EP2804450B1 - Insulating member for a plasma arc torch consisting of several parts, torch and related assemblies equipped with the same and associated method - Google Patents
Insulating member for a plasma arc torch consisting of several parts, torch and related assemblies equipped with the same and associated method Download PDFInfo
- Publication number
- EP2804450B1 EP2804450B1 EP13004796.2A EP13004796A EP2804450B1 EP 2804450 B1 EP2804450 B1 EP 2804450B1 EP 13004796 A EP13004796 A EP 13004796A EP 2804450 B1 EP2804450 B1 EP 2804450B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma
- torch
- nozzle
- conductive
- conductive material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 7
- 230000000712 assembly Effects 0.000 title 1
- 238000000429 assembly Methods 0.000 title 1
- 239000007789 gas Substances 0.000 claims description 232
- 238000005520 cutting process Methods 0.000 claims description 77
- 239000002826 coolant Substances 0.000 claims description 57
- 239000004020 conductor Substances 0.000 claims description 54
- 230000001681 protective effect Effects 0.000 claims description 31
- 238000010292 electrical insulation Methods 0.000 claims description 17
- 239000000919 ceramic Substances 0.000 claims description 14
- 239000012811 non-conductive material Substances 0.000 claims description 13
- 239000004033 plastic Substances 0.000 claims description 9
- 229920003023 plastic Polymers 0.000 claims description 9
- 238000004026 adhesive bonding Methods 0.000 claims description 7
- 238000003466 welding Methods 0.000 claims description 5
- 239000000112 cooling gas Substances 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 40
- 239000002184 metal Substances 0.000 description 40
- 238000001816 cooling Methods 0.000 description 34
- 239000000463 material Substances 0.000 description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 150000002739 metals Chemical class 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000011135 tin Substances 0.000 description 9
- 229910052718 tin Inorganic materials 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- 239000011701 zinc Substances 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 230000005611 electricity Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000005507 spraying Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000003570 air Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910010293 ceramic material Inorganic materials 0.000 description 6
- 229910001369 Brass Inorganic materials 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000010951 brass Substances 0.000 description 5
- 239000000110 cooling liquid Substances 0.000 description 5
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000005476 soldering Methods 0.000 description 5
- 238000005553 drilling Methods 0.000 description 4
- 229910001092 metal group alloy Inorganic materials 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- -1 ferrous metals Chemical class 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004963 Torlon Substances 0.000 description 1
- 229920003997 TorlonĀ® Polymers 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005495 cold plasma Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3436—Hollow cathodes with internal coolant flow
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3442—Cathodes with inserted tip
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3457—Nozzle protection devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/001—Arrangements for beam delivery or irradiation
Definitions
- the present invention relates to a multi-part insulating part for an arc plasma torch, in particular a plasma cutting torch, for electrical insulation between at least two electrically conductive components of the plasma torch, arrangements and plasma torches with such an insulating part, plasma torch with such an arrangement and methods for processing a workpiece with a thermal plasma , plasma cutting and plasma welding.
- Plasma torches are generally used for the thermal processing of electrically conductive materials such as steel and non-ferrous metals.
- Plasma welding torches are used for welding and plasma cutting torches for cutting electrically conductive materials such as steel and non-ferrous metals.
- Plasma torches usually consist of a torch body, an electrode, a nozzle and a holder for it. Modern plasma torches also have a nozzle protection cap fitted over the nozzle. A nozzle is often fixed using a nozzle cap.
- the components that wear out during operation of the plasma torch as a result of the high thermal load caused by the arc are, in particular, the electrode, the nozzle, the nozzle cap, the nozzle protective cap, the tip guard bracket and the plasma gas guide and shield gas guide parts. These components can be easily changed by an operator and are therefore referred to as wearing parts.
- the plasma torches are connected by leads to a power source and a gas supply which feed the plasma torch. Furthermore, the plasma torch can be connected to a cooling device for a cooling medium, such as a cooling liquid.
- the plasma cutting torches are discussed in detail below.
- a plasma gas flows between the electrode and the nozzle.
- the plasma gas is guided through a gas guide part, which can also be made up of several parts. This allows the plasma gas to be directed in a targeted manner. It is often rotated around the electrode by a radial and/or axial offset of the openings in the plasma gas guide part.
- the plasma gas guide part is made of electrically insulating material, since the electrode and the nozzle must be electrically isolated from each other. This is necessary because the electrode and nozzle have different electrical potentials during operation of the plasma cutting torch. To operate the plasma cutting torch, an arc is generated between the electrode and the nozzle and/or the workpiece, which ionizes the plasma gas.
- a high voltage can be applied between the electrode and the nozzle, which provides for a pre-ionization of the distance between the electrode and the nozzle and thus for the formation of an arc.
- the arc burning between the electrode and the nozzle is also known as the pilot arc.
- the pilot arc exits through the nozzle bore and strikes the workpiece, ionizing the path to the workpiece. This allows the arc to form between the electrode and the workpiece. This arc is also referred to as the main arc.
- the pilot arc can be switched off during the main arc. However, it can also continue to be operated. During plasma cutting, this is often switched off in order not to put additional strain on the nozzle.
- the electrode and the nozzle are thermally highly stressed and must be cooled. At the same time, they must also conduct the electrical current that is required to form the arc. For this reason, materials that conduct heat well and materials that conduct electricity well, usually metals such as copper, silver, aluminum, tin, zinc, iron or alloys containing at least one of these metals, are used for this purpose.
- the electrode often consists of an electrode holder and an emissive insert made of a material that has a high melting temperature (>2000Ā°C) and a lower electron work function than the electrode holder.
- the materials used for the emission insert are non-oxidizing plasma gases such as argon, hydrogen, nitrogen, helium and mixtures thereof, tungsten when using, and nitrogen-oxygen mixture and mixtures when using oxidizing gases such as oxygen, air and mixtures thereof used with other gases, hafnium or zirconium.
- the high-temperature material can be fitted into an electrode holder, which consists of a material that conducts heat and electricity well, for example by being pressed in with a form fit and/or force fit.
- the electrode and nozzle can be cooled by gas, for example the plasma gas or a secondary gas, which flows along the outside of the nozzle.
- gas for example the plasma gas or a secondary gas
- cooling with a liquid such as water
- the electrode and/or the nozzle are often cooled directly with the liquid, i.e. the liquid is in direct contact with the electrode and/or the nozzle.
- there is a nozzle cap around the nozzle the inner surface of which together with the outer surface of the nozzle forms a coolant space in which the coolant flows.
- nozzle protection cap outside the nozzle and/or the nozzle cap.
- the inner surface of the nozzle guard and the outer surface of the nozzle or nozzle cap form a space through which a shield or shield gas flows.
- the secondary or protective gas emerges from the hole in the nozzle protection cap and envelops the plasma jet and ensures a defined atmosphere around it.
- the shielding gas protects the tip and tip guard from arcing that can form between the tip and the workpiece. These are called double arcs and can damage the nozzle.
- the nozzle and the nozzle protection cap are heavily loaded by hot material spraying up.
- the secondary gas the volume flow of which can be higher when piercing compared to the value when cutting, keeps the spraying material away from the nozzle and the nozzle protection cap and thus protects against damage.
- the nozzle protection cap is also subjected to high thermal loads and must be cooled. For this reason, materials that conduct heat well and materials that conduct electricity well, usually metals such as copper, silver, aluminum, tin, zinc, iron or alloys containing at least one of these metals, are used for this purpose.
- the electrode and the nozzle can also be cooled indirectly. They are connected to a component made of a material that conducts heat and electricity well, usually a metal such as copper, silver, aluminum, tin, zinc, iron or alloys containing at least one of these metals , contacted by touch. This component is in turn cooled directly, i.e. it is in direct contact with the mostly flowing coolant. At the same time, these components can serve as holders or receptacles for the electrode, the nozzle, the nozzle cap or the nozzle protection cap, and can conduct the heat away and supply the current.
- a component made of a material that conducts heat and electricity well, usually a metal such as copper, silver, aluminum, tin, zinc, iron or alloys containing at least one of these metals , contacted by touch.
- This component is in turn cooled directly, i.e. it is in direct contact with the mostly flowing coolant.
- these components can serve as holders or receptacles for the electrode, the nozzle, the
- the nozzle protection cap is usually only cooled by the secondary gas. Arrangements are also known in which the nozzle protection cap is cooled directly or indirectly by a cooling liquid.
- Plasma cutting torches with water cooling require gas flow rates of 500 l/h to 4000 l/h, while plasma cutting torches without water cooling require gas flow rates of 5000 to 11000 l/h. These ranges depend on the cutting currents used, which can be in a range from 20 to 600 A, for example.
- the volume flow of the plasma gas and/or secondary gas should be selected in such a way that the best cutting results are achieved. Volume flows that are too high, which are necessary for cooling, often worsen the cutting result.
- gases other than air e.g. argon, nitrogen, hydrogen, oxygen or helium.
- the invention is therefore based on the object of providing more effective cooling of components, in particular wearing parts, of a plasma torch.
- WO 94088748 A1 discloses an example of a one-piece insulator for a plasma arc torch.
- US6169370B1 discloses an example of a two-piece insulator for a cold plasma torch.
- this object is achieved by a multi-part insulating part according to claim 1.
- electrically non-conductive is also intended to include that the material of the plasma torch insulating part is slightly or not significantly electrically conductive.
- the insulating part can, for example, be a plasma gas routing part, secondary gas routing part or cooling gas routing part.
- this object is achieved by a multi-part insulating part according to claim 4.
- this object is achieved by a method according to claim 22.
- the invention is based on the surprising finding that by using a material that not only does not conduct electricity but also conducts heat well, a more effective and cheaper cooling is possible and smaller and simpler designs of plasma torches are possible and lower temperature differences and thus lower mechanical stresses can be achieved.
- the invention provides a cooling of components, in particular wearing parts, of a plasma torch that is more effective and/or cheaper and/or leads to lower mechanical stresses and/or enables smaller and/or simpler plasma torch designs and at the same time to ensure the electrical insulation between components of a plasma torch.
- FIG. 12 shows a liquid-cooled plasma cutting torch 1 according to a particular embodiment of the present invention. It comprises an electrode 2, an insulating part designed as a plasma gas guiding part 3 for guiding plasma gas PG and a nozzle 4.
- the electrode 2 consists of an electrode holder 2.1 and an emission insert 2.2.
- the electrode holder 2.2 consists of a material that is a good conductor of electricity and heat, in this case a metal, for example copper, silver, aluminum or an alloy containing at least one of these metals.
- the emission insert 2.2 is made from a material that has a high melting point (>2000Ā° C.).
- non-oxidizing plasma gases e.g. argon, hydrogen, nitrogen, helium and mixtures thereof
- tungsten is suitable here and when using oxidizing gases (e.g. oxygen, air, mixtures thereof, nitrogen-oxygen mixture) e.g. hafnium or Zirconium.
- oxidizing gases e.g. oxygen, air, mixtures thereof, nitrogen-oxygen mixture
- hafnium or Zirconium e.g. hafnium or Zirconium.
- the emission insert 2.2 is placed in the electrode holder 2.1.
- the electrode 2 is shown here as a flat electrode in which the emission insert 2.2 does not protrude beyond the surface of the front end of the electrode holder 2.1.
- the electrode 2 protrudes into the hollow interior 4.2 of the nozzle 4.
- the nozzle is screwed with a thread 4.20 into a nozzle holder 6 with an internal thread 6.20.
- the plasma gas guide part 3 is arranged between the nozzle 4 and the electrode 2 .
- Plasma gas guide part 3 has bores, openings, grooves and/or recesses (not shown) through which the plasma gas PG flows.
- the plasma gas PG can be made to rotate by a corresponding arrangement, for example with a radial offset and/or an inclination to the center line M of radially arranged bores. It serves to stabilize the arc or the plasma jet.
- the arc burns between the emission insert 2.2 and a workpiece (not shown) and is constricted by a nozzle hole 4.1.
- the arc itself already has a high temperature, which is increased by its constriction. Temperatures of up to 30,000 K are reported. Therefore, the electrode 2 and the nozzle 4 are cooled with a cooling medium.
- a liquid in the simplest case water, a gas, in the simplest case air or a mixture thereof, in the simplest case an air-water mixture, which is referred to as an aerosol, can be used as the cooling medium. Liquid cooling is considered the most effective.
- a cooling tube 10 through which the coolant flows from the coolant supply line WV2 through the coolant space 10.10 to the electrode 2 in the vicinity of the emission insert 2.2 and through the space extending from the outer surface of the cooling tube 10 into the inner surface of the Electrode 2 is formed, is returned to the coolant return WR2.
- the nozzle 4 is cooled indirectly via the nozzle holder 6, to which the coolant is conducted away again (WR1) through a coolant space 6.10 (WV1) and via a coolant space 6.11.
- the coolant usually flows at a volume flow of 1 to 10 l/min.
- the nozzle 4 and the nozzle holder 6 consist of a metal. Due to the mechanical contact formed with the aid of the external thread 4.20 of the nozzle 4 and the internal thread 6.20 of the nozzle holder 6, the heat generated in the nozzle 4 is conducted into the nozzle holder 6 and dissipated by the flowing cooling medium (WV1, WR1).
- the insulating part designed as a plasma gas guide part 3 is designed in one piece in this example and consists of an electrically non-conductive material that is a good heat conductor. Electrical insulation between the electrode 2 and the nozzle 4 is achieved by using such an insulating part. This is necessary for the operation of the plasma cutting torch 1, namely the high-voltage ignition and the operation of a pilot arc burning between the electrode 2 and the nozzle 4. At the same time, heat is conducted between the electrode 2 and the nozzle 4 from the warmer to the colder component via the insulating part, which is designed as a plasma gas guide part 3 and is a good conductor of heat. So there is an additional heat exchange via the insulating part.
- the plasma gas guiding part 3 is in contact with the electrode 2 and the nozzle 4 by contact via contact surfaces.
- a contact surface 2.3 is, for example, a cylindrical outer surface of the electrode 2 and a contact surface 3.5 is a cylindrical inner surface of the plasma gas guiding part 3.
- a contact surface 3.6 is a cylindrical outer surface of the plasma gas guiding part 3 and a contact surface 4.3 is a cylindrical inner surface of the nozzle 4 a loose fit with little play, e.g. H7/h6 according to DIN EN ISO 286, between the cylindrical inner and outer surfaces is used in order on the one hand to plug into one another and on the other hand to achieve good contact and thus low thermal resistance and thus good heat transfer.
- the heat transfer can be improved by applying thermal paste to these contact surfaces.
- the nozzle 4 and the plasma gas guide part 3 each have a contact surface 4.5 and 3.7, which are annular surfaces here and are in contact with one another by touching. This is a non-positive connection between the annular surfaces, which is realized by screwing the nozzle 4 into the nozzle holder 6 .
- a ceramic material is used here by way of example as an electrically non-conductive and heat-conductive material.
- Aluminum nitride which according to DIN 60672 has very good thermal conductivity (approx. 180 W/(m ā K) and high specific electrical resistance (approx. 10 12 ā ā cm), is particularly suitable.
- FIG 2 a cylindrical plasma cutting torch 1 is shown in which the electrode 2 is directly cooled with coolant.
- the nozzle 4 is cooled by heat conduction via an insulating part designed as a plasma gas guide part 3 to the electrode 2, which is directly cooled with coolant.
- an insulating part designed as a plasma gas guide part 3 to the electrode 2, which is directly cooled with coolant.
- the insulating part which is designed as a plasma gas guide part 3 and is a good conductor of heat.
- the plasma gas guide part 3 is in contact with the electrode and the nozzle 4 through contact via contact surfaces.
- a contact surface 2.3 is, for example, a cylindrical outer surface of the electrode 2 and a contact surface 3.5 is a cylindrical inner surface of the plasma gas guiding part 3.
- a contact surface 3.6 is a cylindrical outer surface of the plasma gas guiding part 3 and a contact surface 4.3 is a cylindrical inner surface of the nozzle 4.
- a loose fit with little clearance for example H7/h6 according to DIN EN ISO 286, between the cylindrical inner and outer surfaces is used in order to on the one hand the nesting and on the other hand a good contact and thus low thermal resistance and thus good heat transfer.
- the heat transfer can be improved by applying thermal paste to these contact surfaces. Then a fit with more play, for example H7/g6, can be used.
- the nozzle 4 and the plasma gas guide part 3 each have a contact surface 4.5 or 3.7, which are annular surfaces here and are in contact with one another by touching. This is a non-positive connection between the annular surfaces, which is realized by screwing the nozzle 4 into the nozzle holder 6 .
- a plasma cutting torch 1 is shown, in which a nozzle 4 is indirectly cooled via a nozzle holder 6, to which the coolant is guided through a coolant space 6.10 (WV1) and away again via a coolant space 6.11 (WR1).
- WV1 coolant space 6.10
- WR1 coolant space 6.11
- the in the figures 1 and 2 shown direct cooling of the electrode 2 is not provided.
- the conduction of heat from the electrode 2 to the nozzle 4 takes place via an insulating part designed as a plasma gas guide part 3 to the indirect coolant-cooled nozzle 4.
- FIGS figures 1 and 2 the statements relating to FIGS figures 1 and 2 .
- the Indian figure 4 shown plasma cutting torch 1 differs from that in FIG figure 1 plasma cutting torch shown is that the nozzle 4 is directly cooled with a coolant.
- the nozzle 4 is fixed by a nozzle cap 5 .
- An internal thread 5.20 of the nozzle cap 5 is screwed to an external thread 6.21 of a nozzle holder 6.
- the outer surface of the nozzle 4 and a part of the nozzle holder 6 as well as the inner surface of the nozzle cap 5 form a coolant space 4.10, through which the coolant, which flows through the coolant spaces 6.10 and 6.11 of the nozzle mount 6 (WV1) and back (WR1), flows.
- the heat is transferred between the electrode 2 and the nozzle 4 from the warmer to the colder component via the insulating part, which is designed as a plasma gas guide part 3 and has good thermal conductivity.
- the plasma gas guiding part 3 is in contact with the electrode 2 and the nozzle 4 by contact. In this way, mechanical stresses in the plasma cutting torch 1 caused by high temperature differences can be reduced.
- An advantage over the in 1 Plasma cutting torch shown is that the directly coolant-cooled nozzle 4 is better cooled than the indirectly cooled. Since the coolant flows in this arrangement up to the vicinity of the nozzle tip and a nozzle bore 4.1, where the greatest heating of the nozzle occurs, the cooling effect is particularly great.
- the coolant chamber is sealed by O-rings between the nozzle cap 5 and the nozzle 4, the nozzle cap 5 and the nozzle holder 6 and the nozzle 4 and the nozzle holder 6.
- the nozzle cap 5 is also heated by the coolant flowing through the coolant space 4.10 formed by the outer surface of the nozzle 4 and the inner surface of the nozzle cap 5. chilled The nozzle cap 5 is heated primarily by the radiation from the arc or the plasma jet and the heated workpiece.
- the structure of the plasma cutting torch 1 is more complicated, since a nozzle cap 5 is also required.
- a liquid, water in the simplest case, is preferably used here as the coolant.
- FIG 5 shows a plasma cutting torch 1, the plasma cutting torch of figure 1 is similar, but in which a nozzle protective cap 8 is additionally arranged outside of the nozzle 4 . Bores 4.1 of the nozzle 4 and 8.1 of the nozzle protection cap 8 lie on a center line M. The inner surfaces of the nozzle protection cap 8 and a nozzle protection cap holder 9 form spaces 8.10 and 9.10 with the outer surfaces of the nozzle 4 and the nozzle holder 6, through which a secondary gas SG flows. This secondary gas emerges from the hole in the nozzle protection cap 8.1 and envelops the plasma jet (not shown) and ensures a defined atmosphere around it.
- the secondary gas SG protects the nozzle 4 and the nozzle protection cap 8 from arcs that can form between them and the workpiece. These are referred to as double arcs and can damage the nozzle 4.
- the nozzle 4 and the nozzle protective cap 8 are heavily loaded by hot, molten, high-splashing material.
- the secondary gas SG whose volume flow during piercing can be higher than during cutting, keeps the material spraying up away from the nozzle 4 and the nozzle protection cap 8 and thus protects against damage.
- the nozzle protection cap 8 must also be cooled in addition to the electrode 2 and nozzle 4.
- the nozzle protection cap 8 is heated in particular by the radiation from the arc or the plasma jet and the heated workpiece. Particularly when piercing the workpiece, the nozzle protection cap 8 is thermally heavily stressed and heated up by the glowing material spraying up and must be cooled.
- materials that are good heat conductors and electrically good conductors usually metals such as silver, copper, aluminum, tin, zinc, iron, alloyed steel or a metallic alloy (e.g. brass), in which these metals are individually or are contained at least 50% in total.
- the secondary gas SG first flows through the plasma cutting torch 1 before it passes through a first space 9.10 which is formed by the inner surfaces of the nozzle protective cap holder 9 and the nozzle protective cap 8 and the outer surfaces of the nozzle holder 6 and the nozzle 4.
- the first space 9 The secondary gas routing part 7 can be designed in several parts.
- the secondary gas guide part 7 there are holes 7.1. However, there can also be openings, grooves or recesses through which the secondary gas SG flows.
- the secondary gas can be made to rotate by a corresponding arrangement of the bores 7.1, for example with a radial offset and/or an inclination to the center line M. This serves to stabilize the arc or the plasma jet.
- the secondary gas After passing the secondary gas guide part 7, the secondary gas flows into an interior space 8.10, which is formed by the inner surface of the nozzle protection cap 8 and the outer surface of the nozzle 4, and then exits the bore 8.1 of the nozzle protection cap 8.
- the secondary gas hits it and can influence it.
- the nozzle protection cap 8 is usually only cooled by the secondary gas SG.
- Gas cooling has the disadvantage that it is not effective and the required gas volume flow is very high in order to achieve acceptable cooling or heat dissipation. Gas flow rates of 5,000 to 11,000 l/h are often required here.
- the volume flow of the secondary gas must be selected in such a way that the best cutting results are achieved. Volume flows that are too high, which are necessary for cooling, often worsen the cutting result.
- the insulating part designed as the secondary gas routing part 7 Electrical insulation between the nozzle protective cap 8 and the nozzle 4 is achieved by using such an insulating part.
- heat is transferred between the nozzle protective cap 8 and the nozzle 4 from the warmer to the colder component, in this case from the nozzle protective cap 8 to the nozzle 4, via the insulating part, which is a good conductor of heat and is designed as a secondary gas guide part 7 .
- the secondary gas guide part 7 is in contact with the nozzle protection cap 8 and the nozzle 4 by touch. In this exemplary embodiment, this takes place via annular surfaces 8.2 of the nozzle protection cap 8 and 7.4 of the secondary gas routing part 7 and the annular surfaces 7.5 of the secondary gas routing part 7 and 4.4 of the nozzle 4.
- FIG. 6 shows the structure of a plasma cutting torch 1 as in 4 , In which, however, a nozzle protection cap 8 is additionally arranged outside of the nozzle cap 5 .
