EP2805771A2 - Valve device for a fluid provision unit and method for operating a valve device for a fluid provision unit - Google Patents
Valve device for a fluid provision unit and method for operating a valve device for a fluid provision unit Download PDFInfo
- Publication number
- EP2805771A2 EP2805771A2 EP14164950.9A EP14164950A EP2805771A2 EP 2805771 A2 EP2805771 A2 EP 2805771A2 EP 14164950 A EP14164950 A EP 14164950A EP 2805771 A2 EP2805771 A2 EP 2805771A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid
- valve device
- membrane
- fluid container
- closure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 204
- 238000000034 method Methods 0.000 title claims description 14
- 239000012528 membrane Substances 0.000 claims abstract description 145
- 238000007789 sealing Methods 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims description 64
- 230000008859 change Effects 0.000 claims description 4
- 230000036961 partial effect Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 description 20
- 238000005304 joining Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000003851 biochemical process Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502738—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/16—Reagents, handling or storing thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0867—Multiple inlets and one sample wells, e.g. mixing, dilution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0874—Three dimensional network
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0677—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
- B01L2400/0683—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber
Definitions
- the present invention relates to a valve device for a fluid supply unit and to a method for operating a valve device for a fluid supply unit.
- test carrier or disposable cartridge includes structures and mechanisms for the implementation of fluidic operations (e.g., mixers). These structures and mechanisms consist for example of passive components such as channels, reaction chambers and upstream reagents or also of active components such as valves and pumps.
- a second main component consists for example of actuation, detection and control units.
- a conventional approach for the realization of lab-on-chip systems are, for example, pneumatic platforms. Active control of fluids on lab-on-chip cartridges requires valves operating in a fluidic network are integrated. By applying an overpressure in a pneumatic structure, a membrane can be deflected. As a result, the membrane pushes off a fluidic channel, with a fluid flow coming to a standstill.
- This valve shape is also referred to as a "normally open” valve.
- "normally closed” valves are needed, ie valves that close the fluidic channel in the inactivated state and release it only in the actuated state.
- typically predetermined breaking points or reversible blockages such as materials with highly thermally dependent volume or phase transitions between "solid” and "liquid” are used.
- a direction of a fluid can be controlled during the operation of a LoC system.
- the elastomeric membrane materials used in conventional membrane valves have high gas and liquid permeability, allowing direct pre-storage of liquids such as buffers (eg, wash buffer, hybridization buffer, lysis buffer), ethanol solutions, PCR master mix with DNA solutions, enzyme solutions, Protein solutions and nucleotide solutions over a period of more than half a year is not possible.
- Liquid media also has a leak rate, which makes it impossible to retain fluids for longer periods of time (for example, longer than one day). Furthermore, this conventional valve principle is not suitable for the realization of "normally closed" valves.
- valves typically use a longer, blocked channel piece.
- there is a high dead volume between two communicating chambers in particular, for example, in the case of valves for the long-term storage of reagents in a storage chamber with a connected reaction chamber into which the reagents are to be transferred.
- the present invention provides an improved valve device for a fluid supply unit and a method for the Operating such a valve device presented.
- Advantageous embodiments emerge from the respective subclaims and the following description.
- a valve device can be understood to mean a device by means of which a fluid, for example a liquid or a gas, can be closed in a fluid-tight manner in a fluid container or be discharged from such a fluid container.
- a fluid supply unit can be understood, for example, as a microfluidic system, in particular a lab-on-chip system.
- a film Under a closure membrane, for example, a film can be understood.
- a film may be compatible with fluids used, in particular biological fluids. Suitable materials are, for example, polymers, metal foils (in particular aluminum foils) or Multilayer or composite films by which the desired properties can be combined.
- such a film may have mechanical properties which cause the film to tear or break at a threshold value of, for example, 100 mbar.
- the film may be provided with a predetermined breaking point.
- a predetermined breaking point can be realized, for example, by weakening in the form of thickness variations induced during the manufacturing process or by a post-treatment such as laser ablation, (thermal) pressing or punching.
- the destruction of such a film can be done by means of a defined pressure.
- a sealing point may, for example, be understood as a joint or joint through which the sealing membrane is connected in a fluid-tight manner to the fluid container.
- a joint or joint may for example be an adhesive or comprise an adhesive material.
- such a joint or joint may be applied to the closure membrane as a bonding agent, for example of polymeric material.
- the production of such a joint or joint can be done for example by means of laser welding, ultrasonic bonding or other thermal processes.
- the joint or joint may be reversibly designed, so that the joint breaks, for example, at a pressure exerted on the sealing membrane pressure and subsequently resealable.
- a reversible joining can be realized, for example, by peel seams, as are used in particular in stickpacks, but also by joints which become unstable under thermal stress (for example at temperatures between 45 and 150 degrees) or by joints, in particular from films, which have a thickness of up to 150 microns and break from a pressure of 100 mbar. After a rupture of the joint or joint leakage of at least a portion of the fluid can be prevented in the fluid container, when the joint is again sealed fluid-tight.
- it can be ensured that the film, at a pressure exerted on the closing unit, is lower than an opening pressure for
- the joint or joint may be irreversible, so that the joint or joint is opened, for example, a pressure exerted on the sealing membrane and is not resealable.
- irreversible joint or joint By means of such a very simple and inexpensive irreversible joint or joint can be ensured that in a pressure exerted on the closure unit pressure, the film is destroyed and located in the fluid container fluid can escape from the fluid container.
- a means for exerting a fluid pressure can be understood to mean a receiving unit or surface for pressure which applies the fluid pressure to the closure membrane, for example by means of a liquid. Such means may be designed to destroy the sealing membrane or the sealing site. By such a means, the fluid, in particular within a microfluidic system, can be switched or released with high reliability.
- the present approach provides a ("normally closed") valve device, for example, which allows for a long-term stable storage of fluids and secondly a controlled switching of a fluid by means of a fluid pressure.
- a fluid-tight closure membrane is arranged, for example by means of a joint, on a fluid container in such a way that the fluid over a relatively long period of time, in particular more than half a year, is sealed fluid-tight in the fluid container.
- the valve device also includes means for applying pressure to the closure membrane or joint such that the closure membrane or filling breaks and thus releases the fluid.
- the valve device may be arranged in a housing for receiving the valve device, wherein the housing may have a multilayer structure of a first substrate layer, a second substrate layer and a deformable membrane.
- the deformable membrane may be disposed between the first and second substrate layers, wherein the deformable membrane may at least partially form the means for applying the fluid pressure.
- a housing can be understood to mean a multi-layer lab-on-chip cartridge.
- a cartridge may for example consist of two thermoplastic substrates as the first and second substrate layer, which are joined together in particular by laser welding an intermediate elastomeric membrane as a deformable membrane.
- Such a housing can be made particularly inexpensive.
- a partial volume of the fluid container and a further fluid container can be formed as a recess in the second substrate layer, wherein the closure unit can fluidly separate the fluid container and the further fluid container from each other.
- a fluid can advantageously be stored in the fluid container over a particularly long period of time without the fluid passing into the further fluid container.
- a part of the fluid container may be arranged as a connecting channel in the first substrate layer.
- a fluid can be conveyed from the fluid container into the further fluid container by means of such a connecting channel.
- a connecting channel can advantageously be designed with a small cross section, for example less than 500 ⁇ m, so that a dead volume of the connecting channel is as small as possible.
- Connecting channel with a gas bubble as "start-up" be provided to better transfer the fluid pressure.
- the deformable membrane can have a recess for receiving the closure membrane, wherein the connection channel can open into the recess and wherein the closure membrane can close the connection channel in a fluid-tight manner.
- a recess has the advantage that the closure membrane can be arranged as space-saving as possible in the housing of the valve device.
- the recess may be designed as a clamped fit.
- the interference fit may be configured to clamp the closure membrane between the deformable membrane and the first and / or the second substrate layer.
- an edge region of the sealing membrane can rest on two opposing protrusions of the deformable membrane.
- the closure membrane may be arranged between the connection channel and a further connection channel, wherein the further connection channel may be formed in the second substrate layer and connected to the further fluid container.
- the closure membrane may in this case have substantially the same thickness as the deformable membrane.
- a deflection chamber may be formed as a recess of the first substrate layer arranged between the fluid container and the further fluid container.
- a deflection chamber opening of the deflection chamber may face the second substrate layer, the deformable membrane having in a region of the deflection chamber opening a deflection region which is designed to be deformed by the fluid pressure in the direction of the deflection chamber.
- a deflection chamber can generally be understood as meaning a recess similar to the fluid container and the further fluid container, in the direction of which the deformable membrane can be deflected, in particular if a fluid pressure acts on the deformable membrane.
- Such a deflection chamber can advantageously fulfill the function of a valve arranged between the fluid container and the further fluid container.
- the escape area can for example be pressed onto a sealing seat.
- the escape region may be reversibly connected or connectable to the second substrate layer.
- a joint formed as a reversible, for example
- a joint can be implemented, for example, by a peel seam or a thermally or mechanically unstable bond, so that the reversible joint can break, in particular if the fluid pressure is exerted on the joint and the fluid pressure exceeds a specific threshold value.
- the closure membrane may be formed as an integral part of the deformable membrane.
- a sealing film may, for example, be understood as meaning a composite film in which an elastomeric material of the deformable membrane is combined with a fluid-tight material of the closure membrane. The fact that such a composite film can be used simultaneously as a diffusion barrier, can be dispensed with an additional sealing membrane.
- the deformable membrane may have an opening in which the closure membrane may be disposed, wherein the opening may be formed to act as a fluid pressure change chamber together with the first and / or second sub-rast layer.
- a fluid pressure change chamber can be understood as meaning an opening of the deformable membrane connected to the fluid container, by means of which the fluid pressure can be directed onto a side of the closure membrane opposite a joining side of the closure membrane such that the closure membrane breaks.
- the deformable diaphragm may include, in an area of an opening of the fluid container, a deflection portion configured to be deformed by an actuation pressure toward the fluid container to provide the fluid pressure.
