 .2 H 2 O (gypsum).
  • the first two modifications harden when adding water, so they are inorganic binders, while gypsum does not harden. However, it can be used as sulfate source in said inorganic binders.
  • the crosslinked shellac-coated promoter particles may be in the form of a one-part formulation in the cementitious component or from the cementitious component Component be kept separately (so-called "kit of parts”).
  • the Portland cement and / or Portlandkompositzement is present in principle and is useful to more than 3 wt .-%, preferably more than 10 wt .-% and in particular more than 25 wt .-% in the inventive cementitious system.
  • the shellac coating contains preferably more than 50 wt .-% shellac, more preferably more than 80 wt .-% and in particular more than 95 wt .-%.
  • the cementitious system according to the invention is further characterized in that the shellac coating contains up to 10% by weight, preferably up to 5% by weight, of urea, based on the shellac portion.
  • the cementitious system according to the invention is further characterized in that the shellac coating contains suitably 0 to 30 wt .-%, preferably 0 to 15 wt .-% and in particular 0 to 5 wt .-% filler, based on the shellac portion contains ,
  • the said filler is suitably made of natural or precipitated calcium carbonate, amorphous, crystalline or fumed silica, aluminum silicate, e.g. Kaolin or mica, magnesium silicate hydrate, aluminum hydroxide and magnesium hydroxide, and mixtures thereof.
  • the release time of the accelerator generally depends on the degree of crosslinking of the shellac, the shellac coating thickness, the accelerator content, the particle design, and the accelerator itself, and can be adapted to the particular application in the cementitious system.
  • the shellac according to the invention is expediently present in a form crosslinked by thermal treatment, treatment with microwaves, electric plasma, high-energy particles and / or ionizing radiation.
  • the shellac is preferably present in a form crosslinked by thermal treatment of from 1 hour to 7 days, preferably from 1 hour to 2 days, at temperatures of from 80.degree. C. to 140.degree. C., preferably from 100.degree. C. to 120.degree.
  • the inventive cementitious system is characterized in that the accelerator is expediently selected from salts of elements of the main groups 1 to III and mixtures thereof, preferably lithium salts, in particular lithium sulfate, sodium salts and potassium salts, in particular sodium and potassium silicates and water glasses, magnesium salts, Calcium salts, in particular calcium chloride, calcium nitrate, calcium formate, calcium silicate, calcium silicate hydrate and ettringite, and aluminum salts, in particular sodium metaaluminate (NaAlO 2 ) and aluminum sulfate.
  • the accelerator is expediently selected from salts of elements of the main groups 1 to III and mixtures thereof, preferably lithium salts, in particular lithium sulfate, sodium salts and potassium salts, in particular sodium and potassium silicates and water glasses, magnesium salts, Calcium salts, in particular calcium chloride, calcium nitrate, calcium formate, calcium silicate, calcium silicate hydrate and ettringite, and aluminum salts, in particular sodium meta
  • the accelerator particles should have an average particle diameter of 50 to 1000 ⁇ m, preferably 100 to 300 ⁇ m, while the shellac coating of the accelerator particles should have an average thickness of 1 to 80 ⁇ m, preferably 1 to 30 ⁇ m.
  • the cross-linked shellac coated accelerator particles suitably comprise at least two layers in a core / shell structure, the core containing the accelerator and the coating containing the crosslinked shellac.
  • the cementitious system according to the invention is preferably characterized in that the accelerator is applied to a carrier, adsorbed to a carrier, absorbed in a carrier or mixed with a carrier.
  • the carrier in this definition is synonymous with the excipient used to construct the particle nucleus.
  • the carrier may be a particulate porous material, e.g. Diatomaceous earth, porous silica, Circosil, a synthetic product of calcium silicate hydrate, cellulose particles or a zeolitic material.
  • the carrier is, for example, calcium carbonate, talc, or another excipient capable of being formed into a suitable substrate with the accelerator.
  • the cementitious system according to the invention is further characterized in that the accelerator particles additionally preferably contain a diffusion control layer and / or a barrier layer within the shellac coating.
  • the diffusion control layer is preferably methyl cellulose, while the barrier layer is preferably sodium sulfate.
  • the advantage of a diffusion control layer is that it retards the water uptake and thus the time of bursting of the coated accelerator particles due to osmotic pressure.
  • the advantage of a barrier layer such as sodium sulfate is that the possibly aggressive accelerator (such as NaAlO 2 ) is not in direct contact with the chemically sensitive shellac.
  • the proportion of active ingredient can be varied by targeted selection of the structure of the substrate for the accelerator, so that a local overdose of the cementitious system with accelerator can be avoided. Local overdosage should be avoided to avoid secondary adverse reactions through subsequent activation by excess accelerators.
  • the cementitious system according to the invention is further characterized in that the crosslinked shellac-coated accelerator particles, based on the inorganic binder, expedient to 0.1 to 5.0 wt .-%, preferably 0.3 to 3.0 parts by weight. % and in particular 0.5 to 2.0 wt .-% are present.
  • the accelerator particles coated with crosslinked shellac are preferably contained in the form of a one-component formulation in the cementitious component containing the inorganic binder.
  • this is a dry mortar.
  • Portland cement is preferably used as the inorganic binder.
  • the accelerator particles coated with crosslinked shellac may be present in an additive component separately held by the cementitious component containing the inorganic binder.
  • Another object of the present invention is directed to the use of the additive component of the invention for curing the cementitious component containing the inorganic binder.
  • Another object of the present invention is the use of the additive component of the invention as an accelerator for the inventive cementitious system.
  • Another object of the present invention is a cement slurry comprising the cementitious system of the invention and water.
  • This cement slurry expediently has a water / cement value (w / c) of from 0.1 to 1.0, preferably from 0.2 to 0.7 and in particular from 0.3 to 0.6.
  • lithium sulfate particles coated with uncrosslinked shellac in contrast to lithium sulfate particles coated with wax, polyvinyl acetate or water glass, exhibit a step-shaped release characteristic in the alkaline medium.
  • the lithium sulfate release was measured with a conductivity electrode in synthetic pore solution. This was a synthetically prepared alkaline solution with a pH of about 12.5, which was saturated with Ca 2+ and also contained Na + , K + and SO 4 2- and a squeezed pore solution of a Portland cement Water mixture resembled.
  • As the substrate lithium sulfate particles having a particle size of 750 ⁇ m in diameter were used, which had been produced by extrusion and rounding on a turntable.
  • a step-like release characteristic was as before, but the release time was significantly prolonged ( Fig. 2 ), indicating aging of the coating.
  • the aging was a subsequent esterification of the -OH and carboxyl groups in the shellac, ie crosslinking.
  • the crosslinking could be promoted by storage at elevated temperature (100 ° C.) for one or more days, see Fig. 3 .
  • no appreciable aging occurred after the thermal treatment, such as Fig. 4 shows.
  • the shellac coating was carried out too long or at too high a temperature, the coating lost the step-like release characteristics and approached a diffusion-controlled release (FIG. Fig. 5 ).
  • the stiffening was based on DIN EN 1015-9 on the temporal force increase when pressing a circular brass rod with a diameter of 6.175 mm and a penetration depth of 25 mm measured in a cementitious system.
  • the measured weight values were converted into N / mm 2 , the gravitational acceleration being assumed to be 10 m / s 2 .
  • the times when penetrating resistances of 0.5 or 3.5 N / mm 2 were exceeded were extrapolated from the respectively adjacent values and, contrary to DIN EN 1015-9, rounded to 5 min.
  • sodium metaaluminate (53-55% Al 2 O 3 content, finely ground, unstabilized from BK Giulini, Ludwigshafen) with quartz sand (type BCS 412 from Strobel Quarzsande, mean particle size 120 ⁇ m) and Water in an intensive mixer from Eirich converted into a granulate.
  • quartz sand type BCS 412 from Strobel Quarzsande, mean particle size 120 ⁇ m
  • the sodium metaaluminate attracted to the grains of sand and formed largely rounded particles. After drying the granules at 100 ° C was separated by screening oversize and undersize outside the range of 200-300 microns.
  • the prepared granules were then transferred to a fluidized bed coater (type "Unilab” Fa. Bosch / Weglin) and there first with sodium sulfate and then with shellac (type SSB 57, Fa. Ströver GmbH) at a product temperature of about 30-35 ° C. coated.
  • the sodium sulfate solution used had a solids content of 15% by weight.
  • the shellac was dissolved in ammoniacal solution before coating and adjusted to a solids content of 10% by weight.
  • crosslinking of the shellac was accomplished by storage of the accelerator particles at 100 ° C for 24 and 75 hours, respectively.
  • the accelerator particles I and II do not differ.
  • the accelerator particles were mixed with a fine particulate inorganic powder (calcium carbonate) having an average particle size of about 5 microns in equal parts by weight in order to prevent sticking of the particles during storage.
  • the excipient was separated again on a tumbler with a mesh size of ⁇ 150 microns.
  • the structure of the accelerator particles I and II is in Fig. 6 played.
  • the mean grain size of the accelerator particles I and II was about 240 microns.
  • the contents of the coated accelerator particles were about 33 wt .-% quartz sand, 33 wt .-% sodium metaaluminate, 12 wt .-% sodium sulfate (anhydrous), 22 wt .-% shellac (data rounded).
  • the reference system was mixed according to EN 196-1.
  • the experiments and measurements were carried out at 23 ° C and 50% rel. Humidity was carried out and the materials used and the test device was equilibrated for 24 h in this climate. The zero point of the subsequent measurement was the time of mixing the cement with the mixing water.
  • the results are shown in Table 1.
  • the dosage of the accelerator is given in weight percent, based on the weight of the cement.
  • the respective penetration resistance is given in [N / mm 2 ], times are given in minutes.
  • Table 1 Test results of the cementitious system based on DIN EN 1015-9 Dosing of the accelerator Penetration resistance after mixing Time up to a penetration resistance of 0.5 Time up to a penetration resistance of 3.5 ⁇ t between penetration resistance 0.5 and 3.5 0.0% 0.01 140 215 75 0.5% NaAlO 2 0.22 15 85 70 0.5% particles I 0.01 100 180 80 0.5% particles II 0.01 120 190 70 1.0% NaAlO 2 not processable not processable not processable - 1.0% particles I 0.01 55 110 55 1.0% Particles II 0.01 110 165 55
  • the example shows that the accelerator particles I and II compared to the non-coated accelerator according to the invention show a prolonged processing time and an accelerated stiffening / solidification compared to the reference system without accelerator.
  • a higher dosage of the accelerator of 1 wt .-% moreover, a faster stiffening / solidification can be observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Analytical Chemistry (AREA)

Abstract

Vorgeschlagen wird ein zementäres System, welches mit quervernetztem Schellack beschichtete Beschleuniger-Teilchen umfasst, die Verwendung einer Additiv-Komponente, welche die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen enthält, sowie eine Zementschlämme, welche das zementäre System und Wasser umfasst.A cementitious system comprising cross-linked shellac-coated accelerator particles, the use of an additive component containing the crosslinked shellac-coated promoter particles, and a cement slurry comprising the cementitious system and water are proposed.

Description

Die vorliegende Erfindung betrifft ein zementäres System, welches mit quervernetztem Schellack beschichtete Beschleuniger-Teilchen umfasst, die Verwendung einer Additiv-Komponente, welche die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen enthält, sowie eine Zementschlämme, welche das zementäre System und Wasser umfasst.The present invention relates to a cementitious system comprising crosslinked shellac-coated accelerator particles, the use of an additive component containing the crosslinked shellac-coated accelerator particles, and a cement slurry comprising the cementitious system and water.

Das Verarbeitungsprofil eines zementären Systems ist in der Applikation von zentraler Bedeutung, weil es den Ablauf der Verarbeitung und den Baufortschritt maßgeblich beeinflusst.The processing profile of a cementitious system is of central importance in the application because it significantly influences the process of processing and the construction progress.