- Bores 4.1 of the nozzle 4 and 8.1 of the nozzle protection cap 8 lie on a center line M.
- the inner surfaces of the nozzle protection cap 8 and the nozzle protection cap holder 9 form spaces 8.10 and 9.10 with the outer surfaces of the nozzle cap 5 and the nozzle 4, through which a secondary gas SG can flow.
- the secondary gas emerges from the bore 8.1 of the nozzle protection cap 8, envelops the plasma jet (not shown) and ensures a defined atmosphere around the same.
- the secondary gas SG protects the nozzle 4, nozzle cap 5 and nozzle protection cap 8 from arcs that can form between them and a workpiece (not shown). These are referred to as double arcs and can damage the nozzle 4, nozzle cap 5 and nozzle protection cap 8.
- the nozzle 4, the nozzle cap 5 and the nozzle protection cap 8 are heavily loaded by hot material spraying up.
- the secondary gas SG whose volume flow during piercing can be higher than during cutting, keeps the material spraying up from the nozzle 4, the nozzle cap 5 and the nozzle protection cap 8 and thus protects it from damage.
- the nozzle 4 and the nozzle cap 5 apply in the description of 4 statements made.
- the nozzle protection cap 8 is heated in particular by the radiation from the arc or the plasma jet and the heated workpiece. Particularly when piercing the workpiece, the nozzle protection cap 8 is thermally heavily stressed and heated up by the glowing material spraying up and must be cooled. For this reason, heat and electrically well-conducting materials, usually metals, for example copper, aluminum, tin, zinc, iron or alloys containing at least one of these metals, are used for this purpose.
- the secondary gas SG first flows through the plasma torch 1 before it passes through a space 9.10 formed by the inner surfaces of the nozzle protective cap holder 9 and the nozzle protective cap 8 and the outer surfaces of a nozzle holder 6 and the nozzle cap 5.
- the space 9 The space 9 .
- the secondary gas guide part 7 there are holes 7.1. However, there can also be openings, grooves or recesses through which the secondary gas SG flows.
- the secondary gas SG can be made to rotate by means of a corresponding arrangement of these bores 7.1, which have a radial offset and/or are arranged radially with an inclination to the center line M, for example. This serves to stabilize the arc or the plasma jet.
- the secondary gas SG After passing the secondary gas guide part 7, the secondary gas SG flows into the space (interior) 8.10, which is formed by the inner surface of the nozzle protection cap 8 and the outer surface of the nozzle cap 5 and the nozzle 4, and then exits from the bore 8.1 of the nozzle protection cap 8.
- the secondary gas SG hits it and can influence it.
- the nozzle protection cap 8 is usually only cooled by the secondary gas SG.
- Gas cooling has the disadvantage that it is not effective and the required gas volume flow is very high in order to achieve acceptable cooling or heat dissipation. Gas flow rates of 5,000 to 11,000 l/h are often required here.
- the volume flow of the secondary gas must be selected in such a way that the best cutting results are achieved. Volume flows that are too high, which are necessary for cooling, often worsen the cutting result.
- the high gas consumption caused by large volume flows is uneconomical. This applies in particular when gases other than air, for example argon, nitrogen, hydrogen, oxygen or helium, are used.
- the electrical insulation between the nozzle protection cap 8 and the nozzle cap 5 and thus also the nozzle 4 is achieved.
- the electrical insulation in combination with the secondary gas SG, protects the nozzle 4, the nozzle cap 5 and the nozzle protection cap 8 from arcs that can form between them and a workpiece (not shown). These are called double arcs and can damage the tip, tip cap, and tip guard.
- heat is transferred between the nozzle protection cap 8 and nozzle cap 5 from the warmer to the colder component, in this case from the nozzle protection cap 8 to the nozzle cap 5, via the insulating part which is a good conductor of heat and is designed as a secondary gas routing part 7 .
- the secondary gas guiding part 7 is in contact with the nozzle protection cap 8 and the nozzle cap 5 by touch. In this exemplary embodiment, this is achieved by annular surfaces 8.2 of the nozzle protection cap 8 and 7.4 of the secondary gas routing part 7 and the annular surfaces 7.5 of the secondary gas routing part 7 and 5.3 of the nozzle cap 5.
- connections are non-positive, with the nozzle protection cap 8 being held in place with the aid of the nozzle protection cap holder 9 is screwed to an external thread 11.20 of a receptacle 11 with an internal thread 9.20. This is pressed upwards against the secondary gas guide part 7 for the secondary gas SG and against the nozzle cap 5 . This way the heat will be dissipated from the tip guard 8 directed towards the nozzle cap 5 and thus cooled.
- the nozzle cap 5 in turn, as in the description of 4 explained, chilled.
- the nozzle protection cap holder 9 is screwed with its internal thread 9.20 to the external thread 11.20 of the receptacle 11, which is designed as an insulating part.
- the receptacle 11 consists of an electrically non-conductive and heat-conductive material.
- heat is transferred from the nozzle protection cap holder 9, which it can receive, for example, from the nozzle protection cap 8, from a hot workpiece or from the arc radiation, via the internal thread 9.20 and the external thread 11.20 to the receptacle 11.
- the receptacle 11 has coolant passages 11.10 and 11.11 for the coolant supply (WV1) and coolant return (WR1), which are designed here as bores.
- the coolant flows through this and thus cools the receptacle 11. This further improves the cooling of the nozzle protection cap holder 9.
- the heat is transferred from the nozzle protective cap 8 via its contact surface 8.3, which is designed as a circular ring surface, to a contact surface 9.1, which is also designed as a circular ring surface, on the nozzle protective cap holder 9.
- the contact surfaces 8.3 and 9.1 touch one another in a non-positive manner, with the nozzle protective cap 8 being screwed to the external thread 11.20 of the receptacle 11 with the aid of the nozzle protective cap holder 9 with the internal thread 9.20. This is pressed upwards against the secondary gas routing part 7 and the nozzle protection cap holder 9 against the nozzle protection cap 8 .
- the receptacle 11 is made of ceramic.
- Aluminum nitride which has very good thermal conductivity (approx. 180 W/(m ā K)) and high specific electrical resistance (approx. 10 12 ā ā cm), is particularly suitable.
- Coolant is simultaneously guided through coolant spaces 6.10 and 6.11 of the nozzle holder 6 to the nozzle 4 and nozzle cap 5 and cools them.
- the receptacle 11 shows an embodiment of a plasma torch 1, which is that of 7 resembles. In principle, this also applies to the embodiments according to FIG 6 and 7 statements made. However, it contains a different embodiment of the insulating part designed as a receptacle 11 for the nozzle protection cap holder 9 .
- the receptacle 11 consists of two parts, with an outer part 11.1 consisting of an electrically non-conductive and heat-conductive material and an inner part 11.2 consisting of an electrically highly conductive and heat-conductive material.
- the nozzle protection cap holder 9 is screwed with its internal thread 9.20 to the external thread 11.20 of part 11.1 of receptacle 11.
- the electrically non-conductive and thermally highly conductive material is made of ceramic, for example aluminum nitride, which has very good thermal conductivity (approx. 180 W/(m * K)) and a high specific electrical resistance of approx. 10 12 ā * cm.
- the material with good electrical and thermal conductivity is a metal here, for example copper, aluminum, tin, zinc, alloyed steel or alloys (for example brass) containing at least one of these metals.
- the material with good electrical and thermal conductivity has a thermal conductivity of at least 40 W/(m ā K) ā and a specific electrical resistance of no more than 0.01 ā ā cm.
- the material with good electrical and thermal conductivity has a thermal conductivity of at least 60 W/(m * K), better at least 90 W/(m * K) and preferably 120 W/(m * K).
- the material with good electrical and thermal conductivity properties has a thermal conductivity of at least 150 W/(m * K), better still at least 200 W/(m * K) and preferably at least 300 W/(m * K).
- the material, which conducts electricity and heat well is a metal, such as silver, copper, aluminum, tin, zinc, iron, alloyed steel or a metallic alloy (e.g. brass) that contains at least 50% of these metals individually or in total.
- a metal such as silver, copper, aluminum, tin, zinc, iron, alloyed steel or a metallic alloy (e.g. brass) that contains at least 50% of these metals individually or in total.
- Both parts (11.1 and 11.2) are non-positively connected by being pressed together and touching one another, as a result of which good heat transfer is achieved between the cylindrical contact surfaces 11.5 and 11.6 of the two parts 11.1 and 11.2.
- the part 11.2 of the recording 11 has coolant passages 11.10 and 11.11 for the coolant supply (WV1) and coolant return (WR1), which are designed here as bores. The coolant flows through these and thus cools.
- the present invention also relates to an insulating part for a plasma torch, in particular a plasma cutting torch, for electrical insulation between at least two electrically conductive components of the plasma torch, wherein it consists of at least two parts, one of the parts being made of an electrically non-conductive and heat a good conductive material and the other or another of the parts consists of a good electrical and heat conductive material.
- FIG figure 9 shows another embodiment of a plasma cutting torch 1 according to the present invention, which is principally the one shown in FIG figure 8 shown embodiment is similar.
- the insulating part designed as a receptacle 11 for the nozzle protection cap holder 9 is shown.
- the receptacle 11 consists of two parts, in which case the outer part 11.1, in contrast to the one in figure 8 shown Embodiment consists of an electrically highly conductive and thermally conductive material (e.g. metal) and the inner part 11.2 consists of an electrically non-conductive and thermally conductive material (e.g. ceramics).
- the nozzle protection cap holder 9 with its internal thread 9.20 is screwed to the external thread 11.20 of part 11.1 of receptacle 11.
- the advantage of this embodiment is that the external thread can be made in the metallic material used for the part 11.1 and not in the ceramic, which is more difficult to machine.
- Figures 10 to 13 show (further) different embodiments of an insulating part designed as a plasma gas guide part 3 for the plasma gas PG Figures 1 to 9 shown, wherein the respective figure with the letter āaā shows a longitudinal section and the respective figure with the letter ābā shows a partially sectioned side view.
- the plasma gas guide part 3 shown is made of an electrically non-conductive and thermally highly conductive material, here by way of example made of ceramic.
- Aluminum nitride which has very good thermal conductivity (approx. 180 W/(m ā K)) and high specific electrical resistance (approx. 10 12 ā ā cm), is particularly suitable.
- the associated advantages when used in a plasma cutting torch 1, such as better cooling, reduction in mechanical stresses, simpler structure, are already above in the description of the Figures 1 to 4 mentioned and explained.
- the plasma gas guide part 3 there are radially arranged bores 3.1 which, for example, can be offset radially and/or inclined radially to the center line M and allow a plasma gas PG to rotate in the plasma cutting torch.
- its contact surface 3.6 here for example a cylindrical outer surface
- its contact surface 3.5 here for example a cylindrical inner surface
- the contact surface 2.3 here for example a cylindrical Outer surface
- the contact surface 4.5 here, for example, a circular surface of the nozzle 4 by touching in contact ( Figures 1 to 9 ).
- the contact surface 3.6 there are grooves 3.8.
- FIGS. 11a and 11b show a plasma gas guide part 3, which consists of two parts.
- a first part 3.2 consists of an electrically non-conductive and heat-conductive material, while a second part 3.3 consists of an electrically highly conductive and heat-conductive material.
- Ceramic is used here as an example for part 3.2 of the plasma gas guide part 3, again as an example aluminum nitride, which has very good thermal conductivity (approx. 180 W/(m * K)) and a high specific electrical resistance (10 12 ā * cm).
- a metal such as silver, copper, aluminum, tin, zinc, iron, alloyed steel or a metallic alloy (e.g. brass) is used here, in which these metals are used individually or in total at least are used to 50%.
- the thermal conductivity of the plasma gas guide part 3 is greater than if it were made only of electrically non-conductive and heat-conductive material, such as aluminum nitride.
- electrically non-conductive and heat-conductive material such as aluminum nitride.
- copper has a higher thermal conductivity (max. approx. 390 W/(m ā K)) than aluminum nitride (approx. 180 W/(m ā K)), which is currently considered one of the best heat conductive and at the same time not a good electrical conductive material.
- Aluminum nitride with a thermal conductivity of 220 W/(m * K) is now also available.
- the parts 3.2 and 3.3 are connected by sliding the contact surfaces 3.21 and 3.31 over one another.
- the parts 3.2 and 3.3 can also be non-positively connected by the contact surfaces 3.20 with 3.30, 3.21 with 3.31 and 3.22 to 3.32 which are pressed against one another and are opposite and touching.
- the contact surfaces 3.20, 3.21 and 3.22 are contact surfaces of part 3.2 and the contact surfaces 3.30, 3.31 and 3.32 are contact surfaces of part 3.3.
- the cylindrical contact surfaces 3.31 (cylindrical outer surface of part 3.3) and 3.21 (cylindrical inner surface of part 3.2) form a non-positive connection by being pressed together.
- an interference fit DIN EN ISO 286 e.g. H7/n6; H7/m6 is used between the cylindrical inner and outer surfaces.
- the Figures 12a and 12b show a plasma gas guide part 3, which consists of two parts, with a first part 3.2 consisting of an electrically non-conductive and thermally well conductive material, while a second part 3.3 consists of an electrically non-conductive and thermally non-conductive material.
- ceramic is used as an example, again as an example aluminum nitride, which has a very good thermal conductivity (approx. 180 W/(m * K)) and a high specific electrical resistance (approx. 10 12 ā * cm).
- a plastic for example PEEK, PTFE (polytetrafluoroethene), Torlon, polyamideimide (PAI), polyimide (PI), which has a high temperature resistance (at least 200Ā° C.) and a high specific electrical resistance, can be used for part 3.3 of the plasma gas guide part 3 (at least 10 6 , better at least 10 10 ā ā cm) can be used.
- the parts 3.2 and 3.3 are connected by sliding the contact surfaces 3.21 and 3.31 over one another. You can also be non-positively connected by the pressed together, opposite and touching contact surfaces 3.20 with 3.30, 3.21 to 3.31 and 3.22 to 3.32.
- the cylindrical contact surfaces 3.31 (cylindrical outer surface of part 3.3) and 3.21 (cylindrical inner surface of part 3.2) then form the non-positive connection by being pressed together.
- an interference fit DIN EN ISO 286 e.g. H7/n6; H7/m6 is used between the cylindrical inner and outer surfaces. It is also possible to connect the two parts (3.2 and 3.3) to one another by positive locking and/or by gluing.
- FIGS. 13a and 13b show a plasma gas guide part 3 as in FIG figure 12 , except that a further part 3.4, which consists of a material with the same properties as the part 3.3, belongs to the plasma gas guide part 3.
- Parts 3.2 and 3.4 can be connected to one another in the same way as parts 3.2 and 3.3, the contact surfaces 3.23 being connected to 3.43, 3.24 to 3.44 and 3.25 to 3.25.
- the Figures 14a to 14b show another embodiment of a plasma gas guide part 3.
- the Figures 14c and 14d show a part 3.3 of the plasma gas guide part 3.
- Part 3.2 consists of an electrically non-conductive and heat-conductive material
- part 3.3 consists of an electrically non-conductive and heat-non-conductive material
- openings 3.1 which can be radially offset and/or radially inclined to the center line M and through which a plasma gas PG flows when the plasma gas guide part 3 is installed in the plasma cutting torch 1 (see Figures 1 to 9 ).
- the part 3.3 has more radially arranged holes 3.9, which are larger than the holes 3.1.
- the parts 3.2 have a diameter d3 and a length 13 which is at least as large as half the difference between the diameters d10 and d20 of part 3.3. It is even better if the length 13 is slightly larger in order to obtain reliable contact between the contact surfaces of the round pins 3.2 and the nozzle 4 and the electrode 2. It is also advantageous if the surface of the contact surfaces 3.61 and 3.51 is not flat, but is adapted to the cylindrical outer surface (contact surface 2.3) of the electrode 2 and the cylindrical inner surface (contact surface 4.3) of the nozzle 4 in such a way that a form fit is created.
- thermal resistances or thermal conductivities of the plasma gas guide part 3 can be achieved by changing the number or the diameter of the round pins 3.2.
- thermal resistance is advantageous. For example, the manufacturing costs are reduced if fewer holes have to be drilled and fewer round pins have to be used.
- FIGS Figures 15 to 17 show (further) different embodiments of an insulating part designed as a secondary gas guide part 7 for a secondary gas SG, which is used in a plasma cutting torch 1, as is shown in FIGS Figures 6 to 9 shown, wherein each figure lettered "aā shows a partially sectional plan view and each figure lettered "bā shows a sectional side view.
- FIGS Figures 15a and 15b show a secondary gas guide part 7 for a secondary gas SG, as in a plasma cutting torch according to FIGS Figures 6 to 9 can be used.
- the secondary gas routing part 7 shown consists of an electrically non-conductive and thermally highly conductive material, here for example ceramic.
- Aluminum nitride which has very good thermal conductivity (approx. 180 W/(m ā K)) and high specific electrical resistance (approx. 10 12 ā ā cm), is particularly suitable here. Due to the low thermal resistance and the high thermal conductivity, high temperature differences can be avoided and the mechanical stresses caused by this in the plasma cutting torch can be reduced.
- the secondary gas guide part 7 there are radially arranged bores 7.1, which can also be radially or radially offset and/or radially inclined to the center line M and through which the secondary gas SG can flow or flows when the secondary gas guide part 7 is installed in the plasma cutting torch 1.
- 12 bores are radially offset by a dimension a11 and distributed equidistantly around the circumference, with the angle enclosed by the center points of the bores being denoted by ā 11.
- the secondary gas routing part 7 has two annular contact surfaces 7.4 and 7.5.
- the electrical insulation between the nozzle cap 8 and the nozzle cap 5 and thus also the nozzle 4 of the Figures 6 to 9 plasma cutting torch 1 shown is reached.
- the electrical insulation in combination with the secondary gas, protects the nozzle 4, the nozzle cap 5 and the nozzle protection cap 8 from arcs that can form between them and the workpiece (not shown). These are referred to as double arcs and can damage the nozzle 4, nozzle cap 5 and nozzle protection cap 8.
- FIGS. 16a and 16b also show a secondary gas routing part 7 for a secondary gas SG, which consists of two parts.
- a first part 7.2 consists of an electrically non-conductive material with good heat conductivity, while a second part 7.3 consists of a material with good electrical conductivity and heat conductivity.
- ceramic is again used as an example of aluminum nitride, which has very good thermal conductivity (approx. 180 W/(m * K)) and a high specific electrical resistance (approx. 10 12 ā * cm). used.
- a metal such as silver, copper, aluminum, tin, zinc, iron, alloyed steel or a metallic alloy (e.g. brass) is used here, in which these metals are used individually or in total at least are used to 50%.
- the thermal conductivity of the secondary gas routing part 7 is greater than if it were made only of electrically non-conductive and heat-conductive material, such as aluminum nitride.
- electrically non-conductive and heat-conductive material such as aluminum nitride.
- copper has a higher thermal conductivity (max. approx. 390 W/(m ā K)) than aluminum nitride (approx. 180 W/(m ā K)), which is currently one of the best thermally conductive and at the same time non-electrical good conductive materials. Due to the better conductivity, this leads to an even better heat exchange between the nozzle protective cap 8 and the nozzle cap 5 of the plasma cutting torch 1 of FIG Figures 6 to 9 .
- parts 7.2 and 7.3 are connected by sliding contact surfaces 7.21 and 7.31 over one another.
- the parts 7.2 and 7.3 can also be non-positively connected by the contact surfaces 7.20 with 7.30, 7.21 with 7.31 and 7.22 with 7.32 which are pressed against one another and lie opposite one another and touch.
- the contact surfaces 7.20, 7.21 and 7.22 are contact surfaces of part 7.2 and the contact surfaces 7.30, 7.31 and 7.32 are contact surfaces of part 7.3.
- the cylindrical contact surfaces 7.31 (cylindrical outer surface of part 7.3) and 7.21 (cylindrical inner surface of part 7.2) form a non-positive connection by being pressed together.
- an interference fit DIN EN ISO 286 e.g. H7/n6; H/m6 is used between the cylindrical inner and outer surfaces.
- twelve bores 7.1 are made of metal in part 7.3, which have a radial offset a11 and are distributed equidistantly at an angle ā 11 on the circumference of the gas duct.
- a wide variety of shapes, such as grooves, recesses, bores, etc., can also be produced more easily if they are made in the metal.
- the Figures 17a and 17b also show a secondary gas routing part 7 for a secondary gas SG, which consists of two parts.
- a first part 7.2 consists of an electrically well conductive and heat conductive material and a second part 7.3 consists of an electrically non-conductive and heat conductive material.
- the same comments apply as for the Figures 16a and 6b.
- 18a, 18b , 18c and 18d is a further embodiment of a secondary gas guide part 7 for a secondary gas SG, which is in a plasma cutting torch according to Figures 6 to 9 can be used, shown.
- the 18a shows a top view and the Figure 18b and 18c sectional side views of different embodiments of the same.
- Figure 18d shows a part 7.3 of the secondary gas routing part 7 made of electrically non-conductive and heat non-conductive material.
- bores 7.1 which can also be radially or radially offset and/or radially inclined to the center line M and through which the secondary gas SG can flow when the secondary gas guide part 7 is installed in the plasma cutting torch 1.
- twelve bores are radially offset by a dimension a11 and are distributed equidistantly around the circumference, with the angle enclosed by the center points of the bores being denoted by ā 11 (here, for example, 30Ā°).
- ā 11 here, for example, 30Ā°
- Figure 18d shows that in this example the part 7.3 has twelve further axially arranged bores 7.9 which are larger than the bores or openings 7.1.
- contact surfaces 7.51 of the round pins 7.2 are in contact with a contact surface 5.3 (here, for example, an annular surface) of the nozzle cap 5 and contact surfaces 7.41 of the round pins 7.2 with a contact surface 8.2 (here, for example, an annular surface) of the nozzle protection cap by touching ( Figures 6 to 9 ).
- the parts 7.2 have a diameter d7 and a length l7 which is at least as large as the width b of the part 7.3. It is even better if the length 17 is slightly larger in order to obtain reliable contact between the contact surfaces of the round pins 7.2 and the nozzle cap 5 and the nozzle protection cap 8.
- the 18c shows another embodiment of the secondary gas guiding part 7 for secondary gas.
- two parts 7.2 and 7.6, which are given as round pins by way of example, are introduced into each bore 7.9.
- the part 7.3 consists of an electrically non-conductive and thermally non-conductive material
- the round pins 7.2 consist of an electrically non-conductive and heat-conductive material
- the round pins 7.6 consist of an electrically highly conductive and heat-conductive material.
- contact surfaces 7.51 of the round pins 7.2 are in contact with a contact surface 5.3 (here for example the circular ring surface) of the nozzle cap 5 and contact surfaces 7.41 of the round pins 7.6 with a contact surface 8.2 (here for example the circular ring surface) of the nozzle protection cap 8 by touch (see also Figures 6 to 9 ).
- Both round pins 7.2 and 7.6 are connected by touch through their contact surfaces 7.42 and 7.52.
- the parts 7.2 have a diameter d7 and a length 171.
- the parts 7.6 have the same diameter and a length l72, the sum of the lengths 171 and l72 being at least as large as the width b of the part 7.3. It is even better if the sum of the lengths is slightly larger, for example larger than 0.1 mm to obtain a secure contact between the contact surfaces 7.51 of the round pins 7.2 and the nozzle cap 5 and the contact surfaces 7.41 of the round pins 7.6 and the nozzle protection cap 8.
- the present invention thus also relates in generalized form to an insulating part for a plasma torch, in particular a plasma cutting torch, for electrical insulation between at least two electrically conductive components of the plasma torch, the insulating part consisting of at least three parts, one of the parts consists of an electrically non-conductive and heat-conductive material, another of the parts consists of an electrically non-conductive and thermally non-conductive material and the other or another of the parts consists of an electrically well-conductive and heat-conductive material.
- Secondary gas guide parts 7 shown can also be used in a plasma cutting torch 1 according to figure 5 be used.
- the electrical insulation between the nozzle protective cap 8 and the nozzle 4 is realized there by using this secondary gas routing part 7 .
- the electrical insulation protects the nozzle 4 and the nozzle protective cap 8 from arcs that can form between them and a workpiece. These are referred to as double arcs and can damage the nozzle 4 and the nozzle protection cap 8.
- FIGS Figures 19a to 19d show sectional views of arrangements of a nozzle 4 and a secondary gas guide part 7 for a secondary gas SG according to special embodiments of the invention in FIGS Figures 15 to 18 .
- Figure 19a an arrangement with a secondary gas guide part 7 according to Figures 15a and 15b
- Figure 19b an arrangement with a secondary gas routing part according to the 16a and 16b
- Figure 19c an arrangement with a secondary gas routing part according to the Figure 17a and 17b and Figure 19d according to an arrangement with a secondary gas routing part Figures 18a and 18b .
- the secondary gas routing part 7 can be connected to the nozzle 4 in the simplest case by pushing them one over the other. However, they can also be connected in a positive and non-positive manner or by gluing. When using metal/metal and/or metal/ceramic at the connection point, soldering is also possible as a connection.
- FIGS Figures 15 to 18 show sectional views of arrangements of a nozzle cap 5 and a secondary gas guide part 7 for a secondary gas SG according to FIGS Figures 15 to 18 according to particular embodiments of the invention.
- the comments on the apply here Figures 6 to 9 and to the Figures 15 to 18 .
- Figure 20a an arrangement with a secondary gas routing part according to the Figures 15a and 15b ;
- Figure 20b an arrangement with a secondary gas routing part according to the 16a and 16b ;
- Figure 20c according to an arrangement with a secondary gas routing part Figure 17a and 17b and
- Figure 20d an arrangement with a secondary gas routing part according to the Figures 18a to 18d .
- the secondary gas routing part 7 can be connected to the nozzle cap 5 in the simplest case by sliding them over one another. However, they can also be connected in a positive and non-positive manner or by gluing. When using metal/metal and/or metal/ceramic at the connection point, soldering is also possible as a connection.
- FIGS Figures 21a to 21d show sectional views of arrangements of a nozzle protection cap 8 and a secondary gas routing part 7 for a secondary gas SG according to FIGS Figures 15 to 18 .
- Figure 21a an arrangement with a secondary gas routing part according to the Figures 15a and 15b
- Figure 21b an arrangement with a secondary gas routing part according to the 16a and 16b
- Figure 21c an arrangement with a secondary gas routing part according to the Figure 17a and 17b
- Figure 21d an arrangement with a secondary gas routing part according to the Figures 18a to 18d .
- the secondary gas routing part 7 can be connected to the nozzle protection cap 8 in the simplest case by sliding them over one another. she but can also be connected in a positive and non-positive manner or by gluing. When using metal/metal and/or metal/ceramic at the connection point, soldering is also possible as a connection.
- FIGS Figures 22a and 22b show arrangements of an electrode 2 and a plasma gas guide part 3 for a plasma gas PG according to FIGS Figures 11 to 13 according to particular embodiments of the invention.
- a contact surface 2.3 is, for example, a cylindrical outer surface of the electrode 2 and a contact surface 3.5 is a cylindrical inner surface of the plasma gas guide part 3.
- a loose fit with little play for example H7/h6 according to DIN EN ISO 286, is preferably used here between the cylindrical inner and Outer surface used to on the one hand the nesting and on the other hand to realize a good contact and thus low thermal resistance and thus good heat transfer. The heat transfer can be improved by applying thermal paste to these contact surfaces. Then a fit with more play, for example H7/g6, can be used.
- the 23 shows an arrangement of an electrode 2 and a plasma gas guide part 3 for a plasma gas PG according to a particular embodiment of the present invention.
- contact surfaces 3.51 of the round pins 3.2 of the plasma gas guide part 3 are in contact with a contact surface 2.3 (here, for example, a cylindrical outer surface) of the electrode 2 (see also Figures 1 to 9 ).
- the parts 3.2 have a diameter d3 and a length 13 which is at least as large as half the difference between the diameters d10 and d20 of part 3.3. It is even better if the length 13 is slightly larger in order to obtain reliable contact between the contact surfaces of the round pins 3.2 and the nozzle 4 and the electrode 2. It is also advantageous if the surface of the contact surfaces 3.61 and 3.51 is not flat, but is adapted to the cylindrical outer surface (contact surface 2.3) of the electrode 2 and the cylindrical inner surface (contact surface 4.3) of the nozzle in such a way that a form fit is created.
- cooling liquid or the like this is intended to mean a cooling medium in general.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Arc Welding In General (AREA)
Description
Die vorliegende Erfindung betrifft ein mehrteiliges Isolierteil fĆ¼r einen Lichtbogenplasmabrenner, insbesondere einen Plasmaschneidbrenner, zur elektrischen Isolation zwischen mindestens zwei elektrisch leitfƤhigen Bauteilen des Plasmabrenners, Anordnungen und Plasmabrenner mit einem derartigen Isolierteil, Plasmabrenner mit einer derartigen Anordnung sowie Verfahren zum Bearbeiten eines WerkstĆ¼cks mit einem thermischen Plasma, zum Plasmaschneiden und zum PlasmaschweiĆen.The present invention relates to a multi-part insulating part for an arc plasma torch, in particular a plasma cutting torch, for electrical insulation between at least two electrically conductive components of the plasma torch, arrangements and plasma torches with such an insulating part, plasma torch with such an arrangement and methods for processing a workpiece with a thermal plasma , plasma cutting and plasma welding.
Plasmabrenner werden ganz allgemein zur thermischen Bearbeitung elektrisch leitfƤhiger Materialien, wie Stahl und Nichteisenmetalle, eingesetzt. Dabei werden PlasmaschweiĆbrenner zum SchweiĆen und Plasmaschneidbrenner zum Schneiden elektrisch leitfƤhiger Materialien, wie Stahl und Nichteisenmetalle, eingesetzt. Plasmabrenner bestehen Ć¼blicherweise aus einem Brennerkƶrper, einer Elektrode, einer DĆ¼se und einer Halterung dafĆ¼r. Moderne Plasmabrenner verfĆ¼gen zusƤtzlich Ć¼ber eine Ć¼ber der DĆ¼se angebrachte DĆ¼senschutzkappe. Oft wird eine DĆ¼se mittels einer DĆ¼senkappe fixiert.Plasma torches are generally used for the thermal processing of electrically conductive materials such as steel and non-ferrous metals. Plasma welding torches are used for welding and plasma cutting torches for cutting electrically conductive materials such as steel and non-ferrous metals. Plasma torches usually consist of a torch body, an electrode, a nozzle and a holder for it. Modern plasma torches also have a nozzle protection cap fitted over the nozzle. A nozzle is often fixed using a nozzle cap.
Die durch den Betrieb des Plasmabrenners infolge der durch den Lichtbogen verursachten hohen thermischen Belastung verschleiĆenden Bauteile sind je nach Plasmabrennertyp insbesondere die Elektrode, die DĆ¼se, die DĆ¼senkappe, die DĆ¼senschutzkappe, die DĆ¼senschutzkappenhalterung und die PlasmagasfĆ¼hrungs- und SekundƤrgasfĆ¼hrungsteile. Diese Bauteile kƶnnen durch einen Bediener leicht gewechselt werden und somit als VerschleiĆteile bezeichnet werden.Depending on the type of plasma torch, the components that wear out during operation of the plasma torch as a result of the high thermal load caused by the arc are, in particular, the electrode, the nozzle, the nozzle cap, the nozzle protective cap, the tip guard bracket and the plasma gas guide and shield gas guide parts. These components can be easily changed by an operator and are therefore referred to as wearing parts.
Die Plasmabrenner sind Ć¼ber Leitungen an eine Stromquelle und eine Gasversorgung angeschlossen, die den Plasmabrenner versorgen. Weiterhin kann der Plasmabrenner an einer KĆ¼hleinrichtung fĆ¼r ein KĆ¼hlmedium, wie zum Beispiel eine KĆ¼hlflĆ¼ssigkeit, angeschlossen sein.The plasma torches are connected by leads to a power source and a gas supply which feed the plasma torch. Furthermore, the plasma torch can be connected to a cooling device for a cooling medium, such as a cooling liquid.
Bei Plasmaschneidbrennern treten besonders hohe thermische Belastungen auf. Das hat seine Ursache in der starken EinschnĆ¼rung des Plasmastrahls durch die DĆ¼senbohrung. Hier werden im Vergleich zum PlasmaschweiĆen auf den Schneidstrom bezogen kleine Bohrungen verwendet, damit hohe Stromdichten von 50 bis 150 A/mm2 in der DĆ¼senbohrung, hohe Energiedichten von ca. 2Ć106 W/cm2 und hohe Temperaturen von bis zu 30.000 K erzeugt werden. Weiterhin werden im Plasmaschneidbrenner hƶhere GasdrĆ¼cke, in der Regel bis zu 12 bar, verwendet. Die Kombination aus hoher Temperatur und groĆer kinetischer Energie des durch die DĆ¼senbohrung strƶmenden Plasmagases fĆ¼hren zum Aufschmelzen des WerkstĆ¼cks und zum Austreiben der Schmelze. Es entsteht eine Schnittfuge und das WerkstĆ¼ck wird getrennt. Beim Plasmaschneiden werden oft auch oxidierende Gase eingesetzt, um unlegierte StƤhle zu schneiden. Dies fĆ¼hrt auch zusƤtzlich zu einer hohen thermischen Belastung der VerschleiĆteile und des Plasmaschneidbrenners.Particularly high thermal loads occur with plasma cutting torches. This is due to the strong constriction of the plasma jet by the nozzle bore. Here, compared to plasma welding, small holes are used in relation to the cutting current, thus high current densities of 50 to 150 A/mm 2 in the nozzle hole, high energy densities of approx. 2Ć10 6 W/cm 2 and high temperatures of up to 30,000 K be generated. Furthermore, higher gas pressures, usually up to 12 bar, are used in plasma cutting torches. The combination of high temperature and high kinetic energy of the plasma gas flowing through the nozzle bore causes the workpiece to melt and the melt to be expelled. A kerf is created and the workpiece is separated. In plasma cutting, oxidizing gases are often used to cut unalloyed steel. This also leads to a high thermal load on the wearing parts and the plasma cutting torch.
Auf die Plasmaschneidbrenner wird nachfolgend besonders eingegangen.The plasma cutting torches are discussed in detail below.
Zwischen der Elektrode und der DĆ¼se strƶmt ein Plasmagas. Das Plasmagas wird durch ein GasfĆ¼hrungsteil, das auch mehrteilig sein kann, gefĆ¼hrt. Dadurch kann das Plasmagas gezielt gerichtet werden. Oftmals ist es durch einen radialen und/oder axialen Versatz der Ćffnungen in dem PlasmagasfĆ¼hrungsteil in Rotation um die Elektrode versetzt. Das PlasmagasfĆ¼hrungsteil besteht aus elektrisch isolierendem Material, da die Elektrode und die DĆ¼se voneinander elektrisch isoliert sein mĆ¼ssen. Dies ist notwendig, da die Elektrode und die DĆ¼se unterschiedliche elektrische Potentiale wƤhrend des Betriebs des Plasmaschneidbrenners haben. Zum Betreiben des Plasmaschneidbrenners wird ein Lichtbogen zwischen der Elektrode und der DĆ¼se und/oder dem WerkstĆ¼ck erzeugt, der das Plasmagas ionisiert. Zum ZĆ¼nden des Lichtbogens kann eine Hochspannung zwischen der Elektrode und DĆ¼se angelegt werden, die fĆ¼r eine Vorionisation der Strecke zwischen der Elektrode und DĆ¼se und somit fĆ¼r die Ausbildung eines Lichtbogens sorgt. Der zwischen Elektrode und DĆ¼se brennende Lichtbogen wird auch als Pilotlichtbogen bezeichnet.A plasma gas flows between the electrode and the nozzle. The plasma gas is guided through a gas guide part, which can also be made up of several parts. This allows the plasma gas to be directed in a targeted manner. It is often rotated around the electrode by a radial and/or axial offset of the openings in the plasma gas guide part. The plasma gas guide part is made of electrically insulating material, since the electrode and the nozzle must be electrically isolated from each other. This is necessary because the electrode and nozzle have different electrical potentials during operation of the plasma cutting torch. To operate the plasma cutting torch, an arc is generated between the electrode and the nozzle and/or the workpiece, which ionizes the plasma gas. To ignite the arc, a high voltage can be applied between the electrode and the nozzle, which provides for a pre-ionization of the distance between the electrode and the nozzle and thus for the formation of an arc. The arc burning between the electrode and the nozzle is also known as the pilot arc.
Der Pilotlichtbogen tritt durch die DĆ¼senbohrung aus und trifft auf das WerkstĆ¼ck und ionisiert die Strecke zum WerkstĆ¼ck. Dadurch kann sich der Lichtbogen zwischen Elektrode und WerkstĆ¼ck ausbilden. Dieser Lichtbogen wird auch als Hauptlichtbogen bezeichnet. WƤhrend des Hauptlichtbogens kann der Pilotlichtbogen abgeschaltet werden. Er kann aber auch weiterbetrieben werden. Beim Plasmaschneiden wird dieser oft abgeschaltet, um die DĆ¼se nicht noch zusƤtzlich zu belasten.The pilot arc exits through the nozzle bore and strikes the workpiece, ionizing the path to the workpiece. This allows the arc to form between the electrode and the workpiece. This arc is also referred to as the main arc. The pilot arc can be switched off during the main arc. However, it can also continue to be operated. During plasma cutting, this is often switched off in order not to put additional strain on the nozzle.
Insbesondere die Elektrode und die DĆ¼se werden thermisch hoch beansprucht und mĆ¼ssen gekĆ¼hlt werden. Zugleich mĆ¼ssen sie auch den elektrischen Strom, der zur Ausbildung des Lichtbogens benƶtigt wird, leiten. Deshalb werden dafĆ¼r gut WƤrme und elektrisch gut leitende Werkstoffe, in der Regel Metalle, zum Beispiel Kupfer, Silber, Aluminium, Zinn, Zink, Eisen oder Legierungen, in denen zumindest eines dieser Metalle enthalten ist, verwendet.In particular, the electrode and the nozzle are thermally highly stressed and must be cooled. At the same time, they must also conduct the electrical current that is required to form the arc. For this reason, materials that conduct heat well and materials that conduct electricity well, usually metals such as copper, silver, aluminum, tin, zinc, iron or alloys containing at least one of these metals, are used for this purpose.
Die Elektrode besteht oft aus einem Elektrodenhalter und einem Emissionseinsatz, der aus einem Werkstoff hergestellt ist, der eine hohe Schmelztemperatur (>2000Ā°C) und eine geringere Elektronenaustrittsarbeit als der Elektrodenhalter aufweist. Als Werkstoffe fĆ¼r den Emissionseinsatz werden beim Einsatz nicht oxidierende Plasmagase, wie bspw. Argon, Wasserstoff, Stickstoff, Helium und Gemische derselben, Wolfram und beim Einsatz oxidierender Gase, wie zum Beispiel Sauerstoff, Luft und Gemische derselben, Stickstoff-Sauerstoff-Gemisch und Gemische mit anderen Gasen, Hafnium oder Zirkonium eingesetzt.The electrode often consists of an electrode holder and an emissive insert made of a material that has a high melting temperature (>2000Ā°C) and a lower electron work function than the electrode holder. The materials used for the emission insert are non-oxidizing plasma gases such as argon, hydrogen, nitrogen, helium and mixtures thereof, tungsten when using, and nitrogen-oxygen mixture and mixtures when using oxidizing gases such as oxygen, air and mixtures thereof used with other gases, hafnium or zirconium.
Der Hochtemperaturwerkstoff kann in einen Elektrodenhalter, der aus gut WƤrme und elektrisch gut leitendem Werkstoff besteht, eingepasst, zum Beispiel mit Form- und/oder Kraftschluss eingepresst werden.The high-temperature material can be fitted into an electrode holder, which consists of a material that conducts heat and electricity well, for example by being pressed in with a form fit and/or force fit.
Die KĆ¼hlung der Elektrode und DĆ¼se kann durch Gas, zum Beispiel das Plasmagas oder ein SekundƤrgas, das an der AuĆenseite der DĆ¼se entlangstrƶmt, erfolgen. Effektiver ist jedoch die KĆ¼hlung mit einer FlĆ¼ssigkeit, zum Beispiel Wasser. Dabei werden die Elektrode und/oder die DĆ¼se oft direkt mit der FlĆ¼ssigkeit gekĆ¼hlt, d.h. die FlĆ¼ssigkeit befindet sich in direktem Kontakt mit der Elektrode und/oder der DĆ¼se. Um die KĆ¼hlflĆ¼ssigkeit um die DĆ¼se zu fĆ¼hren, befindet sich um die DĆ¼se eine DĆ¼senkappe, deren InnenflƤche mit der AuĆenflƤche der DĆ¼se einen KĆ¼hlmittelraum bildet, in dem das KĆ¼hlmittel strƶmt.The electrode and nozzle can be cooled by gas, for example the plasma gas or a secondary gas, which flows along the outside of the nozzle. However, cooling with a liquid, such as water, is more effective. The electrode and/or the nozzle are often cooled directly with the liquid, i.e. the liquid is in direct contact with the electrode and/or the nozzle. In order to guide the cooling liquid around the nozzle, there is a nozzle cap around the nozzle, the inner surface of which together with the outer surface of the nozzle forms a coolant space in which the coolant flows.
Bei modernen Plasmaschneidbrennern befindet sich zusƤtzlich auĆerhalb der DĆ¼se und/oder der DĆ¼senkappe zusƤtzlich eine DĆ¼senschutzkappe. Die InnenflƤche der DĆ¼senschutzkappe und die AuĆenflƤche der DĆ¼se oder der DĆ¼senkappe bilden einen Raum, durch den ein SekundƤr- oder Schutzgas strƶmt. Das SekundƤr- oder Schutzgas tritt aus der Bohrung der DĆ¼senschutzkappe aus und umhĆ¼llt den Plasmastrahl und sorgt fĆ¼r eine definierte AtmosphƤre um denselben. ZusƤtzlich schĆ¼tzt das SekundƤrgas die DĆ¼se und die DĆ¼senschutzkappe vor Lichtbƶgen, die sich zwischen diesem und dem WerkstĆ¼ck ausbilden kƶnnen. Diese werden als Doppellichtbƶgen bezeichnet und kƶnnen zur BeschƤdigung der DĆ¼se fĆ¼hren. Insbesondere beim Einstechen in das WerkstĆ¼ck werden die DĆ¼se und die DĆ¼senschutzkappe durch heiĆes Hochspritzen von Material stark belastet. Das SekundƤrgas, dessen Volumenstrom beim Einstechen gegenĆ¼ber dem Wert beim Schneiden erhƶht sein kann, hƤlt das hochspritzende Material von der DĆ¼se und der DĆ¼senschutzkappe fern und schĆ¼tzt so vor BeschƤdigung.In modern plasma cutting torches there is also a nozzle protection cap outside the nozzle and/or the nozzle cap. The inner surface of the nozzle guard and the outer surface of the nozzle or nozzle cap form a space through which a shield or shield gas flows. The secondary or protective gas emerges from the hole in the nozzle protection cap and envelops the plasma jet and ensures a defined atmosphere around it. In addition, the shielding gas protects the tip and tip guard from arcing that can form between the tip and the workpiece. These are called double arcs and can damage the nozzle. Especially when piercing the workpiece, the nozzle and the nozzle protection cap are heavily loaded by hot material spraying up. The secondary gas, the volume flow of which can be higher when piercing compared to the value when cutting, keeps the spraying material away from the nozzle and the nozzle protection cap and thus protects against damage.
Die DĆ¼senschutzkappe wird ebenfalls thermisch hoch beansprucht und muss gekĆ¼hlt werden. Deshalb werden dafĆ¼r gut WƤrme und elektrisch gut leitende Werkstoffe, in der Regel Metalle, zum Beispiel Kupfer, Silber, Aluminium, Zinn, Zink, Eisen oder Legierungen, in denen zumindest eines dieser Metalle enthalten ist, verwendet.The nozzle protection cap is also subjected to high thermal loads and must be cooled. For this reason, materials that conduct heat well and materials that conduct electricity well, usually metals such as copper, silver, aluminum, tin, zinc, iron or alloys containing at least one of these metals, are used for this purpose.
Die Elektrode und die DĆ¼se kƶnnen aber auch indirekt gekĆ¼hlt werden. Dabei stehen sie mit einem Bauteil, das aus einem gut WƤrme und elektrisch gut leitenden Werkstoff, in der Regel ein Metall, zum Beispiel Kupfer, Silber, Aluminium, Zinn, Zink, Eisen oder Legierungen, in denen zumindest eines dieser Metalle enthalten ist, besteht, durch BerĆ¼hrung in Kontakt. Dieses Bauteil wird wiederum direkt gekĆ¼hlt, d.h., dass es sich mit dem meist strƶmenden KĆ¼hlmittel direkt in Kontakt befindet. Diese Bauteile kƶnnen gleichzeitig als Halterung oder Aufnahme fĆ¼r die Elektrode, die DĆ¼se, die DĆ¼senkappe oder die DĆ¼senschutzkappe dienen und die WƤrme ab- und den Strom zufĆ¼hren.However, the electrode and the nozzle can also be cooled indirectly. They are connected to a component made of a material that conducts heat and electricity well, usually a metal such as copper, silver, aluminum, tin, zinc, iron or alloys containing at least one of these metals , contacted by touch. This component is in turn cooled directly, i.e. it is in direct contact with the mostly flowing coolant. At the same time, these components can serve as holders or receptacles for the electrode, the nozzle, the nozzle cap or the nozzle protection cap, and can conduct the heat away and supply the current.
Es besteht auch die Mƶglichkeit, dass nur die Elektrode oder nur die DĆ¼se mit FlĆ¼ssigkeit gekĆ¼hlt werden. Gerade in diesem Fall treten oft zu hohe Temperaturen an dem nur gasgekĆ¼hlten Bauteil auf, das dann schnell verschleiĆt oder sogar zerstƶrt wird. Dies fĆ¼hrt auch zu groĆen Temperaturdifferenzen zwischen den Bauteilen im Plasmaschneidbrenner und dadurch zu mechanischen Spannungen und zusƤtzlichen Beanspruchungen.There is also the possibility that only the electrode or only the nozzle is cooled with liquid. It is precisely in this case that the temperatures on the only gas-cooled component are often too high, which then wears out quickly or is even destroyed. This also leads to large temperature differences between the components in the plasma cutting torch and thus to mechanical stresses and additional stresses.
Die DĆ¼senschutzkappe wird meist nur durch das SekundƤrgas gekĆ¼hlt. Es sind auch Anordnungen bekannt, bei denen die DĆ¼senschutzkappe direkt oder indirekt durch eine KĆ¼hlflĆ¼ssigkeit gekĆ¼hlt wird.The nozzle protection cap is usually only cooled by the secondary gas. Arrangements are also known in which the nozzle protection cap is cooled directly or indirectly by a cooling liquid.
Die GaskĆ¼hlung (Plasmagas- und/oder SekundƤrgaskĆ¼hlung) hat den Nachteil, dass sie nicht effektiv und der benƶtigte Gasvolumenstrom sehr hoch ist, um eine akzeptable KĆ¼hlung oder WƤrmeabfuhr zu erreichen. Plasmaschneidbrenner mit WasserkĆ¼hlung benƶtigen bspw. Gasvolumenstrƶme von 500 l/h bis 4000 l/h, wƤhrend Plasmaschneidbrenner ohne WasserkĆ¼hlung Gasvolumenstrƶme von 5000 bis 11000 l/h benƶtigen. Diese Bereiche ergeben sich in AbhƤngigkeit von den verwendeten Schneidstrƶmen, die bspw. in einem Bereich von 20 bis 600 A liegen kƶnnen. Gleichzeitig soll der Volumenstrom des Plasmagases und/oder SekundƤrgases so gewƤhlt werden, dass die besten Schneidergebnisse erreicht werden. Zu groĆe Volumenstrƶme, die fĆ¼r die KĆ¼hlung aber notwendig sind, verschlechtern oft das Schnittergebnis.Gas cooling (plasma gas and/or secondary gas cooling) has the disadvantage that it is not effective and the required gas volume flow is very high in order to achieve acceptable cooling or heat dissipation. Plasma cutting torches with water cooling, for example, require gas flow rates of 500 l/h to 4000 l/h, while plasma cutting torches without water cooling require gas flow rates of 5000 to 11000 l/h. These ranges depend on the cutting currents used, which can be in a range from 20 to 600 A, for example. At the same time, the volume flow of the plasma gas and/or secondary gas should be selected in such a way that the best cutting results are achieved. Volume flows that are too high, which are necessary for cooling, often worsen the cutting result.
Zudem ist der durch groĆe Volumenstrƶme verursachte hohe Gasverbrauch unwirtschaftlich.In addition, the high gas consumption caused by large volume flows is uneconomical.
Dies gilt besonders dann, wenn andere Gase als Luft, also bspw. Argon, Stickstoff, Wasserstoff, Sauerstoff oder Helium verwendet werden.This applies in particular when gases other than air, e.g. argon, nitrogen, hydrogen, oxygen or helium, are used.
Die Verwendung einer direkten WasserkĆ¼hlung fĆ¼r alle VerschleiĆteile dagegen ist sehr effektiv, fĆ¼hrt aber zu einer VergrƶĆerung der Abmessungen des Plasmaschneidbrenners, da bspw. die KĆ¼hlkanƤle notwendig sind, um die KĆ¼hlflĆ¼ssigkeit zu dem zu kĆ¼hlenden VerschleiĆteil hin- und wieder wegzufĆ¼hren. ZusƤtzlich ist beim Wechsel der direkt flĆ¼ssigkeitsgekĆ¼hlten VerschleiĆteile viel Sorgfalt nƶtig, da mƶglichst keine KĆ¼hlflĆ¼ssigkeit zwischen den VerschleiĆteilen im Plasmaschneidbrenner verbleiben soll, da dies zur BeschƤdigung des Plasmabrenners fĆ¼hren kann, wenn der Lichtbogen gezĆ¼ndet wird.The use of direct water cooling for all wearing parts, on the other hand, is very effective, but leads to an increase in the dimensions of the plasma cutting torch, since, for example, the cooling channels are necessary to guide the cooling liquid to and from the wearing part to be cooled. In addition, great care is required when changing the directly liquid-cooled consumables, as no coolant should remain between the consumables in the plasma cutting torch, as this can damage the plasma torch when the arc is ignited.
Der Erfindung liegt somit die Aufgabe zugrunde, fĆ¼r eine effektivere KĆ¼hlung von Bauteilen, insbesondere VerschleiĆteilen, eines Plasmabrenners zu sorgen.The invention is therefore based on the object of providing more effective cooling of components, in particular wearing parts, of a plasma torch.
GemĆ¤Ć einem ersten Aspekt wird diese Aufgabe gelƶst durch ein mehrteiliges Isolierteil nach Anspruch 1.According to a first aspect, this object is achieved by a multi-part insulating part according to
Dabei soll der Ausdruck "elektrisch nicht leitend" auch umfassen, dass das Material des Plasmabrennerisolierteils geringfĆ¼gig oder unwesentlich elektrisch leitet. Das Isolierteil kann bspw. ein PlasmagasfĆ¼hrungsteil, SekundƤrgasfĆ¼hrungsteil oder KĆ¼hlgasfĆ¼hrungsteil sein.The expression "electrically non-conductive" is also intended to include that the material of the plasma torch insulating part is slightly or not significantly electrically conductive. The insulating part can, for example, be a plasma gas routing part, secondary gas routing part or cooling gas routing part.
Des Weiteren wird diese Aufgabe gemĆ¤Ć einem zweiten Aspekt gelƶst durch ein mehrteiliges Isolierteil nach Anspruch 3.Furthermore, this object is achieved according to a second aspect by a multi-part insulating part according to
GemĆ¤Ć einem dritten Aspekt wird diese Aufgabe gelƶst durch ein mehrteiliges Isolierteil nach Anspruch 4.According to a third aspect, this object is achieved by a multi-part insulating part according to
GemĆ¤Ć einem weiteren Aspekt wird diese Aufgabe gelƶst durch ein Verfahren nach Anspruch 22.According to a further aspect, this object is achieved by a method according to claim 22.
AusfĆ¼hrungsforms der Erfindung sind in die abhƤngigen AnsprĆ¼chen offenbart.Embodiments of the invention are disclosed in the dependent claims.
Andere in der Beschreibung offenbarte Beispiele sind nĆ¼tzlich, um die Erfindung zu verstehen.Other examples disclosed in the specification are useful for understanding the invention.
Der Erfindung liegt die Ć¼berraschende Erkenntnis zugrunde, dass durch Einsatz eines Materials, das nicht nur elektrisch nicht leitet, sondern auch WƤrme gut leitet, eine effektivere und kostengĆ¼nstigere KĆ¼hlung mƶglich ist sowie kleinere und einfachere Bauformen von Plasmabrennern mƶglich sind und geringere Temperaturdifferenzen und damit geringere mechanische Spannungen erzielt werden kƶnnen.The invention is based on the surprising finding that by using a material that not only does not conduct electricity but also conducts heat well, a more effective and cheaper cooling is possible and smaller and simpler designs of plasma torches are possible and lower temperature differences and thus lower mechanical stresses can be achieved.
Die Erfindung liefert zumindest in einer oder mehreren besonderen AusfĆ¼hrungsform(en) eine KĆ¼hlung von Bauteilen, insbesondere VerschleiĆteilen, eines Plasmabrenners, die effektiver und/oder kostengĆ¼nstiger ist und/oder zu geringeren mechanischen Spannungen fĆ¼hrt und/oder kleinere und/oder einfachere Plasmabrennerbauformen ermƶglicht und gleichzeitig fĆ¼r die elektrische Isolation zwischen Bauteilen eines Plasmabrenners zu sorgen.At least in one or more particular embodiment(s), the invention provides a cooling of components, in particular wearing parts, of a plasma torch that is more effective and/or cheaper and/or leads to lower mechanical stresses and/or enables smaller and/or simpler plasma torch designs and at the same time to ensure the electrical insulation between components of a plasma torch.
Weitere Merkmale und Vorteile der Erfindung ergeben sich den beigefĆ¼gten AnsprĆ¼chen und der nachfolgenden Beschreibung, in der anhand der schematischen Zeichnungen mehrere AusfĆ¼hrungsbeispiele beschrieben werden. Dabei zeigt/zeigen:
-
eine Seitenansicht teilweise im LƤngsschnitt von einem Plasmabrenner gemĆ¤Ć einer ersten besonderen AusfĆ¼hrungsform der Erfindung;Figur 1 -
eine Seitenansicht teilweise im LƤngsschnitt von einem Plasmabrenner gemĆ¤Ć einer zweiten besonderen AusfĆ¼hrungsform der Erfindung;Figur 2 -
eine Seitenansicht teilweise im LƤngsschnitt von einem Plasmabrenner gemĆ¤Ć einer dritten besonderen AusfĆ¼hrungsform der Erfindung;Figur 3 -
eine Seitenansicht teilweise im LƤngsschnitt von einem Plasmabrenner gemĆ¤Ć einer vierten besonderen AusfĆ¼hrungsform der Erfindung;Figur 4 -
eine Seitenansicht teilweise im LƤngsschnitt von einem Plasmabrenner gemĆ¤Ć einer fĆ¼nften besonderen AusfĆ¼hrungsform der Erfindung;Figur 5 -
eine Seitenansicht teilweise im LƤngsschnitt von einem Plasmabrenner gemĆ¤Ć einer sechsten besonderen AusfĆ¼hrungsform der Erfindung;Figur 6 -
eine Seitenansicht teilweise im LƤngsschnitt von einem Plasmabrenner gemĆ¤Ć einer siebten besonderen AusfĆ¼hrungsform der Erfindung;Figur 7 -
eine Seitenansicht teilweise im LƤngsschnitt von einem Plasmabrenner gemĆ¤Ć einer achten besonderen AusfĆ¼hrungsform der Erfindung;Figur 8 -
eine Seitenansicht teilweise im LƤngsschnitt von einem Plasmabrenner gemĆ¤Ć einer neunten besonderen AusfĆ¼hrungsform der Erfindung;Figur 9 -
Figuren 10a und 10b eine LƤngsschnittansicht sowie eine teilweise geschnittene Seitenansicht von einem Isolierteil gemĆ¤Ć einer besonderen AusfĆ¼hrungsform der Erfindung; -
Figuren 11a und11b eine LƤngsschnittansicht sowie eine teilweise geschnittene Seitenansicht von einem Isolierteil gemĆ¤Ć einer weiteren besonderen AusfĆ¼hrungsform der Erfindung; -
Figuren 12a und12b eine LƤngsschnittansicht sowie eine teilweise geschnittene Seitenansicht von einem Isolierteil gemĆ¤Ć einer weiteren besonderen AusfĆ¼hrungsform der Erfindung; -
Figuren 13a und13b eine LƤngsschnittansicht sowie eine teilweise geschnittene Seitenansicht von einem Isolierteil gemĆ¤Ć einer weiteren besonderen AusfĆ¼hrungsform der Erfindung; -
Figuren 14a und 14b eine LƤngsschnittansicht sowie eine teilweise geschnittene Seitenansicht von einem Isolierteil gemĆ¤Ć einer weiteren besonderen AusfĆ¼hrungsform der Erfindung; -
Figuren 14c und 14d Ansichten wie dieFiguren 14a und 14b , wobei jedoch ein Teil weggelassen ist; -
Figuren 15a und 15b eine Draufsicht teilweise im Schnitt bzw. eine Seitenansicht teilweise im Schnitt von einem Isolierteil, das bspw. in demPlasmabrenner der Figuren 6 eingesetzt ist bzw. eingesetzt werden kann;bis 9 -
Figuren 16a und16b eine Draufsicht teilweise im Schnitt bzw. eine Seitenansicht teilweise im Schnitt von einem Isolierteil, das bspw. in demPlasmabrenner der Figuren 6 eingesetzt ist bzw. eingesetzt werden kann;bis 9 -
Figuren 17a und17b eine Draufsicht teilweise im Schnitt bzw. eine Seitenansicht teilweise im Schnitt von einem Isolierteil, das bspw. in demPlasmabrenner der Figuren 6 eingesetzt ist bzw. eingesetzt werden kann;bis 9 -
Figuren 18a bis 18d eine Draufsicht teilweise im Schnitt sowie geschnittene Seitenansichten von einem Isolierteil gemĆ¤Ć einer weiteren besonderen AusfĆ¼hrungsform der vorliegenden Erfindung; -
Figuren 19a bis 19d Schnittansichten von einer Anordnung aus einer DĆ¼se und einem Isolierteil gemĆ¤Ć einer besonderen AusfĆ¼hrungsform der Erfindung; -
Figuren 20a bis 20d Schnittansichten von einer Anordnung aus einer DĆ¼senkappe und einem Isolierteil gemĆ¤Ć einer besonderen AusfĆ¼hrungsform der vorliegenden Erfindung; -
Figuren 21a bis 21d Schnittansichten von einer Anordnung aus einer DĆ¼senschutzkappe und einem Isolierteil gemĆ¤Ć einer besonderen AusfĆ¼hrungsform der vorliegenden Erfindung; -
Figuren 22a und 22b Teilschnittansichten einer Anordnung aus einer Elektrode und einem Isolierteil gemĆ¤Ć einer besonderen AusfĆ¼hrungsform der vorliegenden Erfindung; und -
Figur 23 eine Seitenansicht teilweise im LƤngsschnitt von einer Anordnung aus einer Elektrode und einem Isolierteil gemĆ¤Ć einer besonderen AusfĆ¼hrungsform der vorliegenden Erfindung.
-
figure 1 a side view, partly in longitudinal section, of a plasma torch according to a first particular embodiment of the invention; -
figure 2 a side view, partly in longitudinal section, of a plasma torch according to a second particular embodiment of the invention; -
figure 3 a side view, partly in longitudinal section, of a plasma torch according to a third particular embodiment of the invention; -
figure 4 a side view, partly in longitudinal section, of a plasma torch according to a fourth particular embodiment of the invention; -
figure 5 a side view, partly in longitudinal section, of a plasma torch according to a fifth particular embodiment of the invention; -
figure 6 a side view, partially in longitudinal section, of a plasma torch according to a sixth particular embodiment of the invention; -
figure 7 12 is a side view, partially in longitudinal section, of a plasma torch according to a seventh particular embodiment of the invention; -
figure 8 a side view, partially in longitudinal section, of a plasma torch according to an eighth particular embodiment of the invention; -
figure 9 12 is a side view, partially in longitudinal section, of a plasma torch according to a ninth particular embodiment of the invention; -
Figures 10a and 10b a longitudinal sectional view and a partially sectional side view of an insulating part according to a particular embodiment of the invention; -
Figures 11a and11b a longitudinal sectional view and a partially sectional side view of an insulating part according to a further particular embodiment of the invention; -
Figures 12a and12b a longitudinal sectional view and a partially sectional side view of an insulating part according to a further particular embodiment of the invention; -
Figures 13a and13b a longitudinal sectional view and a partially sectional side view of an insulating part according to a further particular embodiment of the invention; -
Figures 14a and 14b a longitudinal sectional view and a partially sectional side view of an insulating part according to a further particular embodiment of the invention; -
Figures 14c and 14d views like thatFigures 14a and 14b , but with a part omitted; -
Figures 15a and 15b Fig. 12 is a partially sectional plan view and a partially sectional side view, respectively, of an insulating member used, for example, in the plasma torch of FigsFigures 6 to 9 is used or can be used; -
Figures 16a and16b Fig. 12 is a partially sectional plan view and a partially sectional side view, respectively, of an insulating member used, for example, in the plasma torch of FigsFigures 6 to 9 is used or can be used; -
Figures 17a and17b Fig. 12 is a partially sectional plan view and a partially sectional side view, respectively, of an insulating member used, for example, in the plasma torch of FigsFigures 6 to 9 is used or can be used; -
Figures 18a to 18d 12 is a partially sectioned plan view and side sectional views of an insulating member according to another particular embodiment of the present invention; -
Figures 19a to 19d Sectional views of an arrangement of a nozzle and an insulating part according to a particular embodiment of the invention; -
Figures 20a to 20d sectional views of a nozzle cap and insulating member assembly according to a particular embodiment of the present invention; -
Figures 21a to 21d sectional views of an assembly of a nozzle protection cap and an insulating part according to a particular embodiment of the present invention; -
Figures 22a and 22b Partial sectional views of an arrangement of an electrode and an insulating part according to a particular embodiment of the present invention; and -
figure 23 12 is a side view, partially in longitudinal section, of an electrode and insulating member assembly according to a particular embodiment of the present invention.
Die Elektrode 2 ragt in den hohlen Innenraum 4.2 der DĆ¼se 4 hinein. Die DĆ¼se ist mit einem Gewinde 4.20 in eine DĆ¼senhalterung 6 mit Innengewinde 6.20 eingeschraubt. Zwischen der DĆ¼se 4 und der Elektrode 2 ist das PlasmagasfĆ¼hrungsteil 3 angeordnet. In dem PlasmagasfĆ¼hrungsteil 3 befinden sich Bohrungen, Ćffnungen, Nuten und/oder Aussparungen (nicht dargestellt), durch die das Plasmagas PG strƶmt. Durch eine entsprechende Anordnung, zum Beispiel mit einem radialen Versatz und/oder einer Neigung zur Mittellinie M radial angeordnete Bohrungen kann das Plasmagas PG in Rotation versetzt werden. Es dient der Stabilisierung des Lichtbogens bzw. des Plasmastrahls.The
Der Lichtbogen brennt zwischen dem Emissionseinsatz 2.2 und einem WerkstĆ¼ck (nicht dargestellt) und wird durch eine DĆ¼senbohrung 4.1 eingeschnĆ¼rt. Der Lichtbogen selbst hat schon eine hohe Temperatur, die durch seine EinschnĆ¼rung noch erhƶht wird. Dabei werden Temperaturen von bis zu 30000 K angegeben. Deshalb werden die Elektrode 2 und die DĆ¼se 4 mit einem KĆ¼hlmedium gekĆ¼hlt. Als KĆ¼hlmedium kann eine FlĆ¼ssigkeit, im einfachsten Fall Wasser, ein Gas, im einfachsten Fall Luft oder ein Gemisch daraus, im einfachsten Fall ein Luft-Wasser-Gemisch, das als Aerosol bezeichnet wird, eingesetzt werden. Die FlĆ¼ssigkeitskĆ¼hlung gilt als die effektivste. In einem Innenraum 2.10 der Elektrode 2 befindet sich ein KĆ¼hlrohr 10, durch das das KĆ¼hlmittel vom KĆ¼hlmittelvorlauf WV2 durch den KĆ¼hlmittelraum 10.10 zur Elektrode 2 hin in die NƤhe des Emissionseinsatzes 2.2 und durch den Raum, der von der AuĆenflƤche des KĆ¼hlrohrs 10 in der InnenflƤche der Elektrode 2 gebildet wird, zum KĆ¼hlmittelrĆ¼cklauf WR2 zurĆ¼ckgefĆ¼hrt wird.The arc burns between the emission insert 2.2 and a workpiece (not shown) and is constricted by a nozzle hole 4.1. The arc itself already has a high temperature, which is increased by its constriction. Temperatures of up to 30,000 K are reported. Therefore, the
Die DĆ¼se 4 wird in diesem Beispiel indirekt Ć¼ber die DĆ¼senhalterung 6, zu der das KĆ¼hlmittel durch einen KĆ¼hlmittelraum 6.10 (WV1) und Ć¼ber einen KĆ¼hlmittelraum 6.11 wieder weggefĆ¼hrt wird (WR1), gekĆ¼hlt. Das KĆ¼hlmittel strƶmt meist mit einem Volumenstrom von 1 bis 10 l/min. Die DĆ¼se 4 und die DĆ¼senhalterung 6 bestehen aus einem Metall. Durch den mit Hilfe des AuĆengewindes 4.20 der DĆ¼se 4 und des Innengewindes 6.20 der DĆ¼senhalterung 6 gebildeten mechanischen Kontakt wird die in der DĆ¼se 4 entstehende WƤrme in die DĆ¼senhalterung 6 gefĆ¼hrt und durch das strƶmende KĆ¼hlmedium (WV1, WR1) abgefĆ¼hrt.In this example, the
Das als PlasmagasfĆ¼hrungsteil 3 ausgebildete Isolierteil ist in diesem Beispiel einteilig ausgebildet und besteht aus einem elektrisch nicht leitenden und WƤrme gut leitenden Material. Durch Einsatz eines solchen Isolierteils wird eine elektrische Isolierung zwischen der Elektrode 2 und der DĆ¼se 4 erreicht. Dies ist fĆ¼r den Betrieb des Plasmaschneidbrenners 1, nƤmlich die HochspannungszĆ¼ndung und das Betreiben eines zwischen der Elektrode 2 und der DĆ¼se 4 brennenden Pilotlichtbogens notwendig. Gleichzeitig wird WƤrme zwischen der Elektrode 2 und der DĆ¼se 4 vom wƤrmeren zum kƤlteren Bauteil hin Ć¼ber das WƤrme gut leitende als PlasmagasfĆ¼hrungsteil 3 ausgebildete Isolierteil geleitet. Es erfolgt also ein zusƤtzlicher WƤrmeaustausch Ć¼ber das Isolierteil. Das PlasmagasfĆ¼hrungsteil 3 steht mit der Elektrode 2 und der DĆ¼se 4 durch BerĆ¼hrung Ć¼ber KontaktflƤchen in Kontakt.The insulating part designed as a plasma
In diesem AusfĆ¼hrungsbeispiel ist eine KontaktflƤche 2.3 beispielhaft eine zylindrische AuĆenflƤche der Elektrode 2 und eine KontaktflƤche 3.5 eine zylindrische InnenflƤche des PlasmagasfĆ¼hrungsteils 3. Eine KontaktflƤche 3.6 ist eine zylindrische AuĆenflƤche des PlasmagasfĆ¼hrungsteils 3 und eine KontaktflƤche 4.3 ist eine zylindrische InnenflƤche der DĆ¼se 4.Vorzugsweise wird hier eine Spielpassung mit geringem Spiel, zum Beispiel H7/h6 nach DIN EN ISO 286 zwischen den zylindrischen Innen- und AuĆenflƤchen genutzt, um einerseits das Ineinanderstecken und andererseits einen guten Kontakt und damit geringen WƤrmewiderstand und damit guten WƤrmeĆ¼bergang zu realisieren. Der WƤrmeĆ¼bergang kann durch Aufbringen von WƤrmeleitpaste an diesen KontaktflƤchen verbessert werden. (Anmerkung: Auch wenn eine WƤrmeleitpaste eingesetzt wird, soll dies auch noch unter den Begriff "direkter Kontakt" fallen.) Dann kann eine Passung mit einem grƶĆeren Spiel, zum Beispiel H7/g6 verwendet werden. Weiterhin verfĆ¼gen die DĆ¼se 4 und das PlasmagasfĆ¼hrungsteil 3 hier jeweils Ć¼ber eine KontaktflƤche 4.5 und 3.7, die hier KreisringflƤchen sind und miteinander durch BerĆ¼hrung in Kontakt stehen. Es handelt sich dabei um eine kraftschlĆ¼ssige Verbindung zwischen den KreisringflƤchen, die durch das Einschrauben der DĆ¼se 4 in die DĆ¼senhalterung 6 realisiert wird.In this embodiment, a contact surface 2.3 is, for example, a cylindrical outer surface of the
Durch die gute WƤrmeleitfƤhigkeit kƶnnen hohe Temperaturdifferenzen zwischen der DĆ¼se 4 und der Elektrode 2 vermieden und dadurch verursachte mechanische Spannungen im Plasmaschneidbrenner 1 reduziert werden.Due to the good thermal conductivity, high temperature differences between the
Als elektrisch nicht leitendes und WƤrme gut leitendes Material ist hier beispielhaft ein Keramikwerkstoff eingesetzt. Besonders eignet sich Aluminiumnitrid, das nach DIN 60672 eine sehr gute WƤrmeleitfƤhigkeit (ca. 180 W/(māK) und einen hohen spezifischen elektrischen Widerstand (ca. 1012 Ī©ā cm) besitzt.A ceramic material is used here by way of example as an electrically non-conductive and heat-conductive material. Aluminum nitride, which according to DIN 60672 has very good thermal conductivity (approx. 180 W/(m ā K) and high specific electrical resistance (approx. 10 12 Ī© ā cm), is particularly suitable.
In
In diesem AusfĆ¼hrungsbeispiel ist eine KontaktflƤche 2.3 beispielhaft eine zylindrische AuĆenflƤche der Elektrode 2 und eine KontaktflƤche 3.5 eine zylindrische InnenflƤche des PlasmagasfĆ¼hrungsteils 3. Eine KontaktflƤche 3.6 ist eine zylindrische AuĆenflƤche des PlasmagasfĆ¼hrungsteils 3 und eine KontaktflƤche 4.3 ist eine zylindrische InnenflƤche der DĆ¼se 4. Vorzugsweise wird hier eine Spielpassung mit geringem Spiel, zum Beispiel H7/h6 nach DIN EN ISO 286 zwischen den zylindrischen Innen- und AuĆenflƤchen benutzt, um einerseits das Ineinanderstecken und andererseits einen guten Kontakt und damit geringen WƤrmewiderstand und damit guten WƤrmeĆ¼bergang zu realisieren. Der WƤrmeĆ¼bergang kann durch Aufbringen von WƤrmeleitpaste an diesen KontaktflƤchen verbessert werden. Dann kann eine Passung mit einem grƶĆeren Spiel, zum Beispiel H7/g6 verwendet werden. Weiterhin verfĆ¼gen die DĆ¼se 4 und das PlasmagasfĆ¼hrungsteil 3 hier jeweils Ć¼ber eine KontaktflƤche 4.5 bzw. 3.7, die hier KreisringflƤchen sind und miteinander durch BerĆ¼hrung in Kontakt stehen. Es handelt sich dabei um eine kraftschlĆ¼ssige Verbindung zwischen den KreisringflƤchen, die durch das Einschrauben der DĆ¼se 4 in die DĆ¼senhalterung 6 realisiert wird.In this exemplary embodiment, a contact surface 2.3 is, for example, a cylindrical outer surface of the
Der Wegfall der indirekten KĆ¼hlung fĆ¼r die DĆ¼se 4 fĆ¼hrt zu einer erheblichen Vereinfachung des Aufbaus des Plasmaschneidbrenners 1, da die KĆ¼hlmittelrƤume der DĆ¼senhalterung 6, die sonst notwendig sind, um das KĆ¼hlmittel hin- und wieder wegzufĆ¼hren, entfallen. Die KĆ¼hlung der Elektrode erfolgt wie in
In der
Dies fĆ¼hrt zu einer erheblichen Vereinfachung des Aufbaus des Plasmabrenners 1 und der Elektrode 2, da das in den
Der in der
Zwischen der DĆ¼se 4 und einer Elektrode 2 ist ein als ein PlasmagasfĆ¼hrungsteil 3 ausgebildetes Isolierteil angeordnet. Damit werden die gleichen Vorteile erreicht, wie sie im Zusammenhang mit der
Ein Vorteil gegenĆ¼ber dem in
Auch die DĆ¼senkappe 5 wird durch das KĆ¼hlmittel, das durch den KĆ¼hlmittelraum 4.10 flieĆt, der durch die AuĆenflƤche der DĆ¼se 4 und die InnenflƤche der DĆ¼senkappe 5 gebildet wird, gekĆ¼hlt. Die ErwƤrmung der DĆ¼senkappe 5 erfolgt vor allem durch die Strahlung des Lichtbogens bzw. des Plasmastrahls und des erhitzten WerkstĆ¼cks.The
Allerdings ist der Aufbau des Plasmaschneidbrenners 1 komplizierter, da zusƤtzlich eine DĆ¼senkappe 5 benƶtigt wird. Als KĆ¼hlmittel wird hier vorzugsweise eine FlĆ¼ssigkeit, im einfachsten Fall Wasser, verwendet.However, the structure of the
FĆ¼r die KĆ¼hlung der Elektrode 2 und der DĆ¼se 4 gelten die zum Plasmaschneidbrenner 1 gemƤĆ
Bei dem in
Das SekundƤrgas SG strƶmt zunƤchst durch den Plasmaschneidbrenner 1, bevor es durch einen ersten Raum 9.10 gelangt, der von den InnenflƤchen der DĆ¼senschutzkappenhalterung 9 und der DĆ¼senschutzkappe 8 sowie den AuĆenflƤchen der DĆ¼senhalterung 6 und der DĆ¼se 4 gebildet wird. Der erste Raum 9.10 wird auĆerdem durch ein als ein SekundƤrgasfĆ¼hrungsteil 7 ausgebildetes Isolierteil, das sich zwischen der DĆ¼se 4 und der DĆ¼senschutzkappe 8 befindet, begrenzt. Das SekundƤrgasfĆ¼hrungsteil 7 kann mehrteilig ausgebildet sein.The secondary gas SG first flows through the
In dem SekundƤrgasfĆ¼hrungsteil 7 befinden sich Bohrungen 7.1. Es kƶnnen aber auch Ćffnungen, Nuten oder Aussparungen sein, durch die das SekundƤrgas SG strƶmt. Durch eine entsprechende Anordnung der Bohrungen 7.1, zum Beispiel mit einem radialen Versatz und/oder einer Neigung zur Mittellinie M radial angeordnet, kann das SekundƤrgas in Rotation versetzt werden. Dies dient der Stabilisierung des Lichtbogens bzw. des Plasmastrahls.In the secondary
Nach dem Passieren des SekundƤrgasfĆ¼hrungsteils 7 strƶmt das SekundƤrgas in einen Innenraum 8.10, der durch die InnenflƤche der DĆ¼senschutzkappe 8 und die AuĆenflƤche der DĆ¼se 4 gebildet wird, und tritt danach aus der Bohrung 8.1 der DĆ¼senschutzkappe 8 aus. Bei brennendem Lichtbogen bzw. Plasmastrahl trifft das SekundƤrgas auf diesen und kann ihn beeinflussen.After passing the secondary
Die DĆ¼senschutzkappe 8 wird meist nur durch das SekundƤrgas SG gekĆ¼hlt. Die GaskĆ¼hlung hat den Nachteil, dass sie nicht effektiv und der benƶtigte Gasvolumenstrom sehr hoch ist, um eine akzeptable KĆ¼hlung oder WƤrmeabfuhr zu erreichen. Hier sind oft Gasvolumenstrƶme von 5.000 bis 11.000 l/h nƶtig. Gleichzeitig muss der Volumenstrom des SekundƤrgases so gewƤhlt werden, dass die besten Schneidergebnisse erreicht werden. Zu groĆe Volumenstrƶme, die fĆ¼r die KĆ¼hlung aber notwendig sind, verschlechtern oft das Schnittergebnis.The
Zudem ist der durch groĆe Volumenstrƶme verursachte hohe Gasverbrauch unwirtschaftlich. Dies gilt besonders dann, wenn andere Gase als Luft, also bspw. Argon, Stickstoff, Wasserstoff, Sauerstoff oder Helium verwendet werden.In addition, the high gas consumption caused by large volume flows is uneconomical. This applies in particular when gases other than air, e.g. argon, nitrogen, hydrogen, oxygen or helium, are used.
Diese Nachteile werden durch den Einsatz des als das SekundƤrgasfĆ¼hrungsteil 7 ausgebildeten Isolierteils beseitigt. Durch Einsatz eines solchen Isolierteils wird eine elektrische Isolierung zwischen der DĆ¼senschutzkappe 8 und der DĆ¼se 4 erreicht. Die elektrische Isolierung schĆ¼tzt in Kombination mit dem SekundƤrgas SG die DĆ¼se 4 und die DĆ¼senschutzkappe 8 vor Lichtbƶgen, die sich zwischen ihnen und dem WerkstĆ¼ck ausbilden kƶnnen. Diese werden als Doppellichtbƶgen bezeichnet und kƶnnen zur BeschƤdigung der DĆ¼se 4 oder der DĆ¼senschutzkappe 8 fĆ¼hren.These disadvantages are eliminated by using the insulating part designed as the secondary
Gleichzeitig wird WƤrme zwischen der DĆ¼senschutzkappe 8 und der DĆ¼se 4 vom wƤrmeren zum kƤlteren Bauteil hin, in diesem Fall von der DĆ¼senschutzkappe 8 zur DĆ¼se 4, Ć¼ber das WƤrme gut leitende, als SekundƤrgasfĆ¼hrungsteil 7 ausgebildete Isolierteil Ć¼bertragen. Das SekundƤrgasfĆ¼hrungsteil 7 steht mit der DĆ¼senschutzkappe 8 und der DĆ¼se 4 durch BerĆ¼hrung in Kontakt. Dies erfolgt in diesem AusfĆ¼hrungsbeispiel Ć¼ber kreisringfƶrmige FlƤchen 8.2 der DĆ¼senschutzkappe 8 und 7.4 des SekundƤrgasfĆ¼hrungsteils 7 sowie die kreisringfƶrmigen FlƤchen 7.5 des SekundƤrgasfĆ¼hrungsteils 7 und 4.4 der DĆ¼se 4. Es handelt sich um kraftschlĆ¼ssige Verbindungen, wobei die DĆ¼senschutzkappe 8 mit Hilfe der DĆ¼senschutzkappenhalterung 9, die mit einem Innengewinde 9.20 an einem AuĆengewinde 11.20 eine Aufnahme 11 verschraubt ist. So wird diese nach oben gegen das SekundƤrgasfĆ¼hrungsteil 7 und diese gegen die DĆ¼se 4 gepresst.At the same time, heat is transferred between the nozzle
Auf diese Art wird die WƤrme von der DĆ¼senschutzkappe 8 hin zur DĆ¼se 4 hin geleitet und damit gekĆ¼hlt. Die DĆ¼se 4 wiederum wird, wie in der Beschreibung zur
Bohrungen 4.1 der DĆ¼se 4 und 8.1 der DĆ¼senschutzkappe 8 liegen auf einer Mittellinie M. Die InnenflƤchen der DĆ¼senschutzkappe 8 und der DĆ¼senschutzkappenhalterung 9 bilden mit den AuĆenflƤchen der DĆ¼senkappe 5 und der DĆ¼se 4 RƤume 8.10 bzw. 9.10, durch das ein SekundƤrgas SG strƶmen kann. Das SekundƤrgas tritt aus der Bohrung 8.1 der DĆ¼senschutzkappe 8 aus, umhĆ¼llt den Plasmastrahl (nicht dargestellt) und sorgt fĆ¼r eine definierte AtmosphƤre um selbigen. ZusƤtzlich schĆ¼tzt das SekundƤrgas SG die DĆ¼se 4, DĆ¼senkappe 5 und die DĆ¼senschutzkappe 8 vor Lichtbƶgen, die sich zwischen ihnen und einem WerkstĆ¼ck (nicht gezeigt) ausbilden kƶnnen. Diese werden als Doppellichtbƶgen bezeichnet und kƶnnen zur BeschƤdigung der DĆ¼se 4, der DĆ¼senkappe 5 und der DĆ¼senschutzkappe 8 fĆ¼hren. Insbesondere beim Einstechen in ein WerkstĆ¼ck werden die DĆ¼se 4, die DĆ¼senkappe 5 und die DĆ¼senschutzkappe 8 durch heiĆes hochspritzendes Material stark belastet. Das SekundƤrgas SG, dessen Volumenstrom beim Einstechen gegenĆ¼ber dem Wert beim Schneiden erhƶht sein kann, hƤlt das hochspritzende Material von der DĆ¼se 4, der DĆ¼senkappe 5 und der DĆ¼senschutzkappe 8 fern und schĆ¼tzt so vor BeschƤdigung.Bores 4.1 of the
FĆ¼r die KĆ¼hlung der Elektrode 2, der DĆ¼se 4 und der DĆ¼senkappe 5 gelten die in der Beschreibung der
Die ErwƤrmung der DĆ¼senschutzkappe 8 erfolgt insbesondere durch die Strahlung des Lichtbogens bzw. des Plasmastrahls und des erhitzten WerkstĆ¼cks. Besonders beim Einstechen in das WerkstĆ¼ck wird die DĆ¼senschutzkappe 8 durch hochspritzendes glĆ¼hendes Material thermisch stark belastet und aufgeheizt und muss gekĆ¼hlt werden. Deshalb werden dafĆ¼r gut WƤrme und elektrisch gut leitende Materialien, in der Regel Metalle, zum Beispiel Kupfer, Aluminium, Zinn, Zink, Eisen oder Legierungen, in denen zumindest eines dieser Metalle enthalten ist, verwendet.The
Das SekundƤrgas SG strƶmt zunƤchst durch den Plasmabrenner 1, bevor es durch einen Raum 9.10, der von den InnenflƤchen der DĆ¼senschutzkappenhalterung 9 und der DĆ¼senschutzkappe 8 sowie den AuĆenflƤchen einer DĆ¼senhalterung 6 und der DĆ¼senkappe 5 gebildet wird, gelangt. Der Raum 9.10 wird auĆerdem durch ein als SekundƤrgasfĆ¼hrungsteil 7 fĆ¼r das SekundƤrgas SG ausgebildetes Isolierteil, das sich zwischen der DĆ¼senkappe 5 und der DĆ¼senschutzkappe 8 befindet, begrenzt.The secondary gas SG first flows through the
In dem SekundƤrgasfĆ¼hrungsteil 7 befinden sich Bohrungen 7.1. Es kƶnnen aber auch Ćffnungen, Nuten oder Aussparungen sein, durch die das SekundƤrgas SG strƶmt. Durch eine entsprechende Anordnung dieser, zum Beispiel einen radialen Versatz aufweisenden und/oder mit einer Neigung zur Mittellinie M radial angeordneten Bohrungen 7.1 kann das SekundƤrgas SG in Rotation versetzt werden. Dies dient der Stabilisierung des Lichtbogens bzw. des Plasmastrahls.In the secondary
Nach dem Passieren des SekundƤrgasfĆ¼hrungsteils 7 strƶmt das SekundƤrgas SG in den Raum (Innenraum) 8.10, der durch die InnenflƤche der DĆ¼senschutzkappe 8 und die AuĆenflƤche der DĆ¼senkappe 5 und der DĆ¼se 4 gebildet wird, und tritt danach aus der Bohrung 8.1 der DĆ¼senschutzkappe 8 aus. Bei brennendem Lichtbogen bzw. Plasmastrahl trifft das SekundƤrgas SG auf diesen und kann ihn beeinflussen.After passing the secondary
Die DĆ¼senschutzkappe 8 wird meist nur durch das SekundƤrgas SG gekĆ¼hlt. Die GaskĆ¼hlung hat den Nachteil, dass sie nicht effektiv und der benƶtigte Gasvolumenstrom sehr hoch ist, um eine akzeptable KĆ¼hlung oder WƤrmeabfuhr zu erreichen. Hier sind oft Gasvolumenstrƶme von 5.000 bis 11.000 l/h nƶtig. Gleichzeitig muss der Volumenstrom des SekundƤrgases so gewƤhlt werden, dass die besten Schneidergebnisse erreicht werden. Zu groĆe Volumenstrƶme, die fĆ¼r die KĆ¼hlung aber notwendig sind, verschlechtern oft das Schnittergebnis. Zudem ist der durch groĆe Volumenstrƶme verursachte hohe Gasverbrauch unwirtschaftlich. Dies gilt besonders dann, wenn andere Gase als Luft, also beispielsweise Argon, Stickstoff, Wasserstoff, Sauerstoff oder Helium verwendet werden. Diese Nachteile werden durch den Einsatz des als SekundƤrgasfĆ¼hrungsteil 7 ausgebildeten Isolierteils beseitigt. Durch Einsatz eines solchen Isolierteils wird die elektrische Isolierung zwischen der DĆ¼senschutzkappe 8 und der DĆ¼senkappe 5 und damit auch der DĆ¼se 4 erreicht. Die elektrische Isolation schĆ¼tzt in Kombination mit dem SekundƤrgas SG die DĆ¼se 4, die DĆ¼senkappe 5 und die DĆ¼senschutzkappe 8 vor Lichtbƶgen, die sich zwischen ihnen und einem WerkstĆ¼ck (nicht gezeigt) ausbilden kƶnnen. Diese werden als Doppellichtbƶgen bezeichnet und kƶnnen zur BeschƤdigung der DĆ¼se, DĆ¼senkappe und DĆ¼senschutzkappe fĆ¼hren.The
Gleichzeitig wird WƤrme zwischen der DĆ¼senschutzkappe 8 und DĆ¼senkappe 5 vom wƤrmeren zum kƤlteren Bauteil hin, in diesem Fall von der DĆ¼senschutzkappe 8 zur DĆ¼senkappe 5, Ć¼ber das WƤrme gut leitende, als SekundƤrgasfĆ¼hrungsteil 7 ausgebildete Isolierteil Ć¼bertragen. Das SekundƤrgasfĆ¼hrungsteil 7 steht mit der DĆ¼senschutzkappe 8 und der DĆ¼senkappe 5 durch BerĆ¼hrung in Kontakt. Dies erfolgt in diesem AusfĆ¼hrungsbeispiel durch kreisringfƶrmige FlƤchen 8.2 der DĆ¼senschutzkappe 8 und 7.4 des SekundƤrgasfĆ¼hrungsteils 7 sowie die kreisringfƶrmigen FlƤchen 7.5 des SekundƤrgasfĆ¼hrungsteil 7 und 5.3 der DĆ¼senkappe 5. Es handelt sich in diesem Beispiel um kraftschlĆ¼ssige Verbindungen, wobei die DĆ¼senschutzkappe 8 mit Hilfe der DĆ¼senschutzkappenhalterung 9 mit einem Innengewinde 9.20 an einem AuĆengewinde 11.20 einer Aufnahme 11 verschraubt ist. So wird diese nach oben gegen das SekundƤrgasfĆ¼hrungsteil 7 fĆ¼r das SekundƤrgas SG und diese gegen die DĆ¼senkappe 5 gepresst. Auf diese Art wird die WƤrme von der DĆ¼senschutzkappe 8 hin zur DĆ¼senkappe 5 geleitet und damit gekĆ¼hlt. Die DĆ¼senkappe 5 wiederum wird, wie in der Beschreibung der
KĆ¼hlmittel wird gleichzeitig durch KĆ¼hlmittelrƤume 6.10 und 6.11 der DĆ¼senhalterung 6 zur DĆ¼se 4 und DĆ¼senkappe 5 gefĆ¼hrt und kĆ¼hlt diese.Coolant is simultaneously guided through coolant spaces 6.10 and 6.11 of the
Die DĆ¼senschutzkappenhalterung 9 ist mit ihrem Innengewinde 9.20 am AuĆengewinde 11.20 des Teils 11.1 der Aufnahme 11 verschraubt.The nozzle
Das elektrisch nicht leitende und WƤrme gut leitende Material ist aus Keramik, beispielsweise Aluminiumnitrid, das eine sehr gute WƤrmeleitfƤhigkeit (ca. 180 W/(māK)) und einen hohen spezifischen elektrischen Widerstand ca. 1012 Ī©ācm besitzt, hergestellt. Das elektrisch gut leitende und WƤrme gut leitende Material ist hier ein Metall, zum Beispiel Kupfer, Aluminium, Zinn, Zink, legierter Stahl oder Legierungen (zum Beispiel Messing), in denen zumindest eines dieser Metalle enthalten ist.The electrically non-conductive and thermally highly conductive material is made of ceramic, for example aluminum nitride, which has very good thermal conductivity (approx. 180 W/(m * K)) and a high specific electrical resistance of approx. 10 12 Ī© * cm. The material with good electrical and thermal conductivity is a metal here, for example copper, aluminum, tin, zinc, alloyed steel or alloys (for example brass) containing at least one of these metals.
Generell ist von Vorteil, wenn das elektrisch gut leitende und WƤrme gut leitende Material eine WƤrmeleitfƤhigkeit von mindestens 40 W/(māK)Ī© und einen spezifischen elektrischen Widerstand von hƶchstens 0,01 Ī©ācm hat. Insbesondere kann dabei vorgesehen sein, dass das elektrisch gut leitende und WƤrme gut leitende Material eine WƤrmeleitfƤhigkeit von mindestens 60 W/(māK), besser mindestens 90 W/(māK) und vorzugsweise 120 W/(māK) hat. Noch bevorzugter weist das elektrisch gut leitende und WƤrme gut leitende Material eine WƤrmeleitfƤhigkeit von mindestens 150 W/(māK), besser mindestens 200 W/(māK) und vorzugweise mindestens 300 W/(māK) auf. Alternativ oder zusƤtzlich kann vorgesehen sein, dass das elektrisch gut leitende und WƤrme gut leitende Material ein Metall, wie zum Beispiel Silber, Kupfer, Aluminium, Zinn, Zink, Eisen, legierter Stahl oder eine metallische Legierung (z. B. Messing) ist, in der diese Metalle einzeln oder in Summe zumindest zu 50 % enthalten sind.In general, it is advantageous if the material with good electrical and thermal conductivity has a thermal conductivity of at least 40 W/(m ā K)Ī© and a specific electrical resistance of no more than 0.01 Ī© ā cm. In particular, it can be provided that the material with good electrical and thermal conductivity has a thermal conductivity of at least 60 W/(m * K), better at least 90 W/(m * K) and preferably 120 W/(m * K). . Even more preferably, the material with good electrical and thermal conductivity properties has a thermal conductivity of at least 150 W/(m * K), better still at least 200 W/(m * K) and preferably at least 300 W/(m * K). As an alternative or in addition, it can be provided that the material, which conducts electricity and heat well, is a metal, such as silver, copper, aluminum, tin, zinc, iron, alloyed steel or a metallic alloy (e.g. brass) that contains at least 50% of these metals individually or in total.
Die Verwendung von zwei unterschiedlichen Materialien hat den Vorteil, dass fĆ¼r das kompliziertere Teil, in dem unterschiedliche Formen benƶtigt werden, beispielsweise unterschiedliche Bohrungen, Aussparungen, Nuten, Ćffnungen etc., das Material verwendet werden kann, das einfacher und kostengĆ¼nstiger bearbeitet werden kann. In diesem AusfĆ¼hrungsbeispiel ist dies ein Metall, das einfacher als Keramik bearbeitet werden kann. Beide Teile (11.1 und 11.2) sind kraftschlĆ¼ssig durch Ineinanderpressen miteinander berĆ¼hrend verbunden, wodurch ein guter WƤrmeĆ¼bergang zwischen den zylindrischen KontaktflƤchen 11.5 und 11.6 der beiden Teile 11.1 und 11.2 erreicht wird. Das Teil 11.2 der Aufnahme 11. hat KĆ¼hlmitteldurchlƤsse 11.10 und 11.11 fĆ¼r den KĆ¼hlmittelvor- (WV1) und KĆ¼hlmittelrĆ¼cklauf (WR1), die hier als Bohrungen ausgefĆ¼hrt sind. Durch diese strƶmt das KĆ¼hlmittel und kĆ¼hlt so.The use of two different materials has the advantage that for the more complicated part, in which different shapes are required, for example different bores, recesses, grooves, openings etc., the material can be used which can be machined more simply and cheaply. In this embodiment, this is a metal that is easier to machine than ceramic. Both parts (11.1 and 11.2) are non-positively connected by being pressed together and touching one another, as a result of which good heat transfer is achieved between the cylindrical contact surfaces 11.5 and 11.6 of the two parts 11.1 and 11.2. The part 11.2 of the
Wie sich anhand der
Die DĆ¼senschutzkappenhalterung 9 mit ihrem Innengewinde 9.20 ist am AuĆengewinde 11.20 des Teils 11.1 der Aufnahme 11 verschraubt.The nozzle
Bei dieser AusfĆ¼hrungsform besteht der Vorteil darin, dass das AuĆengewinde in das metallische Material, das fĆ¼r das Teil 11.1 verwendet wird, eingebracht werden kann und nicht die schwerer zu bearbeitende Keramik.The advantage of this embodiment is that the external thread can be made in the metallic material used for the part 11.1 and not in the ceramic, which is more difficult to machine.
Die
Das in den
In dem PlasmagasfĆ¼hrungsteil 3 befinden sich radial angeordnete Bohrungen 3.1, die bspw. radial versetzt und/oder zur Mittellinie M radial geneigt sein kƶnnen und ein Plasmagas PG im Plasmaschneidbrenner rotieren lassen. Wenn das PlasmagasfĆ¼hrungsteil 3 in den Plasmaschneidbrenner 1 eingebaut ist, steht seine KontaktflƤche 3.6 (hier zum Beispiel zylindrische AuĆenflƤche) mit der KontaktflƤche 4.3 (hier zum Beispiel zylindrische InnenflƤche) der DĆ¼se 4, ihre KontaktflƤche 3.5 (hier zum Beispiel zylindrische InnenflƤche) mit der KontaktflƤche 2.3 (hier zum Beispiel zylindrische AuĆenflƤche) der Elektrode 2 sowie ihre KontaktflƤche 3.7 (hier zum Beispiel kreisringfƶrmige FlƤche) mit der KontaktflƤche 4.5 (hier zum Beispiel kreisringfƶrmige FlƤche) der DĆ¼se 4 durch BerĆ¼hrung in Kontakt (
Die
FĆ¼r das Teil 3.2 des PlasmagasfĆ¼hrungsteils 3 wird hier beispielhaft Keramik, wiederum als Beispiel Aluminiumnitrid, das eine sehr gute WƤrmeleitfƤhigkeit (ca. 180 W/(māK)) und einen hohen spezifischen elektrischen Widerstand (1012 Ī©ācm) besitzt, verwendet. FĆ¼r das Teil 3.3 des SekundƤrgasfĆ¼hrungsteils 3 wird hier ein Metall, wie zum Beispiel Silber, Kupfer, Aluminium, Zinn, Zink, Eisen, legierter Stahl oder eine metallische Legierung (z. B. Messing), in der diese Metalle einzeln oder in Summe zumindest zu 50 % enthalten sind, verwendet.Ceramic is used here as an example for part 3.2 of the plasma
Wenn fĆ¼r das Teil 3.3 bspw. Kupfer eingesetzt wird, wird die WƤrmeleitfƤhigkeit des PlasmagasfĆ¼hrungsteils 3 grƶĆer, als wenn diese nur aus elektrisch nicht leitendem und WƤrme gut leitendem Material, wie zum Beispiel Aluminiumnitrid, bestehen wĆ¼rde. Kupfer hat je nach Reinheit eine hƶhere WƤrmeleitfƤhigkeit (max. ca. 390 W/(māK)) als Aluminiumnitrid (ca. 180 W/(māK)), das gegenwƤrtig als einer der am besten WƤrme leitenden und gleichzeitig nicht elektrisch gut leitenden Werkstoff gilt. Inzwischen gibt es auch Aluminiumnitrid mit einer WƤrmeleitfƤhigkeit von 220 W/(māK).If, for example, copper is used for the part 3.3, the thermal conductivity of the plasma
Dies fĆ¼hrt durch die bessere WƤrmeleitfƤhigkeit zu einem noch besseren WƤrmeaustausch zwischen der DĆ¼se 4 und der Elektrode 2 des Plasmaschneidbrenners 1 gemĆ¤Ć den
Im einfachsten Fall sind die Teile 3.2 und 3.3 durch Ćbereinanderschieben der KontaktflƤchen 3.21 und 3.31 verbunden.In the simplest case, the parts 3.2 and 3.3 are connected by sliding the contact surfaces 3.21 and 3.31 over one another.
Die Teile 3.2 und 3.3 kƶnnen auch kraftschlĆ¼ssig durch die aneinandergepressten, sich gegenĆ¼berliegenden und berĆ¼hrenden KontaktflƤchen 3.20 mit 3.30, 3.21 mit 3.31 und 3.22 bis 3.32 verbunden sein. Die KontaktflƤchen 3.20, 3.21 und 3.22 sind KontaktflƤchen des Teils 3.2 und die KontaktflƤchen 3.30, 3.31 und 3.32 sind KontaktflƤchen des Teils 3.3. Die zylindrisch ausgebildeten KontaktflƤchen 3.31 (zylindrische AuĆenflƤche des Teils 3.3) und 3.21 (zylindrische InnenflƤche des Teils 3.2) bilden durch Ineinanderpressen eine kraftschlĆ¼ssige Verbindung. Hier wird eine ĆbermaĆpassung DIN EN ISO 286 (zum Beispiel H7/n6; H7/m6) zwischen den zylindrischen Innen- und AuĆenflƤchen angewandt.The parts 3.2 and 3.3 can also be non-positively connected by the contact surfaces 3.20 with 3.30, 3.21 with 3.31 and 3.22 to 3.32 which are pressed against one another and are opposite and touching. The contact surfaces 3.20, 3.21 and 3.22 are contact surfaces of part 3.2 and the contact surfaces 3.30, 3.31 and 3.32 are contact surfaces of part 3.3. The cylindrical contact surfaces 3.31 (cylindrical outer surface of part 3.3) and 3.21 (cylindrical inner surface of part 3.2) form a non-positive connection by being pressed together. Here, an interference fit DIN EN ISO 286 (e.g. H7/n6; H7/m6) is used between the cylindrical inner and outer surfaces.
Es besteht weiterhin die Mƶglichkeit, beide Teile (3.2 und 3.3) durch Formschluss, durch Lƶten und/oder durch Kleben und/oder durch ein thermisches Verfahren miteinander zu verbinden.There is also the possibility of connecting the two parts (3.2 and 3.3) to one another by positive locking, by soldering and/or by gluing and/or by a thermal process.
Da die mechanische Bearbeitung des Keramikwerkstoffs meist schwieriger als diejenige eines Metalls ist, sinkt der Bearbeitungsaufwand. Hier sind beispielsweise sechs Bohrungen 3.1 in den metallischen Teil 3.3 eingebracht, die einen radialen Versatz a1 aufweisen und im Winkel Ī±1 Ƥquidistant auf dem Umfang der PlasmagasfĆ¼hrung verteilt. Es sind auch unterschiedlichste Formen, wie zum Beispiel Nuten, Aussparungen, Bohrungen etc., einfacher herstellbar, wenn sie in das Metall eingebracht werden.Since the mechanical processing of the ceramic material is usually more difficult than that of a metal, the processing effort is reduced. Here, for example, six bores 3.1 are made in the metallic part 3.3, which have a radial offset a1 and are distributed equidistantly at the angle Ī±1 on the circumference of the plasma gas duct. There are too A wide variety of shapes, such as grooves, recesses, bores, etc., can be produced more easily if they are made in the metal.
Die
FĆ¼r das Teil 3.2 des PlasmagasfĆ¼hrungsteils 3 wird hierbei beispielhaft Keramik, wiederum als Beispiel Aluminiumnitrid, das eine sehr gute WƤrmeleitfƤhigkeit (ca. 180 W/(māK)) und einen hohen spezifischen elektrischen Widerstand (ca. 1012 Ī©ācm) besitzt, verwendet. FĆ¼r das Teil 3.3 des PlasmagasfĆ¼hrungsteils 3 kann bspw. ein Kunststoff, zum Beispiel PEEK, PTFE (Polytetrafluorethen), Torlon, Polyamidimid (PAI), Polyimid (PI), der eine hohe Temperaturfestigkeit (mindestens 200Ā°C) und einen hohen spezifischen elektrischen Widerstand (mindestens 106, besser mindestens 1010 Ī©ācm) aufweist, verwendet werden.For the part 3.2 of the plasma
Im einfachsten Fall sind die Teile 3.2 und 3.3 durch Ćbereineinanderschieben der KontaktflƤchen 3.21 und 3.31 verbunden. Sie kƶnnen auch kraftschlĆ¼ssig durch die aneinandergepressten, sich gegenĆ¼berliegenden und berĆ¼hrenden KontaktflƤchen 3.20 mit 3.30, 3.21 bis 3.31 und 3.22 bis 3.32 verbunden sein. Die zylindrisch ausgebildeten KontaktflƤchen 3.31 (zylindrische AuĆenflƤche des Teils 3.3) und 3.21 (zylindrische InnenflƤche des Teils 3.2) bilden dann durch Ineinanderpressen die kraftschlĆ¼ssige Verbindung. Hier wird eine ĆbermaĆpassung DIN EN ISO 286 (zum Beispiel H7/n6; H7/m6) zwischen den zylindrischen Innen- und AuĆenflƤchen angewandt. Es ist weiterhin mƶglich, beide Teile (3.2 und 3.3) durch Formschluss und/oder durch Kleben miteinander zu verbinden.In the simplest case, the parts 3.2 and 3.3 are connected by sliding the contact surfaces 3.21 and 3.31 over one another. You can also be non-positively connected by the pressed together, opposite and touching contact surfaces 3.20 with 3.30, 3.21 to 3.31 and 3.22 to 3.32. The cylindrical contact surfaces 3.31 (cylindrical outer surface of part 3.3) and 3.21 (cylindrical inner surface of part 3.2) then form the non-positive connection by being pressed together. Here, an interference fit DIN EN ISO 286 (e.g. H7/n6; H7/m6) is used between the cylindrical inner and outer surfaces. It is also possible to connect the two parts (3.2 and 3.3) to one another by positive locking and/or by gluing.
Da die mechanische Bearbeitung des Keramikwerkstoffs meist schwieriger ist als diejenige eines Kunststoffs, sinkt der Bearbeitungsaufwand. Hier sind beispielsweise sechs Bohrungen 3.1 in das Kunststoff Teil 3.3 eingebracht, die einen radialen Versatz a1 aufweisen und im Winkel Ī±1 Ƥquidistant auf dem Umfang der GasfĆ¼hrung verteilt. Es sind auch unterschiedlichste Formen, wie zum Beispiel Nuten, Aussparungen, Bohrungen etc. einfacher herstellbar, wenn sie in den Kunststoff eingebracht werden.Since the mechanical processing of the ceramic material is usually more difficult than that of a plastic, the processing effort is reduced. For example, here are six holes 3.1 introduced into the plastic part 3.3, which have a radial offset a1 and are distributed equidistantly at the angle Ī±1 on the circumference of the gas duct. A wide variety of shapes, such as grooves, recesses, bores, etc., can also be produced more easily if they are made in the plastic.
Die
Die Teile 3.2 und 3.4 kƶnnen genauso miteinander verbunden sein wie die Teile 3.2 und 3.3, wobei die KontaktflƤchen 3.23 mit 3.43, 3.24 mit 3.44 und 3.25 mit 3.25 verbunden sind.Parts 3.2 and 3.4 can be connected to one another in the same way as parts 3.2 and 3.3, the contact surfaces 3.23 being connected to 3.43, 3.24 to 3.44 and 3.25 to 3.25.
Da die mechanische Bearbeitung des Keramikwerkstoffs meist schwieriger als diejenige eines Kunststoffs ist, sinkt der Bearbeitungsaufwand und sind auch unterschiedlichste Formen, wie zum Beispiel Aussparungen, Bohrungen etc. einfacher herstellbar, wenn sie in den Kunststoff eingebracht werden.Since the mechanical processing of the ceramic material is usually more difficult than that of a plastic, the processing effort is reduced and a wide variety of shapes, such as recesses, bores, etc., are easier to produce if they are made in the plastic.
Die
Ein Teil 3.2 besteht aus einem elektrisch nicht leitenden und WƤrme gut leitenden Material, wƤhrend ein Teil 3.3 aus einem elektrisch nicht leitenden und WƤrme nicht leitenden Material besteht.Part 3.2 consists of an electrically non-conductive and heat-conductive material, while part 3.3 consists of an electrically non-conductive and heat-non-conductive material.
Im Teil 3.3 des PlasmagasfĆ¼hrungsteils 3 befinden sich radial angeordnete Ćffnungen, hier Bohrungen 3.1, die radial versetzt und/oder zur Mittellinie M radial geneigt sein kƶnnen und durch die ein Plasmagas PG strƶmt, wenn das PlasmagasfĆ¼hrungsteil 3 in den Plasmaschneidbrenner 1 eingebaut ist (siehe
Das Teil 3.3 hat weitere radial angeordnete Bohrungen 3.9, die grƶĆer sind als die Bohrungen 3.1. In diese Bohrungen sind sechs Teile 3.2, die hier beispielhaft als Rundstift dargestellt sind, eingebracht. Diese sind Ƥquidistant in einem Winkel, der sich zwischen Mittelpunktlinien M3.9 ergibt, von a3=60Ā° auf dem Umfang verteilt.The part 3.3 has more radially arranged holes 3.9, which are larger than the holes 3.1. Six parts 3.2, shown here as a round pin as an example, are placed in these holes. These are distributed equidistantly on the circumference at an angle of a3=60Ā°, which results between center lines M3.9.
Wenn das PlasmagasfĆ¼hrungsteil 3 in den Plasmaschneidbrenner 1 nach den
Die Teile 3.2 weisen einen Durchmesser d3 und eine LƤnge 13 auf, die mindestens genauso groĆ ist wie die HƤlfte der Differenz der Durchmesser d10 und d20 des Teils 3.3. Noch besser ist es, wenn die LƤnge 13 geringfĆ¼gig grƶĆer ist, um einen sicheren Kontakt zwischen den KontaktflƤchen der Rundstifte 3.2 und der DĆ¼se 4 sowie der Elektrode 2 zu erhalten. Von Vorteil ist es weiterhin, wenn die OberflƤche der KontaktflƤchen 3.61 und 3.51 nicht eben, sondern der zylindrischen AuĆenflƤche (KontaktflƤche 2.3) der Elektrode 2 und der zylindrischen InnenflƤche (KontaktflƤche 4.3) der DĆ¼se 4 so angepasst sind, dass ein Formschluss entsteht.The parts 3.2 have a diameter d3 and a
In der KontaktflƤche 3.6 befinden sich Nuten 3.8. Diese leiten das Plasmagas PG zu den Bohrungen 3.1, bevor es durch diese in den Innenraum 4.2 der DĆ¼se 4, in dem die Elektrode 2 angeordnet ist, gefĆ¼hrt wird.In the contact surface 3.6 there are grooves 3.8. These direct the plasma gas PG to the bores 3.1 before it is guided through them into the interior 4.2 of the
Da die mechanische Bearbeitung des Keramikwerkstoffs meist schwieriger ist als diejenige eines Kunststoffs, sinkt der Bearbeitungsaufwand und sind auch unterschiedlichste Formen, wie zum Beispiel Nuten, Aussparungen, Bohrungen etc. einfacher herstellbar, wenn sie in den Kunststoff eingebracht werden. So kƶnnen trotz Verwendung gleicher Rundstifte unterschiedlichste GasfĆ¼hrungen kostengĆ¼nstig hergestellt werden.Since the mechanical processing of the ceramic material is usually more difficult than that of a plastic, the processing effort is reduced and a wide variety of shapes, such as grooves, recesses, bores, etc., are easier to produce if they are made in the plastic. Despite the use of the same round pins, a wide variety of gas ducts can be produced inexpensively.
Weiterhin sind durch die VerƤnderung der Anzahl oder auch des Durchmessers der Rundstifte 3.2 unterschiedliche thermische WiderstƤnde bzw. thermische LeitfƤhigkeiten des PlasmagasfĆ¼hrungsteils 3 erreichbar.Furthermore, different thermal resistances or thermal conductivities of the plasma
Wird/Werden der Durchmesser und/oder die Anzahl der Rundstifte reduziert, vergrƶĆert sich der WƤrmewiderstand und die thermische LeitfƤhigkeit sinkt.If the diameter and/or the number of round pins is/are reduced, the thermal resistance increases and the thermal conductivity decreases.
Da je nach der im Plasmabrenner bzw. Plasmaschneidbrenner umzusetzenden Leistung von 500 W bis 200 kW sehr unterschiedliche thermische Belastungen der DĆ¼sen 4 und der Elektrode 2 entstehen, ist die Anpassung des thermischen Widerstands von Vorteil. So werden bspw. die Herstellkosten reduziert, wenn weniger Bohrungen eingebracht und weniger Rundstifte eingesetzt werden mĆ¼ssen.Since, depending on the power to be converted in the plasma torch or plasma cutting torch, from 500 W to 200 kW, there are very different thermal loads on the
Die
Die
Das in den
In dem SekundƤrgasfĆ¼hrungsteil 7 befinden sich radial angeordnete Bohrungen 7.1, die auch radial oder radial versetzt und/oder zur Mittellinie M radial geneigt sein kƶnnen und durch die das SekundƤrgas SG strƶmen kann bzw. strƶmt, wenn das SekundƤrgasfĆ¼hrungsteil 7 in den Plasmaschneidbrenner 1 eingebaut ist. In diesem Beispiel sind 12 Bohrungen um ein MaĆ a11 radial versetzt und Ƥquidistant auf dem Umfang verteilt, wobei der Winkel, der durch die Mittelpunkte der Bohrungen eingeschlossen ist, mit Ī±11 bezeichnet ist. Es kƶnnen aber auch Ćffnungen, Nuten oder Aussparungen sein, durch die das SekundƤrgas SG strƶmt, wenn das SekundƤrgasfĆ¼hrungsteil 7 in den Plasmaschneidbrenner 1 eingebaut ist. Das SekundƤrgasfĆ¼hrungsteil 7 verfĆ¼gt Ć¼ber zwei kreisringfƶrmige KontaktflƤchen 7.4 und 7.5.In the secondary
Durch Einsatz dieses SekundƤrgasfĆ¼hrungsteils 7 wird die elektrische Isolierung zwischen der DĆ¼senschutzkappe 8 und der DĆ¼senkappe 5 und damit auch der DĆ¼se 4 des in den
Gleichzeitig wird WƤrme zwischen der DĆ¼senschutzkappe 8 und der DĆ¼senkappe 5 vom wƤrmeren zum kƤlteren Bauteil hin, in diesem Fall von der DĆ¼senschutzkappe 8 zur DĆ¼senkappe 5, Ć¼ber das WƤrme gut leitende, als SekundƤrgasfĆ¼hrungsteil 7 ausgebildete Isolierteil Ć¼bertragen. Das SekundƤrgasfĆ¼hrungsteil 7 steht mit der DĆ¼senschutzkappe 8 und der DĆ¼senkappe 5 durch BerĆ¼hrung in Kontakt. Dies erfolgt in diesem AusfĆ¼hrungsbeispiel durch kreisringfƶrmige FlƤchen 8.2 der DĆ¼senschutzkappe 8 und 7.4 des SekundƤrgasfĆ¼hrungsteils 7 sowie kreisringfƶrmige FlƤchen 7.5 des SekundƤrgasfĆ¼hrungsteils 7 und 5.3 der DĆ¼senkappe 5, die sich, wie in den
Die
FĆ¼r das Teil 7.2 des SekundƤrgasfĆ¼hrungsteils 7 wird hier beispielhaft Keramik als Beispiel wiederum Aluminiumnitrid, das eine sehr gute WƤrmeleitfƤhigkeit (ca. 180 W/(māK)) und einen hohen spezifischen elektrischen Widerstand (ca. 1012 Ī©ācm) besitzt, verwendet. FĆ¼r das Teil 7.3 des SekundƤrgasfĆ¼hrungsteils 7 wird hier ein Metall, wie zum Beispiel Silber, Kupfer, Aluminium, Zinn, Zink, Eisen, legierter Stahl oder eine metallische Legierung (z. B. Messing), in der diese Metalle einzeln oder in Summe zumindest zu 50 % enthalten sind, verwendet.For part 7.2 of the secondary
Wenn fĆ¼r das Teil 7.3 bspw. Kupfer eingesetzt wird, wird die WƤrmeleitfƤhigkeit des SekundƤrgasfĆ¼hrungsteils 7 grƶĆer, als wenn dies nur aus elektrisch nicht leitendem und WƤrme gut leitendem Material, wie zum Beispiel Aluminiumnitrid, bestehen wĆ¼rde. Kupfer hat je nach Reinheit eine hƶhere WƤrmeleitfƤhigkeit (max. ca. 390 W/(māK)) als Aluminiumnitrid (ca. 180 W/(māK)), das gegenwƤrtig als einer der am besten WƤrme leitenden und gleichzeitig nicht elektrisch gut leitenden Werkstoffe gilt. Dies fĆ¼hrt durch die bessere LeitfƤhigkeit zu einem noch besseren WƤrmeaustausch zwischen der DĆ¼senschutzkappe 8 und der DĆ¼senkappe 5 des Plasmaschneidbrenners 1 der
Im einfachsten Fall sind die Teile 7.2 und 7.3 durch Ćbereinanderschieben der KontaktflƤchen 7.21 und 7.31 verbunden.In the simplest case, parts 7.2 and 7.3 are connected by sliding contact surfaces 7.21 and 7.31 over one another.
Die Teile 7.2 und 7.3 kƶnnen auch kraftschlĆ¼ssig durch die aneinandergepressten, sich gegenĆ¼berliegenden und berĆ¼hrenden KontaktflƤchen 7.20 mit 7.30, 7.21 mit 7.31 und 7.22 mit 7.32 verbunden sein. Die KontaktflƤchen 7.20, 7.21 und 7.22 sind KontaktflƤchen des Teils 7.2 und die KontaktflƤchen 7.30, 7.31 und 7.32 sind KontaktflƤchen des Teils 7.3. Die zylindrisch ausgebildeten KontaktflƤchen 7.31 (zylindrisch AuĆenflƤche des Teils 7.3) und 7.21 (zylindrische InnenflƤche des Teils 7.2) bilden durch Ineinanderpressen eine kraftschlĆ¼ssige Verbindung. Hier wird eine ĆbermaĆpassung DIN EN ISO 286 (zum Beispiel H7/n6; H/m6) zwischen den zylindrischen Innen- und AuĆenflƤchen angewandt.The parts 7.2 and 7.3 can also be non-positively connected by the contact surfaces 7.20 with 7.30, 7.21 with 7.31 and 7.22 with 7.32 which are pressed against one another and lie opposite one another and touch. The contact surfaces 7.20, 7.21 and 7.22 are contact surfaces of part 7.2 and the contact surfaces 7.30, 7.31 and 7.32 are contact surfaces of part 7.3. The cylindrical contact surfaces 7.31 (cylindrical outer surface of part 7.3) and 7.21 (cylindrical inner surface of part 7.2) form a non-positive connection by being pressed together. Here, an interference fit DIN EN ISO 286 (e.g. H7/n6; H/m6) is used between the cylindrical inner and outer surfaces.
Es besteht weiterhin die Mƶglichkeit, beide Teile durch Formschluss, durch Lƶten und/oder Kleben miteinander zu verbinden.There is also the possibility of connecting the two parts to one another by positive locking, by soldering and/or gluing.
Da die mechanische Bearbeitung des Keramikwerkstoffs meist schwieriger ist als diejenige eines Metalls, sinkt der Bearbeitungsaufwand. Hier sind beispielsweise zwƶlf Bohrungen 7.1 in Teil 7.3 aus Metall eingebracht, die einen radialen Versatz a11 aufweisen und im Winkel Ī±11 Ƥquidistant auf dem Umfang der GasfĆ¼hrung verteilt. Es sind auch unterschiedlichste Formen, wie zum Beispiel Nuten, Aussparungen, Bohrungen etc. einfacher herstellbar, wenn sie in das Metall eingebracht werden.Since the mechanical processing of the ceramic material is usually more difficult than that of a metal, the processing effort is reduced. Here, for example, twelve bores 7.1 are made of metal in part 7.3, which have a radial offset a11 and are distributed equidistantly at an angle Ī±11 on the circumference of the gas duct. A wide variety of shapes, such as grooves, recesses, bores, etc., can also be produced more easily if they are made in the metal.
Die
In den
Die
Im Teil 7.3 des SekundƤrgasfĆ¼hrungsteils 7 befinden sich radial angeordnete Bohrungen 7.1, die auch radial oder radial versetzt und/oder zur Mittellinie M radial geneigt sein kƶnnen und durch die das SekundƤrgas SG strƶmen kann, wenn das SekundƤrgasfĆ¼hrungsteil 7 in den Plasmaschneidbrenner 1 eingebaut ist. In diesem Beispiel sind zwƶlf Bohrungen um ein MaĆ a11 radial versetzt und Ƥquidistant auf dem Umfang verteilt, wobei der Winkel, der durch die Mittelpunkte der Bohrungen eingeschlossen ist, mit Ī±11 (hier zum Beispiel 30Ā°) bezeichnet ist. Es kƶnnen aber auch Ćffnungen, Nuten oder Aussparungen sein, durch die das SekundƤrgas SG strƶmt, wenn das SekundƤrgasfĆ¼hrungsteil 7 in den Plasmaschneidbrenner 1 (siehe hierzu zum Beispiel
In den
Wenn das SekundƤrgasfĆ¼hrungsteil 7 in den Plasmaschneidbrenner 1 gemĆ¤Ć den
Die Teile 7.2 haben einen Durchmesser d7 und eine LƤnge l7, die mindestens genauso groĆ ist wie die Breite b des Teils 7.3. Noch besser ist es, wenn die LƤnge 17 geringfĆ¼gig grƶĆer ist, um einen sicheren Kontakt zwischen den KontaktflƤchen der Rundstifte 7.2 und der DĆ¼senkappe 5 sowie der DĆ¼senschutzkappe 8 zu erhalten.The parts 7.2 have a diameter d7 and a length l7 which is at least as large as the width b of the part 7.3. It is even better if the
Die
Wenn das SekundƤrgasfĆ¼hrungsteil 7 in den Plasmaschneidbrenner 1 gemĆ¤Ć den
Die Teile 7.2 weisen einen Durchmesser d7 und eine LƤnge 171 auf. Die Teile 7.6 haben in diesem Beispiel den gleichen Durchmesser und eine LƤnge l72, wobei die Summe der LƤngen 171 und l72 mindestens genauso groĆ wie die Breite b des Teils 7.3 ist. Noch besser ist es, wenn die Summe der LƤngen geringfĆ¼gig grƶĆer, beispielsweise grƶĆer als 0,1 mm ist, um einen sicheren Kontakt zwischen den KontaktflƤchen 7.51 der Rundstifte 7.2 und der DĆ¼senkappe 5 sowie den KontaktflƤchen 7.41 der Rundstifte 7.6 und der DĆ¼senschutzkappe 8 zu erhalten.The parts 7.2 have a diameter d7 and a
Wie die
Die in den
Gleichzeitig wird WƤrme zwischen der DĆ¼senschutzkappe 8 und der DĆ¼se 4 vom wƤrmeren zum kƤlteren Bauteil hin, in diesem Fall von der DĆ¼senschutzkappe 8 zur DĆ¼se 4, Ć¼ber das WƤrme gut leitende als SekundƤrgasfĆ¼hrungsteil 7 ausgebildete Isolierteil Ć¼bertragen. Das SekundƤrgasfĆ¼hrungsteil 7 steht mit der DĆ¼senschutzkappe 8 und der DĆ¼se 4 durch BerĆ¼hrung in Kontakt. Dies erfolgt fĆ¼r die in den
In den AusfĆ¼hrungsbeispielen des in den
Die
Dabei zeigt
In diesen AusfĆ¼hrungsbeispielen kann das SekundƤrgasfĆ¼hrungsteil 7 mit der DĆ¼se 4 im einfachsten Fall durch Ćbereinanderschieben verbunden sein. Sie kƶnnen aber auch form- und kraftschlĆ¼ssig oder durch Kleben verbunden sein. Bei der Verwendung von Metall/Metall und/oder Metall/Keramik an der Verbindungsstelle ist auch das Lƶten als Verbindung mƶglich.In these exemplary embodiments, the secondary
Die
Dabei zeigt
In diesen AusfĆ¼hrungsbeispielen kann das SekundƤrgasfĆ¼hrungsteil 7 mit der DĆ¼senkappe 5 im einfachsten Fall durch Ćbereinanderschieben verbunden sein. Sie kƶnnen aber auch form- und kraftschlĆ¼ssig oder der Kleben verbunden sein. Bei der Verwendung von Metall/Metall und/oder Metall/Keramik an der Verbindungsstelle ist auch das Lƶten als Verbindung mƶglich.In these exemplary embodiments, the secondary
Die
Dabei zeigt
In diesen AusfĆ¼hrungsbeispielen kann das SekundƤrgasfĆ¼hrungsteil 7 mit der DĆ¼senschutzkappe 8 im einfachsten Fall durch Ćbereinanderschieben verbunden sein. Sie kƶnnen aber auch form- und kraftschlĆ¼ssig oder Kleben verbunden sein. Bei der Verwendung von Metall/Metall und/oder Metall/Keramik an der Verbindungsstelle ist auch das Lƶten als Verbindung mƶglich.In these exemplary embodiments, the secondary
Die
Dabei zeigt
In diesem AusfĆ¼hrungsbeispiel ist eine KontaktflƤche 2.3 beispielhaft eine zylindrische AuĆenflƤche der Elektrode 2 und eine KontaktflƤche 3.5 eine zylindrische InnenflƤche des PlasmagasfĆ¼hrungsteils 3. Vorzugsweise wird hier eine Spielpassung mit geringem Spiel, zum Beispiel H7/h6 nach DIN EN ISO 286 zwischen der zylindrischen Innen- und AuĆenflƤche benutzt, um einerseits das Ineinanderstecken und andererseits einen guten Kontakt und damit geringen WƤrmewiderstand und damit guten WƤrmeĆ¼bergang zu realisieren. Der WƤrmeĆ¼bergang kann durch Aufbringen von WƤrmeleitpaste an diesen KontaktflƤchen verbessert werden. Dann kann eine Passung mit einem grƶĆeren Spiel, zum Beispiel H7/g6 verwendet werden.In this exemplary embodiment, a contact surface 2.3 is, for example, a cylindrical outer surface of the
Es ist auch mƶglich, eine ĆbermaĆpassung zwischen dem PlasmagasfĆ¼hrungsteil 3 und der Elektrode 2 zu verwenden. Dies verbessert natĆ¼rlich den WƤrmeĆ¼bergang. Das hat aber zur Folge, dass Elektrode 2 und PlasmagasfĆ¼hrungsteil 3 nur gemeinsam im Plasmaschneidbrenner 1 ausgetauscht werden kƶnnen.It is also possible to use an interference fit between the plasma
Die
In dieser Anordnung stehen KontaktflƤchen 3.51 der Rundstifte 3.2 des PlasmagasfĆ¼hrungsteils 3 mit einer KontaktflƤche 2.3 (hier zum Beispiel zylindrische AuĆenflƤche) der Elektrode 2 durch BerĆ¼hrung in Kontakt (siehe auch
Die Teile 3.2 haben einen Durchmesser d3 und eine LƤnge 13, die mindestens genauso groĆ ist wie die HƤlfte der Differenz der Durchmesser d10 und d20 des Teils 3.3. Noch besser ist es, wenn die LƤnge 13 geringfĆ¼gig grƶĆer ist, um einen sicheren Kontakt zwischen den KontaktflƤchen der Rundstifte 3.2 und der DĆ¼se 4 sowie der Elektrode 2 zu erhalten. Von Vorteil ist es, weiterhin, wenn die OberflƤche der KontaktflƤchen 3.61 und 3.51 nicht eben, sondern der zylindrischen AuĆenflƤche (KontaktflƤche 2.3) der Elektrode 2 und der zylindrischen InnenflƤche (KontaktflƤche 4.3) der DĆ¼se so angepasst sind, dass ein Formschluss entsteht.The parts 3.2 have a diameter d3 and a
Die Anordnungen aus VerschleiĆteilen und dem Isolierteil bzw. dem GasfĆ¼hrungsteil sind nur beispielhaft aufgezƤhlt. Es sind natĆ¼rlich auch andere Kombinationen, wie zum Beispiel DĆ¼se und GasfĆ¼hrungsteil, mƶglich.The arrangements of wearing parts and the insulating part or the gas routing part are only listed as examples. Of course, other combinations, such as nozzle and gas guide part, are also possible.
Wenn in der vorangehenden Beschreibung auf KĆ¼hlflĆ¼ssigkeit oder Ƥhnliches Bezug genommen wurde, so soll damit ganz allgemein ein KĆ¼hlmedium gemeint sein.If in the preceding description reference was made to cooling liquid or the like, this is intended to mean a cooling medium in general.
In der vorangehenden Beschreibung werden u. a. Anordnungen und komplette Plasmabrenner beschrieben. Es versteht sich fĆ¼r den Fachmann, dass die Erfindung auch in Unterkombinationen und Einzelteilen, wie zum Beispiel Bauteile oder VerschleiĆteile, bestehen kann. Daher wird dafĆ¼r auch explizit Schutz beansprucht.In the foregoing description, among other things, arrangements and complete plasma torches are described. It is clear to the person skilled in the art that the invention can also consist of sub-combinations and individual parts, such as components or wearing parts. Protection is therefore explicitly claimed for this.
Zu guter Letzt noch ein paar Definitionen, die fĆ¼r die gesamte vorangegangene Beschreibung gelten sollen:
- "Elektrisch gut leitend" soll bedeuten, dass der spezifische elektrische Widerstand maximal 0,01 Ī©ācm betrƤgt.
- "Elektrisch nicht leitend" soll bedeuten, dass der spezifische Widerstand minimal 106 Ī©ācm, besser
mindestens 1010 Ī©ācm betrƤgt und/oder dasdie Spannungsdurchschlagsfestigkeit mindestens 7 kV/mm, bessermindestens 10 kV/mm betrƤgt. - "WƤrme gut leitend" soll bedeuten, dass die WƤrmeleitfƤhigkeit mindestens 40 W/(māK), besser mindestens 60 W/(māK), noch besser mindestens 90 W/(māK)betrƤgt.
- "WƤrme gut leitend" soll bedeuten, dass die WƤrmeleitfƤhigkeit mindestens 120 W/(māK), besser mindestens 150 W/(māK), noch besser mindestens 180 W/(māK) betrƤgt.
- SchlieĆlich soll "WƤrme gut leitend" insbesondere fĆ¼r Metalle bedeuten, dass die WƤrmeleitfƤhigkeit mindestens 200 W/(māK), besser mindestens 300 W/(māK) betrƤgt.
- "Electrically well conductive" should mean that the specific electrical resistance is a maximum of 0.01 Ī© ā cm.
- "Electrically non-conductive" is intended to mean that the specific resistance is at least 10 6 Ī© * cm, better at least 10 10 Ī© * cm and/or that the dielectric strength is at least 7 kV/mm, better at least 10 kV/mm.
- "Good heat conductor" is intended to mean that the thermal conductivity is at least 40 W/(m * K), better at least 60 W/(m * K), even better at least 90 W/(m * K).
- "Good heat conductor" is intended to mean that the thermal conductivity is at least 120 W/(m * K), better still at least 150 W/(m * K), even better at least 180 W/(m * K).
- Finally, "good heat conductor" should mean, in particular for metals, that the thermal conductivity is at least 200 W/(m * K), better at least 300 W/(m * K).
- 11
- Plasmaschneidbrennerplasma cutting torch
- 22
- Elektrodeelectrode
- 2.12.1
- Elektrodenhalterelectrode holder
- 2.22.2
- Emissionseinsatzemissions use
- 2.32.3
- KontaktflƤchecontact surface
- 2.102.10
- KĆ¼hlmittelraumcoolant space
- 33
- PlasmagasfĆ¼hrungsteilplasma gas guide part
- 3.13.1
- Bohrungdrilling
- 3.23.2
- TeilPart
- 3.33.3
- TeilPart
- 3.43.4
- TeilPart
- 3.53.5
- KontaktflƤchecontact surface
- 3.63.6
- KontaktflƤchecontact surface
- 3.73.7
- KontaktflƤchecontact surface
- 3.83.8
- Nutgroove
- 3.93.9
- Bohrungdrilling
- 3.203.20
- KontaktflƤchecontact surface
- 3.213.21
- KontaktflƤchecontact surface
- 3.223.22
- KontaktflƤchecontact surface
- 3.233.23
- KontaktflƤchecontact surface
- 3.243.24
- KontaktflƤchecontact surface
- 3.253.25
- KontaktflƤchecontact surface
- 3.303.30
- KontaktflƤchecontact surface
- 3.313.31
- KontaktflƤchecontact surface
- 3.323.32
- KontaktflƤchecontact surface
- 3.433.43
- KontaktflƤchecontact surface
- 3.443.44
- KontaktflƤchecontact surface
- 3.453.45
- KontaktflƤchecontact surface
- 3.513.51
- KontaktflƤchecontact surface
- 3.613.61
- KontaktflƤchecontact surface
- 44
- DĆ¼sejet
- 4.14.1
- DĆ¼senbohrungnozzle bore
- 4.24.2
- Innenrauminner space
- 4.34.3
- KontaktflƤchecontact surface
- 4.44.4
- KontaktflƤchecontact surface
- 4.54.5
- KontaktflƤchecontact surface
- 4.104.10
- KĆ¼hlmittelraumcoolant space
- 4.204.20
- AuĆengewindeexternal thread
- 55
- DĆ¼senkappenozzle cap
- 5.15.1
- DĆ¼senkappenbohrungnozzle cap bore
- 5.35.3
- KontaktflƤchecontact surface
- 5.205.20
- Innengewindeinner thread
- 66
- DĆ¼senhalterungnozzle holder
- 6.106.10
- KĆ¼hlmittelraumcoolant space
- 6.116.11
- KĆ¼hlmittelraumcoolant space
- 6.206.20
- Innengewindeinner thread
- 6.216.21
- AuĆengewindeexternal thread
- 77
- SekundƤrgasfĆ¼hrungsteilsecondary gas routing part
- 7.17.1
- Bohrungdrilling
- 7.27.2
- TeilPart
- 7.37.3
- TeilPart
- 7.47.4
- KontaktflƤchecontact surface
- 7.57.5
- KontaktflƤchecontact surface
- 7.67.6
- TeilPart
- 7.97.9
- Bohrungendrilling
- 7.207.20
- KontaktflƤchecontact surface
- 7.217.21
- KontaktflƤchecontact surface
- 7.227.22
- KontaktflƤchecontact surface
- 7.307.30
- KontaktflƤchecontact surface
- 7.317.31
- KontaktflƤchecontact surface
- 7.327.32
- KontaktflƤchecontact surface
- 7.417.41
- KontaktflƤchecontact surface
- 7.427.42
- KontaktflƤchecontact surface
- 7.517.51
- KontaktflƤchecontact surface
- 7.527.52
- KontaktflƤchecontact surface
- 88th
- DĆ¼senschutzkappenozzle protection cap
- 8.18.1
- DĆ¼senschutzkappenbohrungnozzle guard hole
- 8.28.2
- KontaktflƤchecontact surface
- 8.38.3
- KontaktflƤchecontact surface
- 8.108.10
- Innenrauminner space
- 8.118.11
- Innenrauminner space
- 99
- DĆ¼senschutzkappenhalterungNozzle Protection Cap Bracket
- 9.19.1
- KontaktflƤchecontact surface
- 9.109.10
- Innenrauminner space
- 9.209.20
- Innengewindeinner thread
- 1010
- KĆ¼hlrohrcooling tube
- 10.110.1
- KĆ¼hlmittelraumcoolant space
- 1111
- Aufnahmerecording
- 11.111.1
- TeilPart
- 11.211.2
- TeilPart
- 11.511.5
- KontaktflƤchecontact surface
- 11.611.6
- KontaktflƤchecontact surface
- 11.1011.10
- KĆ¼hlmitteldurchlasscoolant passage
- 11.1111.11
- KĆ¼hlmitteldurchlasscoolant passage
- 11.2011.20
- AuĆengewindeexternal thread
- PGPG
- Plasmagasplasma gas
- SGSG
- SekundƤrgassecondary gas
- WR1WR1
-
KĆ¼hlmittelrĆ¼cklauf 1
Coolant return 1 - WR2WR2
-
KĆ¼hlmittelrĆ¼cklauf 2
Coolant return 2 - WV1WV1
-
KĆ¼hlmittelvorlauf 1
Coolant supply 1 - WV2WV2
-
KĆ¼hlmittelvorlauf 2
Coolant supply 2 - a1a1
- radialer Versatzradial offset
- a11a11
- radialer Versatzradial offset
- bb
- BreiteBroad
- d3d3
- Durchmesserdiameter
- d7d7
- Durchmesserdiameter
- d10d10
- AuĆendurchmesserouter diameter
- d11d11
- Innendurchmesserinner diameter
- d15d15
- Durchmesserdiameter
- d20d20
- Innendurchmesserinner diameter
- d21d21
- AuĆendurchmesserouter diameter
- d25d25
- Durchmesserdiameter
- d30d30
- Innendurchmesserinner diameter
- d31d31
- AuĆendurchmesserouter diameter
- d60d60
- AuĆendurchmesserouter diameter
- l3l3
- LƤngelength
- 131131
- LƤngelength
- l32l32
- LƤngelength
- 1717
- LƤngelength
- l71l71
- LƤngelength
- 172172
- LƤngelength
- 173173
- LƤngelength
- l2l2
- LƤngelength
- MM
- Mittelliniecenterline
- M3.1M3.1
- Mittelliniecenterline
- M3.2M3.2
- Mittelliniecenterline
- M3.9M3.9
- Mittelliniecenterline
- M7.1M7.1
- Mittelliniecenterline
- M3.6M3.6
- Mittelliniecenterline
- Ī±1Ī±1
- Winkelangle
- a3a3
- Winkelangle
- Ī±7Ī±7
- Winkelangle
- Ī±11Ī±11
- Winkelangle
Claims (23)
- Multi-part plasma-torch insulating part for electrical insulation between at least two electrically conductive components of a plasma torch, characterized in that it consists of at least two parts (3.2, 3.3; 7.2, 7.3; 11.1, 11.2), wherein one of the parts (3.2; 7.2; 11.1) consists of an electrically non-conductive and readily thermally conductive material and the other part or at least one other of the parts (3.3; 7.3; 11.2) consists of an electrically non-conductive and thermally non-conductive material, wherein the electrically non-conductive and readily thermally conductive material has a thermal conductivity of at least 40 W/(m*K), preferably at least 60 W/(m*K) and even more preferably at least 90 W/(m*K), even more preferably at least 120 W/(m*K), even more preferably at least 150 W/(m*K) and even more preferably at least 180 W/(m*K).
- Plasma-torch insulating part according to Claim 1, characterized in that the part (3.2) of an electrically non-conductive and readily thermally conductive material has at least one surface acting as a contact surface (3.51, 3.61, 7.41, 7.51), which is in line with or projects beyond a directly adjacent surface of the part (3.3, 7.3) of an electrically non-conductive and thermally non-conductive material.
- Multi-part plasma-torch insulating part for electrical insulation between at least two electrically conductive components of a plasma torch, characterized in that it consists of at least two parts (3.2, 3.3; 7.2, 7.3), wherein one of the parts (3.3; 7.3) consists of a readily electrically conductive and readily thermally conductive material and the other part (3.2; 7.2) or at least one other of the parts consists of an electrically non-conductive and readily thermally conductive material, wherein the readily electrically conductive and readily thermally conductive material has a thermal conductivity of at least 40 W/(m*K)Ī©), preferably at least 60 W/(m*K) and even more preferably at least 90 W/(m*K), even more preferably at least 120 W/(m*K), even more preferably at least 150 W/(m*K) and even more preferably at least 180 W/(m*K), and an electrical resistivity of at most 0.01 Ī©*cm and the electrically non-conductive and readily thermally conductive material has a thermal conductivity of at least 40 W/(m*K), preferably at least 60 W/(m*K) and even more preferably at least 90 W/(m*K), even more preferably at least 120 W/(m*K), even more preferably at least 150 W/(m*K) and even more preferably at least 180 W/(m*K).
- Multi-part plasma-torch insulating part for electrical insulation between at least two electrically conductive components of a plasma torch, characterized in that it consists of at least three parts (7.2, 7.3, 7.6), wherein one of the parts (7.6) consists of a readily electrically conductive and readily thermally conductive material, another one of the parts (7.2) consists of an electrically non-conductive and readily thermally conductive material and a further one of the parts (7.3) consists of an electrically non-conductive and thermally non-conductive material, wherein the readily electrically conductive and readily thermally conductive material has a thermal conductivity of at least 40 W/(m*K)Q and an electrical resistivity of at most 0.01 Ī©*cm and the electrically non-conductive and readily thermally conductive material has a thermal conductivity of at least 40 W/(m*K), preferably at least 60 W/(m*K) and even more preferably at least 90 W/(m*K), even more preferably at least 120 W/(m*K), even more preferably at least 150 W/(m*K) and even more preferably at least 180 W/(m*K).
- Plasma-torch insulating part according to one of the preceding claims, characterized in that the electrically non-conductive and readily thermally conductive material and/or the electrically non-conductive and thermally non-conductive material have an electrical resistivity of at least 106 Ī©*cm, preferably at least 1010 Ī©*cm, and/or a dielectric strength of at least 7 kV/mm, preferably at least 10 kV/mm.
- Plasma-torch insulating part according to one of the preceding claims, characterized in that the electrically non-conductive and readily thermally conductive material is a ceramic or plastic.
- Plasma-torch insulating part according to Claim 2, or a claim directly or indirectly dependent thereon, characterized in that the electrically non-conductive and thermally non-conductive material has a thermal conductivity of at most 1 W/(m*K).
- Plasma-torch insulating part according to one of the preceding claims, characterized in that the parts are connected to one another in a form-fitting, force-fitting or cohesive manner and/or by adhesive bonding or by a thermal method.
- Plasma-torch insulating part according to one of the preceding claims, characterized in that it has at least one opening.
- Plasma-torch insulating part according to one of the preceding claims, characterized in that it has at least one cutout or in that it has at least one groove (3.8) or that it is designed to conduct a gas, in particular a plasma, secondary or cooling gas.
- Assembly comprising a plasma-torch electrode (2) or a plasma-torch nozzle (4) or a plasma-torch nozzle cap (5) or a plasma-torch protective nozzle cap (8) or a plasma-torch protective nozzle cap holder (9) and a plasma-torch insulating part according to one of the preceding claims.
- Assembly according to Claim 11, characterized in that the plasma-torch insulating part is in direct contact with the plasma-torch electrode (2) and/or the plasma-torch nozzle (4) or the plasma-torch nozzle cap (5) or the plasma-torch protective nozzle cap (8) or the plasma-torch protective nozzle cap holder (9).
- Assembly comprising a plasma-torch protective nozzle cap holder (9) mount (11) and a plasma-torch protective nozzle cap holder (9), wherein the plasma-torch protective nozzle cap holder (9) mount (11) is formed as a plasma-torch insulating part according to one of Claims 1 to 10.
- Assembly comprising a plasma-torch electrode (2) and a plasma-torch nozzle (4), wherein a plasma-torch insulating part according to one of Claims 1 to 10, formed as a plasma gas conducting part (3), is arranged between the plasma-torch electrode (2) and the plasma-torch nozzle (4).
- Assembly comprising a plasma-torch nozzle (4) and a plasma-torch protective nozzle cap (8), wherein a plasma-torch insulating part according to one of Claims 1 to 10, formed as a secondary gas conducting part (7), is arranged between the plasma-torch nozzle (4) and the plasma-torch protective nozzle cap (8).
- Assembly comprising a plasma-torch nozzle cap (5) and a plasma-torch protective nozzle cap (8), wherein a plasma-torch insulating part according to one of Claims 1 to 10, formed as a secondary gas conducting part (7), is arranged between the plasma-torch nozzle cap (5) and the plasma-torch protective nozzle cap (8).
- Plasma torch, in particular a plasma cutting torch (1), comprising at least one plasma-torch insulating part according to one of Claims 1 to 10.
- Plasma torch according to Claim 17, characterized in that the plasma-torch insulating part or a part of the same consisting of an electrically non-conductive and readily thermally conductive material has at least one surface acting as a contact surface, which is in direct contact at least with a surface of a readily electrically conductive part of the plasma torch, wherein the readily electrically conductive component has an electrical resistivity of a maximum of 0.01 Ī©*cm.
- Plasma torch according to either of Claims 17 and 18, characterized in that the plasma-torch insulating part is a gas conducting part.
- Plasma torch according to one of Claims 17 to 19, characterized in that the plasma-torch insulating part has at least one surface which is in direct contact with a cooling medium during operation.
- Plasma torch, in particular a plasma cutting torch (1), comprising at least one assembly according to one of Claims 11 to 16.
- Method for working a workpiece with a thermal plasma or for plasma cutting or for plasma welding, characterized in that a plasma torch according to one of Claims 16 to 21 is used.
- Method according to Claim 22, characterized in that, in addition to the plasma jet, a laser beam of a laser is coupled into the plasma torch.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112015028734-4A BR112015028734B1 (en) | 2013-10-04 | 2014-07-04 | Insulating part of one or more parts for a plasma arc torch, in particular a plasma cutting torch and plasma torches and arrangements having the same |
CN201480027298.3A CN105230131B (en) | 2013-05-16 | 2014-07-04 | For the single-piece or multi-piece type insulating component of plasma torch and especially plasma torch and the component with the insulating component and plasma torch |
PCT/IB2014/001275 WO2014184656A2 (en) | 2013-05-16 | 2014-07-04 | Single or multi-part insulating component for a plasma torch, particularly a plasma cutting torch, and assemblies and plasma torches having the same |
MX2015015427A MX370068B (en) | 2013-05-16 | 2014-07-04 | Single or multi-part insulating component for a plasma torch, particularly a plasma cutting torch, and assemblies and plasma torches having the same. |
CA2910221A CA2910221C (en) | 2013-05-16 | 2014-07-04 | Single or multi-part insulating component for a plasma torch, particularly a plasma cutting torch, and assemblies and plasma torches having the same |
JP2016513457A JP6643979B2 (en) | 2013-10-04 | 2014-07-04 | Multi-part insulating part for plasma cutting torch, and assembly having the same and plasma cutting torch |
KR1020157035646A KR102054543B1 (en) | 2013-05-16 | 2014-07-04 | Single or multi-part insulating component for a plasma torch, particularly a plasma cutting torch, and assemblies and plasma torches having the same |
US14/890,615 US10485086B2 (en) | 2013-05-16 | 2014-07-04 | Single or multi-part insulating component for a plasma torch, particularly a plasma cutting torch, and assemblies and plasma torches having the same |
RU2015153934A RU2691729C2 (en) | 2013-05-16 | 2014-07-04 | Monolithic or composite insulating part for plasma torch, in particular torch for plasma cutting, as well as device and plasma torch with this device |
ZA2015/08161A ZA201508161B (en) | 2013-05-16 | 2015-11-04 | Single or multi-part insulating component for a plasma torch, particularly a plasma cutting torch, and assemblies and plasma torches having the same |
US16/550,845 US20200015345A1 (en) | 2013-05-16 | 2019-08-26 | Single or multi-part insulating component for a plasma torch, particularly a plasma cutting torch, and assemblies and plasma torches having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013008353 | 2013-05-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2804450A2 EP2804450A2 (en) | 2014-11-19 |
EP2804450A3 EP2804450A3 (en) | 2014-12-17 |
EP2804450B1 true EP2804450B1 (en) | 2022-05-04 |
Family
ID=49303695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13004796.2A Active EP2804450B1 (en) | 2013-05-16 | 2013-10-04 | Insulating member for a plasma arc torch consisting of several parts, torch and related assemblies equipped with the same and associated method |
Country Status (11)
Country | Link |
---|---|
US (2) | US10485086B2 (en) |
EP (1) | EP2804450B1 (en) |
KR (1) | KR102054543B1 (en) |
CN (1) | CN105230131B (en) |
CA (1) | CA2910221C (en) |
ES (1) | ES2923761T3 (en) |
MX (1) | MX370068B (en) |
PL (1) | PL2804450T3 (en) |
RU (1) | RU2691729C2 (en) |
WO (1) | WO2014184656A2 (en) |
ZA (1) | ZA201508161B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2942144B1 (en) * | 2014-05-07 | 2024-07-03 | Kjellberg-Stiftung | Plasma cutting torch assembly, as well as the use of wearing parts in a plasma cutting torch assembly |
JP6522968B2 (en) * | 2015-01-30 | 2019-05-29 | ę Ŗå¼ä¼ē¤¾å°ę¾č£½ä½ę | Insulation guide for plasma torch and replacement part unit |
JP6636249B2 (en) * | 2015-01-30 | 2020-01-29 | ę Ŗå¼ä¼ē¤¾å°ę¾č£½ä½ę | Replacement parts unit for plasma torch |
JP6522967B2 (en) * | 2015-01-30 | 2019-05-29 | ę Ŗå¼ä¼ē¤¾å°ę¾č£½ä½ę | Center pipe for plasma torch, contactor, electrode, and plasma torch |
DE102016219350A1 (en) * | 2016-10-06 | 2018-04-12 | Kjellberg-Stiftung | Nozzle cap, arc plasma torch with this nozzle cap and use of the arc plasma torch |
KR102686242B1 (en) | 2017-01-23 | 2024-07-17 | ģėģė ģ½ė¦¬ģ ģ£¼ģķģ¬ | Nitrogen oxide reduction apparatus and gas treating apparatus |
KR102646623B1 (en) * | 2017-01-23 | 2024-03-11 | ģėģė ģ½ė¦¬ģ ģ£¼ģķģ¬ | Plasma generating apparatus and gas treating apparatus |
CN110168143B (en) * | 2017-06-15 | 2022-03-08 | äæéå·„ēØęęÆäøåæęéč“£ä»»å ¬åø | Method and apparatus for electrolyte crust breaking by split plasma cutting |
JP7308849B2 (en) * | 2018-02-20 | 2023-07-14 | ćØćŖć³ć³ ć”ćć³ļ¼ć¦ć¼ćØć¹ļ¼ć¤ć³ć³ć¼ćć¬ć¤ććć | Single arc tandem low pressure coating gun utilizing a neutrode stack as a method of plasma arc control |
JP7573600B2 (en) * | 2019-09-12 | 2024-10-25 | ć·ć§ć«ććŖļ¼ć·ć„ćć£ććć„ć³ć° | Consumable member for an arc torch, a plasma torch or a plasma cutting torch, an arc torch, a plasma torch and a plasma cutting torch equipped with the consumable member, a method of plasma cutting, and a method of manufacturing an electrode for an arc torch, a plasma torch or a plasma cutting torch |
CN110524087B (en) * | 2019-09-26 | 2024-06-18 | å¾ę åŗ | Cutting torch and automatic ignition cutting gun |
US10978225B1 (en) * | 2020-03-12 | 2021-04-13 | Lawrence Livermore National Security, Llc | High-voltage insulator having multiple materials |
KR20230068789A (en) * | 2021-11-11 | 2023-05-18 | ģ¼ģ±ģģ¤ėģģ“ ģ£¼ģķģ¬ | Laser welding nozzle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994008748A1 (en) * | 1992-10-20 | 1994-04-28 | Kabushiki Kaisha Komatsu Seisakusho | Plasma torch |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4872053A (en) * | 1971-12-30 | 1973-09-28 | ||
EP0094984A1 (en) * | 1982-07-12 | 1983-11-30 | Manfred J. Wallner | Arc welding or cutting torch |
US4659899A (en) * | 1984-10-24 | 1987-04-21 | The Perkin-Elmer Corporation | Vacuum-compatible air-cooled plasma device |
DE69224183T2 (en) * | 1991-02-28 | 1998-06-18 | Komatsu Mfg Co Ltd | PLASMA CUTTING TORCH |
JP2640707B2 (en) * | 1991-02-28 | 1997-08-13 | ę Ŗå¼ä¼ē¤¾å°ę¾č£½ä½ę | Plasma torch for cutting |
JP3260018B2 (en) * | 1993-09-22 | 2002-02-25 | å°ę± é øē“ å·„ę„ę Ŗå¼ä¼ē¤¾ | Plasma cutting torch |
AT405472B (en) * | 1997-03-04 | 1999-08-25 | Bernhard Dr Platzer | METHOD AND DEVICE FOR PRODUCING A PLASMA |
US5906758A (en) * | 1997-09-30 | 1999-05-25 | The Esab Group, Inc. | Plasma arc torch |
RU2145536C1 (en) * | 1998-04-07 | 2000-02-20 | ŠŠŗŃŠøŠ¾Š½ŠµŃŠ½Š¾Šµ Š¾Š±ŃŠµŃŃŠ²Š¾ Š¾ŃŠŗŃŃŃŠ¾Š³Š¾ ŃŠøŠæŠ° "ŠŠ°ŃŃŠ½Š¾-ŠøŃŃŠ»ŠµŠ“Š¾Š²Š°ŃŠµŠ»ŃŃŠŗŠøŠ¹ ŃŠµŃ Š½Š¾Š»Š¾Š³ŠøŃŠµŃŠŗŠøŠ¹ ŠøŠ½ŃŃŠøŃŃŃ" (ŠŠ "ŠŠŠ¢Š-Š¢ŠŠ”ŠŠ ") | Plasmatron for air-plasma cutting |
FR2777214B1 (en) * | 1998-04-09 | 2000-05-19 | Soudure Autogene Francaise | TORCH AND METHOD OF ELECTRIC ARC CUTTING OR WELDING |
JP2000082774A (en) * | 1998-06-30 | 2000-03-21 | Sumitomo Electric Ind Ltd | Power module substrate and power module using the substrate |
JP2000052043A (en) * | 1998-08-05 | 2000-02-22 | Koike Sanso Kogyo Co Ltd | Plasma torch |
US6320156B1 (en) * | 1999-05-10 | 2001-11-20 | Komatsu Ltd. | Plasma processing device, plasma torch and method for replacing components of same |
JP3625040B2 (en) * | 1999-08-11 | 2005-03-02 | ę Ŗå¼ä¼ē¤¾å°ę¾č£½ä½ę | Plasma processing machine, plasma torch and method for attaching / detaching the parts |
EP1371905B1 (en) * | 2001-02-27 | 2010-12-01 | Yantai Longyuan Power Technology Co. Ltd. | Plasma igniter with assembled cathode |
WO2002091809A2 (en) * | 2001-05-03 | 2002-11-14 | Apit Corp. S.A. | Method and device for generating an activated gas curtain for surface treatment |
RU2295206C9 (en) * | 2001-10-05 | 2007-10-27 | Š¢ŠµŠŗŠ½Š° ŠŠ»Š°Š·Š¼Š° Š”ŠøŃŃŠµŠ¼Š·,ŠŠ½Šŗ.ŠŠ°Š½Š°Š“Š° | Multi-coil induction plasma burner with solid-bodied power source |
JP3652350B2 (en) * | 2002-12-17 | 2005-05-25 | ć³ććē£ę©ę Ŗå¼ä¼ē¤¾ | Plasma processing method |
EP2384097B1 (en) * | 2005-04-19 | 2018-06-27 | Hypertherm, Inc | Plasma arc torch providing angular shield flow injection |
JP5245405B2 (en) * | 2005-04-28 | 2013-07-24 | ę„ē«éå±ę Ŗå¼ä¼ē¤¾ | Silicon nitride substrate, manufacturing method thereof, silicon nitride wiring substrate using the same, and semiconductor module |
US8101882B2 (en) * | 2005-09-07 | 2012-01-24 | Hypertherm, Inc. | Plasma torch electrode with improved insert configurations |
FR2914369B1 (en) * | 2007-03-30 | 2014-02-07 | Snecma | ELECTROLYTIC IGNITER FOR ENGINE-ROCKET IN MONERGOL |
JP5413218B2 (en) * | 2010-01-27 | 2014-02-12 | ļ¼Ŗļ½ļ½ ćØć³ćøćć¢ćŖć³ć°ę Ŗå¼ä¼ē¤¾ | Hollow electrode arc / laser coaxial welding method |
US9605376B2 (en) * | 2011-06-28 | 2017-03-28 | Mtix Ltd. | Treating materials with combined energy sources |
AU2012371647B2 (en) * | 2012-02-28 | 2015-05-07 | Sulzer Metco (Us), Inc. | Extended cascade plasma gun |
-
2013
- 2013-10-04 ES ES13004796T patent/ES2923761T3/en active Active
- 2013-10-04 PL PL13004796.2T patent/PL2804450T3/en unknown
- 2013-10-04 EP EP13004796.2A patent/EP2804450B1/en active Active
-
2014
- 2014-07-04 RU RU2015153934A patent/RU2691729C2/en active
- 2014-07-04 CA CA2910221A patent/CA2910221C/en active Active
- 2014-07-04 CN CN201480027298.3A patent/CN105230131B/en active Active
- 2014-07-04 WO PCT/IB2014/001275 patent/WO2014184656A2/en active Application Filing
- 2014-07-04 KR KR1020157035646A patent/KR102054543B1/en active IP Right Grant
- 2014-07-04 US US14/890,615 patent/US10485086B2/en active Active
- 2014-07-04 MX MX2015015427A patent/MX370068B/en active IP Right Grant
-
2015
- 2015-11-04 ZA ZA2015/08161A patent/ZA201508161B/en unknown
-
2019
- 2019-08-26 US US16/550,845 patent/US20200015345A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994008748A1 (en) * | 1992-10-20 | 1994-04-28 | Kabushiki Kaisha Komatsu Seisakusho | Plasma torch |
Also Published As
Publication number | Publication date |
---|---|
EP2804450A2 (en) | 2014-11-19 |
US20160120014A1 (en) | 2016-04-28 |
KR102054543B1 (en) | 2020-01-22 |
RU2015153934A3 (en) | 2018-03-01 |
CA2910221C (en) | 2021-11-09 |
WO2014184656A3 (en) | 2015-01-22 |
ZA201508161B (en) | 2017-05-31 |
PL2804450T3 (en) | 2022-12-19 |
WO2014184656A2 (en) | 2014-11-20 |
CN105230131B (en) | 2018-10-09 |
CA2910221A1 (en) | 2014-11-20 |
US20200015345A1 (en) | 2020-01-09 |
CN105230131A (en) | 2016-01-06 |
RU2691729C2 (en) | 2019-06-18 |
US10485086B2 (en) | 2019-11-19 |
ES2923761T3 (en) | 2022-09-30 |
EP2804450A3 (en) | 2014-12-17 |
MX370068B (en) | 2019-11-29 |
MX2015015427A (en) | 2016-08-04 |
KR20160053847A (en) | 2016-05-13 |
RU2015153934A (en) | 2017-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2804450B1 (en) | Insulating member for a plasma arc torch consisting of several parts, torch and related assemblies equipped with the same and associated method | |
DE2025368C3 (en) | Electric arc torch | |
EP2465334B1 (en) | Protective nozzle cap, protective nozzle cap retainer, and arc plasma torch having said protective nozzle cap and/or said protective nozzle cap retainer | |
DE102009016932B4 (en) | Cooling tubes and electrode holder for an arc plasma torch and arrangements of the same and arc plasma torch with the same | |
DE102008018530B4 (en) | A nozzle for a liquid-cooled plasma torch, arrangement of the same and a nozzle cap and liquid-cooled plasma torch with such an arrangement | |
DE102011088433A1 (en) | Process and plasma arc torch system for marking and cutting workpieces with the same set of auxiliaries | |
EP2210455B1 (en) | Electrode for a plasma burner | |
EP3684544B1 (en) | Nozzle for a plasma arc torch head, laser cutting head and plasma laser cutting head | |
EP3639631B1 (en) | Electrodes for gas- and liquid-cooled plasma torches, systems comprising these electrodes and a cooling tube, and plasma torch with these electrodes | |
EP2855071B1 (en) | Torch for tungsten inert gas welding | |
EP2667689B1 (en) | Electrode for plasma cutting torch and use of same | |
DE102019100581A1 (en) | Gas nozzle for outflow of a protective gas flow and torch neck with a gas nozzle | |
EP2457681B1 (en) | Torch for tungsten inert gas welding and electrode to be used in such torch | |
DE69901731T2 (en) | WEARING PART FOR ARC BURNERS MADE FROM COPPER ALLOY | |
DE102017121722B4 (en) | Burner body for thermal joining, burner with burner body and joining device | |
EP4029356A2 (en) | Wear part for an arc torch and plasma torch, arc torch and plasma torch comprising same, method for plasma cutting and method for producing an electrode for an arc torch and plasma torch | |
DE102009031857A1 (en) | Nozzle for plasma torch head of liquid-cooled plasma torch, is provided with nozzle bore for outlet of plasma gas jet at nozzle tip, section, outer surface of which is substantially cylindrical, and section | |
WO2024068182A1 (en) | Component such as a wearing part for an arc torch, in particular a plasma burner or plasma cutting torch, arc torch comprising same, and method of plasma cutting | |
WO2022028648A1 (en) | Electrode for a plasma cutting torch, assembly having said electrode, plasma cutting torch having said electrode, and method for plasma cutting | |
DE102018125772A1 (en) | Connecting part for a processing head for thermal material processing, in particular for a plasma torch head, laser head, plasma laser head as well as a wearing part and a wearing part holder and a method for joining them | |
DE10327911B4 (en) | Plasma MIG / MAG welding torch | |
DE3136799C2 (en) | Plasma arc furnace | |
DE2033072C (en) | Arc plasma torch with a cooled cathode and cooled anode | |
DE1003880B (en) | Welding torch for arc shielding gas welding with ceramic gas nozzle | |
DE9218876U1 (en) | Plasma spray gun |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131004 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H05H 1/34 20060101AFI20141110BHEP |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150616 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KJELLBERG-STIFTUNG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200117 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210622 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KJELLBERG-STIFTUNG |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20211119 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1490570 Country of ref document: AT Kind code of ref document: T Effective date: 20220515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013016131 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2923761 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220905 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220804 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220805 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013016131 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 |
|
26N | No opposition filed |
Effective date: 20230207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221004 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221004 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1490570 Country of ref document: AT Kind code of ref document: T Effective date: 20221004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240926 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240926 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240923 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241023 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502013016131 Country of ref document: DE Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220504 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241029 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241023 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241022 Year of fee payment: 12 Ref country code: ES Payment date: 20241118 Year of fee payment: 12 |