- a deflection region can be understood as meaning a region of the deformable membrane which is not firmly connected to a substrate layer and can thus be deflected in the direction of the fluid container.
- Actuating pressure may, in particular, be understood as meaning a pneumatic pressure which can be transmitted to the fluid contained in the fluid container by means of the deformable membrane.
- a pneumatic connection can be provided in order to pneumatically guide the actuation pressure to the deflection region.
- a pneumatic connection may be understood to mean a device for generating a pneumatic pressure, wherein the device is designed to direct the pneumatic pressure into the valve device.
- the actuation pressure required for generating the fluid pressure can be permanently provided.
- such a pneumatic connection in particular if it is designed as a channel, may be provided with a gas bubble as a "start-up path" in order to transmit the actuation pressure better to the deflection region.
- such a pneumatic connection can for example also serve to fluid quizzutransportieren, especially when the pneumatic connection is connected to the other fluid container.
- the approach presented herein provides a method of operating a valve device for a fluid delivery unit, the method comprising a step of providing a fluid container, a closure unit having a closure membrane and a sealing site, and means for applying a fluid pressure to at least one side of the closure membrane.
- the closure unit is arranged between the closure membrane and the fluid container, as a result of which the fluid container is closed in a fluid-tight manner.
- the sealing membrane and / or the sealing point is designed to be at least partially damaged by the fluid pressure.
- the method comprises a step of pressurizing the sealing membrane with the fluid pressure.
- Fig. 1 shows a valve device for a fluid supply unit 100 according to an embodiment of the present invention.
- the valve device is arranged in a rectangular housing 102.
- the housing 102 comprises a cover 104, a first substrate layer 106, also called layer 1, a second substrate layer 108, also called layer 3, and a deformable membrane 110, also called layer 2, arranged between the first substrate layer 106 and the second substrate layer 108.
- the cover 104 is arranged on a side of the first substrate layer 106 facing away from the second substrate layer 108.
- the second substrate layer 108 forms an underside of the housing 102 opposite the cover 104.
- the first substrate layer 106 has a rectangular, U-shaped connecting channel 112 which comprises a first and a second channel section extending perpendicular to the first substrate layer 106 and a channel section extending horizontally to the first substrate layer 106.
- the horizontal channel portion extends below the lid 104, wherein one of the first substrate layer 106 facing side of the lid 104 forms a wall surface of the horizontal channel portion.
- the second substrate layer 108 comprises a fluid container 114, also called chamber 1, and a further fluid container 116, also called chamber 2, which are formed as rectangular recesses of the second substrate layer 108.
- the fluid container 114 and the connection channel 112 are filled with a fluid, for example a liquid.
- the connection channel 112 is arranged between the fluid container 114 and the further fluid container 106.
- the deformable membrane 110 has a channel opening in an edge region of the fluid container 114 facing the connection channel 112. A diameter of the channel opening corresponds to the diameter of the connecting channel 112. The channel opening is connected to the first vertical channel section.
- the deformable membrane 110 has a recess 118 for receiving a closure unit 119.
- the recess 118 is arranged in the edge region of the further fluid container 116 facing the connection channel 112. Furthermore, the second vertical channel section of the connection channel 112 opens into the recess 118.
- the closure unit 119 consists of a film as a closure membrane 120 and a side of the closure membrane 120 facing the first substrate layer 106, also called sealing point 121 or joining surface of the film, the closure membrane 120 being such is connected by means of a joint with the first substrate layer 106, that one end of the second vertical channel portion is fluid-tightly sealed against the further fluid container 116.
- the recess 118 is arranged offset to the further fluid container 116, so that the edge region of the further fluid container 116 facing the connection channel 112 forms a projection opposite the closure membrane 120.
- a width of the sealing membrane 120 is slightly smaller (for example, by 5 or 10 percent) than a width of the recess 118.
- the deformable membrane 110 forms a deflection region 122 in a region of an opening of the fluid container 114 facing the first substrate layer 106 as a means 123 for exerting a fluid pressure on the closure membrane, wherein the deflection region 122 is loosely joined to the first substrate layer 106.
- the deflection region 122 is deformable by an actuation pressure in the direction of the fluid container 114.
- the deflection region 122 is provided with a pneumatic port 124, which is designed to pneumatically guide the actuation pressure to the deflection region 122.
- the pneumatic port 124 passes through the lid 104 and the first substrate layer 106 and is disposed perpendicular thereto.
- the deflection region 122 If the actuation pressure is exerted on the deflection region 122 by means of the pneumatic connection 124, the deflection region 122 is bulged in the direction of the fluid container 114. The liquid contained in the fluid container 114 is compressed because the liquid due to the sealing membrane 120 is enclosed in the fluid container 114 and in the connection channel 112. The resulting fluid pressure acts on the closure membrane 120. If the fluid pressure is strong enough, either the closure membrane 120 or the joint breaks between the closure membrane 120 and the first substrate layer 106, so that the liquid flows into the further fluid container 116.
- the cartridge typically consists of two thermoplastic substrates 106 and 108 (Layer 1 and Layer 3) joined by laser welding an intermediate elastomeric membrane 110 (Layer 2).
- Two chambers 114 and 116 are connected to each other via a connection channel 112.
- the connecting channel 112 or the transition of the connecting channel to the chamber 116 is interrupted by means of a foil 120.
- the film 120 has a low gas and liquid permeability.
- the joining is irreversibly designed so that the joint withstands the applied actuation pressure.
- the channel 112 is released by the foil 120 breaking or tearing. Due to its mechanical properties, the film 120 can crack from a threshold pressure (for example, greater than 100 mbar). This can be done by the Aktuationstik itself by the liquid "shoots through" the film 120. In a further embodiment (not shown) remains the film 120 is stable under compressive loading, but the bond with the substrate material 106 breaks.
- an overpressure builds up in the chamber 114 due to the incompressibility of the fluid or after compression of the stored fluid.
- the overpressure causes the film 120 releases the channel 112 and the liquid is displaced from the first chamber 114 into the second chamber 116 by deflecting the layer 2 110.
- the actuation pressure of the liquid acts on the joining side. In a further embodiment (not shown), the actuation pressure acts tangentially on the joining side, which leads to the unrolling of the film 120.
- Fig. 2 shows the valve device for a fluid supply unit 100 according to another embodiment of the present invention.
- the deformable membrane 110 forms an additional deflection region 126 in the region of the opening of the further fluid container 116 with the same properties as the deflection region 112.
- the additional deflection region 126 which provides an additional pneumatic port 128 for pneumatically guiding the actuation pressure to the additional deflection region 126 is, passes through the lid 104 and the first substrate layer 106 and is arranged perpendicular thereto.
- the in Fig. 2 shown deformable membrane 110 in the region of the opening of the fluid container 114 has an opening 130 in which the closure membrane 120 is arranged.
- the closure membrane 120 closes the first vertical channel section in a fluid-tight manner.
- the opening 130 is formed to act as a fluid pressure changing chamber together with the first substrate layer 106 and the second sub-ratchet layer 108.
- the opening 130 is arranged offset to the fluid container 114, so that a width of the protrusion opposite the closure membrane 120 is slightly larger (for example by 5 or 10 percent) than the width of the closure membrane 120.
- a height of the opening 130 corresponds to a thickness of the deformable diaphragm 110.
- a diameter of the further channel opening corresponds to the diameter of the connecting channel 112.
- the further channel opening is connected to the second vertical channel section.
- the deflection region 122 If the actuation pressure is exerted on the deflection region 122 by means of the pneumatic connection 124, the deflection region 122 is bulged in the direction of the fluid container 114.
- the fluid pressure change chamber By means of the fluid pressure change chamber, the fluid pressure is applied to a side of the closure membrane 120 opposite the joining surface 121, so that the closure membrane 120 breaks and the liquid flows via the connection channel 112 into the further fluid container 116.
- Fig. 3 shows the valve device 100 for a fluid supply unit according to another embodiment of the present invention.
- Fig. 1 has the in Fig. 3 shown recess 118 two superimposed halves of different diameters.
- the first substrate layer 106 facing half the closure membrane 120 is arranged.
- a width of the first half is such that a tight fit 132 exists between the deformable membrane 110 and the closure membrane 120.
- a width of a second half facing the further fluid container 116, also called outflow channel 134 corresponds approximately to half the width (for example 45 to 55 percent) of the closure membrane 120, so that an edge region 136 of the closure membrane 120 on two opposite projections 138 of the deformable membrane 110 is supported and thereby supported.
- a narrowed portion 140 of the further fluid container 116 wherein the narrowed portion 140 between the drain channel 134 and the other Fluid container 116 is formed.
- a width of the constricted region 140 corresponds to approximately half (for example, 45 to 55 percent) of a width of the further fluid container 116.
- a height of the constricted region 140 substantially corresponds to the diameter of the connection channel 112.
- the film 120 is additionally supported by the layer 2 110, which is sandwiched and crimped between layer 1 106 and layer 3 108 and presses and seals the film 120.
- an additional join between film 120 and substrate 106 can be dispensed with.
- a drain channel 134 is used, so that the film 120 experiences no counterforce only in the channel 134, but is supported at the remaining solid angle (the solid angle of the in Fig. 1 shown addition is 360 degrees).
- Fig. 4 shows the valve device 100 for a fluid supply unit according to another embodiment of the present invention.
- Fig. 1 includes the in Fig. 4 illustrated embodiment instead of the connecting channel 112, a deflection chamber 142 which is formed as a recess of the first substrate layer 106 and is disposed between the fluid container 114 and the further fluid container 116.
- a deflection chamber opening 144 of the deflection chamber 142 faces the second substrate layer 108.
- the deformable membrane 110 has, in a region of the deflection chamber opening 144, an escape region 146, which is designed to be deformed by the fluid pressure in the direction of the deflection chamber 142.
- Fig. 4 illustrated embodiment in contrast to Fig. 1 no lid 104.
- a region of the second substrate layer 108 lying opposite the deflection chamber 142 is embodied as a sealing seat 148, in particular as a weakened joining surface of the deformable membrane 110, on which the deflection region 146 rests and which is designed to fluidically separate the fluid container 114 from the further fluid container 116.