Die Beschleunigung eines zementären Systems, die das Ansteifen/Erstarren und/oder das Erhärten des Systems betreffen kann, wird nach dem Stand der Technik durch Zugabe verschiedener Beschleuniger als Zusatzmittel erreicht. Häufig verwendete Beschleuniger sind z.B. Calciumchlorid, Calciumformiat oder Aluminiumsulfat ( P. Hewlett, Lea's Chemistry of Cement and Concrete, Chapter 15.6, 4th edition, 1988, Elsevier , oder J. Cheung et al., Cement and Concrete Research 41, 2011, 1289-1309 ). Jedoch kann der Zusatz von Beschleunigern je nach Wirksamkeit und Dosierung die Verarbeitungszeit eines zementären Systems so weit verkürzen, dass dieses nicht mehr verarbeitet werden kann, weil der Beschleuniger sofort nach Zugabe des Anmachwassers aktiv wird. Aus diesem Grund können manche Beschleuniger, so z.B. Natriummetaaluminat (NaAlO2), in zementären Systemen praktisch nicht verwendet werden, weil sie ein viel zu schnelles Ansteifen herbeiführen.The acceleration of a cementitious system, which may involve the stiffening / hardening and / or hardening of the system, is achieved in the prior art by adding different accelerators as additives. Frequently used accelerators are, for example, calcium chloride, calcium formate or aluminum sulfate ( P. Hewlett, Lea's Chemistry of Cement and Concrete, Chapter 15.6, 4th edition, 1988, Elsevier , or Cheung et al., Cement and Concrete Research 41, 2011, 1289-1309 ). However, the addition of accelerators may, depending on the effectiveness and dosage, reduce the processing time of a cementitious system to the point that it can no longer be processed because the accelerator becomes active immediately after addition of the mixing water. For this reason, some accelerators, such as sodium metaaluminate (NaAlO 2 ), are virtually unavailable in cementitious systems because they cause too much stiffening.

Wird kein Beschleuniger eingesetzt, ist in zementären Systemen zwar die Verarbeitungszeit ausreichend lang, das langsame Ansteifen/Erstarren verzögert aber den Baufortschritt. Beide Effekte zusammen, also lange Verarbeitung und schnelles Ansteifen/Erhärten, sind mit gängigen Beschleunigern in zementären Systemen nur schwer zu erreichen, insbesondere dann, wenn wirksame Beschleuniger eingesetzt werden sollen.If no accelerator is used, although the processing time is sufficiently long in cementitious systems, the slow stiffening / solidification delays the construction progress. Both effects together, ie long processing and fast stiffening / hardening, are difficult to achieve with conventional accelerators in cementitious systems, especially when effective accelerators are to be used.

Um in zementären Systemen eine ausreichende Verarbeitungszeit trotz Verwendung eines Beschleunigers zu gewährleisten wurden für verschiedene Anwendungen Beschleuniger verkapselt. Dem Stand der Technik bei verkapselten Beschleunigern gemeinsam ist, dass zur Freisetzung des Beschleunigers ein separates, externes Auslöseereignis notwendig ist, z.B. eine Temperaturänderung ( JP2002284555A1 , US6840318B2 , GB1579356 , US7896068B2 ), Ultraschall ( US8047282B2 ) oder ein pH-Wechsel ( RU2307145C ). Es gibt aber eine Reihe von zementären Systemen, die nach der Applikation nicht mehr von außen beeinflusst werden können und sollen, wie z.B. verschiedene Trockenmörtel.In order to ensure sufficient processing time in cementitious systems despite the use of an accelerator, accelerators have been encapsulated for various applications. Common to the state of the art in encapsulated accelerators is that a separate, external triggering event is necessary for the release of the accelerator, for example a temperature change ( JP2002284555A1 . US6840318B2 . GB1579356 . US7896068B2 ), Ultrasound ( US8047282B2 ) or a pH change ( RU2307145C ). However, there are a number of cementitious systems that can not and should not be influenced externally after application, such as various dry mortars.

Für solche zementären Systeme wird dann ein interner Auslöser benötigt, der zwar durch das Anmischen mit Wasser aktiviert wird, aber erst nach einer gewissen Zeit den Beschleuniger freisetzt. Zusätzlich sollte die Freisetzungszeit innerhalb gewisser Grenzen kontrollierbar verändert werden können, um sie für verschiedene Applikationen anpassen zu können.For such cementitious systems then an internal trigger is needed, which is indeed activated by mixing with water, but only after a certain time releases the accelerator. In addition, the release time should be able to be controllably changed within certain limits in order to adapt them for different applications.

Nach dem Stand der Technik ist ein geeigneter interner Auslösemechanismus der Aufbau von osmotischem Druck innerhalb eines beschichteten Teilchens, der nach einiger Zeit durch das Quellen im Kern zum Aufreißen der Beschichtung führt, wodurch eine rasche Wirkstofffreisetzung gegeben ist. Im pharmazeutischen Bereich sind einige solche Systeme bekannt, wie z.B. aus T. Ghosh et al., Journal of Applied Pharmaceutical Science, 1, 2011, pp. 38-49 oder B. Amsden, J. Pharm. Pharmaceut. Sci., 10, 2007, pp. 129-143 , jedoch kann dieses Konzept nicht auf ein zementäres System mit pH-Werten von 12 bis 13 übertragen werden, weil die Funktionalität derartiger Beschichtungen bei diesen Bedingungen nicht mehr gegeben ist.In the prior art, a suitable internal triggering mechanism is the build-up of osmotic pressure within a coated particle which, after some time, causes the coating to rupture due to swelling in the core, thereby providing rapid drug release. In the pharmaceutical field, some such systems are known, such as from Ghosh, T., et al., Journal of Applied Pharmaceutical Science, 1, 2011, p. 38-49 or B. Amsden, J. Pharm. Pharmaceut. Sci., 10, 2007, pp. 129-143 However, this concept can not be transferred to a cementitious system with pH values of 12 to 13, because the functionality of such coatings no longer exists under these conditions.

In unserer noch unveröffentlichten internationalen Patentanmeldung PCT/EP2012/073339 werden beschichtete Teilchen eines Wirkstoffs mit kontrollierbaren Freisetzungseigenschaften bei pH-Werten von 10-14 beschrieben, bei denen der Wirkstoff aus einem oder mehreren bauchemischen Additiven zur Beeinflussung eines anorganischen Bindemittels ausgewählt ist, die dadurch gekennzeichnet sind, dass die Beschichtung der Teilchen Schellack beinhaltet. Allerdings werden in unserer PCT/EP2012/073339 keine zementären Systeme beschrieben, die solche mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen umfassen.In our still unpublished international patent application PCT / EP2012 / 073339 describes coated particles of a controlled release active ingredient at pH values of 10-14 in which the active ingredient is selected from one or more building chemical additives for influencing an inorganic binder, characterized in that the coating of the particles includes shellac. However, in ours PCT / EP2012 / 073339 describe no cementitious systems comprising such cross-linked shellac-coated accelerator particles.

Die der vorliegenden Erfindung zugrunde liegende Aufgabe bestand darin, die Nachteile des geschilderten Standes der Technik im Wesentlichen zu vermeiden. Es sollte ein Beschleuniger so modifiziert werden, dass bei dessen Vorliegen in einem zementären System eine lange Verarbeitungszeit in Kombination mit beschleunigtem Ansteifen/Erhärten erfüllt wird. Insbesondere sollten zur Lösung dieser Aufgabe geeignete zementäre Systeme zur Verfügung gestellt werden.The object underlying the present invention was to substantially avoid the disadvantages of the described prior art. An accelerator should be modified so that, when present in a cementitious system, a long processing time in combination with accelerated stiffening / hardening is achieved. In particular, suitable cementitious systems should be provided to solve this problem.

Die oben genannte Aufgabe wurde mit den Merkmalen der unabhängigen Ansprüche gelöst. Die abhängigen Ansprüche beziehen sich auf bevorzugte Ausführungsformen. Insbesondere wurde die oben genannte Aufgabe erfindungsgemäß dadurch gelöst, dass zunächst ein Beschleuniger zu Teilchen umgeformt wurde und danach eine Beschichtung aus Schellack aufgebracht wurde, welche anschließend quervernetzt wurde. Diese mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen werden sodann als Bestandteil eines zementären Systems eingesetzt.The above object has been achieved with the features of the independent claims. The dependent claims relate to preferred embodiments. In particular, the above-mentioned object was achieved according to the invention by first converting an accelerator into particles and then applying a coating of shellac, which was subsequently cross-linked. These cross-linked shellac coated accelerator particles are then used as part of a cementitious system.

Ein erster Gegenstand der vorliegenden Erfindung betrifft demgemäß ein zementäres System, umfassend mit quervernetztem Schellack beschichtete Beschleuniger-Teilchen.A first aspect of the present invention accordingly relates to a cementitious system comprising cross-linked shellac coated accelerator particles.

Schellack ist ein Naturstoff, der aus den Ausscheidungen der Lackschildlaus ("kerria lacca") durch verschiedene Reinigungsprozesse gewonnen wird. Aus chemischer Sicht ist Schellack ein oligomerer Ester, der aus ca. 8 monomeren Einheiten aufgebaut ist, und an einem Ende des Oligomers eine freie Carbonsäuregruppe trägt. Eine Hälfte der Monomere besteht aus 9, 10, 16-Trihydroxypalmitinsäure, die auch als "Aleuritinsäure" bezeichnet wird. Die andere Hälfte setzt sich aus verschiedenen Terpensäuren zusammen, die weitere unterschiedliche chemische Gruppen tragen können. Der Gehalt an freien Carboxylgruppen im Schellack wird über die sogenannte "Säurezahl" definiert, die derjenigen Menge an Kaliumhydroxid entspricht, die zur Neutralisation von einem Gramm Schellack notwendig ist. Sie wird in mg Kaliumhydroxid/g Schellack angegeben und liegt bei vielen Schellacken bei ca. 70 mg/g. Durch Deprotonierung der Carbonsäure wird Schellack wasserlöslich, so dass dieser als ammoniakalische wässrige Lösung mit einem Feststoffanteil von ca. 25 %, z.B. bei Harke Group, Mühlheim an der Ruhr, unter der Bezeichnung "Aquagold®" bezogen werden kann. Alternativ kann der gleiche Typ Schellack in Pulverform z.B. bei der Fa. Stroever, Bremen, mit der Typenbezeichnung "SSB 57" bezogen und unter Rühren und leichtem Erwärmen in ammoniakalischer Lösung gelöst werden.Shellac is a natural substance that is extracted from the excrement of the lacustrine louse ("kerria lacca") by various cleaning processes. From a chemical point of view, shellac is an oligomeric ester composed of about 8 monomeric units and one end of the oligomer carries a free carboxylic acid group. One half of the monomers consists of 9, 10, 16-trihydroxypalmitic acid, which is also referred to as "aleuritic acid". The other half is composed of different terpene acids, which can carry more different chemical groups. The content of free carboxyl groups in shellac is defined by the so-called "acid number", which corresponds to that amount of potassium hydroxide necessary to neutralize one gram of shellac. It is given in mg potassium hydroxide / g shellac and is at many shellacs at about 70 mg / g. Shellac is rendered water-soluble by deprotonation of the carboxylic acid, so that it can be obtained as an ammoniacal aqueous solution with a solids content of about 25%, for example from Harke Group, Mühlheim an der Ruhr, under the name "Aquagold®". Alternatively, the same type shellac in powder form, for example, at the company. Stroever, Bremen, with the type designation "SSB 57" and dissolved with stirring and gentle heating in ammoniacal solution.

Die physikalische Umformung des Beschleunigers zu möglichst runden und glatten Teilchen ist die Grundlage für eine qualitativ hochwertige Beschichtung mit gleichmäßiger Schichtdicke und einem homogenen Reaktionsverhalten. Wenn die Beschleuniger-Teilchen nach der Umformung Ecken, Kanten oder Löcher aufweisen, kann im späteren Beschichtungsprozess keine gleichmäßige Beschichtungsdicke erreicht werden, was in Konsequenz zu einer inhomogenen Freisetzung des Beschleunigers führen kann.The physical transformation of the accelerator into round and smooth particles is the basis for a high-quality coating with a uniform layer thickness and a homogeneous reaction behavior. If the accelerator particles have corners, edges or holes after forming, no uniform coating thickness can be achieved in the subsequent coating process, which in consequence can lead to an inhomogeneous release of the accelerator.

