EP2812581B1 - Pump with integrated heater - Google Patents
Pump with integrated heater Download PDFInfo
- Publication number
- EP2812581B1 EP2812581B1 EP13703053.2A EP13703053A EP2812581B1 EP 2812581 B1 EP2812581 B1 EP 2812581B1 EP 13703053 A EP13703053 A EP 13703053A EP 2812581 B1 EP2812581 B1 EP 2812581B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- heating elements
- outlet
- pump chamber
- impeller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F39/00—Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00
- D06F39/04—Heating arrangements
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L15/00—Washing or rinsing machines for crockery or tableware
- A47L15/42—Details
- A47L15/4214—Water supply, recirculation or discharge arrangements; Devices therefor
- A47L15/4225—Arrangements or adaption of recirculation or discharge pumps
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L15/00—Washing or rinsing machines for crockery or tableware
- A47L15/42—Details
- A47L15/4285—Water-heater arrangements
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F39/00—Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00
- D06F39/08—Liquid supply or discharge arrangements
- D06F39/083—Liquid discharge or recirculation arrangements
- D06F39/085—Arrangements or adaptations of pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/006—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by influencing fluid temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/426—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/584—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/586—Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/586—Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
- F04D29/5866—Cooling at last part of the working fluid in a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/586—Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
- F04D29/588—Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
Definitions
- the invention relates to a pump, as it can be used in particular for a water-conducting household appliance such as a dishwasher or a washing machine. Furthermore, the invention relates to a method for heating an aforementioned pump according to the invention.
- the invention has for its object to provide a pump mentioned above and a corresponding method for heating a pump with which problems of the prior art can be avoided, in particular with regard to calcification of a heated Pumpenschdung, at the same time the best possible heat coupling into the pumped liquid.
- the pump is designed as an impeller pump with a central water inlet to a rotating impeller to promote water in the radial direction from the impeller into a pump chamber surrounding the impeller annular.
- the pump chamber is bounded on its outside by an at least partially heated Pumpenschdung.
- the pump has an outlet at an axial distance from the impeller, which protrudes from the pump chamber wall, in particular in the tangential direction.
- the outlet can be axially spaced so far from the impeller that, viewed in the axial direction, it lies approximately at the height of the water inlet as an inlet.
- heating elements are or are provided on the pump chamber wall.
- the heating elements have in the axial direction of the pump to the outlet toward a decreasing performance with respect to the generated or resulting area performance. This means that in regions, the heat generation or heating effect of the heating elements is reduced in the axial direction from the impeller to the outlet.
- the area performance in the area of the pumping chamber in which the flow of the conveyed liquid is rather turbulent is higher in the lowest area of the pumping chamber close to the outlet from the impeller and in the transition to the area in which the flow then rather laminar, is less or in this area then only relatively low.
- This flow effect may assist the invention, but does not characterize the invention.
- the heating elements are Schichtanneiata. They may have a constant layer thickness and preferably be thick-film heating elements. Their power density is sufficiently large.
- a plurality of heating elements may be provided which extend substantially in the axial direction of the pump, in particular exactly in the axial direction.
- the heaters may have nearer to the impeller a smaller width or smaller cross-sections than at their end near the outlet and toward the outlet, respectively. Due to a smaller cross-section, the heating elements generate more heat in this area or have a higher heat output.
- the aforementioned reduction of the heating power can be made in the axial direction.
- it can be provided, in particular, that with individual heating elements the width or the cross section continuously increases along the axial direction towards the outlet.
- a thickness of the heating elements is advantageously chosen constant, so that the influence can be determined more accurately.
- the heating elements extend substantially transversely to the axial direction of the pump.
- they can advantageously each annularly substantially surround the pump chamber wall, for example circulate by about 300 ° and then with its two ends on connecting rails or feeder rails or the like. be connected or contacted as contacts.
- the width or the cross section of a single annular or semi-annular heating element remains the same.
- the width or the cross-section of successive heating elements in the axial direction towards the outlet increases, so that here as well the area performance of the heating on the pump chamber wall decreases in the axial direction towards the outlet. If the spacings of the heating elements in this axial direction are not too great, then a relatively continuous distribution of the area performance of the heating can be achieved, just decreasing towards the outlet.
- the one heating element which is closest to the outlet has the largest width or the largest cross-section.
- the lowest area performance of the heating is close to the outlet by arranging the single heating element with the lowest power in this area.
- the heating elements in turn extend substantially transversely to the axial direction to the outlet.
- they can surround the pump chamber wall in a ring-like manner as described above, ie in particular not completely circulate.
- the distance between the heating elements increases in the axial direction toward the outlet, while in the above-described variant of the invention, the distance was advantageously the same.
- the width of the heating elements themselves exceed significantly, can through the intervening lying pump chamber wall, which usually and advantageously consists of metal as a support for the heating elements, still a good and largely continuous distribution of the area performance can be achieved. This can thus decrease substantially continuously in the axial direction to the outlet.
- ring-shaped heating elements can be provided about four to twelve pieces, particularly advantageous six to ten pieces. Of the aforementioned heating elements extending essentially in the axial direction, a similar number can be provided.
- the formation of the pump chamber wall of a suitable material, in particular a metal such as one of DE 198 03 506 A1 known steel for thick-film applications, as a carrier for the heating elements is known in the art.
- a suitable material in particular a metal such as one of DE 198 03 506 A1 known steel for thick-film applications
- the formation of the heating elements in the thick-film process is also familiar to the person skilled in the art, and he can resort to methods known per se. The same applies to any existing insulating layers, protective layers or electrical contacts.
- the pump chamber wall can be heated with a plurality of distributed heating elements, which advantageously cover substantially the entire pump chamber wall, although they do not cover each area directly.