- closure membrane 120 fluid-tight on the fluid container 114.
- the closure membrane 120 is embodied as an integral part of the deformable membrane 110, in particular of the deflection region 122, wherein the width of the closure membrane 120 is greater (for example by 5 percent) than a width of the fluid container 114, so that the edge region 136 of the closure membrane 120 via extends beyond the fluid container 114 and is supported by the first substrate layer 108.
- a part of the peripheral area 136 (in Fig. 4 arranged to the right of the fluid container 108) forms the adjacent to the sealing seat 148 sealing point 121, whereby the fluid container 114 is fluid-tight against the sealing seat 148 is closed.
- the deflection region 122 If the actuation pressure is exerted on the deflection region 122 with the integrated closure membrane 120 by means of the pneumatic connection 124, the deflection region 122 is bulged in the direction of the fluid container 114. The resulting fluid pressure acts on the closure membrane 120, in particular on the sealing point 121. If the pressure is strong enough, on the one hand breaks the sealing point 121, on the other hand, the escape area 146 is arched in the direction of the deflection chamber 142 that the sealing seat 148 is released. Thus, the liquid flows from the fluid container 114 into the further fluid container 116.
- the film 120 is used here only as a diffusion barrier that supports the properties of the layer 2 110.
- the valve action takes place via the layer 2 110, which is pressed onto the sealing seat 148.
- layer 2 110 can be joined to sealing seat 148 with a (for example reversible) joining method (peel seam, thermally unstable bond, mechanically unstable bond) so that the join breaks as soon as the actuation pressure exceeds a threshold value.
- a (for example reversible) joining method peel seam, thermally unstable bond, mechanically unstable bond
- Fig. 5 shows the valve device 100 for a fluid supply unit according to another embodiment of the present invention.
- This embodiment has a five-layered structure consisting of the lid 104, the first substrate layer 106, the deformable membrane 110, the second substrate layer 108 and a bottom plate 152.
- the Base plate 152 is disposed on the underside of the housing 102 opposite the cover 104.
- a further connection channel 154 which is formed between the closure membrane 120 and the further fluid container 116 in the second substrate layer 108. Similar to the connection channel 112, the further connection channel 154 comprises a further channel section extending perpendicular to the second substrate layer 108 and a further channel section extending horizontally to the second substrate layer 108. The further horizontal channel section extends above the bottom plate 152, wherein a side of the bottom plate 152 facing the second substrate layer 108 forms a wall surface of the further horizontal channel section. The further horizontal channel section opens into the further fluid container 116.
- the further vertical channel section is connected to the connecting channel 112, wherein the sealing membrane 120 is arranged between the connecting channel 112 and the further vertical channel section, so that the connecting channel 112 and the further connecting channel 154 are fluidically separated from one another are.
- the diameter of the connection channel 112 is substantially identical to a diameter of the further connection channel 154.
- the sealing membrane 120 is fitted into the deformable membrane 110 by means of the interference fit 132.
- the thickness of the deformable membrane 110 substantially corresponds to a thickness of the closure membrane 120, so that the closure membrane 120 is clamped between the deformable membrane 110, the first substrate layer 106 and the second substrate layer 108.
- the side of the bottom plate 152 facing the second substrate layer 108 in each case forms a wall surface of the fluid container 114 and the further fluid container 116.
- the deflection region 122 If the actuation pressure is exerted on the deflection region 122 by means of the pneumatic connection 124, the deflection region 122 is bulged in the direction of the fluid container 114. The resulting fluid pressure acts on the clamped closure membrane 120. If the pressure is strong enough, the closure membrane 120 ruptures, so that the liquid flows from the fluid container 114 into the further fluid container 116.
- FIG. 12 shows a method 600 of manufacturing the valve device 100 for a fluid delivery unit according to an embodiment of the present invention.
- a step 602 of providing the fluid container 114 and the closure unit 119 with the closure membrane 120 and the sealing point 121 between the closure membrane 120 and the fluid container 114, through which the fluid container 114 is closed in a fluid-tight manner.
- an exemplary embodiment comprises a "and / or" link between a first feature and a second feature, then this is to be read so that the embodiment according to one embodiment, both the first feature and the second feature and according to another embodiment either only first feature or only the second feature.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Fluid-Driven Valves (AREA)
- Devices For Dispensing Beverages (AREA)
- Micromachines (AREA)
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
Abstract
Die Erfindung betrifft eine Ventilvorrichtung (114, 119, 123) für eine Fluidbereitstellungseinheit (100), wobei die Ventilvorrichtung (100) einen Fluidbehälter (114) aufweist. Des Weiteren umfasst die Ventilvorrichtung (114, 119, 123) eine Verschlusseinheit (119) mit einer Verschlussmembran (120) und einer Dichtstelle (121) zwischen der Verschlussmembran (120) und dem Fluidbehälter (114), wobei die Dichtstelle (121) den Fluidbehälter (114) fluiddicht verschließt. Ferner ist die Ventilvorrichtung (114, 119, 123) mit einem Mittel (123) zum Ausüben eines Fluiddrucks auf zumindest eine Seite der Verschlussmembran (120) versehen, wobei die Verschlussmembran (120) und/oder die Dichtstelle (121) ausgebildet ist, um durch den Fluiddruck zumindest teilweise beschädigt zu werden.The invention relates to a valve device (114, 119, 123) for a fluid supply unit (100), wherein the valve device (100) has a fluid container (114). Furthermore, the valve device (114, 119, 123) comprises a closure unit (119) with a closure membrane (120) and a sealing point (121) between the closure membrane (120) and the fluid container (114), wherein the sealing point (121) the fluid container (114) closes fluid-tight. Furthermore, the valve device (114, 119, 123) is provided with a means (123) for exerting a fluid pressure on at least one side of the closure membrane (120), wherein the closure membrane (120) and / or the sealing point (121) is designed to at least partially damaged by the fluid pressure.
Description
Die vorliegende Erfindung bezieht sich auf eine Ventilvorrichtung für eine Fluidbereitstellungseinheit und auf ein Verfahren zum Betreiben einer Ventilvorrichtung für eine Fluidbereitstellungseinheit.The present invention relates to a valve device for a fluid supply unit and to a method for operating a valve device for a fluid supply unit.
Die Durchführung biochemischer Prozesse basiert auf der Handhabung von Flüssigkeiten. Typischerweise wird diese Handhabung manuell mit Hilfsmitteln wie Pipetten, Reaktionsgefäßen, aktiven Sondenoberflächen oder Laborgeräten durchgeführt. Durch Pipettierroboter oder Spezialgeräte sind diese Prozesse zum Teil bereits automatisiert. Sogenannte Lab-on-Chip- oder LoC-Systeme (Westentaschenlabor oder Chiplabor) sind mikrofluidische Systeme, die die gesamte Funktionalität eines makroskopischen Labors auf einem nur plastikkartengroßen Kunststoffsubstrat unterbringen. Lab-on-Chip-Systeme bestehen typischerweise aus zwei Hauptkomponenten. Ein Testträger oder eine Einwegkartusche beinhaltet Strukturen und Mechanismen für die Umsetzung der fluidischen Grundoperationen (z. B. Mischer). Diese Strukturen und Mechanismen bestehen beispielsweise aus passiven Komponenten wie Kanälen, Reaktionskammern und vorgelagerten Reagenzien oder auch aus aktiven Komponenten wie Ventilen und Pumpen. Eine zweite Hauptkomponente besteht beispielsweise aus Aktuations-, Detektions- und Steuereinheiten. Ein solches System ermöglicht es, biochemische Prozesse voll automatisiert durchzuführen.The implementation of biochemical processes is based on the handling of liquids. Typically, this manipulation is done manually with tools such as pipettes, reaction vessels, active probe surfaces or laboratory equipment. By pipetting robots or special equipment, these processes are already partially automated. So-called lab-on-chip (LoC) systems are microfluidic systems that accommodate all the functionality of a macroscopic laboratory on a plastic plastic-sized plastic substrate. Lab-on-chip systems typically consist of two major components. A test carrier or disposable cartridge includes structures and mechanisms for the implementation of fluidic operations (e.g., mixers). These structures and mechanisms consist for example of passive components such as channels, reaction chambers and upstream reagents or also of active components such as valves and pumps. A second main component consists for example of actuation, detection and control units. Such a system makes it possible to carry out biochemical processes fully automatically.
Ein herkömmlicher Ansatz für die Realisierung von Lab-on-Chip-Systemen sind beispielsweise pneumatische Plattformen. Eine aktive Steuerung von Fluiden auf Lab-on-Chip-Kartuschen verlangt Ventile, die in einem fluidischen Netzwerk integriert sind. Mittels Anlegens eines Überdrucks in einer pneumatischen Struktur kann eine Membran ausgelenkt werden. Die Membran drückt dadurch einen fluidischen Kanal ab, wobei ein Fluidfluss zum Erliegen kommt. Diese Ventilform wird auch als "normally open"-Ventil bezeichnet. Allerdings werden auch "normally closed"-Ventile benötigt, d. h. Ventile, die im inaktivierten Zustand den fluidischen Kanal verschließen und diesen erst im aktuierten Zustand freigeben. Hierbei werden typischerweise Sollbruchstellen oder reversible Verstopfungen wie beispielsweise Materialien mit stark thermisch abhängigen Volumen oder Phasenübergänge zwischen "fest" und "flüssig" eingesetzt.A conventional approach for the realization of lab-on-chip systems are, for example, pneumatic platforms. Active control of fluids on lab-on-chip cartridges requires valves operating in a fluidic network are integrated. By applying an overpressure in a pneumatic structure, a membrane can be deflected. As a result, the membrane pushes off a fluidic channel, with a fluid flow coming to a standstill. This valve shape is also referred to as a "normally open" valve. However, "normally closed" valves are needed, ie valves that close the fluidic channel in the inactivated state and release it only in the actuated state. Here, typically predetermined breaking points or reversible blockages such as materials with highly thermally dependent volume or phase transitions between "solid" and "liquid" are used.