Die Beschichtung der Beschleuniger-Teilchen mit quervernetztem Schellack sorgt dafür, dass diese unter den alkalischen Bedingungen des zementären Systems durch den Aufbau von osmotischem Druck im Innern der Teilchen nach einer bestimmten Zeit aufreißen und den Beschleuniger freisetzen. Durch die Beschichtung wird für eine bestimmte Zeit nach dem Anmischen des zementären Systems mit Wasser kein Beschleuniger freigesetzt, so dass die Verarbeitungseigenschaften zunächst nicht beeinflusst werden. Zudem bewirkt das teilweise Auflösen des Beschleunigers während des osmotischen Druckaufbaus nach Freisetzung eine schnelle Reaktion mit der umgebenden zementären Matrix.Coating the accelerator particles with cross-linked shellac causes them to rupture under the alkaline conditions of the cementitious system by building up osmotic pressure within the particles after a certain time and releasing the accelerator. Due to the coating, no accelerator is released for a certain time after mixing the cementitious system with water, so that the processing properties are initially unaffected. In addition, partial release of the accelerator during osmotic pressure buildup after release causes rapid reaction with the surrounding cementitious matrix.

Die mit der vorliegenden Erfindung erzielten Vorteile bestehen also insbesondere darin, dass durch die Verwendung von mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen die Verarbeitungseigenschaften eines zementären Systems zu Beginn nicht negativ beeinflusst werden, im weiteren Verlauf aber durch Freisetzung des Beschleunigers ein rasches Ansteifen/Erstarren erzielt wird. Darüber hinaus kann durch Variation der Freisetzungszeit der beschichteten Beschleuniger-Teilchen das Ansteifen/Erstarren eines zementären Systems gezielt verändert werden, wodurch sich in der Formulierung zementärer Systeme weitere Spielräume ergeben. Ein weiterer Vorteil besteht darin, dass die Freisetzung durch einen internen Mechanismus ausgelöst wird, wodurch das erfindungsgemäße zementäre System wie ein herkömmliches zementäres System appliziert werden kann, ohne dass weitere externe Trigger benötigt werden.The advantages achieved with the present invention thus consist in particular in that the processing properties of a cementitious system are not adversely affected at first by the use of crosslinked shellac-coated accelerator particles, but in the further course achieved by release of the accelerator rapid stiffening / solidification becomes. In addition, by varying the release time of the coated accelerator particles, the stiffening / solidification of a cementitious system can be deliberately changed, resulting in the formulation of cementitious systems further scope. Another advantage is that the release is triggered by an internal mechanism, whereby the cementitious system according to the invention as a conventional cementitious system can be applied without the need for additional external triggers.

Das erfindungsgemäße zementäre System umfasst zweckmäßig ein anorganisches Bindemittel, ausgewählt aus Portlandzement, Tonerdeschmelzzement, Calciumsulfoaluminatzement, Portlandkompositzement nach den Klassen CEM II bis V, hydraulischen Bindemitteln, latent hydraulischen Bindemitteln, puzzolanischen Bindemitteln, alkaliaktivierbaren Alumosilikat-Bindemitteln und Gips, sowie Mischungen davon.The cementitious system according to the invention expediently comprises an inorganic binder selected from Portland cement, high-alumina cement, calcium sulfoaluminate cement, Portland composite cement according to classes CEM II to V, hydraulic binders, latently hydraulic binders, pozzolanic binders, alkalactivatable aluminosilicate binders and gypsum, and mixtures thereof.

Portlandzement ist das wohl bekannteste hydraulische Bindemittel. Er wurde erstmals im Britischen Patent BP 5022 erwähnt und wurde seither ständig weiterentwickelt. Moderner Portlandzement enthält ca. 70 Gew.-% CaO + MgO, ca. 20 Gew.-% SiO2 und ca. 10 Gew.-% Al2O3 + Fe2O3.Portland cement is probably the best-known hydraulic binder. It was first mentioned in British Patent BP 5022 and has been under constant development ever since. Modern Portland cement contains about 70 wt .-% CaO + MgO, about 20 wt .-% SiO 2 and about 10 wt .-% Al 2 O 3 + Fe 2 O 3 .

Daneben gibt es Kompositzemente auf Basis von Portlandzement und verschiedenen Begleitstoffen, deren Zusammensetzung in DIN EN 197-1, Tabelle 1 geregelt ist und die in die Zementklassen CEM II Portlandkompositzement, CEM III Hochofenzement, CEM IV Puzzolanzement und CEM V Kompositzement V eingeteilt werden. Als Begleitstoffe werden unter anderem Hüttensand, Flugasche, Puzzolan, Trass, Silicastaub, Kalkstein und andere eingesetzt. Diesen Zementen gemeinsam ist, dass sie durch den Anteil an Portlandzement nach Anrühren mit Wasser ein basisches Milieu aufweisen.In addition, there are composite cements based on Portland cement and various accompanying substances, whose composition is regulated in DIN EN 197-1, Table 1 and which are divided into the cement classes CEM II Portland Composite cement, CEM III blastfurnace cement, CEM IV pozzolan cement and CEM V composite cement V. As an accompanying material blast furnace slag, fly ash, pozzolan, trass, silica fume, limestone and others are used. These cements have in common that they have a basic environment by the proportion of Portland cement after mixing with water.

Bestimmte Schlacken aus metallurgischen Verfahren können als Zumischungen in sogenannten Portlandkompositzementen, die ebenfalls zu den hydraulischen Bindemitteln zählen, verwendet werden. Ganz allgemein sind hydraulische Bindemittel solche anorganischen Bindemittel, die selbst unter Wasser noch aushärten.Certain slags from metallurgical processes can be used as admixtures in so-called Portland Kompositzementen, which are also among the hydraulic binders. More generally, hydraulic binders are those inorganic binders that cure even under water.

Latent hydraulische Bindemittel können beispielsweise aus Schlacken, insbesondere aus Hochofenschlacke, Hüttensand, Hüttensandmehl, elektrothermischer Phosphorschlacke, Edelstahlschlacke, sowie Mischungen davon ausgewählt werden. Bei diesen Schlacken kann es sich sowohl um industrielle Schlacken, d.h. Abfallprodukte aus industriellen Prozessen, als auch um synthetisch nachgestellte Schlacken handeln. Letzteres ist vorteilhaft, da industrielle Schlacken nicht immer in gleichbleibender Menge und Qualität verfügbar sind. Im Sinne der vorliegenden Erfindung soll unter einem latent hydraulischen Bindemittel vorzugsweise ein anorganisches Bindemittel verstanden werden, bei dem das molare Verhältnis von (CaO + MgO): SiO2 zwischen 0,8 und 2,5 und besonders bevorzugt zwischen 1,0 und 2,0 liegt.For example, latent hydraulic binders may be selected from slags, particularly blast furnace slag, blastfurnace slag, granulated blastfurnace, electrothermal phosphor slag, stainless steel slag, and mixtures thereof. These slags can be both industrial slags, ie waste products from industrial processes, as well as synthetically trailing slags. The latter is advantageous because industrial slags are not always available in consistent quantity and quality. For the purposes of the present invention, a latent hydraulic binder is to be understood as meaning preferably an inorganic binder in which the molar ratio of (CaO + MgO): SiO 2 is between 0.8 and 2.5, and particularly preferably between 1.0 and 2, 0 is.

Hochofenschlacke ist ein Abfallprodukt des Hochofenprozesses. Hüttensand ist granulierte Hochofenschlacke und Hüttensandmehl fein pulverisierter Hüttensand. Das Hüttensandmehl variiert je nach Herkunft und Aufbereitungsform in seiner Mahlfeinheit und Korngrößenverteilung, wobei die Mahlfeinheit Einfluss auf die Reaktivität hat. Als Kenngröße für die Mahlfeinheit wird der sogenannte Blainewert herangezogen, welcher typischerweise in der Größenordnung von 200 bis 1000, vorzugsweise zwischen 300 und 500 m2 kg-1 liegt. Je feiner die Vermahlung ist, desto höher ist die Reaktivität. Die typische Zusammensetzung der Hochofenschlacke wurde bereits eingangs erwähnt. Hochofenschlacke weist in der Regel 30 bis 45 Gew.-% CaO, ca. 4 bis 17 Gew.-% MgO, ca. 30 bis 45 Gew.-% SiO2 und ca. 5 bis 15 Gew.-% Al2O3 auf, typischerweise ca. 40 Gew.-% CaO, ca. 10 Gew.-% MgO, ca. 35 Gew.-% SiO2 und ca. 12 Gew.-% Al2O3.Blast furnace slag is a waste product of the blast furnace process. Slag sand is granulated blast furnace slag and blastfurnace slag of finely powdered blastfurnace slag. The blastfurnace flour varies depending on the origin and preparation in its fineness and particle size distribution, the fineness has an influence on the reactivity. As a parameter for the fineness of the so-called Blainewert is used, which is typically in the order of 200 to 1000, preferably between 300 and 500 m 2 kg -1 . The finer the grinding, the higher the reactivity. The typical composition of the blast furnace slag has already been mentioned at the beginning. Blast furnace slag generally has 30 to 45 wt .-% CaO, about 4 to 17 wt .-% MgO, about 30 to 45 wt .-% SiO 2 and about 5 to 15 wt .-% Al 2 O 3 typically about 40% by weight CaO, about 10% by weight MgO, about 35% by weight SiO 2 and about 12% by weight Al 2 O 3 .

Elektrothermische Phosphorschlacke ist ein Abfallprodukt der elektrothermischen Phosphorherstellung. Sie ist weniger reaktiv als Hochofenschlacke und enthält ca. 45 bis 50 Gew.-% CaO, ca. 0,5 bis 3 Gew.-% MgO, ca. 38 bis 43 Gew.-% SiO2, ca. 2 bis 5 Gew.-% Al2O3 und ca. 0,2 bis 3 Gew.-% Fe2O3 sowie Fluorid und Phosphat. Edelstahlschlacke ist ein Abfallprodukt verschiedener Stahlerzeugungsverfahren mit stark variierender Zusammensetzung (siehe Caijun Shi, Pavel V. Krivenko, Della Roy, Alkali-Activated Cements and Concretes, Taylor & Francis, London & New York, 2006, S. 42-51 ).Electro-thermal phosphor slag is a waste product of electrothermal phosphor production. It is less reactive than blast furnace slag and contains about 45 to 50 wt .-% CaO, about 0.5 to 3 wt .-% MgO, about 38 to 43 wt .-% SiO 2 , about 2 to 5 wt .-% Al 2 O 3 and about 0.2 to 3 wt .-% Fe 2 O 3 and fluoride and phosphate. Stainless steel slag is a waste product of various steelmaking processes of widely varying composition (see Caijun Shi, Pavel V. Krivenko, Della Roy, Alkali-Activated Cements and Concretes, Taylor & Francis, London & New York, 2006, pp. 42-51 ).

Anorganische Bindemittelsysteme, basierend auf reaktionsfähigen wasserunlöslichen Verbindungen auf der Basis von SiO2 in Verbindung mit Al2O3, die im wässrig alkalischen Medium aushärten, sind ebenfalls allgemein bekannt. Solche ausgehärtete Bindemittelsysteme werden auch als "alkaliaktivierbare Alumosilikat-Bindemittel" bzw. "Geopolymere" bezeichnet und sind z.B. in US 4,349,386 , WO 85/03699 und US 4,472,199 beschrieben. Als reaktionsfähiges Oxidgemisch können dabei neben Schlacken auch sogenannte puzzolanische Bindemittel wie z.B. Metakaolin, Flugaschen, aktivierter Ton oder Mischungen daraus eingesetzt werden. Das alkalische Medium zur Aktivierung des Bindemittels besteht üblicherweise aus wässrigen Lösungen von Alkalicarbonaten, Alkalifluoriden, Alkalihydroxiden und/oder löslichem Wasserglas. In EP2504296 A1 werden Systeme beschrieben, in denen das Bindemittel in Form einer Hybrid-Matrix aushärtet, in welcher eine Calciumsilikathydrat-Matrix und eine Geopolymer-Matrix im geeigneten Verhältnis zueinander vorliegen und sich so durchdringen, dass die Gesamtmatrix sowohl säurebeständig als auch laugenbeständig ist.Inorganic binder systems based on reactive water-insoluble compounds based on SiO 2 in combination with Al 2 O 3 , which cure in an aqueous alkaline medium, are also generally known. Such cured binder systems are also referred to as "alkali-activated aluminosilicate binder" or "geopolymers" and are, for example, in US 4,349,386 . WO 85/03699 and US 4,472,199 described. In addition to slags, so-called pozzolanic binders such as, for example, metakaolin, fly ash, activated clay or mixtures thereof can be used as the reactive oxide mixture. The alkaline medium for activation of the binder usually consists of aqueous solutions of alkali metal carbonates, alkali fluorides, alkali metal hydroxides and / or soluble water glass. In EP2504296 A1 describes systems in which the binder cures in the form of a hybrid matrix in which a calcium silicate hydrate matrix and a geopolymer matrix are in appropriate proportion and interpenetrate so that the overall matrix is both acid resistant and alkali resistant.

Das puzzolanische Bindemittel ist beispielsweise aus amorpher Kieselsäure, vorzugsweise Fällungskieselsäure, pyrogener Kieselsäure und Mikrosilika, Glasmehl, Flugasche, vorzugsweise Braunkohleflugasche und Steinkohleflugasche, Metakaolin, natürlichen Puzzolanen wie Tuff, Trass und Vulkanasche, natürlichen und synthetischen Zeolithen sowie Mischungen davon ausgewählt. Eine Übersicht erfindungsgemäß geeigneter puzzolanischer Bindemittel findet sich z.B. bei Caijun Shi, Pavel V. Krivenko, Della Roy, Alkali-Activated Cements and Concretes, Taylor & Francis, London & New York, 2006, S.51-63 . Die Prüfung auf Puzzolanaktivität kann nach DIN EN 196 Teil 5 erfolgen.The pozzolanic binder is selected, for example, from amorphous silica, preferably precipitated silica, fumed silica and microsilica, glass flour, fly ash, preferably lignite fly ash and coal fly ash, metakaolin, natural pozzolans such as tuff, trass and volcanic ash, natural and synthetic zeolites, and mixtures thereof. An overview of the invention suitable pozzolanic binder is found for example Caijun Shi, Pavel V. Krivenko, Della Roy, Alkali-Activated Cements and Concretes, Taylor & Francis, London & New York, 2006, pp. 51-63 , The test for pozzolanic activity can be carried out according to DIN EN 196 part 5.

Bei der amorphen Kieselsäure handelt es sich vorzugsweise um eine röntgenamorphe Kieselsäure, d.h. um eine Kieselsäure, die im Pulverdiffraktionsverfahren keine Kristallinität zeigt. Im Sinne der der vorliegenden Erfindung soll Glasmehl ebenfalls als amorphe Kieselsäure betrachtet werden. Die erfindungsgemäße amorphe Kieselsäure weist zweckmäßig einen Gehalt von mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-% SiO2 auf. Fällungskieselsäure wird großtechnische über Fällungsprozesse ausgehend von Wasserglas gewonnen. Fällungskieselsäure wird je nach Herstellungsverfahren auch Kieselgel genannt. Pyrogene Kieselsäure wird durch Umsetzung von Chlorsilanen wie z.B. Siliciumtetrachlorid in der Knallgasflamme erzeugt. Pyrogene Kieselsäure ist ein amorphes SiO2-Pulver von 5 bis 50 nm Teilchendurchmesser und einer spezifischen Oberfläche von 50 bis 600 m2 g-1.The amorphous silica is preferably an X-ray amorphous silica, ie a silica which does not show crystallinity in the powder diffraction process. For the purposes of the present invention, glass flour is also to be regarded as amorphous silica. The amorphous silica according to the invention expediently has a content of at least 80% by weight, preferably at least 90% by weight, of SiO 2 . Precipitated silica is obtained on a large scale via precipitation processes starting from water glass. Precipitated silica is also called silica gel, depending on the manufacturing process. Pyrogenic silica is produced by reaction of chlorosilanes such as silicon tetrachloride in the oxyhydrogen flame. Pyrogenic silica is an amorphous SiO 2 powder with a particle diameter of 5 to 50 nm and a specific surface area of 50 to 600 m 2 g -1 .

Mikrosilika ist ein Nebenprodukt der Silicium- bzw. Ferrosiliciumherstellung und besteht ebenfalls größtenteils aus amorphem SiO2-Pulver. Die Teilchen haben Durchmesser in der Größenordnung von 0,1 µm. Die spezifische Oberfläche liegt in der Größenordnung von 15 bis 30 m2 g-1. Demgegenüber ist handelsüblicher Quarzsand kristallin und weist vergleichsweise große Teilchen und eine vergleichsweise kleine spezifische Oberfläche auf. Er dient erfindungsgemäß als inerter Zuschlagsstoff.Microsilica is a by-product of silicon or ferrosilicon production and also consists largely of amorphous SiO 2 powder. The particles have diameters in the order of 0.1 microns. The specific surface area is on the order of 15 to 30 m 2 g -1 . In contrast, commercially available quartz sand is crystalline and has comparatively large particles and a comparatively small specific surface area. It serves according to the invention as an inert additive.

Flugaschen entstehen u.a. beim Verbrennen von Kohle in Kraftwerken. Flugasche der Klasse C enthält gemäß WO 08/012438 ca. 10 Gew.-% CaO, während Flugaschen der Klasse F weniger als 8 Gew.-%, vorzugsweise weniger als 4 Gew.-% und typischerweise ca. 2 Gew.-% CaO enthalten.Fly ashes are caused, among other things, by the burning of coal in power plants. Fly ash class C contains according to WO 08/012438 about 10% by weight of CaO, whereas flyashes of class F contain less than 8% by weight, preferably less than 4% by weight and typically about 2% by weight of CaO.

Metakaolin entsteht bei der Dehydrierung von Kaolin. Während Kaolin bei 100 bis 200 °C physikalisch gebundenes Wasser abgibt, findet bei 500 bis 800 °C eine Dehydroxylierung unter Zusammenbruch der Gitterstruktur und Bildung von Metakaolin (Al2Si2O7) statt. Reines Metakaolin enthält demgemäß ca. 54 Gew.-% SiO2 und ca. 46 Gew.-% Al2O3.Metakaolin is formed during the dehydrogenation of kaolin. While kaolin releases physically bound water at 100 to 200 ° C, dehydroxylation occurs at 500 to 800 ° C with collapse of the lattice structure and formation of metakaolin (Al 2 Si 2 O 7 ). Pure metakaolin accordingly contains about 54% by weight of SiO 2 and about 46% by weight of Al 2 O 3 .

Unter der Sammelbezeichnung "Gips" werden die Modifikationen CaSO4 (Anhydrit), CaSO4 · 0,5 H2O (Hemihydrat) und CaSO4 · 2 H2O (Gipsspat) verstanden. Die ersten beiden Modifikationen härten bei der Zugabe von Wasser, sind also anorganische Bindemittel, während Gipsspat nicht härtet. Er kann indessen in den besagten anorganischen Bindemitteln als Sulfatquelle verwendet werden.The collective term "gypsum" is understood as meaning the modifications CaSO 4 (anhydrite), CaSO 4 .0.5 H 2 O (hemihydrate) and CaSO 4 .2 H 2 O (gypsum). The first two modifications harden when adding water, so they are inorganic binders, while gypsum does not harden. However, it can be used as sulfate source in said inorganic binders.

Im Gegensatz zu unserer oben genannten PCT/EP2012/073339 ist im erfindungsgemäßen "zementären System" das Vorliegen einer zementären Komponente erforderlich. Die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen können in Form einer einkomponentigen Formulierung in der zementären Komponente enthalten sein oder von der zementären Komponente getrennt vorgehaltenen werden (sogenannter "kit of parts"). Der Portlandzement und/oder Portlandkompositzement ist prinzipiell anwesend und ist zweckmäßig zu mehr als 3 Gew.-%, vorzugsweise zu mehr als 10 Gew.-% und insbesondere zu mehr als 25 Gew.-% im erfindungsgemäßen zementären System enthalten.Unlike our above PCT / EP2012 / 073339 in the "cementitious system" of the invention, the presence of a cementitious component is required. The crosslinked shellac-coated promoter particles may be in the form of a one-part formulation in the cementitious component or from the cementitious component Component be kept separately (so-called "kit of parts"). The Portland cement and / or Portlandkompositzement is present in principle and is useful to more than 3 wt .-%, preferably more than 10 wt .-% and in particular more than 25 wt .-% in the inventive cementitious system.

Des Weiteren enthält die Schellack-Beschichtung vorzugsweise mehr als 50 Gew.-% Schellack, besonders bevorzugt mehr als 80 Gew.-% und insbesondere mehr als 95 Gew.-%.Furthermore, the shellac coating contains preferably more than 50 wt .-% shellac, more preferably more than 80 wt .-% and in particular more than 95 wt .-%.

Das erfindungsgemäße zementäre System ist weiterhin dadurch gekennzeichnet, dass die Schellack-Beschichtung bis zu 10 Gew.-%, vorzugsweise bis zu 5 Gew.-% Harnstoff, bezogen auf den Schellack-Anteil, enthält.The cementitious system according to the invention is further characterized in that the shellac coating contains up to 10% by weight, preferably up to 5% by weight, of urea, based on the shellac portion.

Das erfindungsgemäße zementäre System ist weiterhin dadurch gekennzeichnet, dass die Schellack-Beschichtung zweckmäßig 0 bis 30 Gew.-%, vorzugsweise 0 bis 15 Gew.-% und insbesondere 0 bis 5 Gew.-% Füllstoff, bezogen auf den Schellack-Anteil, enthält.The cementitious system according to the invention is further characterized in that the shellac coating contains suitably 0 to 30 wt .-%, preferably 0 to 15 wt .-% and in particular 0 to 5 wt .-% filler, based on the shellac portion contains ,

Der besagte Füllstoff ist zweckmäßig aus natürlichem oder gefälltem Calciumcarbonat, amorphem, kristallinem oder pyrogenem Siliziumdioxid, Aluminiumsilikat wie z.B. Kaolin oder Glimmer, Magnesiumsilikathydrat, Aluminiumhydroxid und Magnesiumhydroxid, sowie Mischungen davon ausgewählt.The said filler is suitably made of natural or precipitated calcium carbonate, amorphous, crystalline or fumed silica, aluminum silicate, e.g. Kaolin or mica, magnesium silicate hydrate, aluminum hydroxide and magnesium hydroxide, and mixtures thereof.

Die Freisetzungszeit des Beschleunigers hängt allgemein vom Grad der Vernetzung des Schellacks, der Schichtdicke der Schellack-Beschichtung, dem Beschleunigergehalt, dem Teilchendesign sowie dem Beschleuniger selbst ab und kann an die jeweilige Anwendung im zementären System angepasst werden.The release time of the accelerator generally depends on the degree of crosslinking of the shellac, the shellac coating thickness, the accelerator content, the particle design, and the accelerator itself, and can be adapted to the particular application in the cementitious system.

Der erfindungsgemäße Schellack liegt zweckmäßig in einer durch thermische Behandlung, Behandlung mit Mikrowellen, elektrischem Plasma, hochenergetischen Partikeln und/oder ionisierender Strahlung quervernetzten Form vor. Vorzugsweise liegt der Schellack in einer durch thermische Behandlung von 1 h bis 7 Tagen, vorzugsweise von 1 h bis 2 Tagen, bei Temperaturen von 80 °C bis 140 °C, vorzugsweise von 100 °C bis 120 °C, quervernetzten Form vor.The shellac according to the invention is expediently present in a form crosslinked by thermal treatment, treatment with microwaves, electric plasma, high-energy particles and / or ionizing radiation. The shellac is preferably present in a form crosslinked by thermal treatment of from 1 hour to 7 days, preferably from 1 hour to 2 days, at temperatures of from 80.degree. C. to 140.degree. C., preferably from 100.degree. C. to 120.degree.

Des Weiteren ist das erfindungsgemäße zementäre System dadurch gekennzeichnet, dass der Beschleuniger zweckmäßig aus Salzen von Elementen der Hauptgruppen 1 - III sowie Mischungen davon ausgewählt ist, vorzugsweise aus Lithiumsalzen, insbesondere Lithiumsulfat, Natriumsalzen und Kaliumsalzen, insbesondere Natrium- und Kaliumsilicaten sowie Wassergläsern, Magnesiumsalzen, Calciumsalzen, insbesondere Calciumchlorid, Calciumnitrat, Calciumformiat, Calciumsilikat, Calciumsilikathydrat und Ettringit, sowie Aluminiumsalzen, insbesondere Natriummetaaluminat (NaAlO2) und Aluminiumsulfat.Furthermore, the inventive cementitious system is characterized in that the accelerator is expediently selected from salts of elements of the main groups 1 to III and mixtures thereof, preferably lithium salts, in particular lithium sulfate, sodium salts and potassium salts, in particular sodium and potassium silicates and water glasses, magnesium salts, Calcium salts, in particular calcium chloride, calcium nitrate, calcium formate, calcium silicate, calcium silicate hydrate and ettringite, and aluminum salts, in particular sodium metaaluminate (NaAlO 2 ) and aluminum sulfate.

Die Beschleuniger-Teilchen sollten einen durchschnittlichen Teilchendurchmesser von 50 bis 1000 µm, vorzugsweise von 100 bis 300 µm aufweisen, während die Schellack-Beschichtung der Beschleuniger-Teilchen eine durchschnittliche Dicke von 1 bis 80 µm, vorzugsweise von 1 bis 30 µm aufweisen sollte.The accelerator particles should have an average particle diameter of 50 to 1000 μm, preferably 100 to 300 μm, while the shellac coating of the accelerator particles should have an average thickness of 1 to 80 μm, preferably 1 to 30 μm.

Die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen beinhalten zweckmäßig wenigstens zwei Schichten in einer Kern/Schale-Struktur, wobei der Kern den Beschleuniger und die Beschichtung den quervernetzten Schellack enthält.The cross-linked shellac coated accelerator particles suitably comprise at least two layers in a core / shell structure, the core containing the accelerator and the coating containing the crosslinked shellac.

Das erfindungsgemäße zementäre System ist vorzugsweise dadurch gekennzeichnet, dass der Beschleuniger auf einem Träger aufgebracht, an einen Träger adsorbiert, in einem Träger absorbiert oder mit einem Träger vermischt ist. Der Träger ist in dieser Definition gleichbedeutend mit dem Hilfsstoff, der für den Aufbau des Teilchenkerns verwendet wird. Im Falle des Aufbringens können das z.B. Quarzsand, Glasperlen oder ein anderer unreaktiver, partikulärer Stoff mit geeigneter Körnung sein. Im Falle der Adsorption bzw. Absorption kann der Träger beispielsweise ein partikulärer, poröser Stoff, wie z.B. Kieselgur, porösem Siliziumdioxid, Circosil, ein synthetisches Produkt aus Calciumsilikathydrat, Cellulosepartikel oder ein zeolithisches Material sein. Im Falle, dass der Träger mit dem Beschleuniger vermischt ist, ist der Träger beispielsweise Calciumcarbonat, Talkum, oder ein anderer Hilfsstoff, der dazu geeignet ist, mit dem Beschleuniger zu einem geeigneten Substrat geformt zu werden.The cementitious system according to the invention is preferably characterized in that the accelerator is applied to a carrier, adsorbed to a carrier, absorbed in a carrier or mixed with a carrier. The carrier in this definition is synonymous with the excipient used to construct the particle nucleus. In the case of application, e.g. Quartz sand, glass beads or other unreactive, particulate material with suitable grain size. For example, in the case of adsorption, the carrier may be a particulate porous material, e.g. Diatomaceous earth, porous silica, Circosil, a synthetic product of calcium silicate hydrate, cellulose particles or a zeolitic material. In the case where the carrier is mixed with the accelerator, the carrier is, for example, calcium carbonate, talc, or another excipient capable of being formed into a suitable substrate with the accelerator.

Das erfindungsgemäße zementäre System ist weiterhin dadurch gekennzeichnet, dass die Beschleuniger-Teilchen zusätzlich vorzugsweise eine Schicht zur Diffusionskontrolle und/oder eine Sperrschicht innerhalb der Schellack-Beschichtung enthalten. Bei der Schicht zur Diffusionskontrolle handelt es sich vorzugsweise um Methylcellulose, während es sich bei der Sperrschicht vorzugsweise um Natriumsulfat handelt. Der Vorteil einer Schicht zur Diffusionskontrolle besteht darin, dass die Wasseraufnahme und damit der Zeitpunkt des Aufplatzens der beschichteten Beschleuniger-Teilchen auf Grund von osmotischem Druck verzögert werden. Der Vorteil einer Sperrschicht wie z.B. aus Natriumsulfat besteht darin, dass der ggf. aggressive Beschleuniger (wie z.B. NaAlO2) nicht im direkten Kontakt mit dem chemisch empfindlichen Schellack steht.The cementitious system according to the invention is further characterized in that the accelerator particles additionally preferably contain a diffusion control layer and / or a barrier layer within the shellac coating. The diffusion control layer is preferably methyl cellulose, while the barrier layer is preferably sodium sulfate. The advantage of a diffusion control layer is that it retards the water uptake and thus the time of bursting of the coated accelerator particles due to osmotic pressure. The advantage of a barrier layer such as sodium sulfate is that the possibly aggressive accelerator (such as NaAlO 2 ) is not in direct contact with the chemically sensitive shellac.

Der Wirkstoffanteil kann durch gezielte Auswahl des Aufbaus des Substrates für das Beschleunigerteilchen variiert werden, so dass eine lokale Überdosierung des zementären Systems mit Beschleuniger vermieden werden kann. Eine lokale Überdosierung sollte vermieden werden, um sekundäre Schadreaktionen durch nachträgliche Aktivierung durch überschüssigen Beschleuniger zu vermeiden.The proportion of active ingredient can be varied by targeted selection of the structure of the substrate for the accelerator, so that a local overdose of the cementitious system with accelerator can be avoided. Local overdosage should be avoided to avoid secondary adverse reactions through subsequent activation by excess accelerators.

Das erfindungsgemäße zementäre System ist weiterhin dadurch gekennzeichnet, dass die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen, bezogen auf das anorganische Bindemittel, zweckmäßig zu 0,1 bis 5,0 Gew.-%, vorzugsweise 0,3 bis 3,0 Gew.-% und insbesondere 0,5 bis 2,0 Gew.-% vorliegen.The cementitious system according to the invention is further characterized in that the crosslinked shellac-coated accelerator particles, based on the inorganic binder, expedient to 0.1 to 5.0 wt .-%, preferably 0.3 to 3.0 parts by weight. % and in particular 0.5 to 2.0 wt .-% are present.

Im erfindungsgemäßen zementären System sind die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen vorzugsweise in Form einer einkomponentigen Formulierung in der das anorganische Bindemittel enthaltenden zementären Komponente enthalten. Insbesondere handelt es sich hierbei um einen Trockenmörtel. In solchen Trockenmörteln wird als anorganisches Bindemittel vorzugsweise Portlandzement eingesetzt.In the cementitious system of the present invention, the accelerator particles coated with crosslinked shellac are preferably contained in the form of a one-component formulation in the cementitious component containing the inorganic binder. In particular, this is a dry mortar. In such dry mortars Portland cement is preferably used as the inorganic binder.

Im erfindungsgemäßen zementären System können die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen alternativ aber auch in einer von der das anorganische Bindemittel enthaltenden zementären Komponente getrennt vorgehaltenen Additiv-Komponente vorliegen.Alternatively, in the cementitious system of the present invention, the accelerator particles coated with crosslinked shellac may be present in an additive component separately held by the cementitious component containing the inorganic binder.

Demgemäß ist ein weiterer Gegenstand der vorliegenden Erfindung auf die Verwendung der erfindungsgemäßen Additiv-Komponente zur Härtung der das anorganische Bindemittel enthaltenden zementären Komponente gerichtet.Accordingly, another object of the present invention is directed to the use of the additive component of the invention for curing the cementitious component containing the inorganic binder.

Ein weiterer Gegenstand der vorliegenden Erfindung besteht in der Verwendung der erfindungsgemäßen Additiv-Komponente als Beschleuniger für das erfindungsgemäße zementäre System.Another object of the present invention is the use of the additive component of the invention as an accelerator for the inventive cementitious system.

Schließlich besteht ein weiterer Gegenstand der vorliegenden Erfindung in einer Zementschlämme, welche das erfindungsgemäße zementäre System und Wasser umfasst. Diese Zementschlämme weist zweckmäßig einem Wasser/Zement-Wert (w/z) von 0,1 bis 1,0, vorzugsweise von 0,2 bis 0,7 und insbesondere von 0,3 bis 0,6 auf.Finally, another object of the present invention is a cement slurry comprising the cementitious system of the invention and water. This cement slurry expediently has a water / cement value (w / c) of from 0.1 to 1.0, preferably from 0.2 to 0.7 and in particular from 0.3 to 0.6.

Die vorliegende Erfindung wird nun anhand der nachfolgenden Beispiele und unter Bezugnahme auf die beigefügten Zeichnungen weiter erläutert. In den Zeichnungen zeigt:

Fig. 1
die jeweiligen Freisetzungscharakteristiken von unterschiedlich beschichteten Lithiumsulfat-Teilchen in synthetischer Porenlösung,
Fig. 2
die Freisetzungscharakteristik von mit Schellack beschichteten Lithiumsulfat-Teilchen nach Lagerung bei Raumtemperatur,
Fig. 3
die Freisetzung von mit Schellack beschichtetem Lithiumsulfat, geträgert auf Glasperlen, nach unterschiedlich langer thermischer Behandlung bei 100 °C,
Fig. 4
die Freisetzung von thermisch nachbehandelten Lithiumsulfat-Teilchen mit Schellack-Beschichtung nach längerer Lagerung bei Raumtemperatur
Fig. 5
die Veränderung der Freisetzungscharakteristik von mit Schellack beschichteten Teilchen in Abhängigkeit von den Quervernetzungsbedingungen, und
Fig. 6
den Aufbau eines mit Schellack beschichteten Beschleunigerteilchens aus Beispiel 3.
The present invention will now be further elucidated with reference to the following examples and with reference to the accompanying drawings. In the drawings shows:
Fig. 1
the respective release characteristics of differently coated lithium sulfate particles in synthetic pore solution,
Fig. 2
the release characteristics of shellac-coated lithium sulfate particles after storage at room temperature,
Fig. 3
the release of shellac-coated lithium sulphate, supported on glass beads, after thermal treatment at 100 ° C. for different lengths of time,
Fig. 4
the release of thermally post-treated lithium sulfate particles with shellac coating after prolonged storage at room temperature
Fig. 5
the change in the release characteristics of shellac-coated particles depending on the crosslinking conditions, and
Fig. 6
the structure of a shellac-coated accelerator particle from Example 3.

BeispieleExamples Beispiel 1 (Referenz)Example 1 (reference)

In Fig. 1 ist zu sehen, dass mit unvernetztem Schellack beschichtete Lithiumsulfat-Teilchen im Gegensatz zu mit Wachs, Polyvinylacetat oder Wasserglas beschichteten Lithiumsulfat-Teilchen im alkalischen Milieu eine stufenförmige Freisetzungscharakteristik zeigen. Die Lithiumsulfat-Freisetzung wurde mit einer Leitfähigkeitselektrode in synthetischer Porenlösung gemessen. Bei dieser handelte es sich um eine synthetisch hergestellte alkalische Lösung mit einem pH-Wert von ca. 12,5, die gesättigt an Ca2+war und außerdem Na+, K+ und SO4 2- enthielt und einer ausgepressten Porenlösung eines Portlandzement-Wasser-Gemisches ähnelte. Als Substrat wurden Lithiumsulfat-Teilchen mit einer Teilchengröße von 750 µm Durchmesser verwendet, die durch Extrusion und Verrundung auf einem Drehteller hergestellt worden waren.In Fig. 1 It can be seen that lithium sulfate particles coated with uncrosslinked shellac, in contrast to lithium sulfate particles coated with wax, polyvinyl acetate or water glass, exhibit a step-shaped release characteristic in the alkaline medium. The lithium sulfate release was measured with a conductivity electrode in synthetic pore solution. This was a synthetically prepared alkaline solution with a pH of about 12.5, which was saturated with Ca 2+ and also contained Na + , K + and SO 4 2- and a squeezed pore solution of a Portland cement Water mixture resembled. As the substrate, lithium sulfate particles having a particle size of 750 μm in diameter were used, which had been produced by extrusion and rounding on a turntable.

Beispiel 2Example 2

Nach längerer Lagerung bei Raumtemperatur der mit Schellack beschichteten Lithiumsulfat-Teilchen zeigte sich wie zuvor zwar eine stufenartige Freisetzungscharakteristik, jedoch war die Freisetzungszeit deutlich verlängert (Fig. 2), was auf ein Altern der Beschichtung hinwies. Wie sich später zeigte, handelte es sich bei der Alterung um eine nachträgliche Veresterung der -OH und Carboxylgruppen im Schellack, d.h. um Quervernetzung. Wie sich weiterhin zeigte, konnte die Vernetzung durch ein- bzw. mehrtägige Lagerung bei erhöhter Temperatur (100 °C) gefördert werden, siehe Fig. 3. Außerdem trat nach der thermischen Behandlung keine nennenswerte Alterung mehr auf, wie Fig. 4 zeigt. Wurde die Beschichtung aus Schellack indessen zu lange bzw. bei zu hoher Temperatur durchgeführt, dann verlor die Beschichtung die stufenartige Freisetzungscharakteristik und näherte sich einer diffusionskontrollierten Freisetzung an (Fig. 5).After prolonged storage at room temperature of the shell-lacquered lithium sulfate particles, a step-like release characteristic was as before, but the release time was significantly prolonged ( Fig. 2 ), indicating aging of the coating. As was later shown, the aging was a subsequent esterification of the -OH and carboxyl groups in the shellac, ie crosslinking. It was also shown that the crosslinking could be promoted by storage at elevated temperature (100 ° C.) for one or more days, see Fig. 3 , In addition, no appreciable aging occurred after the thermal treatment, such as Fig. 4 shows. However, when the shellac coating was carried out too long or at too high a temperature, the coating lost the step-like release characteristics and approached a diffusion-controlled release (FIG. Fig. 5 ).

Beispiel 3Example 3

Das Ansteifen wurde angelehnt an DIN EN 1015-9 über den zeitlichen Kraftanstieg beim Eindrücken eines kreisrunden Messingstabes mit einem Durchmesser von 6,175 mm und einer Eindringtiefe von 25 mm in einem zementären System gemessen. Die gemessenen Gewichtswerte wurden in N/mm2 umgerechnet, wobei die Erdbeschleunigung mit einem Wert von 10 m/s2 angenommen wurde. Die Zeiten, bei denen Eindringwiderstände von 0,5, bzw. 3,5 N/mm2 durchschritten wurden, wurden aus den jeweils benachbarten Werten extrapoliert und abweichend von der DIN EN 1015-9 auf 5 min gerundet.The stiffening was based on DIN EN 1015-9 on the temporal force increase when pressing a circular brass rod with a diameter of 6.175 mm and a penetration depth of 25 mm measured in a cementitious system. The measured weight values were converted into N / mm 2 , the gravitational acceleration being assumed to be 10 m / s 2 . The times when penetrating resistances of 0.5 or 3.5 N / mm 2 were exceeded were extrapolated from the respectively adjacent values and, contrary to DIN EN 1015-9, rounded to 5 min.

Als zementäres Referenzsystem wurde verwendet:

  • 360 g Wasser
  • 800 g Quarzsand (Typ BCS 412 von der Fa. Strobel Quarzsande, mittlere Korngröße 120 µm)
  • 800 g Zement (Milke CEM I 52,5R)
As a cementitious reference system was used:
  • 360 g of water
  • 800 g of quartz sand (type BCS 412 from the company Strobel Quarzsande, mean particle size 120 μm)
  • 800 g of cement (Milke CEM I 52.5R)

Als Beschleuniger wurde verwendet:

  • Natriummetaaluminat (NaAlO2), 53-55 % Al2O3-Gehalt, fein gemahlen, unstabilisiert, von der Fa. BK Giulini, Ludwigshafen,
  • Mit quervernetztem Schellack beschichtete Natriummetaaluminat-Teilchen gemäß nachstehender Herstellung mit unterschiedlichen Freisetzungszeiten von ca. 15 min, im Weiteren "Beschleuniger Teilchen I" genannt, bzw. 45 min, im Weiteren "Beschleuniger Teilchen II" genannt. Die Freisetzungszeiten der Beschleuniger-Teilchen I und II wurden über die Veränderung der Leitfähigkeit in synthetischer Porenlösung bei Raumtemperatur gemessen.
The accelerator used was:
  • Sodium metaaluminate (NaAlO 2 ), 53-55% Al 2 O 3 content, finely ground, unstabilized, from BK Giulini, Ludwigshafen,
  • Cross-linked shellac coated sodium metaaluminate particles according to the following production with different release times of about 15 min, hereinafter referred to as "accelerator particle I", or 45 min, hereinafter referred to as "accelerator particle II". The release times of the accelerator particles I and II were measured by changing the conductivity in synthetic pore solution at room temperature.

Die Herstellung der Beschleuniger-Teilchen erfolgte in drei Prozessschritten:The preparation of the accelerator particles took place in three process steps:

Granulierunggranulation

In einem ersten Schritt wurde Natriummetaaluminat (53-55 % Al2O3-Gehalt, fein gemahlen, unstabilisiert von der Fa. BK Giulini, Ludwigshafen) mit Quarzsand (Typ BCS 412 von der Fa. Strobel Quarzsande, mittlere Korngröße 120 µm) und Wasser in einem Intensivmischer der Fa. Eirich zu einem Granulat umgeformt. In diesem Prozessschritt zog das Natriummetaaluminat auf die Sandkörner auf und es bildeten sich weitgehend abgerundete Teilchen. Nach Trocknung des Granulats bei 100 °C wurde durch Siebung Über- und Unterkorn außerhalb des Bereichs von 200-300 µm abgetrennt.In a first step, sodium metaaluminate (53-55% Al 2 O 3 content, finely ground, unstabilized from BK Giulini, Ludwigshafen) with quartz sand (type BCS 412 from Strobel Quarzsande, mean particle size 120 μm) and Water in an intensive mixer from Eirich converted into a granulate. In this process step, the sodium metaaluminate attracted to the grains of sand and formed largely rounded particles. After drying the granules at 100 ° C was separated by screening oversize and undersize outside the range of 200-300 microns.

Beschichtungcoating

Das aufbereitete Granulat wurde dann in einen Wirbelschichtcoater (Typ "Unilab" Fa. Bosch/ Hüttlin) überführt und dort zunächst mit Natriumsulfat und anschließend mit Schellack (Typ SSB 57, Fa. Ströver Bremen) bei einer Produkttemperatur von ca. 30-35 °C beschichtet. Die verwendete Natriumsulfat-Lösung hatte einen Feststoffgehalt von 15 Gew.-%. Der Schellack wurde vor dem Beschichten in ammoniakalischer Lösung aufgelöst und auf einen Feststoffgehalt von 10 Gew. % eingestellt.The prepared granules were then transferred to a fluidized bed coater (type "Unilab" Fa. Bosch / Hüttlin) and there first with sodium sulfate and then with shellac (type SSB 57, Fa. Ströver Bremen) at a product temperature of about 30-35 ° C. coated. The sodium sulfate solution used had a solids content of 15% by weight. The shellac was dissolved in ammoniacal solution before coating and adjusted to a solids content of 10% by weight.

Thermische QuervernetzungThermal crosslinking

In diesem Beispiel wurde die Quervernetzung des Schellacks durch Lagerung der Beschleuniger-Teilchen bei 100 °C für 24 bzw. 75 h realisiert. Im Aufbau unterscheiden sich die Beschleuniger-Teilchen I und II nicht. Für die Lagerung wurden die Beschleuniger-Teilchen mit einem feinpartikulären anorganischen Pulver (Calciumcarbonat) mit einer mittleren Korngröße von ca. 5 µm zu gleichen Gewichtsanteilen vermischt, um ein Verkleben der Teilchen während der Lagerung zu verhindern. Nach der Lagerung wurde der Hilfsstoff über ein Taumelsieb mit einer Maschenweite von < 150 µm wieder abgetrennt. Der Aufbau der Beschleuniger-Teilchen I und II ist in Fig. 6 wiedergegeben.In this example, crosslinking of the shellac was accomplished by storage of the accelerator particles at 100 ° C for 24 and 75 hours, respectively. In structure, the accelerator particles I and II do not differ. For storage, the accelerator particles were mixed with a fine particulate inorganic powder (calcium carbonate) having an average particle size of about 5 microns in equal parts by weight in order to prevent sticking of the particles during storage. After storage, the excipient was separated again on a tumbler with a mesh size of <150 microns. The structure of the accelerator particles I and II is in Fig. 6 played.

Die mittlere Korngröße der Beschleuniger-Teilchen I und II betrug ca. 240 µm. Die Gehalte der beschichteten Beschleuniger-Teilchen waren ca. 33 Gew.-% Quarzsand, 33 Gew.-% Natriummetaaluminat, 12 Gew.-% Natriumsulfat (wasserfrei), 22 Gew.-% Schellack (Angaben gerundet).The mean grain size of the accelerator particles I and II was about 240 microns. The contents of the coated accelerator particles were about 33 wt .-% quartz sand, 33 wt .-% sodium metaaluminate, 12 wt .-% sodium sulfate (anhydrous), 22 wt .-% shellac (data rounded).

Das Referenzsystem wurde nach EN 196-1 angemischt. Die Versuche und Messungen wurden bei 23 °C und 50 % rel. Luftfeuchte durchgeführt und die verwendeten Materialien und die Prüfeinrichtung wurde über 24 h in diesem Klima äquilibriert. Der Nullpunkt der nachfolgenden Messung war der Zeitpunkt des Vermischens des Zements mit dem Anmachwasser. Die Ergebnisse sind in der Tabelle 1 wiedergegeben. Die Dosierung des Beschleunigers ist in Gewichtsprozent angegeben, bezogen auf das Gewicht des Zements. Der jeweilige Eindringwiderstand ist in [N/mm2] angegeben, Zeiten sind in Minuten angegeben. Tabelle 1: Prüfungsergebnisse des zementären Systems in Anlehnung an DIN EN 1015-9 Dosierung des Beschleunigers Eindringwiderstand nach dem Anmischen Zeit bis zu einem Eindringwiderstand von 0,5 Zeit bis zu einem Eindringwiderstand von 3,5 Δ t zwischen Eindringwiderstand 0,5 und 3,5 0,0 % 0,01 140 215 75 0,5 % NaAlO2 0,22 15 85 70 0,5 % Teilchen I 0,01 100 180 80 0,5 % Teilchen II 0,01 120 190 70 1,0 % NaAlO2 nicht verarbeitbar nicht verarbeitbar nicht verarbeitbar - 1,0 % Teilchen I 0,01 55 110 55 1,0 % Teilchen II 0,01 110 165 55 The reference system was mixed according to EN 196-1. The experiments and measurements were carried out at 23 ° C and 50% rel. Humidity was carried out and the materials used and the test device was equilibrated for 24 h in this climate. The zero point of the subsequent measurement was the time of mixing the cement with the mixing water. The results are shown in Table 1. The dosage of the accelerator is given in weight percent, based on the weight of the cement. The respective penetration resistance is given in [N / mm 2 ], times are given in minutes. Table 1: Test results of the cementitious system based on DIN EN 1015-9 Dosing of the accelerator Penetration resistance after mixing Time up to a penetration resistance of 0.5 Time up to a penetration resistance of 3.5 Δ t between penetration resistance 0.5 and 3.5 0.0% 0.01 140 215 75 0.5% NaAlO 2 0.22 15 85 70 0.5% particles I 0.01 100 180 80 0.5% particles II 0.01 120 190 70 1.0% NaAlO 2 not processable not processable not processable - 1.0% particles I 0.01 55 110 55 1.0% Particles II 0.01 110 165 55

Das Beispiel zeigt, dass die Beschleuniger-Teilchen I und II im Vergleich zum nicht beschichteten Beschleuniger erfindungsgemäß eine verlängerte Verarbeitungszeit und ein beschleunigtes Ansteifen/Erstarren gegenüber dem Referenzsystem ohne Beschleuniger zeigen. Bei höherer Dosierung des Beschleunigers von 1 Gew.-% ist außerdem ein schnelleres Ansteifen/Erstarren zu beobachten.The example shows that the accelerator particles I and II compared to the non-coated accelerator according to the invention show a prolonged processing time and an accelerated stiffening / solidification compared to the reference system without accelerator. At a higher dosage of the accelerator of 1 wt .-%, moreover, a faster stiffening / solidification can be observed.

Claims (23)

Zementäres System, umfassend mit quervernetztem Schellack beschichtete Beschleuniger-Teilchen.A cementitious system comprising cross-linked shellac-coated accelerator particles. Zementäres System nach Anspruch 1, umfassend ein anorganisches Bindemittel, ausgewählt aus Portlandzement, Tonerdeschmelzzement, Calciumsulfoaluminatzement, Portlandkompositzement nach den Klassen CEM II bis V, hydraulischen Bindemitteln, latent hydraulischen Bindemitteln, puzzolanischen Bindemitteln, alkaliaktivierbaren Alumosilikat-Bindemitteln und Gips, sowie Mischungen davon.A cementitious system according to claim 1 comprising an inorganic binder selected from Portland cement, alumina cement, calcium sulfoaluminate cement, Portland composite cement according to classes CEM II to V, hydraulic binders, latent hydraulic binders, pozzolanic binders, alkalactivatable aluminosilicate binders and gypsum, and mixtures thereof. Zementäres System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Portlandzement und/oder Portlandkompositzement zu mehr als 3 Gew.-%, vorzugsweise zu mehr als 10 Gew.-% und insbesondere zu mehr als 25 Gew.-% enthalten ist.Cementitious system according to claim 1 or 2, characterized in that the Portland cement and / or Portlandkompositzement to more than 3 wt .-%, preferably more than 10 wt .-% and in particular more than 25 wt .-% is included. Zementäres System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schellack-Beschichtung mehr als 50 Gew.-% Schellack enthält, vorzugsweise mehr als 80 Gew.-% und insbesondere mehr als 95 Gew.-%.Cementitious system according to one of claims 1 to 3, characterized in that the shellac coating contains more than 50 wt .-% shellac, preferably more than 80 wt .-% and in particular more than 95 wt .-%. Zementäres System nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schellack-Beschichtung bis zu 10 Gew.-%, vorzugsweise bis zu 5 Gew.-% Harnstoff, bezogen auf den Schellack-Anteil, enthält.Cementary system according to one of claims 1 to 4, characterized in that the shellac coating contains up to 10 wt .-%, preferably up to 5 wt .-% urea, based on the shellac content. Zementäres System nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schellack-Beschichtung 0 bis 30 Gew.-%, vorzugsweise 0 bis 15 Gew.-% und insbesondere 0 bis 5 Gew.-% Füllstoff, bezogen auf den Schellack-Anteil, enthält.Cementitious system according to one of claims 1 to 5, characterized in that the shellac coating 0 to 30 wt .-%, preferably 0 to 15 wt .-% and in particular 0 to 5 wt .-% filler, based on the shellac Share, contains. Zementäres System nach Anspruch 6, dadurch gekennzeichnet, dass der Füllstoff aus natürlichem oder gefälltem Calciumcarbonat, amorphem, kristallinem oder pyrogenem Siliziumdioxid, Aluminiumsilikat wie z.B. Kaolin oder Glimmer, Magnesiumsilikathydrat, Aluminiumhydroxid und Magnesiumhydroxid, sowie Mischungen davon ausgewählt ist.A cementitious system according to claim 6, characterized in that the filler is selected from natural or precipitated calcium carbonate, amorphous, crystalline or fumed silica, aluminum silicate such as kaolin or mica, magnesium silicate hydrate, aluminum hydroxide and magnesium hydroxide, and mixtures thereof. Zementäres System nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Schellack in einer durch thermische Behandlung, Behandlung mit Mikrowellen, elektrischem Plasma, hochenergetischen Partikeln und/oder ionisierender Strahlung quervernetzten Form vorliegt.Cementitious system according to one of claims 1 to 7, characterized in that the shellac is present in a form crosslinked by thermal treatment, treatment with microwaves, electric plasma, high-energy particles and / or ionizing radiation. Zementäres System nach Anspruch 8, dadurch gekennzeichnet, dass der Schellack in einer durch thermische Behandlung von 1 h bis 7 Tagen, vorzugsweise von 1 h bis 2 Tagen, bei Temperaturen von 80 °C bis 140 °C, vorzugsweise von 100 °C bis 120 °C, quervernetzten Form vorliegt.A cementitious system according to claim 8, characterized in that the shellac is in a thermal treatment of 1 h to 7 days, preferably 1 h to 2 days, at temperatures from 80 ° C to 140 ° C, preferably from 100 ° C to 120 ° C, cross-linked form. Zementäres System nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Beschleuniger aus Salzen von Elementen der Hauptgruppen I - III sowie Mischungen davon ausgewählt ist, vorzugsweise aus Lithiumsalzen, insbesondere Lithiumsulfat, Natriumsalzen und Kaliumsalzen, insbesondere Natrium- und Kaliumsilicaten sowie Wassergläsern, Magnesiumsalzen, Calciumsalzen, insbesondere Calciumchlorid, Calciumnitrat, Calciumformiat, Calciumsilikat, Calciumsilikathydrat und Ettringit, sowie Aluminiumsalzen, insbesondere Natriummetaaluminat (NaAlO2) und Aluminiumsulfat.Cementitious system according to one of claims 1 to 9, characterized in that the accelerator is selected from salts of elements of the main groups I - III and mixtures thereof, preferably from lithium salts, in particular lithium sulfate, sodium salts and potassium salts, in particular sodium and potassium silicates and water glasses, Magnesium salts, calcium salts, especially calcium chloride, calcium nitrate, calcium formate, calcium silicate, calcium silicate hydrate and ettringite, and aluminum salts, especially sodium metaaluminate (NaAlO 2 ) and aluminum sulfate. Zementäres System nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Beschleuniger-Teilchen einen durchschnittlichen Teilchendurchmesser von 50 bis 1000 µm, vorzugsweise von 100 bis 300 µm aufweisen.Cementitious system according to one of claims 1 to 10, characterized in that the accelerator particles have an average particle diameter of 50 to 1000 microns, preferably from 100 to 300 microns. Zementäres System nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Schellack-Beschichtung der Beschleuniger-Teilchen eine durchschnittliche Dicke von 1 bis 80 µm, vorzugsweise von 1 bis 30 µm aufweist.Cementitious system according to one of claims 1 to 11, characterized in that the shellac coating of the accelerator particles has an average thickness of 1 to 80 microns, preferably from 1 to 30 microns. Zementäres System nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen wenigstens zwei Schichten in einer Kern/Schale-Struktur beinhalten, wobei der Kern den Beschleuniger und die Beschichtung den quervernetzten Schellack enthält.A cementitious system according to any one of claims 1 to 12, characterized in that the crosslinked shellac-coated accelerator particles include at least two layers in a core / shell structure, the core containing the accelerator and the coating containing the crosslinked shellac. Zementäres System nach Anspruch 13, dadurch gekennzeichnet, dass der Beschleuniger auf einem Träger aufgebracht, an einen Träger adsorbiert, in einem Träger absorbiert oder mit einem Träger vermischt ist.Cementitious system according to claim 13, characterized in that the accelerator is applied to a carrier, adsorbed to a carrier, absorbed in a carrier or mixed with a carrier. Zementäres System nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass die Beschleuniger-Teilchen zusätzlich eine Schicht zur Diffusionskontrolle, vorzugsweise aus Methylcellulose, und/oder eine Sperrschicht, vorzugsweise aus Natriumsulfat, innerhalb der Schellack-Beschichtung enthalten.Cementitious system according to one of claims 13 or 14, characterized in that the accelerator particles additionally contain a diffusion control layer, preferably of methylcellulose, and / or a barrier layer, preferably of sodium sulphate, within the shellac coating. Zementäres System nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen, bezogen auf das anorganische Bindemittel, zu 0,1 bis 5,0 Gew.-%, vorzugsweise 0,3 bis 3,0 Gew.-% und insbesondere 0,5 bis 2,0 Gew.-% vorliegen.A cementitious system according to any one of claims 1 to 15, characterized in that the cross-linked shellac-coated accelerator particles, based on the inorganic binder, to 0.1 to 5.0 wt .-%, preferably 0.3 to 3.0 Wt .-% and in particular 0.5 to 2.0 wt .-% present. Zementäres System nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen in Form einer einkomponentigen Formulierung in der das anorganische Bindemittel enthaltenden zementären Komponente enthalten sind.A cementitious system according to any one of claims 1 to 16, characterized in that the cross-linked shellac-coated accelerator particles are contained in the form of a one-component formulation in the inorganic binder-containing cementitious component. Zementäres System nach Anspruch 17, dadurch gekennzeichnet, dass es sich um einen Trockenmörtel handelt.Cementitious system according to claim 17, characterized in that it is a dry mortar. Zementäres System nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die mit quervernetztem Schellack beschichteten Beschleuniger-Teilchen in einer von der das anorganische Bindemittel enthaltenden zementären Komponente getrennt vorgehaltenen Additiv-Komponente vorliegen.A cementitious system according to any one of claims 1 to 16, characterized in that the accelerator particles coated with crosslinked shellac are present in an additive component separately held by the cementitious component containing the inorganic binder. Verwendung der Additiv-Komponente nach Anspruch 19 zur Härtung der das anorganische Bindemittel enthaltenden zementären Komponente.Use of the additive component according to claim 19 for curing the cementitious component containing the inorganic binder. Verwendung der Additiv-Komponente nach Anspruch 19 als Beschleuniger für das zementäre System gemäß der Definition eines der vorausgehenden Ansprüche 1 bis 19.Use of the additive component according to claim 19 as accelerator for the cementitious system according to the definition of one of the preceding claims 1 to 19. Zementschlämme, umfassend das zementäre System gemäß der Definition eines der Ansprüche 1 bis 19 und Wasser.A cement slurry comprising the cementitious system as defined in any one of claims 1 to 19 and water. Zementschlämme nach Anspruch 22 mit einem Wasser/Zement-Wert (w/z) von 0,1 bis 1,0, vorzugsweise von 0,2 bis 0,7 und insbesondere von 0,3 bis 0,6.Cement slurry according to claim 22 having a water / cement value (w / c) of from 0.1 to 1.0, preferably from 0.2 to 0.7 and in particular from 0.3 to 0.6.
EP13171949.4A 2013-06-14 2013-06-14 Cement system, comprising accelerator particles coated with cross-linked shellac Withdrawn EP2813480A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP13171949.4A EP2813480A1 (en) 2013-06-14 2013-06-14 Cement system, comprising accelerator particles coated with cross-linked shellac
ES14725453T ES2802258T3 (en) 2013-06-14 2014-05-21 Cementitious system comprising accelerator particles coated with cross-linked shellac
PCT/EP2014/060406 WO2014198505A1 (en) 2013-06-14 2014-05-21 Cementitious system comprising accelerator particles coated with crosslinked shellac
BR112015031159-8A BR112015031159B1 (en) 2013-06-14 2014-05-21 cement system
US14/893,194 US9428419B2 (en) 2013-06-14 2014-05-21 Cementitious system comprising accelerator particles coated with crosslinked shellac
MX2015017008A MX2015017008A (en) 2013-06-14 2014-05-21 Cementitious system comprising accelerator particles coated with crosslinked shellac.
CA2914239A CA2914239C (en) 2013-06-14 2014-05-21 Cementitious system comprising accelerator particles coated with crosslinked shellac
AU2014280481A AU2014280481B2 (en) 2013-06-14 2014-05-21 Cementitious system comprising accelerator particles coated with crosslinked shellac
JP2016518894A JP6448630B2 (en) 2013-06-14 2014-05-21 Cement system containing accelerator particles coated with cross-linked shellac
CN201480033786.5A CN105308000B (en) 2013-06-14 2014-05-21 Cement system comprising accelerator particles coated with cross-linked shellac
EP14725453.6A EP3008030B1 (en) 2013-06-14 2014-05-21 Cementitious system comprising accelerator particles coated with crosslinked shellac

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13171949.4A EP2813480A1 (en) 2013-06-14 2013-06-14 Cement system, comprising accelerator particles coated with cross-linked shellac

Publications (1)

Publication Number Publication Date
EP2813480A1 true EP2813480A1 (en) 2014-12-17

Family

ID=48672396

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13171949.4A Withdrawn EP2813480A1 (en) 2013-06-14 2013-06-14 Cement system, comprising accelerator particles coated with cross-linked shellac
EP14725453.6A Active EP3008030B1 (en) 2013-06-14 2014-05-21 Cementitious system comprising accelerator particles coated with crosslinked shellac

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14725453.6A Active EP3008030B1 (en) 2013-06-14 2014-05-21 Cementitious system comprising accelerator particles coated with crosslinked shellac

Country Status (10)

Country Link
US (1) US9428419B2 (en)
EP (2) EP2813480A1 (en)
JP (1) JP6448630B2 (en)
CN (1) CN105308000B (en)
AU (1) AU2014280481B2 (en)
BR (1) BR112015031159B1 (en)
CA (1) CA2914239C (en)
ES (1) ES2802258T3 (en)
MX (1) MX2015017008A (en)
WO (1) WO2014198505A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2791076T3 (en) * 2011-12-16 2018-01-22 Construction Research & Technology Gmbh PROCEDURE FOR MANUFACTURING SHELLAK COATED PARTICLES OF ACTIVE INGREDIENTS WITH CONTROLLED RELEASE CHARACTERISTICS AT HIGH PH VALUES.
EP2842923A1 (en) * 2013-09-03 2015-03-04 HeidelbergCement AG Binder comprising calcium sulfoaluminate cement and magnesium compound
US10894911B2 (en) * 2015-07-08 2021-01-19 Halliburton Energy Services, Inc. Controlled activation of extended-life cement compositions
CN107759232A (en) * 2016-08-19 2018-03-06 张丽媛 A kind of lining repairing material for rotary kiln
WO2018229913A1 (en) * 2017-06-14 2018-12-20 日立化成株式会社 Additive for concrete and method for manufacturing additive for concrete
WO2018230574A1 (en) * 2017-06-14 2018-12-20 日立化成株式会社 Additive for concrete and method for manufacturing additive for concrete
JP7164379B2 (en) * 2018-09-27 2022-11-01 株式会社フジタ STRUCTURE AND METHOD OF MANUFACTURE THE SAME
CN109896771B (en) * 2019-04-25 2021-03-02 杨炎轶 A kind of alkali-free liquid accelerator and preparation method thereof
CN112430043A (en) * 2020-12-11 2021-03-02 深圳市恒星建材有限公司 High polymer environment-friendly recycled concrete and preparation method thereof
CN113651548B (en) * 2021-09-28 2022-10-18 中南大学 Ca/Al layered double hydroxide carbonate-based cementing material and preparation method and application thereof
CN114702277B (en) * 2022-03-18 2022-09-20 石家庄市易达恒联路桥材料有限公司 Prestressed duct grouting material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985005351A1 (en) * 1984-05-10 1985-12-05 Stichting Iwl A method for the manufacture of insulating, porous, shaped articles and walls and parts of buildings, made with such articles
DE3704783A1 (en) * 1987-02-16 1988-08-25 Hoerling Ludwig Chem Process for producing expanding mortar mixtures
US20030234103A1 (en) * 2002-06-20 2003-12-25 Jesse Lee Method for treating subterranean formation
WO2004000953A1 (en) * 2002-06-19 2003-12-31 Thor Gmbh Coating material with biocide microcapsules
WO2013087391A1 (en) * 2011-12-16 2013-06-20 Construction Research & Technology Gmbh Shellac-coated particles of active ingredients with controlled release properties at high ph-values, process for their manufacture and use thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909444A (en) 1971-08-05 1975-09-30 Ncr Co Microcapsule
GB1579356A (en) 1977-07-12 1980-11-19 Standard Oil Co Process and composition for cementing casing in well
FR2464227B1 (en) 1979-09-04 1985-09-20 Cordi Coord Dev Innovation MINERAL POLYMER
FR2489291A1 (en) 1980-09-03 1982-03-05 Davidovits Joseph MINERAL POLYMERIC COMPOUND AND PROCESS FOR OBTAINING THE SAME
US4509985A (en) 1984-02-22 1985-04-09 Pyrament Inc. Early high-strength mineral polymer
US4810534A (en) * 1985-10-16 1989-03-07 General Mills, Inc. Methods for preparing a low water permeability, edible film
ZA925701B (en) 1991-08-08 1993-04-13 Bst Holdings Pty Ltd Lightweight concrete.
KR970008262B1 (en) 1993-10-12 1997-05-22 주식회사 엘지화학 Spherical Regenerative Capsule and Manufacturing Method Thereof
US6620431B1 (en) 2000-04-17 2003-09-16 Charles Signorino Shellac film coatings providing release at selected pH and method
JP4636718B2 (en) * 2001-03-27 2011-02-23 住友大阪セメント株式会社 Method for producing hardened concrete
US6787234B2 (en) 2002-05-15 2004-09-07 Oms Investments, Inc. Triggered start products and processes for the production and use thereof
BR0313749A (en) 2002-08-23 2005-07-19 James Hardie Int Finance Bv Synthetic Hollow Microspheres
JP2005213093A (en) * 2004-01-29 2005-08-11 Taiheiyo Cement Corp Chemical-releasable grain and cement composition containing the same
DE602005002937T2 (en) * 2004-03-19 2008-07-31 James Hardie International Finance B.V. MULTIMODE ACCELERATOR FOR CEMENT MATERIALS
JP2006321685A (en) * 2005-05-19 2006-11-30 Yuzuru Kuramoto Microencapsulated concrete-mixing type cement crystal forming and proliferating accelerator, and method of forming and proliferating cement crystal using the same
RU2307145C1 (en) 2006-02-08 2007-09-27 Общество с ограниченной ответственностью "Цементные технологии" Method for controlling hardening speed of cement solutions
GB2445086B (en) 2006-12-21 2009-08-19 Schlumberger Holdings Activation mechanism applicable to oilfield chemical products
JP5364391B2 (en) 2009-02-03 2013-12-11 電気化学工業株式会社 Encapsulated cement admixture and cement composition
US20110002986A1 (en) 2009-07-02 2011-01-06 Hercules Incorporated Stable Shellac Enteric Coating Formulation for Nutraceutical and Pharmaceutical Dosage Forms
US8047282B2 (en) 2009-08-25 2011-11-01 Halliburton Energy Services Inc. Methods of sonically activating cement compositions
MX342008B (en) 2009-11-26 2016-09-09 Construction Research & Technology Gmbh Inorganic binder system for the production of chemically resistant construction chemistry products.
CN102351459B (en) * 2011-07-15 2013-10-16 清华大学 Preparation method of sustained-release water reducer microcapsule

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985005351A1 (en) * 1984-05-10 1985-12-05 Stichting Iwl A method for the manufacture of insulating, porous, shaped articles and walls and parts of buildings, made with such articles
DE3704783A1 (en) * 1987-02-16 1988-08-25 Hoerling Ludwig Chem Process for producing expanding mortar mixtures
WO2004000953A1 (en) * 2002-06-19 2003-12-31 Thor Gmbh Coating material with biocide microcapsules
US20030234103A1 (en) * 2002-06-20 2003-12-25 Jesse Lee Method for treating subterranean formation
WO2013087391A1 (en) * 2011-12-16 2013-06-20 Construction Research & Technology Gmbh Shellac-coated particles of active ingredients with controlled release properties at high ph-values, process for their manufacture and use thereof

Also Published As

Publication number Publication date
WO2014198505A1 (en) 2014-12-18
BR112015031159A2 (en) 2017-07-25
US9428419B2 (en) 2016-08-30
JP6448630B2 (en) 2019-01-09
CA2914239C (en) 2021-09-21
CA2914239A1 (en) 2014-12-18
BR112015031159B1 (en) 2020-12-08
ES2802258T3 (en) 2021-01-18
CN105308000B (en) 2018-08-10
JP2016521672A (en) 2016-07-25
CN105308000A (en) 2016-02-03
AU2014280481A1 (en) 2016-01-07
US20160122245A1 (en) 2016-05-05
MX2015017008A (en) 2016-04-25
AU2014280481B2 (en) 2017-06-22
EP3008030B1 (en) 2020-04-08
EP3008030A1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
EP2813480A1 (en) Cement system, comprising accelerator particles coated with cross-linked shellac
EP2297061B1 (en) Mixture, in particular construction material mixture containing furnace slag
EP3215474B1 (en) Method for the production of granules from cement compositions
EP1964824A1 (en) Setting and hardening accelerator for hydraulic binders and method for its manufacture
EP1608604B1 (en) Powdery building compound
WO2008098962A2 (en) Silicic acid-containing solidification and setting accelerator for hydraulic binders, and method for the production thereof
WO2015173213A1 (en) Stabilized solidification and setting accelerator for hydraulic binders
EP3253721B1 (en) Expanded glass granular material and method for producing the same
EP2695865B1 (en) Mineral adhesive agent and method for its manufacture
EP2066595B1 (en) Binder comprising portland cement and lime hydrate
EP1072566B1 (en) Rapid hardening hydraulic binder mixture and process for its preparation
EP1314706B1 (en) Hydraulic binder
EP1520843B1 (en) Hydraulic binder
DE2953652C1 (en) Hydraulic inorganic mass
DE3001400C2 (en) Phosphate cement
DE1240457B (en) Process for the production of mortar with aqueous silica sol as a binder
EP2498595B1 (en) Method for producing animal litter
EP1440954B1 (en) Chromate reduced hydraulic binder
DE68910898T2 (en) Process for the production of porous forms.
DE967819C (en) Hydraulic binder and process for its manufacture
EP2730550A2 (en) Set retarder composition for gypsum cement mixtures
DE3206447A1 (en) Material for retarding the setting of cement, and process for the manufacture thereof
DE19610561A1 (en) Production of granulated binder for hydraulic building material
DE3232494A1 (en) Process for the preparation of free-flowing glaze compositions

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150618