- the pump chamber wall is heated to a greater extent, in particular at the impeller outlet, than in the region of an outlet from the pump chamber wall, which is arranged in the axial direction away from the pump bottom.
- this is Outlet located at most far away from the pump bottom, so almost at the other end of the pump chamber or the Pumpenschdung.
- a change in the heating power can be at least a factor of 1.2 to 3, advantageously 1.5 to 2.5. This applies both to the electrical heating power or area performance and to the aforementioned dimensions of the individual heating elements in terms of width or thickness or conductor cross-section.
- a pump 11 according to the invention is shown in section, as they are of the construction essentially of the aforementioned DE 102007017271 A1 , to which reference is explicitly made in this respect, corresponds to a radial pump or impeller pump. It can be advantageously used in a dishwasher or a washing machine.
- the pump 11 has in the left region a pump housing 12 with inlet 13, outlet 14 and pump chamber 16. Close to a pump chamber bottom 17, a conventional impeller 18 is arranged as a rotor or impeller. It is driven by an unspecified pump motor 20.
- the pump chamber 16 is bounded or formed to the outside substantially by a metallic support tube 24, or on the outside thereof on an insulating layer 25 heating elements 26 are provided, so that a heating device 22 is formed.
- the support tube 24 is sealingly arranged by means of seals or sealing rings 21 in the pump housing.
- FIG. 10 is an enlarged plan view of a first embodiment of a heater 22a according to FIG Fig. 1 shown. It can be seen how 25 heating elements 26a are provided on the support tube 24 and on the outside thereof on an insulating layer. These heating elements 26a are all formed identically and extend in the direction of the axial flow component S of the water in the pump chamber 16 accordingly Fig. 1 , In this case, the heating elements 26a are not quite up to the lower and the upper edge of the support tube 24, so that this well Fig. 1 can be installed with the sealing rings 21.
- the heating elements 26a face downwardly to tapered starting portions 28a, which after about one-third of the length have reached a width which they then maintain at upper end portions 30a.
- the thickness of the heating elements 26a which are formed as thick-film heating elements, is the same everywhere.
- Fig. 2 It can be seen that due to the tapered initial regions 28a in the lower region of the heating device 22a more heating power is provided or more heat is generated.
- the heating power can be at least twice as high as in the upper Area near the end portions 30a, and thus the area performance can be almost twice as well.
- the heating elements 26b are designed such that they continuously widen in their longitudinal direction along the flow direction S from lower initial regions 28b to upper end regions 30b, which in each case bear against contacts 33 on the carrier 24 and the insulating layer 25, respectively.
- the smallest width in the lower starting region 28b and the largest width in the upper end region 30b corresponds approximately to those of FIG Fig. 2 ,
- the surface power is greater than in the upper region, the surface power, so to speak, substantially continuously decreasing along the axial flow component S, whereas in FIG Fig. 2 yes just below the dashed transition from the turbulent flow to the laminar with a jump or rather jumped.
- the heating elements 26c do not run along or in the direction of the axial flow component S, but perpendicular thereto, ie in the circumferential direction on the carrier tube 24. It can be seen that the heating elements 26c in the lower end are considerably narrower than the heating elements 26c at the upper end, So in the direction S, the width of the heating elements 26c increases from one to the next.
- the heating elements 26c according to Fig. 4 each have the same distance from each other.
- the width of the lowermost heating element 26c is less than half of the uppermost heating element 26c.
- a decreasing heating power is also provided here by the upwardly increasing width of the heating elements 26c. It follows, similar to the heaters according to the FIGS. 2 and 3 in that the area performance in the lower area is significantly higher than in the upper area, in particular at least twice as high.
- the increase in the width of the heating elements 26c from bottom to top along the axial flow component S may be uniform, for example, in each case by 20% to 30%.
- a heating device 22d accordingly Fig. 5 six heating elements 26 are provided, as well as otherwise already in the heater 22c according to Fig. 4 ,
- the bottom three heating elements 26d have the same width.
- heating elements 26d are provided, which are significantly wider than the lower three, in particular about twice as wide. Above this, a heating element 26d is provided, which in turn is significantly narrower, in particular approximately as narrow as the lower three heating elements 26d.
- the heating device 22d Fig. 5 the heat output of the individual heating elements 26d and thus, due to the same distance from each other, the area performance in the lower region of the heater 22d, in turn, similar to in FIG Fig. 4 , considerably larger than in the upper area. However, it has no or only a slight change along the axial flow component S in the lower region. This change is then more abrupt above the dashed line shown, namely towards about a halving the area performance.
- the surface output After reaching the upper end of the heating device 22d, the surface output then increases once more through the narrower uppermost heating element 26d, which in turn ensures a higher area output in the uppermost area.
- Out Fig. 1 can be seen that this is as close as possible to the outlet 14 from the pump 11, so that here again at the end trying to bring as much heat in the pumped water.
- the flow can change from laminar to turbulent, so that an increased heat loss is possible.
- Fig. 4 Unlike in Fig. 4 is also in the Fig. 5 the electrical contacting of the heating elements 26d shown via the two contacts 33d.
- the contacts 33d are elongated strips as contact fields, advantageously made of very good electrically conductive material such as silver conductive paste or the like. All heating elements 26d are thus connected in parallel, which also applies to the embodiments of Fig. 4 . 6 and 7 applies.
- the heating elements 26 of the heaters 22a and 22b of FIGS. 2 and 3 were connected in series. However, also in the heaters according to the Fig. 4 to 7 Thickness and composition of the heating elements equal or constant.
- a heater 22e in a further alternative of a heater 22e according to Fig. 6 have the respective heating elements 26e again at the same distance from each other.
- Two lower heating elements 26e have the same width and extend approximately to the transition shown in dashed lines zoom.
- Two heating elements 26e arranged above it are considerably wider, in particular approximately twice as wide.
- the area performance due to the lower heating power provided is significantly smaller than in the lower region, there is also the effect of the invention in the axial direction along the flow direction S of the pump 11 to the outlet 14 toward decreasing area performance.
- Fig. 7 is a further alternative of a heater 22f shown with heating elements 26f, which in turn have all the same distance from each other.
- Two lower heating elements 26f correspond in width to those of the heater 22e of FIG Fig. 6 and they extend to roughly the dashed transition between turbulent and laminar flow. Above this, a wide heating element 26f is arranged, and above this again a narrow heating element 26f.
- the area performance is relatively large, then in the region of the wide heating element 26f above the dashed junction shown the area performance decreases, and then up to increase again.
- an effect similar to the heater 22d according to Fig. 5 be reached, which has already been explained above.
- Fig. 8 another alternative of a heater 22g is shown.
- the distance between them but each along the axial flow component S is greater, ie increases.
- all heating elements 26g produce the same heat output.
- the surface power is reduced in the direction S according to the invention by the respective increasing distance from each other. This is done relatively evenly, since the distances are also, so to speak, evenly larger, for example, each increase by 20% to 30%. It can be seen that the representation of the Fig. 8 in about an inverse representation of those Fig. 4 is where the individual heating elements 26c each became uniformly wider, while the intervals between them remained the same.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Textile Engineering (AREA)
- Water Supply & Treatment (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die Erfindung betrifft eine Pumpe, wie sie insbesondere für ein wasserführendes Haushaltsgerät wie eine Geschirrspülmaschine oder eine Waschmaschine verwendet werden kann. Des Weiteren betrifft die Erfindung ein Verfahren zum Beheizen einer vorgenannten erfindungsgemäßen Pumpe.The invention relates to a pump, as it can be used in particular for a water-conducting household appliance such as a dishwasher or a washing machine. Furthermore, the invention relates to a method for heating an aforementioned pump according to the invention.
Beispielsweise aus der
Aus der
Der Erfindung liegt die Aufgabe zugrunde, eine eingangs genannte Pumpe sowie ein entsprechendes Verfahren zum Beheizen einer Pumpe zu schaffen, mit denen Probleme des Standes der Technik vermieden werden können, insbesondere hinsichtlich Verkalkung einer beheizten Pumpenkammerwandung, bei gleichzeitig möglichst guter Wärmeeinkopplung in die geförderte Flüssigkeit.The invention has for its object to provide a pump mentioned above and a corresponding method for heating a pump with which problems of the prior art can be avoided, in particular with regard to calcification of a heated Pumpenkammerwandung, at the same time the best possible heat coupling into the pumped liquid.
Gelöst wird diese Aufgabe durch eine Pumpe mit den Merkmalen des Anspruchs 1 sowie ein Verfahren zum Beheizen einer Pumpe mit den Merkmalen des Anspruchs 8. Vorteilhafte sowie bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der weiteren Ansprüche und werden im Folgenden näher erläutert.This object is achieved by a pump with the features of claim 1 and a method for heating a pump with the features of claim 8. Advantageous and preferred embodiments of the invention are the subject of further claims and are explained in more detail below.
Die Pumpe ist als Impellerpumpe ausgebildet mit einem zentralen Wasserzulauf auf einen rotierenden Impeller, um Wasser in radialer Richtung aus dem Impeller in eine den Impeller ringartig umgebende Pumpenkammer zu fördern. Die Pumpenkammer ist an ihrer Außenseite durch eine zumindest teilweise beheizte Pumpenkammerwandung begrenzt. Des Weiteren weist die Pumpe im Endbereich der Pumpenkammer einen Auslass mit axialem Abstand zu dem Impeller auf, der insbesondere in tangentialer Richtung aus von der Pumpenkammerwandung abgeht bzw. absteht. Vorteilhaft kann der Auslass so weit von dem Impeller axial beabstandet sein, dass er in axialer Richtung gesehen etwa auf der Höhe des Wasserzulaufs als Einlass liegt.The pump is designed as an impeller pump with a central water inlet to a rotating impeller to promote water in the radial direction from the impeller into a pump chamber surrounding the impeller annular. The pump chamber is bounded on its outside by an at least partially heated Pumpenkammerwandung. Furthermore, in the end region of the pump chamber, the pump has an outlet at an axial distance from the impeller, which protrudes from the pump chamber wall, in particular in the tangential direction. Advantageously, the outlet can be axially spaced so far from the impeller that, viewed in the axial direction, it lies approximately at the height of the water inlet as an inlet.
Erfindungsgemäß ist vorgesehen, dass an der Pumpenkammerwandung Heizelemente vorgesehen sind bzw. angeordnet sind. Die Heizelemente weisen in axialer Richtung der Pumpe zum Auslass hin eine geringer werdende Leistung bezüglich der erzeugten bzw. resultierenden Flächenleistung auf. Dies bedeutet, dass bereichsweise die Wärmeerzeugung bzw. Heizwirkung der Heizelemente geringer wird in axialer Richtung vom Impeller zum Auslass.According to the invention, heating elements are or are provided on the pump chamber wall. The heating elements have in the axial direction of the pump to the outlet toward a decreasing performance with respect to the generated or resulting area performance. This means that in regions, the heat generation or heating effect of the heating elements is reduced in the axial direction from the impeller to the outlet.
Mit der Erfindung kann erreicht werden, dass in dem Bereich, wo das Wasser aus dem Impeller heraustretend noch kälter ist, eine größere Heizleistung eingekoppelt werden kann. In das dann im axialen Verlauf zum Auslass hinströmende und in dieser Richtung wärmer werdende Wasser kann dann nicht mehr so viel Heizleistung eingekoppelt werden bzw. es kann dann die Gefahr von lokalen Überhitzungen bestehen, welche im Wasser zu einer verstärkten Ausfällung von enthaltenem Kalk odgl. führen kann und an den Heizelementen bzw. der Pumpenkammerwandung selbst unerwünscht ist. So können auch lokale Überhitzungsstellen vermieden werden. Vor allem durch eine verringerte Überhitzung des Wassers kann eine Verkalkung an der Pumpenkammerwandung verringert werden, welche allgemein störend ist und dann wiederum den Wirkungsgrad der Beheizung verschlechtert.With the invention can be achieved that in the area where the water is emerging from the impeller even colder, a larger heat output can be coupled. In the then flowing in the axial flow to the outlet and in this direction becoming warmer water can not be coupled so much heating power or it may then be the risk of local overheating, which in the water to increased precipitation of contained lime odgl. can lead and is undesirable on the heating elements or the Pumpenkammerwandung itself. So local overheating points can be avoided. Above all, by a reduced overheating of the water, a calcification can be reduced to the Pumpenkammerwandung, which is generally disturbing and then in turn worsens the efficiency of heating.
Des Weiteren ist es möglich, dass die Flächenleistung in dem Bereich der Pumpenkammer, in dem die Strömung der geförderten Flüssigkeit eher turbulent ist im untersten Bereich der Pumpenkammer nahe am Auslass aus dem Impeller, höher ist und im Übergang zu dem Bereich, in dem die Strömung dann eher laminar ist, geringer wird bzw. in diesem Bereich dann erst einmal relativ geringer wird. Dieser Strömungseffekt kann die Erfindung unterstützen, jedoch kennzeichnet er die Erfindung nicht.Furthermore, it is possible that the area performance in the area of the pumping chamber in which the flow of the conveyed liquid is rather turbulent is higher in the lowest area of the pumping chamber close to the outlet from the impeller and in the transition to the area in which the flow then rather laminar, is less or in this area then only relatively low. This flow effect may assist the invention, but does not characterize the invention.
Bei der Erfindung sind die Heizelemente Schichtheizelemente. Sie können eine gleichbleibende Schichtdicke aufweisen und vorzugsweise Dickschichtheizelemente sein. Deren Leistungsdichte ist ausreichend groß.In the invention, the heating elements are Schichtheizelemente. They may have a constant layer thickness and preferably be thick-film heating elements. Their power density is sufficiently large.
In weiterer Ausgestaltung der Erfindung können mehrere Heizelemente vorgesehen sein, die im Wesentlichen in axialer Richtung der Pumpe verlaufen, insbesondere genau in axialer Richtung. In dieser Richtung gesehen können die Heizelemente am Anfang nahe am Impeller eine geringere Breite bzw. geringere Querschnitte aufweisen als an ihrem Ende nahe beim Auslass bzw. in Richtung auf den Auslass zu. Durch einen geringeren Querschnitt erzeugen die Heizelemente in diesem Bereich mehr Wärme bzw. weisen eine größere Heizleistung auf. So kann beispielsweise die vorgenannte Verringerung der Heizleistung in axialer Richtung vorgenommen werden. Dabei kann insbesondere vorgesehen sein, dass bei einzelnen Heizelementen die Breite bzw. der Querschnitt kontinuierlich zunimmt entlang der axialen Richtung zum Auslass hin. Hierbei wird vorteilhaft eine Dicke der Heizelemente konstant gewählt, so dass die Einflussnahme genauer bestimmt werden kann.In a further embodiment of the invention, a plurality of heating elements may be provided which extend substantially in the axial direction of the pump, in particular exactly in the axial direction. Viewed in this direction, the heaters may have nearer to the impeller a smaller width or smaller cross-sections than at their end near the outlet and toward the outlet, respectively. Due to a smaller cross-section, the heating elements generate more heat in this area or have a higher heat output. Thus, for example, the aforementioned reduction of the heating power can be made in the axial direction. In this case, it can be provided, in particular, that with individual heating elements the width or the cross section continuously increases along the axial direction towards the outlet. In this case, a thickness of the heating elements is advantageously chosen constant, so that the influence can be determined more accurately.
In einer alternativen grundsätzlichen Ausgestaltung der Erfindung kann vorgesehen sein, dass die Heizelemente im Wesentlichen quer zur axialen Richtung der Pumpe verlaufen. Dabei können sie vorteilhaft jeweils ringartig im Wesentlichen die Pumpenkammerwandung umgeben, beispielsweise um etwa 300° umlaufen und dann mit ihren beiden Enden an Verbindungsschienen oder Zuleitungsschienen odgl. als Kontaktierungen angeschlossen bzw. kontaktiert sein. Dabei kann vorteilhaft vorgesehen sein, dass die Breite bzw. der Querschnitt eines einzelnen ringartigen oder teilringartigen Heizelements gleich bleibt. Die Breite bzw. der Querschnitt aufeinanderfolgender Heizelemente in axialer Richtung zum Auslass hin nimmt jedoch zu, so dass auch hier bereichsweise die Flächenleistung der Beheizung an der Pumpenkammerwandung in axialer Richtung zum Auslass hin abnimmt. Wenn die Abstände der Heizelemente in dieser axialen Richtung nicht zu groß sind, kann so auch eine relativ kontinuierliche Verteilung der Flächenleistung der Beheizung erreicht werden, eben abnehmend in Richtung zum Auslass hin.In an alternative basic embodiment of the invention it can be provided that the heating elements extend substantially transversely to the axial direction of the pump. In this case, they can advantageously each annularly substantially surround the pump chamber wall, for example circulate by about 300 ° and then with its two ends on connecting rails or feeder rails or the like. be connected or contacted as contacts. It can be advantageously provided that the width or the cross section of a single annular or semi-annular heating element remains the same. However, the width or the cross-section of successive heating elements in the axial direction towards the outlet increases, so that here as well the area performance of the heating on the pump chamber wall decreases in the axial direction towards the outlet. If the spacings of the heating elements in this axial direction are not too great, then a relatively continuous distribution of the area performance of the heating can be achieved, just decreasing towards the outlet.
Bei der vorgenannten Ausgestaltung der Erfindung kann vorgesehen sein, dass dasjenige Heizelement, welches am nächsten beim Auslass ist, die größte Breite bzw. den größten Querschnitt aufweist. Damit kann erreicht werden, dass tatsächlich die geringste Flächenleistung der Beheizung nahe am Auslass vorliegt durch Anordnen des einzelnen Heizelements mit der geringsten Leistung in diesem Bereich.In the aforementioned embodiment of the invention can be provided that the one heating element which is closest to the outlet, has the largest width or the largest cross-section. Thus, it can be achieved that in fact the lowest area performance of the heating is close to the outlet by arranging the single heating element with the lowest power in this area.
In weiterer Ausgestaltung der Erfindung als zusätzliche grundsätzliche Alternative kann vorgesehen sein, dass die Heizelemente wiederum im Wesentlichen quer zur axialen Richtung zum Auslass hin verlaufen. Ähnlich wie zuvor genannt können sie dabei die Pumpenkammerwandung ringartig umgeben wie zuvor beschrieben, insbesondere also nicht ganz umlaufen. Hier ist dann vorgesehen, dass der Abstand der Heizelemente zueinander in axialer Richtung zum Auslass hin zunimmt, während bei der vorbeschriebenen Erfindungsvariante der Abstand vorteilhaft gleich war. Somit kann hier durch im Wesentlichen gleiche bzw. identische Heizelemente, die einfach mit mehr Abstand zueinander angeordnet werden, ebenfalls eine in axialer Richtung geringer werdende Flächenleistung der Beheizung erreicht werden. Solange die Abstände der Heizelemente nicht zu groß werden, also beispielsweise die Breite der Heizelemente selbst deutlich übersteigen, kann durch die dazwischen liegende Pumpenkammerwandung, welche als Träger für die Heizelemente üblicherweise und vorteilhaft aus Metall besteht, noch eine gute und weitgehend kontinuierliche Verteilung der Flächenleistung erreicht werden. Diese kann also im Wesentlichen kontinuierlich in axialer Richtung zum Auslass hin abnehmen.In a further embodiment of the invention as an additional basic alternative can be provided that the heating elements in turn extend substantially transversely to the axial direction to the outlet. As mentioned above, they can surround the pump chamber wall in a ring-like manner as described above, ie in particular not completely circulate. Here it is then provided that the distance between the heating elements increases in the axial direction toward the outlet, while in the above-described variant of the invention, the distance was advantageously the same. Thus, by means of substantially identical or identical heating elements, which are simply arranged with more distance from each other, an area-effect heating which decreases in the axial direction can likewise be achieved. As long as the distances of the heating elements are not too large, so for example, the width of the heating elements themselves exceed significantly, can through the intervening lying pump chamber wall, which usually and advantageously consists of metal as a support for the heating elements, still a good and largely continuous distribution of the area performance can be achieved. This can thus decrease substantially continuously in the axial direction to the outlet.
Von den genannten ringartig ausgebildeten Heizelementen können etwa vier bis zwölf Stück vorgesehen sein, besonders vorteilhaft sechs bis zehn Stück. Von den vorgenannten, im Wesentlichen in axialer Richtung verlaufenden Heizelementen können ähnlich viele vorgesehen sein.Of the above ring-shaped heating elements can be provided about four to twelve pieces, particularly advantageous six to ten pieces. Of the aforementioned heating elements extending essentially in the axial direction, a similar number can be provided.
Die Ausbildung der Pumpenkammerwandung aus einem geeigneten Material, insbesondere einem Metall wie einem aus der
Vorteilhaft ist vorgesehen, dass sämtliche Heizelemente der Beheizung der Pumpenkammerwandung gleichzeitig angesteuert werden, besonders vorteilhaft über einen einzigen Versorgungsanschluss.Advantageously, it is provided that all heating elements of the heating of the pump chamber wall are controlled simultaneously, particularly advantageously via a single supply connection.
Somit kann also mit der Erfindung als Heizverfahren erreicht werden, dass beim eingangs genannten Verfahren die Pumpenkammerwandung beheizt werden kann mit mehreren verteilten Heizelementen, die vorteilhaft im Wesentlichen die gesamte Pumpenkammerwandung überdecken, wenngleich sie nicht jeden Bereich direkt bedecken. Im Bereich eines Pumpenbodens unter dem Impeller wird die Pumpenkammerwandung stärker beheizt, insbesondere am Impellerauslass, als im Bereich eines Auslasses aus der Pumpenkammerwandung, der in axialer Richtung weg von dem Pumpenboden angeordnet ist. Insbesondere ist dieser Auslass maximal weit weg von dem Pumpenboden angeordnet, also quasi am anderen Ende der Pumpenkammer bzw. der Pumpenkammerwandung.Thus, it can thus be achieved with the invention as a heating method, that the pump chamber wall can be heated with a plurality of distributed heating elements, which advantageously cover substantially the entire pump chamber wall, although they do not cover each area directly. In the region of a pump bottom under the impeller, the pump chamber wall is heated to a greater extent, in particular at the impeller outlet, than in the region of an outlet from the pump chamber wall, which is arranged in the axial direction away from the pump bottom. In particular, this is Outlet located at most far away from the pump bottom, so almost at the other end of the pump chamber or the Pumpenkammerwandung.
Eine Veränderung der Heizleistung kann mindestens den Faktor 1,2 bis 3 betragen, vorteilhaft 1,5 bis 2,5. Dies gilt sowohl für die elektrische Heizleistung bzw. Flächenleistung als auch für die vorgenannten Abmessungen der einzelnen Heizelemente hinsichtlich Breite oder Dicke bzw. Leiterquerschnitt.A change in the heating power can be at least a factor of 1.2 to 3, advantageously 1.5 to 2.5. This applies both to the electrical heating power or area performance and to the aforementioned dimensions of the individual heating elements in terms of width or thickness or conductor cross-section.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen schematisch dargestellt und werden im Folgenden näher erläutert. In den Zeichnungen zeigen:
- Fig. 1
- einen Schnitt durch eine erfindungsgemäße Pumpe mit einer rohrförmigen Heizeinrichtung mit Heizelementen auf der Außenseite,
- Fig. 2 bis 8
- Draufsichten auf alternative Heizeinrichtungen entsprechend
Fig. 1 mit unterschiedlich ausgebildeten und verlaufenden Heizelementen.
- Fig. 1
- a section through a pump according to the invention with a tubular heater with heating elements on the outside,
- Fig. 2 to 8
- Top views of alternative heating according to
Fig. 1 with differently shaped and extending heating elements.
In
Die Pumpenkammer 16 wird nach außen im Wesentlichen von einem metallischen Trägerrohr 24 begrenzt bzw. gebildet, bzw. auf dessen Außenseite auf einer Isolierschicht 25 Heizelemente 26 vorgesehen sind, so dass eine Heizeinrichtung 22 gebildet wird. Das Trägerrohr 24 ist mittels Dichtungen bzw. Dichtringen 21 im Pumpengehäuse dichtend angeordnet.The
In
Die Heizelemente 26a weisen nach unten zu verjüngte Anfangsbereiche 28a auf, die nach etwa einem Drittel der Länge eine Breite erreicht haben, die sie dann beibehalten zu oberen Endbereichen 30a. Die Dicke der Heizelemente 26a, welche als Dickschicht-Heizelemente ausgebildet sind, ist dabei überall gleich. Durch die Verringerung der Breite am unteren Ende der Anfangsbereiche 28a, die insbesondere weniger als die Hälfte der hauptsächlichen Breite beträgt, die wiederum bis zu den oberen Endbereichen 30a verläuft, wird hier eine starke Erhöhung der Leistung bzw. der erzeugten Wärmeenergie erreicht. Ein Übergang der zuvor genannten turbulenten Strömung des geförderten Wassers in der Pumpenkammer 16 außerhalb des Impellers 18 an der Innenseite der Heizeinrichtung 22 in eine laminare Strömung ist rechts neben der Heizeinrichtung 22a durch eine Strichlierung angedeutet. Allerdings ist der Übergang nicht so scharf bzw. abrupt wie die Strichlierung andeutet, sondern nimmt einen bestimmten Bereich ein, in dem sich die Strömung allmählich von turbulent zu laminar ändert.The
Dieser Übergang verläuft also etwas oberhalb desjenigen Bereichs, ab dem die Heizelemente 26a gleichbleibende Breite erreicht haben bzw. ihre Breite und somit ihre Heizleistung nicht mehr verändern. Das bedeutet, dass im Bereich der laminaren Strömung eine geringere Flächenleistung vorliegt als im Bereich der turbulenten. Darüber hinaus ist die Flächenleistung im Bereich der laminaren Strömung im Wesentlichen konstant in Richtung der axialen Strömungskomponente.This transition thus runs slightly above that range from which the
Es ist aus
Bei der weiteren Alternative einer Heizeinrichtung 22b gemäß
Nicht dargestellt, für den Fachmann jedoch leicht vorstellbar sind weitere Varianten des Verlaufs der Breite der Heizelemente 26 gemäß den
In der weiteren Alternative einer Heizeinrichtung 22c gemäß
Insgesamt beträgt die Breite des untersten Heizelements 26c weniger als die Hälfte des obersten Heizelements 26c. Somit ist auch hier durch die nach oben zu ansteigende Breite der Heizelemente 26c eine jeweils abnehmende Heizleistung vorgesehen. Daraus folgt, ähnlich wie für die Heizeinrichtungen gemäß der
Beim weiteren Ausführungsbeispiel einer Heizeinrichtung 22d entsprechend
Oberhalb des strichliert dargestellten Übergangs von der turbulenten zur laminaren Strömung sind zwei Heizelemente 26d vorgesehen, die deutlich breiter sind als die unteren drei, insbesondere etwa doppelt so breit. Oberhalb davon ist ein Heizelement 26d vorgesehen, welches wiederum deutlich schmaler ist, insbesondere etwa so schmal wie die unteren drei Heizelemente 26d.Above the dashed line shown transition from the turbulent to the laminar flow two
Somit ist also bei der Heizeinrichtung 22d gemäß
Nach ganz oben zum oberen Ende der Heizeinrichtung 22d zu steigt die Flächenleistung dann noch einmal an durch das schmalere oberste Heizelement 26d, welches eben wiederum für eine im obersten Bereich erhöhte Flächenleistung sorgt. Aus
Anders als in
Bei einer weiteren Alternative einer Heizeinrichtung 22e gemäß
In
In
Claims (9)
- Pump (11), in particular for a water-conducting domestic appliance such as a dishwasher or a washing machine, the pump (11) being configured as an impeller pump having a central water inflow to a rotating impeller (18) for conveying the water in the radial direction out of the impeller (18) into a pump chamber (16) which surrounds the impeller (18) in a ring-like manner and is delimited on its outer side by an at least partially heated pump chamber wall, the pump (11) having an outlet (14) in the end region of the pump chamber (16) at an axial spacing from the impeller (18), in particular with an outlet (14) in the tangential direction from the pump chamber wall, wherein heating elements (26) are arranged on the pump chamber wall, wherein the heating elements are film heating elements,
characterized in that
the heating elements (26) are configured such that they have a decreasing output or area output in the axial direction of the pump (11) toward the outlet (14). - Pump (11) according to claim 1, characterized in that the heating elements (26) have a constant film thickness, preferably are thick film heating elements.
- Pump (11) according to claim 1 or 2, characterized in that a plurality of heating elements (26) run essentially in the axial direction of the pump (11) and, in this direction, have a smaller width or smaller cross section at the start close to the impeller (18) than at the end toward the outlet (14).
- Pump according to claim 3, characterized in that in the case of the individual heating elements (26), the width or the cross section increases continuously along the axial direction toward the outlet (14).
- Pump (11) according to claim 1 or 2, characterized in that the heating elements (26) run essentially transversely with respect to the axial direction toward the outlet (14), in particular in each case so as to surround the pump chamber wall substantially in a ring-like manner, the width or the cross section of an individual heating element (26) remaining unchanged and the width or the cross section of successive heating elements (26) increasing in the axial direction toward the outlet (14).
- Pump (11) according to claim 5, characterized in that the heating element (26) which is closest to the outlet (14) has the greatest width or the greatest cross section.
- Pump (11) according to claim 1 or 2, characterized in that the heating elements (26) run substantially transversely with respect to the axial direction toward the outlet (14), in particular in each case so as to surround the pump chamber wall substantially in a ring-like manner, the spacing of the heating elements (26) from one another increasing in the axial direction toward the outlet (14).
- Method for heating a pump (11) according to any of the preceding claims, wherein the pump (11) is an impeller pump with the pump chamber wall and a pump chamber bottom below the impeller (18), wherein the pump chamber wall is heated by way of a plurality of distributed film heating elements as heating elements (26),
characterized in that
the pump chamber wall is heated to a greater extent in the region of the pump chamber bottom under the impeller (18) owing to the configuration of the heating elements than in the region of the outlet (14) from the pump chamber wall in the axial direction away from the pump chamber bottom. - Method according to claim 8, characterized in that the change in the heating output is at least by the factor 1.2 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL13703053T PL2812581T3 (en) | 2012-02-10 | 2013-02-06 | Pump with integrated heater |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012202065A DE102012202065B3 (en) | 2012-02-10 | 2012-02-10 | Pump and method for heating a pump |
PCT/EP2013/052353 WO2013117603A1 (en) | 2012-02-10 | 2013-02-06 | Pump with integrated heating element |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2812581A1 EP2812581A1 (en) | 2014-12-17 |
EP2812581B1 true EP2812581B1 (en) | 2018-09-05 |
Family
ID=47678820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13703053.2A Active EP2812581B1 (en) | 2012-02-10 | 2013-02-06 | Pump with integrated heater |
Country Status (8)
Country | Link |
---|---|
US (1) | US9816527B2 (en) |
EP (1) | EP2812581B1 (en) |
CN (1) | CN104395612B (en) |
DE (1) | DE102012202065B3 (en) |
ES (1) | ES2698216T3 (en) |
PL (1) | PL2812581T3 (en) |
TR (1) | TR201816413T4 (en) |
WO (1) | WO2013117603A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9693672B2 (en) | 2011-09-22 | 2017-07-04 | Whirlpool Corporation | Dishwasher with sprayer |
US9532701B2 (en) | 2013-03-01 | 2017-01-03 | Whirlpool Corporation | Dishwasher with sprayer |
US9678520B2 (en) | 2013-03-15 | 2017-06-13 | Dominion Resources, Inc. | Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis |
DE102013211556A1 (en) * | 2013-06-19 | 2014-12-24 | E.G.O. Elektro-Gerätebau GmbH | Heating device for a pump and pump |
US9713413B2 (en) | 2013-07-01 | 2017-07-25 | Whirlpool Corporation | Dishwasher for treating dishes |
US9297553B2 (en) * | 2013-07-01 | 2016-03-29 | Whirlpool Corporation | Pump assembly |
US9532699B2 (en) | 2013-07-15 | 2017-01-03 | Whirlpool Corporation | Dishwasher with sprayer |
EP3126679B1 (en) * | 2014-03-26 | 2020-02-19 | I.R.C.A. S.p.A. Industria Resistenze Corazzate e Affini | Centrifugal pump for household appliances |
DE102016209012A1 (en) | 2015-12-18 | 2017-06-22 | E.G.O. Elektro-Gerätebau GmbH | heater |
EP3447304A1 (en) * | 2017-08-25 | 2019-02-27 | Sanhua AWECO Appliance Systems GmbH | Thin layered heating element for a fluid pump |
EP3773125A1 (en) * | 2018-04-10 | 2021-02-17 | BSH Hausgeräte GmbH | Domestic appliance with at least one heater for a tubular piece through which a fluid flows |
EP3773124A1 (en) | 2018-04-10 | 2021-02-17 | BSH Hausgeräte GmbH | Domestic appliance with at least one heater for a tubular piece, through which a fluid flows |
DE102018128823A1 (en) * | 2018-11-16 | 2020-05-20 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Diagonal fan with heating element |
EP3901466B1 (en) * | 2020-04-24 | 2023-10-25 | E.G.O. Elektro-Gerätebau GmbH | Method for operating a pump |
DE102023112929A1 (en) * | 2023-05-16 | 2024-11-21 | E.G.O. Elektro-Gerätebau GmbH | Heating device, pump with such a heating device and water-conducting household appliance |
CN118391281B (en) * | 2024-07-01 | 2024-09-20 | 珠海格力电器股份有限公司 | Air duct and fan assembly |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5872699A (en) * | 1981-10-27 | 1983-04-30 | Mitsubishi Electric Corp | Motor driven pump |
DE19803506A1 (en) | 1998-01-30 | 1999-08-05 | Ego Elektro Geraetebau Gmbh | Method of manufacturing an electrical sensor and electrical sensor |
DE19858137B4 (en) * | 1998-12-16 | 2016-12-15 | BSH Hausgeräte GmbH | Heating for heating the rinsing liquid in a dishwasher |
DE102004011365A1 (en) | 2004-03-05 | 2005-09-22 | Aweco Appliance Systems Gmbh & Co. Kg | rotary pump |
ES2290659T3 (en) * | 2004-05-12 | 2008-02-16 | Askoll Holding S.R.L. | FLUID CIRCULATION PUMP WITH SYNCHRONIC MOTOR, EQUIPPED WITH FLUID HEATING MEDIA, IN PARTICULAR FOR WASHERS. |
GB2427437B8 (en) * | 2005-06-23 | 2011-08-24 | Otter Controls Ltd | Combined heater pump apparatus |
DE102007017271A1 (en) * | 2007-04-12 | 2008-10-16 | BSH Bosch und Siemens Hausgeräte GmbH | Pump with heating device |
DE102008050895A1 (en) * | 2008-09-25 | 2010-04-01 | E.G.O. Elektro-Gerätebau GmbH | Pump for fluids |
-
2012
- 2012-02-10 DE DE102012202065A patent/DE102012202065B3/en active Active
-
2013
- 2013-02-06 US US14/377,726 patent/US9816527B2/en active Active
- 2013-02-06 CN CN201380019363.3A patent/CN104395612B/en active Active
- 2013-02-06 TR TR2018/16413T patent/TR201816413T4/en unknown
- 2013-02-06 WO PCT/EP2013/052353 patent/WO2013117603A1/en active Application Filing
- 2013-02-06 ES ES13703053T patent/ES2698216T3/en active Active
- 2013-02-06 EP EP13703053.2A patent/EP2812581B1/en active Active
- 2013-02-06 PL PL13703053T patent/PL2812581T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE102012202065B3 (en) | 2013-05-29 |
US9816527B2 (en) | 2017-11-14 |
CN104395612A (en) | 2015-03-04 |
EP2812581A1 (en) | 2014-12-17 |
PL2812581T3 (en) | 2019-02-28 |
ES2698216T3 (en) | 2019-02-01 |
TR201816413T4 (en) | 2018-11-21 |
WO2013117603A1 (en) | 2013-08-15 |
US20150086325A1 (en) | 2015-03-26 |
CN104395612B (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2812581B1 (en) | Pump with integrated heater | |
EP3011187B1 (en) | Pump with heating device | |
EP3008346B1 (en) | Pump | |
EP2677178B1 (en) | Pump | |
EP2549119A2 (en) | Pump | |
EP3457027B1 (en) | Steam generator for a steam cooking device, steam cooking device with such a steam generator and method for generating steam | |
DE102012202491B3 (en) | Guide wheel for an impeller pump and impeller pump | |
WO2012062839A1 (en) | Pump | |
EP2574146B1 (en) | Induction heating device and induction hob with several such induction heating facilities | |
DE102005019211B3 (en) | Tubular radiator with conical heating coil | |
EP2458298A2 (en) | Electrical water heater | |
WO2012156104A1 (en) | Cooling jacket for electric motors | |
EP2754900B1 (en) | Impeller pump with heating device | |
DE102012218145B4 (en) | impeller | |
EP2862494A1 (en) | Water-transporting household device | |
DE102013202346B3 (en) | Impeller pump for conveying medium, has cutout provided in lateral wall of pump chamber, and heating element located along entire edge of cut sealing, where heating element is arranged in path of conveyed medium from impeller to outlet | |
EP2543936A2 (en) | Percolator | |
EP2443982B1 (en) | Household appliance with continuous flow water heater | |
EP4464231A1 (en) | Heating device, pump with such a heating device and water-bearing domestic appliance | |
EP3573425A1 (en) | Heating device method of manufacturing a heating device | |
DE202008014958U1 (en) | Heated floor plate for a stable floor | |
DE2322509A1 (en) | ELECTRIC TUBULAR RADIATOR AND METHOD OF ITS MANUFACTURING | |
DE202014100693U1 (en) | Autoclave for sterilizing instruments with highly efficient steam generation | |
DE102007040076A1 (en) | Heat tube arrangement for heating of liquid, comprises inner tube which is made of quartz, where outer tube, made of quartz, is arranged outside inner tube, and gap is formed between two tubes | |
EP2471339B1 (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140814 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180409 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1038144 Country of ref document: AT Kind code of ref document: T Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013011011 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181206 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2698216 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013011011 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
26N | No opposition filed |
Effective date: 20190606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502013011011 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190206 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190903 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190206 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1038144 Country of ref document: AT Kind code of ref document: T Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240319 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240131 Year of fee payment: 12 Ref country code: PL Payment date: 20240126 Year of fee payment: 12 Ref country code: IT Payment date: 20240229 Year of fee payment: 12 Ref country code: FR Payment date: 20240222 Year of fee payment: 12 |