Mittels herkömmlicher Membranventile kann beispielsweise eine Richtung einer Flüssigkeit während des Betriebs eines LoC-Systems gesteuert werden. Allerdings weisen die in herkömmlichen Membranventilen verwendeten elastomeren Membranmaterialien eine hohe Gas- und Flüssigkeitspermeabilität auf, sodass eine direkte Vorlagerung von Flüssigkeiten wie beispielsweise Puffern (z. B. Waschpuffer, Hybridisierungspuffer, Lysepuffer), Ethanollösungen, PCR-Mastermix mit DNA-Lösungen, Enzymlösungen, Proteinlösungen und Nukleotidlösungen über einen Zeitraum von mehr als einem halben Jahr nicht möglich ist.By means of conventional diaphragm valves, for example, a direction of a fluid can be controlled during the operation of a LoC system. However, the elastomeric membrane materials used in conventional membrane valves have high gas and liquid permeability, allowing direct pre-storage of liquids such as buffers (eg, wash buffer, hybridization buffer, lysis buffer), ethanol solutions, PCR master mix with DNA solutions, enzyme solutions, Protein solutions and nucleotide solutions over a period of more than half a year is not possible.
Bei flüssigen Medien tritt zudem eine Leckrate auf, womit ein längerfristiges Zurückhalten von Flüssigkeiten (beispielsweise länger als ein Tag) nicht möglich ist. Ferner eignet sich dieses herkömmliche Ventilprinzip nicht zur Realisierung von "normally closed"-Ventilen.Liquid media also has a leak rate, which makes it impossible to retain fluids for longer periods of time (for example, longer than one day). Furthermore, this conventional valve principle is not suitable for the realization of "normally closed" valves.
Bei sonstigen Konzepten für "normally closed"-Ventile wird typischerweise ein längeres, geblocktes Kanalstück verwendet. Zwischen zwei kommunizierenden Kammern besteht somit ein hohes Totvolumen, insbesondere beispielsweise bei Ventilen zur langzeitstabilen Lagerung von Reagenzien in einer Lagerkammer mit einer angebundenen Reaktionskammer, in die die Reagenzien überführt werden sollen.Other concepts for "normally closed" valves typically use a longer, blocked channel piece. Thus, there is a high dead volume between two communicating chambers, in particular, for example, in the case of valves for the long-term storage of reagents in a storage chamber with a connected reaction chamber into which the reagents are to be transferred.
Vor diesem Hintergrund werden mit der vorliegenden Erfindung eine verbesserte Ventilvorrichtung für eine Fluidbereitstellungseinheit sowie ein Verfahren zum Betreiben einer solchen Ventilvorrichtung vorgestellt. Vorteilhafte Ausgestaltungen ergeben sich aus den jeweiligen Unteransprüchen und der nachfolgenden Beschreibung.Against this background, the present invention provides an improved valve device for a fluid supply unit and a method for the Operating such a valve device presented. Advantageous embodiments emerge from the respective subclaims and the following description.
Es wird vorliegend eine Ventilvorrichtung für eine Fluidbereitstellungseinheit vorgestellt, wobei die Ventilvorrichtung die folgenden Merkmale umfasst:
- einen Fluidbehälter;
- eine Verschlusseinheit mit einer Verschlussmembran und einer Dichtstelle zwischen der Verschlussmembran und dem Fluidbehälter, wobei die Dichtstelle den Fluidbehälter fluiddicht verschließt; und
- ein Mittel zum Ausüben eines Fluiddrucks auf zumindest eine Seite der Verschlussmembran, wobei die Verschlussmembran und/oder die Dichtstelle ausgebildet ist, um durch den Fluiddruck zumindest teilweise beschädigt zu werden.
- a fluid container;
- a closure unit having a closure membrane and a sealing point between the closure membrane and the fluid container, wherein the sealing point fluid-tightly closes the fluid container; and
- a means for applying a fluid pressure to at least one side of the closure membrane, wherein the closure membrane and / or the sealing point is designed to be at least partially damaged by the fluid pressure.
Unter einer Ventilvorrichtung kann eine Vorrichtung verstanden werden, durch die ein Fluid, beispielsweise eine Flüssigkeit oder ein Gas, fluiddicht in einem Fluidbehälter verschlossen oder aus einem solchen Fluidbehälter abgeleitet werden kann. Unter einer Fluidbereitstellungseinheit kann beispielsweise ein mikrofluidisches System, insbesondere ein Lab-on-Chip-System, verstanden werden. Mittels einer solchen Ventilvorrichtung können Fluide, insbesondere vorgelagerte Reagenzien, mit hoher Zuverlässigkeit voneinander getrennt werden.A valve device can be understood to mean a device by means of which a fluid, for example a liquid or a gas, can be closed in a fluid-tight manner in a fluid container or be discharged from such a fluid container. A fluid supply unit can be understood, for example, as a microfluidic system, in particular a lab-on-chip system. By means of such a valve device, fluids, in particular upstream reagents, can be separated from one another with high reliability.
Unter einer Verschlussmembran kann beispielsweise eine Folie verstanden werden. Eine solche Folie kann eine geringe Gas- und Flüssigkeitspermeabilität bzw. -diffusion aufweisen, insbesondere beispielsweise eine Ethanoldurchlässigkeit von weniger als 500 ml/(m2 · d · bar), eine Wasserdampfdurchlässigkeit von weniger als 20 g/(m2 · d), eine Sauerstoffdurchlässigkeit von weniger als 500 ml/(m2 · d · bar) bei d = 100 µm. Ferner kann eine solche Folie kompatibel zu verwendeten Fluiden sein, insbesondere biologischen Flüssigkeiten. Geeignete Materialien sind beispielsweise Polymere, Metallfolien (insbesondere Aluminiumfolien) oder Mehrschicht- bzw. Verbundfolien, durch die die gewünschten Eigenschaften miteinander kombiniert werden können. Mittels einer solchen Folie können Fluide besonders lang in einem Fluidbehälter fluiddicht verschlossen werden.Under a closure membrane, for example, a film can be understood. Such a film may have a low gas and liquid permeability or diffusion, in particular, for example, an ethanol permeability of less than 500 ml / (m 2 · dbar), a water vapor permeability of less than 20 g / (m 2 · d), an oxygen permeability of less than 500 ml / (m 2 · dbar) at d = 100 μm. Furthermore, such a film may be compatible with fluids used, in particular biological fluids. Suitable materials are, for example, polymers, metal foils (in particular aluminum foils) or Multilayer or composite films by which the desired properties can be combined. By means of such a film, fluids can be closed in a fluid-tight manner for a particularly long time in a fluid container.
Ferner kann eine solche Folie mechanische Eigenschaften aufweisen, die bewirken, dass die Folie ab einem Schwellwert von beispielsweise 100 mbar reißt oder bricht. Dazu kann die Folie mit einer Sollbruchstelle versehen sein. Eine solche Sollbruchstelle kann beispielsweise durch eine während des Herstellungsprozesses hergeführte Schwächung in Form von Dickenschwankungen oder durch eine Nachbehandlung wie Laserablation, (Thermo-)Pressen oder Stanzen realisiert werden. Somit kann das Zerstören einer solchen Folie mittels eines definierten Drucks erfolgen.Furthermore, such a film may have mechanical properties which cause the film to tear or break at a threshold value of, for example, 100 mbar. For this purpose, the film may be provided with a predetermined breaking point. Such a predetermined breaking point can be realized, for example, by weakening in the form of thickness variations induced during the manufacturing process or by a post-treatment such as laser ablation, (thermal) pressing or punching. Thus, the destruction of such a film can be done by means of a defined pressure.
Unter einer Dichtstelle kann beispielsweise eine Fügung oder Fügestelle verstanden werden, durch die die Verschlussmembran fluiddicht mit dem Fluidbehälter verbunden ist. Eine solche Fügung oder Fügestelle kann beispielsweise ein Kleber sein oder ein Klebematerial umfassen . Ferner kann eine solche Fügung oder Fügestelle als Haftvermittler, beispielsweise aus Polymermaterial, auf die Verschlussmembran aufgetragen sein. Vorteilhafterweise kann die Herstellung einer solchen Fügung oder Fügestelle beispielsweise mittels Laserschweißverfahren, Ultraschallbonden oder weiterer thermischer Verfahren erfolgen.A sealing point may, for example, be understood as a joint or joint through which the sealing membrane is connected in a fluid-tight manner to the fluid container. Such a joint or joint may for example be an adhesive or comprise an adhesive material. Furthermore, such a joint or joint may be applied to the closure membrane as a bonding agent, for example of polymeric material. Advantageously, the production of such a joint or joint can be done for example by means of laser welding, ultrasonic bonding or other thermal processes.
Ferner kann die Fügung oder Fügestelle reversibel ausgelegt sein, sodass die Fügung beispielsweise bei einem auf die Verschlussmembran ausgeübten Druck bricht und nachfolgend wieder verschließbar ist. Eine solche reversible Fügung kann beispielsweise durch Peelnähte, wie sie insbesondere in Stickpacks verwendet werden, realisiert werden, aber auch durch Fügungen, die bei thermischer Belastung (beispielsweise bei Temperaturen zwischen 45 und 150 Grad) instabil werden, oder durch Fügungen insbesondere aus Folien, die eine Dicke von bis zu 150 µm aufweisen und die ab einem Druck von 100 mbar brechen. Nach einem Aufreißen der Fügestelle oder Fügung kann ein Austreten zumindest eines Teils des Fluids in dem Fluidbehälter verhindert werden, wenn die Fügestelle wieder fluiddicht verschlossen wird. Mittels einer solchen reversiblen Fügung kann sichergestellt werden, dass die Folie bei einem auf die Verschlusseinheit ausgeübten Druck der geringer als ein Öffnungsdruck zumFurthermore, the joint or joint may be reversibly designed, so that the joint breaks, for example, at a pressure exerted on the sealing membrane pressure and subsequently resealable. Such a reversible joining can be realized, for example, by peel seams, as are used in particular in stickpacks, but also by joints which become unstable under thermal stress (for example at temperatures between 45 and 150 degrees) or by joints, in particular from films, which have a thickness of up to 150 microns and break from a pressure of 100 mbar. After a rupture of the joint or joint leakage of at least a portion of the fluid can be prevented in the fluid container, when the joint is again sealed fluid-tight. By means of such a reversible joining, it can be ensured that the film, at a pressure exerted on the closing unit, is lower than an opening pressure for
Öffnen der Fügestelle oder Fügung intakt bleibt oder wieder fluiddicht verschlossen wird.Opening the joint or joint remains intact or again fluid-tight.
Alternativ kann die Fügung oder Fügestelle irreversibel ausgeführt sein, sodass die Fügung oder Fügestelle beispielsweise einem auf die Verschlussmembran ausgeübten Druck geöffnet wird und nicht wieder verschließbar ist. Mittels einer solchen sehr einfach und kostengünstig hergestellten irreversiblen Fügung oder Fügestelle kann sichergestellt werden, dass bei einem auf die Verschlusseinheit ausgeübten Druck die Folie zerstört wird und ein sich im Fluidbehälter befindliches Fluid aus dem Fluidbehälter austreten kann.Alternatively, the joint or joint may be irreversible, so that the joint or joint is opened, for example, a pressure exerted on the sealing membrane and is not resealable. By means of such a very simple and inexpensive irreversible joint or joint can be ensured that in a pressure exerted on the closure unit pressure, the film is destroyed and located in the fluid container fluid can escape from the fluid container.
Unter einem Mittel zum Ausüben eines Fluiddrucks kann eine Aufnahmeeinheit oder-fläche für Druck verstanden werden, die den Fluiddruck beispielsweise mittels einer Flüssigkeit auf die Verschlussmembran aufbringt. Ein solches Mittel kann ausgebildet sein, um die Verschlussmembran oder die Dichtstelle zu zerstören. Durch ein solches Mittel kann das Fluid, insbesondere innerhalb eines mikrofluidischen Systems, mit hoher Zuverlässigkeit geschaltet oder freigesetzt werden.A means for exerting a fluid pressure can be understood to mean a receiving unit or surface for pressure which applies the fluid pressure to the closure membrane, for example by means of a liquid. Such means may be designed to destroy the sealing membrane or the sealing site. By such a means, the fluid, in particular within a microfluidic system, can be switched or released with high reliability.
Der hier vorgestellte Ansatz basiert auf der Erkenntnis, dass herkömmliche Membranventile, insbesondere im Kontext mikrofluidischer Systeme, keine ausreichende Dichtheit gewährleisten, um Fluide wie beispielsweise Reagenzien langzeitstabil, insbesondere über Zeiträume von mehr als einem halben Jahr, aufzubewahren bzw. vorzulagern. Darüber hinaus sind herkömmliche Vorrichtungen zum Schalten von Fluiden, bei denen im inaktivierten Zustand ein Fluidbehälter durch ein Ventil verschlossen ist (auch "normally closed"-Ventil genannt), so konzipiert, dass ein Freigeben des Fluidbehälters insbesondere mittels einer Sollbruchstelle, mittels thermischer Verformung oder mittels Phasenübergängen zwischen "fest" und "flüssig" erfolgt.The approach presented here is based on the finding that conventional diaphragm valves, especially in the context of microfluidic systems, do not ensure sufficient tightness in order to store or pre-store fluids such as reagents for a long time, in particular over periods of more than half a year. In addition, conventional devices for switching fluids in which in the inactivated state a fluid container is closed by a valve (also called "normally closed" valve), designed so that a release of the fluid container in particular by means of a predetermined breaking point, by means of thermal deformation or by means of phase transitions between "solid" and "liquid".
Der vorliegende Ansatz schafft eine (beispielsweise "normally closed") - Ventilvorrichtung, die zum einen eine langzeitstabile Lagerung von Fluiden und zum anderen ein gesteuertes Schalten eines Fluids mittels eines Fluiddrucks ermöglicht. Dabei wird eine fluiddichte Verschlussmembran beispielsweise mittels einer Fügung so an einem Fluidbehälter angeordnet, dass das Fluid über einen längeren Zeitraum hinweg, insbesondere länger als ein halbes Jahr, fluiddicht in dem Fluidbehälter verschlossen ist. Die Ventilvorrichtung umfasst zudem ein Mittel, um die Verschlussmembran oder die Fügung mit einem derartigen Druck zu beaufschlagen, dass die Verschlussmembran oder die Fügung bricht und somit das Fluid freigibt.The present approach provides a ("normally closed") valve device, for example, which allows for a long-term stable storage of fluids and secondly a controlled switching of a fluid by means of a fluid pressure. In this case, a fluid-tight closure membrane is arranged, for example by means of a joint, on a fluid container in such a way that the fluid over a relatively long period of time, in particular more than half a year, is sealed fluid-tight in the fluid container. The valve device also includes means for applying pressure to the closure membrane or joint such that the closure membrane or filling breaks and thus releases the fluid.
Gemäß einer Ausführungsform des vorliegenden Ansatzes kann die Ventilvorrichtung in einem Gehäuse zum Aufnehmen der Ventilvorrichtung angeordnet sein, wobei das Gehäuse einen mehrlagigen Aufbau aus einer ersten Substratschicht, einer zweiten Substratschicht und einer deformierbaren Membran aufweisen kann. Die deformierbare Membran kann zwischen der ersten und der zweiten Substratschicht angeordnet sein, wobei die deformierbare Membran zumindest teilweise das Mittel zum Ausüben des Fluiddrucks bilden kann.According to one embodiment of the present approach, the valve device may be arranged in a housing for receiving the valve device, wherein the housing may have a multilayer structure of a first substrate layer, a second substrate layer and a deformable membrane. The deformable membrane may be disposed between the first and second substrate layers, wherein the deformable membrane may at least partially form the means for applying the fluid pressure.
Unter einem Gehäuse kann beispielsweise eine mehrlagig aufgebaute Lab-on-Chip-Kartusche verstanden werden. Eine solche Kartusche kann beispielsweise aus zwei thermoplastischen Substraten als erster und zweiter Substratschicht bestehen, die insbesondere durch Laserschweißen einer dazwischenliegenden elastomeren Membran als deformierbarer Membran zusammengefügt werden. Ein solches Gehäuse kann besonders kostengünstig hergestellt werden.For example, a housing can be understood to mean a multi-layer lab-on-chip cartridge. Such a cartridge may for example consist of two thermoplastic substrates as the first and second substrate layer, which are joined together in particular by laser welding an intermediate elastomeric membrane as a deformable membrane. Such a housing can be made particularly inexpensive.
Ferner können ein Teilvolumen des Fluidbehälters und ein weiterer Fluidbehälter als Ausnehmung in der zweiten Substratschicht ausgebildet sein, wobei die Verschlusseinheit den Fluidbehälter und den weiteren Fluidbehälter fluidisch voneinander trennen kann. Somit kann ein Fluid vorteilhafterweise über einen besonders langen Zeitraum in dem Fluidbehälter gelagert werden, ohne dass das Fluid in den weiteren Fluidbehälter übertritt.Furthermore, a partial volume of the fluid container and a further fluid container can be formed as a recess in the second substrate layer, wherein the closure unit can fluidly separate the fluid container and the further fluid container from each other. Thus, a fluid can advantageously be stored in the fluid container over a particularly long period of time without the fluid passing into the further fluid container.
Ein Teil des Fluidbehälters kann als Verbindungskanal in der ersten Substratschicht angeordnet sein. Mittels eines solchen Verbindungskanals kann ein Fluid bei Bedarf, insbesondere zum Durchführen biochemischer Prozesse, vom Fluidbehälter in den weiteren Fluidbehälter befördert werden. Ein solcher Verbindungskanal kann vorteilhafterweise mit einem geringen Querschnitt, beispielsweise kleiner als 500 µm, ausgeführt sein, sodass ein Totvolumen des Verbindungskanals möglichst gering ist. Ferner kann ein solcher Verbindungskanal mit einer Gasblase als "Anlaufstrecke" versehen sein, um den Fluiddruck besser zu übertragen.A part of the fluid container may be arranged as a connecting channel in the first substrate layer. If required, in particular for carrying out biochemical processes, a fluid can be conveyed from the fluid container into the further fluid container by means of such a connecting channel. Such a connecting channel can advantageously be designed with a small cross section, for example less than 500 μm, so that a dead volume of the connecting channel is as small as possible. Furthermore, such Connecting channel with a gas bubble as "start-up" be provided to better transfer the fluid pressure.
Des Weiteren kann die deformierbare Membran in einem Bereich einer Öffnung des weiteren Fluidbehälters eine Aussparung zum Aufnehmen der Verschlussmembran aufweisen, wobei der Verbindungskanal in die Aussparung münden kann und wobei die Verschlussmembran den Verbindungskanal fluiddicht verschließen kann. Eine solche Aussparung bietet den Vorteil, dass die Verschlussmembran möglichst raumsparend in dem Gehäuse der Ventilvorrichtung angeordnet werden kann.Furthermore, in a region of an opening of the further fluid container, the deformable membrane can have a recess for receiving the closure membrane, wherein the connection channel can open into the recess and wherein the closure membrane can close the connection channel in a fluid-tight manner. Such a recess has the advantage that the closure membrane can be arranged as space-saving as possible in the housing of the valve device.
Gemäß einer weiteren Ausführungsform des vorliegenden Ansatzes kann die Aussparung als Klemmpassung ausgeführt sein. Die Klemmpassung kann ausgebildet sein, um die Verschlussmembran zwischen der deformierbaren Membran und der ersten und/oder der zweiten Substratschicht einzuklemmen. Mittels einer solchen Klemmpassung, durch die die Verschlussmembran mechanisch gestützt wird, kann auf eine zusätzliche Fügung zwischen der Verschlussmembran und der ersten und/oder zweiten Substratschicht verzichtet werden.According to a further embodiment of the present approach, the recess may be designed as a clamped fit. The interference fit may be configured to clamp the closure membrane between the deformable membrane and the first and / or the second substrate layer. By means of such a clamping fit, by means of which the closure membrane is mechanically supported, an additional join between the closure membrane and the first and / or second substrate layer can be dispensed with.
Zudem kann ein Randbereich der Verschlussmembran auf zwei sich gegenüberliegenden Vorsprüngen der deformierbaren Membran aufliegen. Durch ein Anordnen zweier solcher Vorsprünge kann ein durch die Klemmpassung erzielbarer Abstützeffekt weiter verbessert werden.In addition, an edge region of the sealing membrane can rest on two opposing protrusions of the deformable membrane. By arranging two such projections, a supportive effect achievable by the interference fit can be further improved.
Die Verschlussmembran kann zwischen dem Verbindungskanal und einem weiteren Verbindungskanal angeordnet sein, wobei der weitere Verbindungskanal in der zweiten Substratschicht ausgebildet und mit dem weiteren Fluidbehälter verbunden sein kann. Die Verschlussmembran kann hierbei im Wesentlichen die gleiche Dicke wie die deformierbare Membran aufweisen. Dadurch, dass der Fluidbehälter, in dem sich das Fluid befindet, und der weitere Fluidbehälter nur durch die Verschlussmembran, insbesondere beispielsweise einer dünnen Folie, getrennt sind, kann der Verbindungskanal auf ein Minimum reduziert werden. Somit können der Verbindungskanal und der weitere Verbindungskanal mit einem Totvolumen von weniger als 500 µL, insbesondere von weniger als 10 µL, ausgeführt werden, wobei ein Querschnitt des Verbindungskanals und des weiteren Verbindungskanals weniger als 500 µm beträgt.The closure membrane may be arranged between the connection channel and a further connection channel, wherein the further connection channel may be formed in the second substrate layer and connected to the further fluid container. The closure membrane may in this case have substantially the same thickness as the deformable membrane. By virtue of the fact that the fluid container in which the fluid is located and the further fluid container are separated only by the closure membrane, in particular for example a thin foil, the connection channel can be reduced to a minimum. Thus, the connection channel and the further connection channel with a dead volume of less than 500 .mu.L, in particular less than 10 .mu.L can be performed, wherein a cross section of the connecting channel and the further connecting channel is less than 500 microns.
In der Ventilvorrichtung kann eine Auslenkkammer als zwischen dem Fluidbehälter und dem weiteren Fluidbehälter angeordnete Ausnehmung der ersten Substratschicht ausgebildet sein. Eine Auslenkkammeröffnung der Auslenkkammer kann der zweiten Substratschicht zugewandt sein, wobei die deformierbare Membran in einem Bereich der Auslenkkammeröffnung einen Ausweichbereich aufweist, der ausgebildet ist, um durch den Fluiddruck in Richtung der Auslenkkammer deformiert zu werden. Unter einer Auslenkkammer kann im Allgemeinen eine dem Fluidbehälter und dem weiteren Fluidbehälter ähnliche Ausnehmung verstanden werden, in deren Richtung die deformierbare Membran ausgelenkt werden kann, insbesondere wenn ein Fluiddruck auf die deformierbare Membran wirkt. Eine solche Auslenkkammer kann vorteilhafterweise die Funktion eines zwischen dem Fluidbehälter und dem weiteren Fluidbehälter angeordneten Ventils erfüllen. Dazu kann der Ausweichbereich beispielsweise auf einen Dichtsitz gedrückt werden. Darüber hinaus kann durch eine solche Auslenkkammer auf einen zusätzlichen Verbindungskanal verzichtet werden.In the valve device, a deflection chamber may be formed as a recess of the first substrate layer arranged between the fluid container and the further fluid container. A deflection chamber opening of the deflection chamber may face the second substrate layer, the deformable membrane having in a region of the deflection chamber opening a deflection region which is designed to be deformed by the fluid pressure in the direction of the deflection chamber. A deflection chamber can generally be understood as meaning a recess similar to the fluid container and the further fluid container, in the direction of which the deformable membrane can be deflected, in particular if a fluid pressure acts on the deformable membrane. Such a deflection chamber can advantageously fulfill the function of a valve arranged between the fluid container and the further fluid container. For this purpose, the escape area can for example be pressed onto a sealing seat. In addition, can be dispensed with by such a deflection on an additional connection channel.
Gemäß einer weiteren Ausführungsform des vorliegenden Ansatzes kann der Ausweichbereich reversibel mit der zweiten Substratschicht verbunden oder verbindbar sein. Eine solche (beispielsweise als reversibel ausgebildete) Fügung kann beispielsweise durch eine Peelnaht oder einen thermisch oder mechanisch instabilen Bond umgesetzt werden, sodass die reversible Fügung brechen kann, insbesondere wenn der Fluiddruck auf die Fügung ausgeübt wird und der Fluiddruck dabei einen bestimmten Schwellwert überschreitet.According to another embodiment of the present approach, the escape region may be reversibly connected or connectable to the second substrate layer. Such a joint (formed as a reversible, for example) can be implemented, for example, by a peel seam or a thermally or mechanically unstable bond, so that the reversible joint can break, in particular if the fluid pressure is exerted on the joint and the fluid pressure exceeds a specific threshold value.
Die Verschlussmembran kann als integraler Bestandteil der deformierbaren Membran ausgebildet sein. Unter einer solchen Verschlussfolie kann beispielsweise eine Verbundfolie verstanden werden, in der ein elastomeres Material der deformierbaren Membran mit einem fluiddichten Material der Verschlussmembran kombiniert wird. Dadurch, dass eine solche Verbundfolie gleichzeitig als Diffusionsbarriere eingesetzt werden kann, kann auf eine zusätzliche Verschlussmembran verzichtet werden.The closure membrane may be formed as an integral part of the deformable membrane. Such a sealing film may, for example, be understood as meaning a composite film in which an elastomeric material of the deformable membrane is combined with a fluid-tight material of the closure membrane. The fact that such a composite film can be used simultaneously as a diffusion barrier, can be dispensed with an additional sealing membrane.
Ferner kann die deformierbare Membran eine Öffnung aufweisen, in der die Verschlussmembran angeordnet sein kann, wobei die Öffnung ausgebildet sein kann, um zusammen mit der ersten und/oder zweiten Subrastschicht als Fluiddruckveränderungskammer zu wirken. Unter einer Fluiddruckveränderungskammer kann eine mit dem Fluidbehälter verbundene Öffnung der deformierbaren Membran verstanden werden, durch die der Fluiddruck derart auf eine einer Fügeseite der Verschlussmembran entgegengesetzte Seite der Verschlussmembran gelenkt werden kann, dass die Verschlussmembran bricht. Indem die Verschlussmembran in einer unmittelbaren Nähe des Fluidbehälters angeordnet werden kann, kann das Totvolumen zwischen dem Fluidbehälter und dem weiteren Fluidbehälter besonders gering gehalten werden.Further, the deformable membrane may have an opening in which the closure membrane may be disposed, wherein the opening may be formed to act as a fluid pressure change chamber together with the first and / or second sub-rast layer. A fluid pressure change chamber can be understood as meaning an opening of the deformable membrane connected to the fluid container, by means of which the fluid pressure can be directed onto a side of the closure membrane opposite a joining side of the closure membrane such that the closure membrane breaks. By the closure membrane can be arranged in the immediate vicinity of the fluid container, the dead volume between the fluid container and the further fluid container can be kept particularly low.
Die deformierbare Membran kann in einem Bereich einer Öffnung des Fluidbehälters einen Auslenkbereich aufweisen, der ausgebildet ist, um durch einen Aktuationsdruck in Richtung des Fluidbehälters deformiert zu werden, um den Fluiddruck bereitzustellen. Unter einem Auslenkbereich kann ein Bereich der deformierbaren Membran verstanden werden, der nicht fest mit einer Substratschicht verbunden ist und somit in Richtung des Fluidbehälters ausgelenkt werden kann. Unter einem Aktuationsdruck kann insbesondere ein pneumatischer Druck verstanden werden, der auf das in dem Fluidbehälter enthaltene Fluid mittels der deformierbaren Membran übertragen werden kann. Durch einen solchen Auslenkbereich wird ein zuverlässiges Schalten des Fluids mit nur wenigen kostengünstigen Bauteilen ermöglicht.The deformable diaphragm may include, in an area of an opening of the fluid container, a deflection portion configured to be deformed by an actuation pressure toward the fluid container to provide the fluid pressure. A deflection region can be understood as meaning a region of the deformable membrane which is not firmly connected to a substrate layer and can thus be deflected in the direction of the fluid container. Actuating pressure may, in particular, be understood as meaning a pneumatic pressure which can be transmitted to the fluid contained in the fluid container by means of the deformable membrane. Such a deflection range enables a reliable switching of the fluid with only a few inexpensive components.
Weiterhin kann ein Pneumatikanschluss vorgesehen sein, um den Aktuationsdruck pneumatisch auf den Auslenkbereich zu leiten. Unter einem Pneumatikanschluss kann eine Vorrichtung zum Erzeugen eines pneumatischen Drucks verstanden werden, wobei die Vorrichtung ausgebildet ist, um den pneumatischen Druck in die Ventilvorrichtung zu leiten. Mittels eines solchen Pneumatikanschlusses kann der zum Erzeugen des Fluiddrucks erforderliche Aktuationsdruck dauerhaft bereitgestellt werden. Ferner kann ein solcher Pneumatikanschluss, insbesondere wenn er als Kanal ausgebildet ist, mit einer Gasblase als "Anlaufstrecke" versehen sein, um den Aktuationsdruck besser auf den Auslenkbereich zu übertragen. Schließlich kann ein solcher Pneumatikanschluss beispielsweise auch dazu dienen, das Fluid weiterzutransportieren, insbesondere wenn der Pneumatikanschluss an dem weiteren Fluidbehälter angeschlossen ist.Furthermore, a pneumatic connection can be provided in order to pneumatically guide the actuation pressure to the deflection region. A pneumatic connection may be understood to mean a device for generating a pneumatic pressure, wherein the device is designed to direct the pneumatic pressure into the valve device. By means of such a pneumatic connection, the actuation pressure required for generating the fluid pressure can be permanently provided. Furthermore, such a pneumatic connection, in particular if it is designed as a channel, may be provided with a gas bubble as a "start-up path" in order to transmit the actuation pressure better to the deflection region. Finally, such a pneumatic connection can for example also serve to fluid weiterzutransportieren, especially when the pneumatic connection is connected to the other fluid container.
Schließlich schafft der hier vorgestellte Ansatz ein Verfahren zum Betreiben einer Ventilvorrichtung für eine Fluidbereitstellungseinheit, wobei das Verfahren einen Schritt des Bereitstellens eines Fluidbehälters, einer Verschlusseinheit mit einer Verschlussmembran und einer Dichtstelle sowie eines Mittels zum Ausüben eines Fluiddrucks auf zumindest eine Seite der Verschlussmembran umfasst. Dabei ist die Verschlusseinheit zwischen der Verschlussmembran und dem Fluidbehälter angeordnet, wodurch der Fluidbehälter fluiddicht verschlossen ist. Weiterhin ist die Verschlussmembran und/oder die Dichtstelle ausgebildet, um durch den Fluiddruck zumindest teilweise beschädigt zu werden, Ferner umfasst das Verfahren einen Schritt des Beaufschlagens der Verschlussmembran mit dem Fluiddruck.Finally, the approach presented herein provides a method of operating a valve device for a fluid delivery unit, the method comprising a step of providing a fluid container, a closure unit having a closure membrane and a sealing site, and means for applying a fluid pressure to at least one side of the closure membrane. In this case, the closure unit is arranged between the closure membrane and the fluid container, as a result of which the fluid container is closed in a fluid-tight manner. Furthermore, the sealing membrane and / or the sealing point is designed to be at least partially damaged by the fluid pressure. Further, the method comprises a step of pressurizing the sealing membrane with the fluid pressure.
Die Erfindung wird nachstehend anhand der beigefügten Zeichnungen beispielhaft näher erläutert. Es zeigen:
- Fig. 1
- eine Querschnittsdarstellung einer Ventilvorrichtung für eine Fluidbereitstellungseinheit gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
- Fig. 2
- eine Querschnittsdarstellung einer Ventilvorrichtung für eine Fluidbereitstellungseinheit gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung;
- Fig. 3
- eine Querschnittsdarstellung einer Ventilvorrichtung für eine Fluidbereitstellungseinheit gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung;
- Fig. 4
- eine Querschnittsdarstellung einer Ventilvorrichtung für eine Fluidbereitstellungseinheit gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung;
- Fig. 5
- eine Querschnittsdarstellung einer Ventilvorrichtung für eine Fluidbereitstellungseinheit gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung; und
- Fig. 6
- ein Ablaufdiagramm eines Verfahrens zum Betreiben einer Ventilvorrichtung für eine Fluidbereitstellungseinheit gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung.
- Fig. 1
- a cross-sectional view of a valve device for a fluid supply unit according to an embodiment of the present invention;
- Fig. 2
- a cross-sectional view of a valve device for a fluid supply unit according to another embodiment of the present invention;
- Fig. 3
- a cross-sectional view of a valve device for a fluid supply unit according to another embodiment of the present invention;
- Fig. 4
- a cross-sectional view of a valve device for a fluid supply unit according to another embodiment of the present invention;
- Fig. 5
- a cross-sectional view of a valve device for a fluid supply unit according to another embodiment of the present invention; and
- Fig. 6
- a flowchart of a method for operating a valve device for a fluid supply unit according to another embodiment of the present invention.
In der nachfolgenden Beschreibung günstiger Ausführungsbeispiele der vorliegenden Erfindung werden für die in den verschiedenen Figuren dargestellten und ähnlich wirkenden Elemente gleiche oder ähnliche Bezugszeichen verwendet, wobei auf eine wiederholte Beschreibung dieser Elemente verzichtet wird.In the following description of favorable embodiments of the present invention, the same or similar reference numerals are used for the elements shown in the various figures and similar acting, with a repeated description of these elements is omitted.
Die erste Substratschicht 106 weist einen rechtwinkligen, U-förmigen Verbindungskanal 112 auf, der einen ersten und einen zweiten senkrecht zur ersten Substratschicht 106 verlaufenden Kanalabschnitt sowie einen horizontal zur ersten Substratschicht 106 verlaufenden Kanalabschnitt umfasst. Der horizontale Kanalabschnitt verläuft unterhalb des Deckels 104, wobei eine der ersten Substratschicht 106 zugewandte Seite des Deckels 104 eine Wandfläche des horizontalen Kanalabschnitts bildet.The
Die zweite Substratschicht 108 umfasst einen Fluidbehälter 114, auch Kammer 1 genannt, und einen weiteren Fluidbehälter 116, auch Kammer 2 genannt, die als rechteckige Ausnehmungen der zweiten Substratschicht 108 ausgebildet sind. Der Fluidbehälter 114 und der Verbindungskanal 112 sind mit einem Fluid, beispielsweise einer Flüssigkeit, gefüllt. Der Verbindungskanal 112 ist zwischen dem Fluidbehälter 114 und dem weiteren Fluidbehälter 106 angeordnet.The
Die deformierbare Membran 110 weist in einem dem Verbindungskanal 112 zugewandten Randbereich des Fluidbehälters 114 eine Kanalöffnung auf. Ein Durchmesser der Kanalöffnung entspricht dem Durchmesser des Verbindungskanals 112. Die Kanalöffnung ist mit dem ersten senkrechten Kanalabschnitt verbunden.The
Die deformierbare Membran 110 weist in einem Bereich einer der ersten Substratschicht 106 zugewandten Öffnung des weiteren Fluidbehälters 116 eine Aussparung 118 zum Aufnehmen einer Verschlusseinheit 119 auf. Die Aussparung 118 ist in dem dem Verbindungskanal 112 zugewandten Randbereich des weiteren Fluidbehälters 116 angeordnet. Ferner mündet der zweite senkrechte Kanalabschnitt des Verbindungskanals 112 in die Aussparung 118. Die Verschlusseinheit 119 besteht aus einer Folie als Verschlussmembran 120 und einer der ersten Substratschicht 106 zugewandten Seite der Verschlussmembran 120, auch Dichtstelle 121 oder Fügefläche der Folie genannt, wobei die Verschlussmembran 120 derart mittels einer Fügung mit der ersten Substratschicht 106 verbunden ist, dass ein Ende des zweiten senkrechten Kanalabschnitts fluiddicht gegen den weiteren Fluidbehälter 116 verschlossen ist.In a region of an opening of the further
Die Aussparung 118 ist versetzt zu dem weiteren Fluidbehälter 116 angeordnet, sodass der dem Verbindungskanal 112 zugewandte Randbereich des weiteren Fluidbehälters 116 einen der Verschlussmembran 120 gegenüberliegenden Vorsprung bildet. Eine Breite der Verschlussmembran 120 ist etwas kleiner (beispielsweise um 5 oder 10 Prozent) als eine Breite der Aussparung 118.The
Die deformierbare Membran 110 bildet in einem Bereich einer der ersten Substratschicht 106 zugewandten Öffnung des Fluidbehälters 114 einen Auslenkbereich 122 als Mittel 123 zum Ausüben eines Fluiddrucks auf die Verschlussmembran, wobei der Auslenkbereich 122 lose mit der ersten Substratschicht 106 gefügt ist. Somit ist der Auslenkbereich 122 durch einen Aktuationsdruck in Richtung des Fluidbehälters 114 deformierbar.The
Des Weiteren ist der Auslenkbereich 122 mit einem Pneumatikanschluss 124 versehen, der ausgebildet ist, um den Aktuationsdruck pneumatisch auf den Auslenkbereich 122 zu leiten. Der Pneumatikanschluss 124 verläuft durch den Deckel 104 und die erste Substratschicht 106 und ist senkrecht dazu angeordnet.Furthermore, the
Sofern der Aktuationsdruck mittels des Pneumatikanschlusses 124 auf den Auslenkbereich 122 ausgeübt wird, wird der Auslenkbereich 122 in Richtung des Fluidbehälters 114 ausgewölbt. Die im Fluidbehälter 114 enthaltene Flüssigkeit wird komprimiert, da die Flüssigkeit aufgrund der Verschlussmembran 120 im Fluidbehälter 114 und im Verbindungskanal 112 eingeschlossen ist. Der dadurch entstehende Fluiddruck wirkt auf die Verschlussmembran 120. Ist der Fluiddruck stark genug, bricht entweder die Verschlussmembran 120 oder die Fügung zwischen der Verschlussmembran 120 und der ersten Substratschicht 106, sodass die Flüssigkeit in den weiteren Fluidbehälter 116 strömt.If the actuation pressure is exerted on the
Im Folgenden wird der Aufbau eines in
Das in der
In dem in
Durch Anlegen eines Drucks an den Pneumatikanschluss 124 baut sich in der Kammer 114 aufgrund der Inkompressibilität der Flüssigkeit bzw. nach Komprimierung des gelagerten Fluids ein Überdruck auf. Der Überdruck führt dazu, dass die Folie 120 den Kanal 112 freigibt und die Flüssigkeit durch Auslenken des Layers 2 110 von der ersten Kammer 114 in die zweite Kammer 116 verdrängt wird. Der Aktuationsdruck der Flüssigkeit wirkt hierbei auf die Fügeseite. In einem weiteren Ausführungsbeispiel (nicht dargestellt) wirkt der Aktuationsdruck tangential auf die Fügeseite, was zum Abrollen der Folie 120 führt.By applying pressure to the
Statt der Kanalöffnung weist die in
Ferner entspricht eine Höhe der Öffnung 130 einer Dicke der deformierbaren Membran 110.Further, a height of the
Statt der Aussparung 118 weist die in
Sofern der Aktuationsdruck mittels des Pneumatikanschlusses 124 auf den Auslenkbereich 122 ausgeübt wird, wird der Auslenkbereich 122 in Richtung des Fluidbehälters 114 ausgewölbt. Mittels der Fluiddruckveränderungskammer wird der Fluiddruck auf eine der Fügefläche 121 entgegengesetzte Seite der Verschlussmembran 120 aufgebracht, sodass die Verschlussmembran 120 bricht und die Flüssigkeit über den Verbindungskanal 112 in den weiteren Fluidbehälter 116 strömt.If the actuation pressure is exerted on the
Ferner weist das in
Somit ist die Folie 120 zusätzlich durch den Layer 2 110 gestützt, der zwischen Layer 1 106 und Layer 3 108 eingeklemmt und gequetscht ist und die Folie 120 anpresst und abdichtet. In diesem Ausführungsbeispiel kann auf eine zusätzliche Fügung zwischen Folie 120 und Substrat 106 verzichtet werden. Um die Folie 120 besser zu stützen, wird ein Abflusskanal 134 eingesetzt, sodass die Folie 120 nur im Kanal 134 keine Gegenkraft erfährt, aber beim restlichen Raumwinkel gestützt wird (der Raumwinkel der in
Ferner weist das in
Ein der Auslenkkammer 142 gegenüberliegender Bereich der zweiten Substratschicht 108 ist als Dichtsitz 148, insbesondere als geschwächte Fügefläche der deformierbaren Membran 110, ausgeführt, auf dem der Ausweichbereich 146 aufliegt und der ausgebildet ist, um den Fluidbehälter 114 fluidisch von dem weiteren Fluidbehälter 116 zu trennen.A region of the
Im Unterschied zu
Ein Teil des Randbereichs 136 (in
Sofern der Aktuationsdruck mittels des Pneumatikanschlusses 124 auf den Auslenkbereich 122 mit der integrierten Verschlussmembran 120 ausgeübt wird, wird der Auslenkbereich 122 in Richtung des Fluidbehälters 114 ausgewölbt. Der dadurch entstehende Fluiddruck wirkt auf die Verschlussmembran 120, insbesondere auf die Dichtstelle 121. Ist der Druck stark genug, bricht zum einen die Dichtstelle 121, zum anderen wird der Ausweichbereich 146 derart in Richtung der Auslenkkammer 142 gewölbt, dass der Dichtsitz 148 freigegeben wird. Somit strömt die Flüssigkeit vom Fluidbehälter 114 in den weiteren Fluidbehälter 116.If the actuation pressure is exerted on the
Die Folie 120 wird hier nur als Diffusionsbarriere eingesetzt, die die Eigenschaften des Layers 2 110 unterstützt. Die Ventilwirkung erfolgt über den Layer 2 110, der auf den Dichtsitz 148 gedrückt wird. In einem weiteren Ausführungsbeispiel (nicht dargestellt) kann Layer 2 110 mit einem (beispielsweise reversiblen) Fügeverfahren (Peelnaht, thermisch instabiler Bond, mechanisch instabiler Bond) auf den Dichtsitz 148 gefügt werden, sodass die Fügung bricht, sobald der Aktuationsdruck einen Schwellwert überschreitet.The
Ferner weist das in
Die Verschlussmembran 120 ist mittels der Klemmpassung 132 in die deformierbare Membran 110 eingepasst. Dabei entspricht die Dicke der deformierbaren Membran 110 im Wesentlichen einer Dicke der Verschlussmembran 120, sodass die Verschlussmembran 120 zwischen der deformierbaren Membran 110, der ersten Substratschicht 106 und der zweiten Substratschicht 108 eingeklemmt ist.The sealing
Ferner bildet die der zweiten Substratschicht 108 zugewandte Seite der Bodenplatte 152 je eine Wandfläche des Fluidbehälters 114 und des weiteren Fluidbehälters 116.Furthermore, the side of the
Sofern der Aktuationsdruck mittels des Pneumatikanschlusses 124 auf den Auslenkbereich 122 ausgeübt wird, wird der Auslenkbereich 122 in Richtung des Fluidbehälters 114 ausgewölbt. Der dadurch entstehende Fluiddruck wirkt auf die eingeklemmte Verschlussmembran 120. Ist der Druck stark genug, reißt die Verschlussmembran 120, sodass die Flüssigkeit vom Fluidbehälter 114 in den weiteren Fluidbehälter 116 strömt.If the actuation pressure is exerted on the
Die beschriebenen und in den Figuren gezeigten Ausführungsbeispiele sind nur beispielhaft gewählt. Unterschiedliche Ausführungsbeispiele können vollständig oder in Bezug auf einzelne Merkmale miteinander kombiniert werden. Auch kann ein Ausführungsbeispiel durch Merkmale eines weiteren Ausführungsbeispiels ergänzt werden.The embodiments described and shown in the figures are chosen only by way of example. Different embodiments may be combined together or in relation to individual features. Also, an embodiment can be supplemented by features of another embodiment.
Ferner können erfindungsgemäße Verfahrensschritte wiederholt sowie in einer anderen als in der beschriebenen Reihenfolge ausgeführt werden.Furthermore, method steps according to the invention can be repeated as well as carried out in a sequence other than that described.
Umfasst ein Ausführungsbeispiel eine "und/oder"-Verknüpfung zwischen einem ersten Merkmal und einem zweiten Merkmal, so ist dies so zu lesen, dass das Ausführungsbeispiel gemäß einer Ausführungsform sowohl das erste Merkmal als auch das zweite Merkmal und gemäß einer weiteren Ausführungsform entweder nur das erste Merkmal oder nur das zweite Merkmal aufweist.If an exemplary embodiment comprises a "and / or" link between a first feature and a second feature, then this is to be read so that the embodiment according to one embodiment, both the first feature and the second feature and according to another embodiment either only first feature or only the second feature.
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013209645.3A DE102013209645A1 (en) | 2013-05-24 | 2013-05-24 | Valve device for a fluid supply unit and method for operating a valve device for a fluid supply unit |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2805771A2 true EP2805771A2 (en) | 2014-11-26 |
EP2805771A3 EP2805771A3 (en) | 2014-12-24 |
EP2805771B1 EP2805771B1 (en) | 2020-06-24 |
Family
ID=50479121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14164950.9A Active EP2805771B1 (en) | 2013-05-24 | 2014-04-16 | Fluid provision unit with a valve device and method for operating a fluid provision unit with a valve device |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2805771B1 (en) |
DE (1) | DE102013209645A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4129481A1 (en) | 2021-08-06 | 2023-02-08 | Microliquid SL | Normally-closed monolithic valve for microfluidic applications |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8852862B2 (en) * | 2004-05-03 | 2014-10-07 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US8007999B2 (en) * | 2006-05-10 | 2011-08-30 | Theranos, Inc. | Real-time detection of influenza virus |
JP5161218B2 (en) * | 2006-08-02 | 2013-03-13 | サムスン エレクトロニクス カンパニー リミテッド | Thin film chemical analyzer and analysis method using the same |
US8187541B2 (en) * | 2006-09-18 | 2012-05-29 | California Institute Of Technology | Apparatus for detecting target molecules and related methods |
-
2013
- 2013-05-24 DE DE102013209645.3A patent/DE102013209645A1/en not_active Withdrawn
-
2014
- 2014-04-16 EP EP14164950.9A patent/EP2805771B1/en active Active
Non-Patent Citations (1)
Title |
---|
None |
Also Published As
Publication number | Publication date |
---|---|
EP2805771A3 (en) | 2014-12-24 |
EP2805771B1 (en) | 2020-06-24 |
DE102013209645A1 (en) | 2014-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2796200B1 (en) | Microfluid analysis cartridge and method for its fabrication | |
EP2687290B1 (en) | Microfluidic storage device for storing a fluid, method for its manufacture and use of the same | |
EP2531760B1 (en) | Micro-fluidic component for manipulating a fluid, and microfluidic chip | |
EP2783752B1 (en) | Normally closed valve for microfluidic components of polymeric multilayers and method | |
EP3049186B1 (en) | Analytical device for performing pcr, method for operating the device and method of making the device | |
DE102011003856B4 (en) | Microsystem for fluidic applications as well as manufacturing and use methods for a microsystem for fluidic applications | |
EP3393661B1 (en) | Microfluidic device and method for operating a microfluidic device | |
EP2308589B9 (en) | Microfluid structure | |
DE102011004125A1 (en) | Device for the hermetically sealed storage of liquids for a microfluidic system | |
EP2611594B1 (en) | Method of making a microfluidic device and related laminating apparatus | |
EP3406340B1 (en) | Flow cell with housing component | |
WO2009071078A1 (en) | Microfluid storage device | |
DE102008002336A1 (en) | Pinch valve and method for its production | |
DE102012222719A1 (en) | Film bag for storing a fluid and device for providing a fluid | |
EP2647435A1 (en) | Fluid cell with a tempering chamber | |
EP2905079A1 (en) | Device for storing a fluid in a microfluidic system, method for operating and method for producing such a device | |
DE102015205906B4 (en) | Storage unit, method for producing a storage unit and method for releasing a fluid stored in a storage unit | |
WO2010031559A1 (en) | Microfluidic valve, microfluidic pump, microfluidic system, and a production method | |
EP2805771A2 (en) | Valve device for a fluid provision unit and method for operating a valve device for a fluid provision unit | |
DE102014202342A1 (en) | Device for pre-storing a fluid in a microfluidic system, method for operating and method for producing such a device | |
EP2730336B1 (en) | Valve assembly in a microfluidic system | |
EP3065869A1 (en) | Device and method for handling reagents | |
DE202014104510U1 (en) | Device for pre-storing a fluid in a microfluidic system | |
EP3104972A1 (en) | Unit for making available a fluid for a biochemical analysis device, and method and device for producing such a unit | |
DE102016222028A1 (en) | Microfluidic container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140416 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B01L 3/00 20060101AFI20141118BHEP |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150624 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180403 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200330 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROBERT BOSCH GMBH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1283352 Country of ref document: AT Kind code of ref document: T Effective date: 20200715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014014347 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200924 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200925 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200924 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201024 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014014347 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210416 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201024 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1283352 Country of ref document: AT Kind code of ref document: T Effective date: 20210416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240422 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240430 Year of fee payment: 11 Ref country code: FR Payment date: 20240419 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |