EP2791309B1 - Improvements relating to fabric treatment compositions - Google Patents
Improvements relating to fabric treatment compositions Download PDFInfo
- Publication number
- EP2791309B1 EP2791309B1 EP12805999.5A EP12805999A EP2791309B1 EP 2791309 B1 EP2791309 B1 EP 2791309B1 EP 12805999 A EP12805999 A EP 12805999A EP 2791309 B1 EP2791309 B1 EP 2791309B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- phase change
- encapsulated
- composition according
- benefit agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 239000000203 mixture Substances 0.000 title claims description 115
- 239000004744 fabric Substances 0.000 title claims description 32
- 239000002304 perfume Substances 0.000 claims description 56
- 239000000463 material Substances 0.000 claims description 51
- 239000003795 chemical substances by application Substances 0.000 claims description 48
- 230000008901 benefit Effects 0.000 claims description 43
- 239000003599 detergent Substances 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 25
- 230000008859 change Effects 0.000 claims description 21
- 229920000728 polyester Polymers 0.000 claims description 20
- 150000002430 hydrocarbons Chemical class 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 16
- 229930195733 hydrocarbon Natural products 0.000 claims description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims description 11
- 239000002736 nonionic surfactant Substances 0.000 claims description 11
- 230000007704 transition Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 239000003945 anionic surfactant Substances 0.000 claims description 9
- 239000012782 phase change material Substances 0.000 claims description 9
- 239000002480 mineral oil Substances 0.000 claims description 8
- 235000010446 mineral oil Nutrition 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 235000019271 petrolatum Nutrition 0.000 claims description 7
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical group CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 claims description 6
- 239000000341 volatile oil Substances 0.000 claims description 6
- 238000000222 aromatherapy Methods 0.000 claims description 4
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 claims description 3
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 claims description 3
- 229940041616 menthol Drugs 0.000 claims description 3
- 239000000975 dye Substances 0.000 description 41
- -1 gums Polymers 0.000 description 38
- 229920000642 polymer Polymers 0.000 description 30
- 239000012071 phase Substances 0.000 description 29
- 239000007844 bleaching agent Substances 0.000 description 23
- 239000002775 capsule Substances 0.000 description 19
- 150000004676 glycans Chemical class 0.000 description 19
- VRVDFJOCCWSFLI-UHFFFAOYSA-K trisodium 3-[[4-[(6-anilino-1-hydroxy-3-sulfonatonaphthalen-2-yl)diazenyl]-5-methoxy-2-methylphenyl]diazenyl]naphthalene-1,5-disulfonate Chemical compound [Na+].[Na+].[Na+].COc1cc(N=Nc2cc(c3cccc(c3c2)S([O-])(=O)=O)S([O-])(=O)=O)c(C)cc1N=Nc1c(O)c2ccc(Nc3ccccc3)cc2cc1S([O-])(=O)=O VRVDFJOCCWSFLI-UHFFFAOYSA-K 0.000 description 18
- 229920001282 polysaccharide Polymers 0.000 description 16
- 239000005017 polysaccharide Substances 0.000 description 16
- 230000008021 deposition Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000010457 zeolite Substances 0.000 description 14
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 13
- 239000004615 ingredient Substances 0.000 description 13
- 239000007787 solid Substances 0.000 description 13
- 239000003921 oil Substances 0.000 description 12
- 235000019198 oils Nutrition 0.000 description 12
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 229910021536 Zeolite Inorganic materials 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 239000011162 core material Substances 0.000 description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 description 10
- 239000005020 polyethylene terephthalate Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 238000005406 washing Methods 0.000 description 10
- MHOFGBJTSNWTDT-UHFFFAOYSA-M 2-[n-ethyl-4-[(6-methoxy-3-methyl-1,3-benzothiazol-3-ium-2-yl)diazenyl]anilino]ethanol;methyl sulfate Chemical compound COS([O-])(=O)=O.C1=CC(N(CCO)CC)=CC=C1N=NC1=[N+](C)C2=CC=C(OC)C=C2S1 MHOFGBJTSNWTDT-UHFFFAOYSA-M 0.000 description 9
- 229920000877 Melamine resin Polymers 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 9
- 239000003205 fragrance Substances 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 9
- 108091005804 Peptidases Proteins 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 239000001913 cellulose Substances 0.000 description 8
- 229920002678 cellulose Polymers 0.000 description 8
- 230000002209 hydrophobic effect Effects 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 7
- 102000035195 Peptidases Human genes 0.000 description 7
- 229930006000 Sucrose Natural products 0.000 description 7
- 229910000323 aluminium silicate Inorganic materials 0.000 description 7
- 239000000982 direct dye Substances 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000000077 insect repellent Substances 0.000 description 7
- 239000000344 soap Substances 0.000 description 7
- 239000005720 sucrose Substances 0.000 description 7
- 229920000742 Cotton Polymers 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000004115 Sodium Silicate Substances 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 239000000980 acid dye Substances 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 239000000981 basic dye Substances 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005538 encapsulation Methods 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 6
- LMXFTMYMHGYJEI-UHFFFAOYSA-N p-menthane-3,8-diol Chemical compound CC1CCC(C(C)(C)O)C(O)C1 LMXFTMYMHGYJEI-UHFFFAOYSA-N 0.000 description 6
- 229930006948 p-menthane-3,8-diol Natural products 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 6
- 229910052911 sodium silicate Inorganic materials 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- 229920001807 Urea-formaldehyde Polymers 0.000 description 5
- 229920003180 amino resin Polymers 0.000 description 5
- QLHULAHOXSSASE-UHFFFAOYSA-N butan-2-yl 2-(2-hydroxyethyl)piperidine-1-carboxylate Chemical compound CCC(C)OC(=O)N1CCCCC1CCO QLHULAHOXSSASE-UHFFFAOYSA-N 0.000 description 5
- 239000003093 cationic surfactant Substances 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 5
- 229920000058 polyacrylate Polymers 0.000 description 5
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 4
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 4
- IYTXKIXETAELAV-UHFFFAOYSA-N Nonan-3-one Chemical compound CCCCCCC(=O)CC IYTXKIXETAELAV-UHFFFAOYSA-N 0.000 description 4
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 229960005233 cineole Drugs 0.000 description 4
- 238000005354 coacervation Methods 0.000 description 4
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 4
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 4
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- AOGQPLXWSUTHQB-UHFFFAOYSA-N hexyl acetate Chemical compound CCCCCCOC(C)=O AOGQPLXWSUTHQB-UHFFFAOYSA-N 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 4
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 4
- 125000001624 naphthyl group Chemical group 0.000 description 4
- VKCYHJWLYTUGCC-UHFFFAOYSA-N nonan-2-one Chemical compound CCCCCCCC(C)=O VKCYHJWLYTUGCC-UHFFFAOYSA-N 0.000 description 4
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 4
- 150000004965 peroxy acids Chemical class 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000005871 repellent Substances 0.000 description 4
- 230000002940 repellent Effects 0.000 description 4
- CZCBTSFUTPZVKJ-UHFFFAOYSA-N rose oxide Chemical compound CC1CCOC(C=C(C)C)C1 CZCBTSFUTPZVKJ-UHFFFAOYSA-N 0.000 description 4
- ZMQAAUBTXCXRIC-UHFFFAOYSA-N safrole Chemical compound C=CCC1=CC=C2OCOC2=C1 ZMQAAUBTXCXRIC-UHFFFAOYSA-N 0.000 description 4
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 229940045872 sodium percarbonate Drugs 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- NZGWDASTMWDZIW-MRVPVSSYSA-N (+)-pulegone Chemical compound C[C@@H]1CCC(=C(C)C)C(=O)C1 NZGWDASTMWDZIW-MRVPVSSYSA-N 0.000 description 3
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 3
- NMRPBPVERJPACX-UHFFFAOYSA-N (3S)-octan-3-ol Natural products CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 3
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 3
- CHLICZRVGGXEOD-UHFFFAOYSA-N 1-Methoxy-4-methylbenzene Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 3
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 3
- OIGWAXDAPKFNCQ-UHFFFAOYSA-N 4-isopropylbenzyl alcohol Chemical compound CC(C)C1=CC=C(CO)C=C1 OIGWAXDAPKFNCQ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 3
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 3
- 235000016257 Mentha pulegium Nutrition 0.000 description 3
- 244000246386 Mentha pulegium Species 0.000 description 3
- ZYEMGPIYFIJGTP-UHFFFAOYSA-N O-methyleugenol Chemical compound COC1=CC=C(CC=C)C=C1OC ZYEMGPIYFIJGTP-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 229920000388 Polyphosphate Polymers 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 3
- 150000004056 anthraquinones Chemical class 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000000987 azo dye Substances 0.000 description 3
- 238000004061 bleaching Methods 0.000 description 3
- 239000001045 blue dye Substances 0.000 description 3
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- ZDKZHVNKFOXMND-UHFFFAOYSA-N cis-Nepetalactone Natural products O=C1OC=C(C)C2C1C(C)CC2 ZDKZHVNKFOXMND-UHFFFAOYSA-N 0.000 description 3
- 150000001860 citric acid derivatives Chemical class 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- WTEVQBCEXWBHNA-JXMROGBWSA-N geranial Chemical compound CC(C)=CCC\C(C)=C\C=O WTEVQBCEXWBHNA-JXMROGBWSA-N 0.000 description 3
- 229920000578 graft copolymer Polymers 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- NFLGAXVYCFJBMK-UHFFFAOYSA-N isomenthone Natural products CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 description 3
- 229930007744 linalool Natural products 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000001205 polyphosphate Substances 0.000 description 3
- 235000011176 polyphosphates Nutrition 0.000 description 3
- 150000004804 polysaccharides Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 3
- 239000000985 reactive dye Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- AXMCIYLNKNGNOT-UHFFFAOYSA-N sodium;3-[[4-[(4-dimethylazaniumylidenecyclohexa-2,5-dien-1-ylidene)-[4-[ethyl-[(3-sulfophenyl)methyl]amino]phenyl]methyl]-n-ethylanilino]methyl]benzenesulfonate Chemical compound [Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](C)C)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S(O)(=O)=O)=C1 AXMCIYLNKNGNOT-UHFFFAOYSA-N 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- ULDHMXUKGWMISQ-VIFPVBQESA-N (+)-carvone Chemical compound CC(=C)[C@H]1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-VIFPVBQESA-N 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 2
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 2
- KZYAYVSWIPZDKL-UHFFFAOYSA-N 1,4-diamino-2,3-dichloroanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(N)=C(Cl)C(Cl)=C2N KZYAYVSWIPZDKL-UHFFFAOYSA-N 0.000 description 2
- QUMXDOLUJCHOAY-UHFFFAOYSA-N 1-Phenylethyl acetate Chemical compound CC(=O)OC(C)C1=CC=CC=C1 QUMXDOLUJCHOAY-UHFFFAOYSA-N 0.000 description 2
- ZNQIAQXHADXXQI-UHFFFAOYSA-N 1-anilino-4-hydroxyanthracene-9,10-dione Chemical compound C1=2C(=O)C3=CC=CC=C3C(=O)C=2C(O)=CC=C1NC1=CC=CC=C1 ZNQIAQXHADXXQI-UHFFFAOYSA-N 0.000 description 2
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- QWBBPBRQALCEIZ-UHFFFAOYSA-N 2,3-dimethylphenol Chemical compound CC1=CC=CC(O)=C1C QWBBPBRQALCEIZ-UHFFFAOYSA-N 0.000 description 2
- HIKRJHFHGKZKRI-UHFFFAOYSA-N 2,4,6-trimethylbenzaldehyde Chemical compound CC1=CC(C)=C(C=O)C(C)=C1 HIKRJHFHGKZKRI-UHFFFAOYSA-N 0.000 description 2
- GWQOOADXMVQEFT-UHFFFAOYSA-N 2,5-Dimethylthiophene Chemical compound CC1=CC=C(C)S1 GWQOOADXMVQEFT-UHFFFAOYSA-N 0.000 description 2
- NKTOLZVEWDHZMU-UHFFFAOYSA-N 2,5-xylenol Chemical compound CC1=CC=C(C)C(O)=C1 NKTOLZVEWDHZMU-UHFFFAOYSA-N 0.000 description 2
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 2
- RCSBILYQLVXLJG-UHFFFAOYSA-N 2-Propenyl hexanoate Chemical compound CCCCCC(=O)OCC=C RCSBILYQLVXLJG-UHFFFAOYSA-N 0.000 description 2
- CPLJMYOQYRCCBY-UHFFFAOYSA-N 2-Propylfuran Chemical compound CCCC1=CC=CO1 CPLJMYOQYRCCBY-UHFFFAOYSA-N 0.000 description 2
- QGLVWTFUWVTDEQ-UHFFFAOYSA-N 2-chloro-3-methoxyphenol Chemical compound COC1=CC=CC(O)=C1Cl QGLVWTFUWVTDEQ-UHFFFAOYSA-N 0.000 description 2
- CULIYQPRUGMRRT-UHFFFAOYSA-N 2-chloro-n-[2-[(2-cyano-4-nitrophenyl)diazenyl]-5-(diethylamino)phenyl]acetamide Chemical compound ClCC(=O)NC1=CC(N(CC)CC)=CC=C1N=NC1=CC=C([N+]([O-])=O)C=C1C#N CULIYQPRUGMRRT-UHFFFAOYSA-N 0.000 description 2
- CRBJBYGJVIBWIY-UHFFFAOYSA-N 2-isopropylphenol Chemical compound CC(C)C1=CC=CC=C1O CRBJBYGJVIBWIY-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- RIZBLVRXRWHLFA-UHFFFAOYSA-N 3,5-dimethoxytoluene Chemical compound COC1=CC(C)=CC(OC)=C1 RIZBLVRXRWHLFA-UHFFFAOYSA-N 0.000 description 2
- TUAMRELNJMMDMT-UHFFFAOYSA-N 3,5-xylenol Chemical compound CC1=CC(C)=CC(O)=C1 TUAMRELNJMMDMT-UHFFFAOYSA-N 0.000 description 2
- HMNKTRSOROOSPP-UHFFFAOYSA-N 3-Ethylphenol Chemical compound CCC1=CC=CC(O)=C1 HMNKTRSOROOSPP-UHFFFAOYSA-N 0.000 description 2
- RHLVCLIPMVJYKS-UHFFFAOYSA-N 3-octanone Chemical compound CCCCCC(=O)CC RHLVCLIPMVJYKS-UHFFFAOYSA-N 0.000 description 2
- VLJSLTNSFSOYQR-UHFFFAOYSA-N 3-propan-2-ylphenol Chemical compound CC(C)C1=CC=CC(O)=C1 VLJSLTNSFSOYQR-UHFFFAOYSA-N 0.000 description 2
- GNKZMNRKLCTJAY-UHFFFAOYSA-N 4'-Methylacetophenone Chemical compound CC(=O)C1=CC=C(C)C=C1 GNKZMNRKLCTJAY-UHFFFAOYSA-N 0.000 description 2
- YYWZKGZIIKPPJZ-UHFFFAOYSA-N 4,6,6-trimethylbicyclo[3.1.1]heptan-4-ol Chemical compound C1C2C(C)(C)C1CCC2(O)C YYWZKGZIIKPPJZ-UHFFFAOYSA-N 0.000 description 2
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 2
- YQUQWHNMBPIWGK-UHFFFAOYSA-N 4-isopropylphenol Chemical compound CC(C)C1=CC=C(O)C=C1 YQUQWHNMBPIWGK-UHFFFAOYSA-N 0.000 description 2
- NTPLXRHDUXRPNE-UHFFFAOYSA-N 4-methoxyacetophenone Chemical compound COC1=CC=C(C(C)=O)C=C1 NTPLXRHDUXRPNE-UHFFFAOYSA-N 0.000 description 2
- MUDSDYNRBDKLGK-UHFFFAOYSA-N 4-methylquinoline Chemical compound C1=CC=C2C(C)=CC=NC2=C1 MUDSDYNRBDKLGK-UHFFFAOYSA-N 0.000 description 2
- WRYLYDPHFGVWKC-UHFFFAOYSA-N 4-terpineol Chemical compound CC(C)C1(O)CCC(C)=CC1 WRYLYDPHFGVWKC-UHFFFAOYSA-N 0.000 description 2
- OALYTRUKMRCXNH-UHFFFAOYSA-N 5-pentyloxolan-2-one Chemical compound CCCCCC1CCC(=O)O1 OALYTRUKMRCXNH-UHFFFAOYSA-N 0.000 description 2
- LUYISICIYVKBTA-UHFFFAOYSA-N 6-methylquinoline Chemical compound N1=CC=CC2=CC(C)=CC=C21 LUYISICIYVKBTA-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- AOMZHDJXSYHPKS-DROYEMJCSA-L Amido Black 10B Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC2=CC(S([O-])(=O)=O)=C(\N=N\C=3C=CC=CC=3)C(O)=C2C(N)=C1\N=N\C1=CC=C(N(=O)=O)C=C1 AOMZHDJXSYHPKS-DROYEMJCSA-L 0.000 description 2
- 240000007087 Apium graveolens Species 0.000 description 2
- HVJKZICIMIWFCP-UHFFFAOYSA-N Benzyl 3-methylbutanoate Chemical compound CC(C)CC(=O)OCC1=CC=CC=C1 HVJKZICIMIWFCP-UHFFFAOYSA-N 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N Benzylformate Chemical compound O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241000723346 Cinnamomum camphora Species 0.000 description 2
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 2
- WTEVQBCEXWBHNA-UHFFFAOYSA-N Citral Natural products CC(C)=CCCC(C)=CC=O WTEVQBCEXWBHNA-UHFFFAOYSA-N 0.000 description 2
- 235000005979 Citrus limon Nutrition 0.000 description 2
- 244000131522 Citrus pyriformis Species 0.000 description 2
- 244000107602 Corymbia citriodora Species 0.000 description 2
- KRCZYMFUWVJCLI-UHFFFAOYSA-N Dihydrocarveol Chemical compound CC1CCC(C(C)=C)CC1O KRCZYMFUWVJCLI-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- FHUODBDRWMIBQP-UHFFFAOYSA-N Ethyl p-anisate Chemical compound CCOC(=O)C1=CC=C(OC)C=C1 FHUODBDRWMIBQP-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 235000004722 Eucalyptus citriodora Nutrition 0.000 description 2
- 244000004281 Eucalyptus maculata Species 0.000 description 2
- JUWUWIGZUVEFQB-UHFFFAOYSA-N Fenchyl acetate Chemical compound C1CC2C(C)(C)C(OC(=O)C)C1(C)C2 JUWUWIGZUVEFQB-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XXIKYCPRDXIMQM-UHFFFAOYSA-N Isopentenyl acetate Chemical compound CC(C)=CCOC(C)=O XXIKYCPRDXIMQM-UHFFFAOYSA-N 0.000 description 2
- 244000165082 Lavanda vera Species 0.000 description 2
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 2
- 229920000161 Locust bean gum Polymers 0.000 description 2
- 235000004357 Mentha x piperita Nutrition 0.000 description 2
- FRLZQXRXIKQFNS-UHFFFAOYSA-N Methyl 2-octynoate Chemical compound CCCCCC#CC(=O)OC FRLZQXRXIKQFNS-UHFFFAOYSA-N 0.000 description 2
- MMOXZBCLCQITDF-UHFFFAOYSA-N N,N-diethyl-m-toluamide Chemical compound CCN(CC)C(=O)C1=CC=CC(C)=C1 MMOXZBCLCQITDF-UHFFFAOYSA-N 0.000 description 2
- 240000009215 Nepeta cataria Species 0.000 description 2
- 235000010679 Nepeta cataria Nutrition 0.000 description 2
- GLZPCOQZEFWAFX-JXMROGBWSA-N Nerol Natural products CC(C)=CCC\C(C)=C\CO GLZPCOQZEFWAFX-JXMROGBWSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 108010056079 Subtilisins Proteins 0.000 description 2
- 102000005158 Subtilisins Human genes 0.000 description 2
- 241000736851 Tagetes Species 0.000 description 2
- 240000004460 Tanacetum coccineum Species 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- GTZCVFVGUGFEME-UHFFFAOYSA-N aconitic acid Chemical compound OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 150000008051 alkyl sulfates Chemical group 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 239000002199 base oil Substances 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- DULCUDSUACXJJC-UHFFFAOYSA-N benzeneacetic acid ethyl ester Natural products CCOC(=O)CC1=CC=CC=C1 DULCUDSUACXJJC-UHFFFAOYSA-N 0.000 description 2
- DMSMPAJRVJJAGA-UHFFFAOYSA-N benzo[d]isothiazol-3-one Chemical compound C1=CC=C2C(=O)NSC2=C1 DMSMPAJRVJJAGA-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- AKGGYBADQZYZPD-UHFFFAOYSA-N benzylacetone Chemical compound CC(=O)CCC1=CC=CC=C1 AKGGYBADQZYZPD-UHFFFAOYSA-N 0.000 description 2
- 229930008380 camphor Natural products 0.000 description 2
- 229960000846 camphor Drugs 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- KBEBGUQPQBELIU-UHFFFAOYSA-N cinnamic acid ethyl ester Natural products CCOC(=O)C=CC1=CC=CC=C1 KBEBGUQPQBELIU-UHFFFAOYSA-N 0.000 description 2
- 239000010632 citronella oil Substances 0.000 description 2
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- WTWBUQJHJGUZCY-UHFFFAOYSA-N cuminaldehyde Chemical compound CC(C)C1=CC=C(C=O)C=C1 WTWBUQJHJGUZCY-UHFFFAOYSA-N 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- PFRGXCVKLLPLIP-UHFFFAOYSA-N diallyl disulfide Chemical compound C=CCSSCC=C PFRGXCVKLLPLIP-UHFFFAOYSA-N 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- QCWPZYSLMIXIHM-UHFFFAOYSA-L disodium 4-amino-5-hydroxy-3-[(3-nitrophenyl)diazenyl]-6-phenyldiazenylnaphthalene-2,7-disulfonate Chemical compound [Na+].[Na+].Nc1c(N=Nc2cccc(c2)[N+]([O-])=O)c(cc2cc(c(N=Nc3ccccc3)c(O)c12)S([O-])(=O)=O)S([O-])(=O)=O QCWPZYSLMIXIHM-UHFFFAOYSA-L 0.000 description 2
- NJPXFJXCALXJCX-UHFFFAOYSA-L disodium 7-anilino-3-[[4-[(2,4-dimethyl-6-sulfonatophenyl)diazenyl]-2,5-dimethylphenyl]diazenyl]-4-hydroxynaphthalene-2-sulfonate Chemical compound [Na+].[Na+].Cc1cc(C)c(N=Nc2cc(C)c(cc2C)N=Nc2c(O)c3ccc(Nc4ccccc4)cc3cc2S([O-])(=O)=O)c(c1)S([O-])(=O)=O NJPXFJXCALXJCX-UHFFFAOYSA-L 0.000 description 2
- LARMRMCFZNGNNX-UHFFFAOYSA-L disodium 7-anilino-3-[[4-[(2,4-dimethyl-6-sulfonatophenyl)diazenyl]-2-methoxy-5-methylphenyl]diazenyl]-4-hydroxynaphthalene-2-sulfonate Chemical compound [Na+].[Na+].COc1cc(N=Nc2c(C)cc(C)cc2S([O-])(=O)=O)c(C)cc1N=Nc1c(O)c2ccc(Nc3ccccc3)cc2cc1S([O-])(=O)=O LARMRMCFZNGNNX-UHFFFAOYSA-L 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- FNODWEPAWIJGPM-UHFFFAOYSA-N ethyl 2-methoxybenzoate Chemical compound CCOC(=O)C1=CC=CC=C1OC FNODWEPAWIJGPM-UHFFFAOYSA-N 0.000 description 2
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 2
- 229940093476 ethylene glycol Drugs 0.000 description 2
- 229940071087 ethylenediamine disuccinate Drugs 0.000 description 2
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 2
- 239000010642 eucalyptus oil Substances 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000021588 free fatty acids Nutrition 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 238000004900 laundering Methods 0.000 description 2
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 2
- 239000000711 locust bean gum Substances 0.000 description 2
- 235000010420 locust bean gum Nutrition 0.000 description 2
- NYGZLYXAPMMJTE-UHFFFAOYSA-M metanil yellow Chemical group [Na+].[O-]S(=O)(=O)C1=CC=CC(N=NC=2C=CC(NC=3C=CC=CC=3)=CC=2)=C1 NYGZLYXAPMMJTE-UHFFFAOYSA-M 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- GVOWHGSUZUUUDR-UHFFFAOYSA-N methyl N-methylanthranilate Chemical compound CNC1=CC=CC=C1C(=O)OC GVOWHGSUZUUUDR-UHFFFAOYSA-N 0.000 description 2
- VAMXMNNIEUEQDV-UHFFFAOYSA-N methyl anthranilate Chemical compound COC(=O)C1=CC=CC=C1N VAMXMNNIEUEQDV-UHFFFAOYSA-N 0.000 description 2
- 229940095102 methyl benzoate Drugs 0.000 description 2
- 229960001047 methyl salicylate Drugs 0.000 description 2
- DMMDCPMHDXAIRV-UHFFFAOYSA-N n-[5-[bis(2-methoxyethyl)amino]-2-[(2-cyano-4-nitrophenyl)diazenyl]phenyl]acetamide Chemical compound CC(=O)NC1=CC(N(CCOC)CCOC)=CC=C1N=NC1=CC=C([N+]([O-])=O)C=C1C#N DMMDCPMHDXAIRV-UHFFFAOYSA-N 0.000 description 2
- 239000002018 neem oil Substances 0.000 description 2
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-K pentetate(3-) Chemical compound OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O QPCDCPDFJACHGM-UHFFFAOYSA-K 0.000 description 2
- TWSRVQVEYJNFKQ-UHFFFAOYSA-N pentyl propanoate Chemical compound CCCCCOC(=O)CC TWSRVQVEYJNFKQ-UHFFFAOYSA-N 0.000 description 2
- MDHYEMXUFSJLGV-UHFFFAOYSA-N phenethyl acetate Chemical compound CC(=O)OCCC1=CC=CC=C1 MDHYEMXUFSJLGV-UHFFFAOYSA-N 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 229930007790 rose oxide Natural products 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- QSKQNALVHFTOQX-UHFFFAOYSA-M sodium nonanoyloxybenzenesulfonate Chemical compound [Na+].CCCCCCCCC(=O)OC1=CC=CC=C1S([O-])(=O)=O QSKQNALVHFTOQX-UHFFFAOYSA-M 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- FJBHGWADYLMEJG-UHFFFAOYSA-M sodium;3-[[4-[[4-(diethylamino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]cyclohexa-2,5-dien-1-ylidene]methyl]-n-ethylanilino]methyl]benzenesulfonate Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C=CC(=CC=1)N(CC)CC=1C=C(C=CC=1)S([O-])(=O)=O)=C(C=C1)C=CC1=[N+](CC)CC1=CC=CC(S([O-])(=O)=O)=C1 FJBHGWADYLMEJG-UHFFFAOYSA-M 0.000 description 2
- RBYJOOWYRXEJAM-UHFFFAOYSA-M sodium;5,9-dianilino-7-phenylbenzo[a]phenazin-7-ium-4,10-disulfonate Chemical compound [Na+].C=1C=CC=CC=1[N+]1=C2C=C(NC=3C=CC=CC=3)C(S(=O)(=O)[O-])=CC2=NC(C2=CC=CC(=C22)S([O-])(=O)=O)=C1C=C2NC1=CC=CC=C1 RBYJOOWYRXEJAM-UHFFFAOYSA-M 0.000 description 2
- LJFWQNJLLOFIJK-UHFFFAOYSA-N solvent violet 13 Chemical compound C1=CC(C)=CC=C1NC1=CC=C(O)C2=C1C(=O)C1=CC=CC=C1C2=O LJFWQNJLLOFIJK-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- 239000002888 zwitterionic surfactant Substances 0.000 description 2
- YHQGMYUVUMAZJR-UHFFFAOYSA-N α-terpinene Chemical compound CC(C)C1=CC=C(C)CC1 YHQGMYUVUMAZJR-UHFFFAOYSA-N 0.000 description 2
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 description 1
- ULDHMXUKGWMISQ-SECBINFHSA-N (-)-carvone Chemical compound CC(=C)[C@@H]1CC=C(C)C(=O)C1 ULDHMXUKGWMISQ-SECBINFHSA-N 0.000 description 1
- 229930006727 (-)-endo-fenchol Natural products 0.000 description 1
- NFLGAXVYCFJBMK-IUCAKERBSA-N (-)-isomenthone Chemical compound CC(C)[C@@H]1CC[C@H](C)CC1=O NFLGAXVYCFJBMK-IUCAKERBSA-N 0.000 description 1
- NFLGAXVYCFJBMK-BDAKNGLRSA-N (-)-menthone Chemical compound CC(C)[C@@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-BDAKNGLRSA-N 0.000 description 1
- 239000001563 (1,5,5-trimethyl-6-bicyclo[2.2.1]heptanyl) acetate Substances 0.000 description 1
- SCMDRBZEIUMBBQ-UHFFFAOYSA-N (1e)-1-[(8-amino-3,7-dimethyl-10-phenylphenazin-10-ium-2-yl)hydrazinylidene]naphthalen-2-one;chloride Chemical compound [Cl-].C=12C=C(N)C(C)=CC2=NC2=CC(C)=C(N\N=C\3C4=CC=CC=C4C=CC/3=O)C=C2[N+]=1C1=CC=CC=C1 SCMDRBZEIUMBBQ-UHFFFAOYSA-N 0.000 description 1
- YYWZKGZIIKPPJZ-WEDXCCLWSA-N (1r,4s,5s)-4,6,6-trimethylbicyclo[3.1.1]heptan-4-ol Chemical compound C1[C@@]2([H])C(C)(C)[C@]1([H])CC[C@@]2(O)C YYWZKGZIIKPPJZ-WEDXCCLWSA-N 0.000 description 1
- BRRVXFOKWJKTGG-YUMQZZPRSA-N (1s,5r)-3,3,5-trimethylcyclohexan-1-ol Chemical compound C[C@H]1C[C@H](O)CC(C)(C)C1 BRRVXFOKWJKTGG-YUMQZZPRSA-N 0.000 description 1
- 229940098795 (3z)- 3-hexenyl acetate Drugs 0.000 description 1
- 239000001303 (5-methyl-2-prop-1-en-2-ylcyclohexyl) acetate Substances 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- OOCCDEMITAIZTP-QPJJXVBHSA-N (E)-cinnamyl alcohol Chemical compound OC\C=C\C1=CC=CC=C1 OOCCDEMITAIZTP-QPJJXVBHSA-N 0.000 description 1
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 description 1
- UFLHIIWVXFIJGU-ARJAWSKDSA-N (Z)-hex-3-en-1-ol Chemical compound CC\C=C/CCO UFLHIIWVXFIJGU-ARJAWSKDSA-N 0.000 description 1
- JHEPBQHNVNUAFL-AATRIKPKSA-N (e)-hex-1-en-1-ol Chemical compound CCCC\C=C\O JHEPBQHNVNUAFL-AATRIKPKSA-N 0.000 description 1
- JLIDRDJNLAWIKT-UHFFFAOYSA-N 1,2-dimethyl-3h-benzo[e]indole Chemical compound C1=CC=CC2=C(C(=C(C)N3)C)C3=CC=C21 JLIDRDJNLAWIKT-UHFFFAOYSA-N 0.000 description 1
- RFFOTVCVTJUTAD-AOOOYVTPSA-N 1,4-cineole Chemical compound CC(C)[C@]12CC[C@](C)(CC1)O2 RFFOTVCVTJUTAD-AOOOYVTPSA-N 0.000 description 1
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 1
- FAHUKNBUIVOJJR-UHFFFAOYSA-N 1-(4-fluorophenyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine Chemical compound C1=CC(F)=CC=C1C1C2=CC=CN2CCN1 FAHUKNBUIVOJJR-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- RESTWAHJFMZUIZ-UHFFFAOYSA-N 1-ethyl-4-nitrobenzene Chemical compound CCC1=CC=C([N+]([O-])=O)C=C1 RESTWAHJFMZUIZ-UHFFFAOYSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- WNJSKZBEWNVKGU-UHFFFAOYSA-N 2,2-dimethoxyethylbenzene Chemical compound COC(OC)CC1=CC=CC=C1 WNJSKZBEWNVKGU-UHFFFAOYSA-N 0.000 description 1
- GISVICWQYMUPJF-UHFFFAOYSA-N 2,4-Dimethylbenzaldehyde Chemical compound CC1=CC=C(C=O)C(C)=C1 GISVICWQYMUPJF-UHFFFAOYSA-N 0.000 description 1
- MZZRKEIUNOYYDF-UHFFFAOYSA-N 2,4-dimethylcyclohex-3-ene-1-carbaldehyde Chemical compound CC1C=C(C)CCC1C=O MZZRKEIUNOYYDF-UHFFFAOYSA-N 0.000 description 1
- KUFFULVDNCHOFZ-UHFFFAOYSA-N 2,4-xylenol Chemical compound CC1=CC=C(O)C(C)=C1 KUFFULVDNCHOFZ-UHFFFAOYSA-N 0.000 description 1
- SMUVABOERCFKRW-UHFFFAOYSA-N 2,5-Dimethylbenzaldehyde Chemical compound CC1=CC=C(C)C(C=O)=C1 SMUVABOERCFKRW-UHFFFAOYSA-N 0.000 description 1
- HGDVHRITTGWMJK-UHFFFAOYSA-N 2,6-dimethylheptan-2-ol Chemical compound CC(C)CCCC(C)(C)O HGDVHRITTGWMJK-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- 239000001278 2-(5-ethenyl-5-methyloxolan-2-yl)propan-2-ol Substances 0.000 description 1
- LVVZBNKWTVZSIU-UHFFFAOYSA-N 2-(carboxymethoxy)propanedioic acid Chemical class OC(=O)COC(C(O)=O)C(O)=O LVVZBNKWTVZSIU-UHFFFAOYSA-N 0.000 description 1
- WOFPPJOZXUTRAU-UHFFFAOYSA-N 2-Ethyl-1-hexanol Natural products CCCCC(O)CCC WOFPPJOZXUTRAU-UHFFFAOYSA-N 0.000 description 1
- HQLKZWRSOHTERR-UHFFFAOYSA-N 2-Ethylbutyl acetate Chemical compound CCC(CC)COC(C)=O HQLKZWRSOHTERR-UHFFFAOYSA-N 0.000 description 1
- IXQGCWUGDFDQMF-UHFFFAOYSA-N 2-Ethylphenol Chemical compound CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 1
- XMWINMVFKPHMJB-UHFFFAOYSA-N 2-Methyl-1,3-cyclohexadiene Chemical compound CC1=CCCC=C1 XMWINMVFKPHMJB-UHFFFAOYSA-N 0.000 description 1
- FLUWAIIVLCVEKF-UHFFFAOYSA-N 2-Methyl-1-phenyl-2-propanyl acetate Chemical compound CC(=O)OC(C)(C)CC1=CC=CC=C1 FLUWAIIVLCVEKF-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical group OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- RXGUIWHIADMCFC-UHFFFAOYSA-N 2-Methylpropyl 2-methylpropionate Chemical compound CC(C)COC(=O)C(C)C RXGUIWHIADMCFC-UHFFFAOYSA-N 0.000 description 1
- RNDNSYIPLPAXAZ-UHFFFAOYSA-N 2-Phenyl-1-propanol Chemical compound OCC(C)C1=CC=CC=C1 RNDNSYIPLPAXAZ-UHFFFAOYSA-N 0.000 description 1
- IPFJRKCJQQMQIT-UHFFFAOYSA-N 2-[[2-(2-hydroxyethoxy)-2-oxoethyl]amino]acetic acid Chemical class OCCOC(=O)CNCC(O)=O IPFJRKCJQQMQIT-UHFFFAOYSA-N 0.000 description 1
- ZKZHWAJZNZJAKV-UHFFFAOYSA-N 2-bromo-3-methylquinoline Chemical compound C1=CC=C2N=C(Br)C(C)=CC2=C1 ZKZHWAJZNZJAKV-UHFFFAOYSA-N 0.000 description 1
- SFTRWCBAYKQWCS-UHFFFAOYSA-N 2-butanoyloxyethyl butanoate Chemical compound CCCC(=O)OCCOC(=O)CCC SFTRWCBAYKQWCS-UHFFFAOYSA-N 0.000 description 1
- DVCHJFSLGUNEQZ-UHFFFAOYSA-M 2-ethenyl-2,6-dimethylhept-5-enoate Chemical compound CC(C)=CCCC(C)(C=C)C([O-])=O DVCHJFSLGUNEQZ-UHFFFAOYSA-M 0.000 description 1
- NTWBHJYRDKBGBR-UHFFFAOYSA-N 2-ethylbenzaldehyde Chemical compound CCC1=CC=CC=C1C=O NTWBHJYRDKBGBR-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- LGYNIFWIKSEESD-UHFFFAOYSA-N 2-ethylhexanal Chemical compound CCCCC(CC)C=O LGYNIFWIKSEESD-UHFFFAOYSA-N 0.000 description 1
- BSMGLVDZZMBWQB-UHFFFAOYSA-N 2-methyl-1-phenylpropan-1-one Chemical compound CC(C)C(=O)C1=CC=CC=C1 BSMGLVDZZMBWQB-UHFFFAOYSA-N 0.000 description 1
- RIWRBSMFKVOJMN-UHFFFAOYSA-N 2-methyl-1-phenylpropan-2-ol Chemical compound CC(C)(O)CC1=CC=CC=C1 RIWRBSMFKVOJMN-UHFFFAOYSA-N 0.000 description 1
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- DTFKRVXLBCAIOZ-UHFFFAOYSA-N 2-methylanisole Chemical compound COC1=CC=CC=C1C DTFKRVXLBCAIOZ-UHFFFAOYSA-N 0.000 description 1
- XDOWKOALJBOBBL-SNAWJCMRSA-N 2-methylpropyl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OCC(C)C XDOWKOALJBOBBL-SNAWJCMRSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical group OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BRRVXFOKWJKTGG-UHFFFAOYSA-N 3,3,5-trimethylcyclohexanol Chemical compound CC1CC(O)CC(C)(C)C1 BRRVXFOKWJKTGG-UHFFFAOYSA-N 0.000 description 1
- UWOFGIXNNCPENM-UHFFFAOYSA-N 3,3-difluoropentan-2-one Chemical compound CCC(F)(F)C(C)=O UWOFGIXNNCPENM-UHFFFAOYSA-N 0.000 description 1
- ZHDQGHCZWWDMRS-UHFFFAOYSA-N 3,5-dimethylcyclohex-3-ene-1-carbaldehyde Chemical compound CC1CC(C=O)CC(C)=C1 ZHDQGHCZWWDMRS-UHFFFAOYSA-N 0.000 description 1
- POELEEGOWIJNBI-UHFFFAOYSA-N 3-[2-[[4-(diethylamino)phenyl]diazenyl]-6-ethoxy-1,3-benzothiazol-3-ium-3-yl]propanamide;chloride Chemical compound [Cl-].S1C2=CC(OCC)=CC=C2[N+](CCC(N)=O)=C1N=NC1=CC=C(N(CC)CC)C=C1 POELEEGOWIJNBI-UHFFFAOYSA-N 0.000 description 1
- VZOOHWGPNLPIHR-UHFFFAOYSA-N 3-[2-[[4-[bis(2-chloroethyl)amino]phenyl]diazenyl]-6-methoxy-1,3-benzothiazol-3-ium-3-yl]propanamide;chloride Chemical compound [Cl-].S1C2=CC(OC)=CC=C2[N+](CCC(N)=O)=C1N=NC1=CC=C(N(CCCl)CCCl)C=C1 VZOOHWGPNLPIHR-UHFFFAOYSA-N 0.000 description 1
- JBNHKYQZNSPSOR-UHFFFAOYSA-N 4-(carboxymethylperoxy)-4-oxobutanoic acid Chemical class OC(=O)CCC(=O)OOCC(O)=O JBNHKYQZNSPSOR-UHFFFAOYSA-N 0.000 description 1
- DTYGTEGDVPAKDA-UHFFFAOYSA-N 4-Methyl-1-phenyl-2-pentanone Chemical compound CC(C)CC(=O)CC1=CC=CC=C1 DTYGTEGDVPAKDA-UHFFFAOYSA-N 0.000 description 1
- UNDXPKDBFOOQFC-UHFFFAOYSA-N 4-[2-nitro-4-(trifluoromethyl)phenyl]morpholine Chemical compound [O-][N+](=O)C1=CC(C(F)(F)F)=CC=C1N1CCOCC1 UNDXPKDBFOOQFC-UHFFFAOYSA-N 0.000 description 1
- YXVSKJDFNJFXAJ-UHFFFAOYSA-N 4-cyclohexyl-2-methylbutan-2-ol Chemical compound CC(C)(O)CCC1=CC=CC=C1 YXVSKJDFNJFXAJ-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- CPIVYSAVIPTCCX-UHFFFAOYSA-N 4-methylpentan-2-yl acetate Chemical compound CC(C)CC(C)OC(C)=O CPIVYSAVIPTCCX-UHFFFAOYSA-N 0.000 description 1
- OBKXEAXTFZPCHS-UHFFFAOYSA-N 4-phenylbutyric acid Chemical compound OC(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- QYYMDNHUJFIDDQ-UHFFFAOYSA-N 5-chloro-2-methyl-1,2-thiazol-3-one;2-methyl-1,2-thiazol-3-one Chemical compound CN1SC=CC1=O.CN1SC(Cl)=CC1=O QYYMDNHUJFIDDQ-UHFFFAOYSA-N 0.000 description 1
- 229940100484 5-chloro-2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- UZJGVXSQDRSSHU-UHFFFAOYSA-N 6-(1,3-dioxoisoindol-2-yl)hexaneperoxoic acid Chemical group C1=CC=C2C(=O)N(CCCCCC(=O)OO)C(=O)C2=C1 UZJGVXSQDRSSHU-UHFFFAOYSA-N 0.000 description 1
- XOKMRXSMOHCNIX-UHFFFAOYSA-N 6-methyl-1,2,3,4-tetrahydroquinoline Chemical compound N1CCCC2=CC(C)=CC=C21 XOKMRXSMOHCNIX-UHFFFAOYSA-N 0.000 description 1
- KDYVCOSVYOSHOL-UHFFFAOYSA-N 7-methylquinoline Chemical compound C1=CC=NC2=CC(C)=CC=C21 KDYVCOSVYOSHOL-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 1
- 240000008075 Achillea alpina Species 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 235000002764 Apium graveolens Nutrition 0.000 description 1
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 1
- 235000010591 Appio Nutrition 0.000 description 1
- 240000005343 Azadirachta indica Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000195940 Bryophyta Species 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 1
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 1
- 241001184274 Callicarpa americana Species 0.000 description 1
- 235000017595 Callicarpa japonica Nutrition 0.000 description 1
- 240000003690 Callicarpa japonica Species 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000544656 Cedrus atlantica Species 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- 240000005250 Chrysanthemum indicum Species 0.000 description 1
- 235000004310 Cinnamomum zeylanicum Nutrition 0.000 description 1
- 235000019499 Citrus oil Nutrition 0.000 description 1
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical class [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 1
- 241000931332 Cymbopogon Species 0.000 description 1
- FEPOUSPSESUQPD-UHFFFAOYSA-N Cymbopogon Natural products C1CC2(C)C(C)C(=O)CCC2C2(C)C1C1(C)CCC3(C)CCC(C)C(C)C3C1(C)CC2 FEPOUSPSESUQPD-UHFFFAOYSA-N 0.000 description 1
- 244000166783 Cymbopogon flexuosus Species 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- XHXUANMFYXWVNG-UHFFFAOYSA-N D-menthyl acetate Natural products CC(C)C1CCC(C)CC1OC(C)=O XHXUANMFYXWVNG-UHFFFAOYSA-N 0.000 description 1
- HXQPUEQDBSPXTE-UHFFFAOYSA-N Diisobutylcarbinol Chemical compound CC(C)CC(O)CC(C)C HXQPUEQDBSPXTE-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- TWLLPUMZVVGILS-UHFFFAOYSA-N Ethyl 2-aminobenzoate Chemical compound CCOC(=O)C1=CC=CC=C1N TWLLPUMZVVGILS-UHFFFAOYSA-N 0.000 description 1
- JAGZUIGGHGTFHO-UHFFFAOYSA-N Ethyl 3-phenylpropanoate Chemical compound CCOC(=O)CCC1=CC=CC=C1 JAGZUIGGHGTFHO-UHFFFAOYSA-N 0.000 description 1
- KBEBGUQPQBELIU-CMDGGOBGSA-N Ethyl cinnamate Chemical compound CCOC(=O)\C=C\C1=CC=CC=C1 KBEBGUQPQBELIU-CMDGGOBGSA-N 0.000 description 1
- GYCKQBWUSACYIF-UHFFFAOYSA-N Ethyl salicylate Chemical compound CCOC(=O)C1=CC=CC=C1O GYCKQBWUSACYIF-UHFFFAOYSA-N 0.000 description 1
- 244000166124 Eucalyptus globulus Species 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 241000851181 Eutetranychus orientalis Species 0.000 description 1
- IAIHUHQCLTYTSF-MRTMQBJTSA-N Fenchyl alcohol Chemical compound C1C[C@]2(C)[C@H](O)C(C)(C)[C@H]1C2 IAIHUHQCLTYTSF-MRTMQBJTSA-N 0.000 description 1
- 235000004204 Foeniculum vulgare Nutrition 0.000 description 1
- 240000006927 Foeniculum vulgare Species 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 241000134874 Geraniales Species 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- 241000208152 Geranium Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 235000008418 Hedeoma Nutrition 0.000 description 1
- 241000877151 Helopeltis theivora Species 0.000 description 1
- XEAMDSXSXYAICO-UHFFFAOYSA-N Heptyl formate Chemical compound CCCCCCCOC=O XEAMDSXSXYAICO-UHFFFAOYSA-N 0.000 description 1
- OUGPMNMLWKSBRI-UHFFFAOYSA-N Hexyl formate Chemical compound CCCCCCOC=O OUGPMNMLWKSBRI-UHFFFAOYSA-N 0.000 description 1
- 240000004649 Ipomoea lobata Species 0.000 description 1
- BJIOGJUNALELMI-ONEGZZNKSA-N Isoeugenol Natural products COC1=CC(\C=C\C)=CC=C1O BJIOGJUNALELMI-ONEGZZNKSA-N 0.000 description 1
- FEXQDZTYJVXMOS-UHFFFAOYSA-N Isopropyl benzoate Chemical compound CC(C)OC(=O)C1=CC=CC=C1 FEXQDZTYJVXMOS-UHFFFAOYSA-N 0.000 description 1
- HLHIVJRLODSUCI-ADEWGFFLSA-N Isopulegol acetate Chemical compound C[C@@H]1CC[C@@H](C(C)=C)[C@H](OC(C)=O)C1 HLHIVJRLODSUCI-ADEWGFFLSA-N 0.000 description 1
- LSJMDWFAADPNAX-UHFFFAOYSA-N Isovaleriansaeure-propylester Natural products CCCOC(=O)CC(C)C LSJMDWFAADPNAX-UHFFFAOYSA-N 0.000 description 1
- XMLSXPIVAXONDL-PLNGDYQASA-N Jasmone Chemical compound CC\C=C/CC1=C(C)CCC1=O XMLSXPIVAXONDL-PLNGDYQASA-N 0.000 description 1
- 240000006550 Lantana camara Species 0.000 description 1
- 235000010701 Lavanda vera Nutrition 0.000 description 1
- YDQJXVYGARVLRT-UHFFFAOYSA-N Lepidine Natural products C=1C=CC(CC=2NC=CN=2)=CC=1OC=1C(OC)=CC=CC=1CC1=NC=CN1 YDQJXVYGARVLRT-UHFFFAOYSA-N 0.000 description 1
- BRHDDEIRQPDPMG-UHFFFAOYSA-N Linalyl oxide Chemical compound CC(C)(O)C1CCC(C)(C=C)O1 BRHDDEIRQPDPMG-UHFFFAOYSA-N 0.000 description 1
- JBVVONYMRFACPQ-UHFFFAOYSA-N Linalylformate Natural products CC(=C)CCCC(C)(OC=O)C=C JBVVONYMRFACPQ-UHFFFAOYSA-N 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- WSTYNZDAOAEEKG-UHFFFAOYSA-N Mayol Natural products CC1=C(O)C(=O)C=C2C(CCC3(C4CC(C(CC4(CCC33C)C)=O)C)C)(C)C3=CC=C21 WSTYNZDAOAEEKG-UHFFFAOYSA-N 0.000 description 1
- 241000366182 Melaleuca alternifolia Species 0.000 description 1
- 235000013500 Melia azadirachta Nutrition 0.000 description 1
- 244000024873 Mentha crispa Species 0.000 description 1
- 235000014749 Mentha crispa Nutrition 0.000 description 1
- 241001479543 Mentha x piperita Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- ICBJCVRQDSQPGI-UHFFFAOYSA-N Methyl hexyl ether Chemical compound CCCCCCOC ICBJCVRQDSQPGI-UHFFFAOYSA-N 0.000 description 1
- 101100412856 Mus musculus Rhod gene Proteins 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- 244000270834 Myristica fragrans Species 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 241001529733 Nepeta Species 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- TYBCSQFBSWACAA-UHFFFAOYSA-N Nonan-4-one Chemical compound CCCCCC(=O)CCC TYBCSQFBSWACAA-UHFFFAOYSA-N 0.000 description 1
- 235000010676 Ocimum basilicum Nutrition 0.000 description 1
- 240000007926 Ocimum gratissimum Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000011203 Origanum Nutrition 0.000 description 1
- 240000000783 Origanum majorana Species 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- WFRXSOIFNFJAFL-UHFFFAOYSA-N P1(OCCCCO1)=O.C(CN)N Chemical compound P1(OCCCCO1)=O.C(CN)N WFRXSOIFNFJAFL-UHFFFAOYSA-N 0.000 description 1
- 235000017927 Pelargonium graveolens Nutrition 0.000 description 1
- 244000270673 Pelargonium graveolens Species 0.000 description 1
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- UIKJRDSCEYGECG-UHFFFAOYSA-N Phenylmethyl 2-methylpropanoate Chemical compound CC(C)C(=O)OCC1=CC=CC=C1 UIKJRDSCEYGECG-UHFFFAOYSA-N 0.000 description 1
- LQKRYVGRPXFFAV-UHFFFAOYSA-N Phenylmethylglycidic ester Chemical compound CCOC(=O)C1OC1(C)C1=CC=CC=C1 LQKRYVGRPXFFAV-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ROJKPKOYARNFNB-UHFFFAOYSA-N Propyl pentanoate Chemical compound CCCCC(=O)OCCC ROJKPKOYARNFNB-UHFFFAOYSA-N 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- NZGWDASTMWDZIW-UHFFFAOYSA-N Pulegone Natural products CC1CCC(=C(C)C)C(=O)C1 NZGWDASTMWDZIW-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 240000000528 Ricinus communis Species 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 244000178231 Rosmarinus officinalis Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 241000201932 Solanum villosum Species 0.000 description 1
- 235000013156 Solanum villosum Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 235000012308 Tagetes Nutrition 0.000 description 1
- 240000004584 Tamarindus indica Species 0.000 description 1
- 235000004298 Tamarindus indica Nutrition 0.000 description 1
- 241000250966 Tanacetum cinerariifolium Species 0.000 description 1
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 1
- 241001454293 Tetranychus urticae Species 0.000 description 1
- 240000002657 Thymus vulgaris Species 0.000 description 1
- 235000007303 Thymus vulgaris Nutrition 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 235000013832 Valeriana officinalis Nutrition 0.000 description 1
- 244000126014 Valeriana officinalis Species 0.000 description 1
- 229920002000 Xyloglucan Polymers 0.000 description 1
- ROVGZAWFACYCSP-MQBLHHJJSA-N [2-methyl-4-oxo-3-[(2z)-penta-2,4-dienyl]cyclopent-2-en-1-yl] (1r,3r)-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate Chemical compound CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)OC1C(C)=C(C\C=C/C=C)C(=O)C1 ROVGZAWFACYCSP-MQBLHHJJSA-N 0.000 description 1
- IURGIPVDZKDLIX-UHFFFAOYSA-M [7-(diethylamino)phenoxazin-3-ylidene]-diethylazanium;chloride Chemical compound [Cl-].C1=CC(=[N+](CC)CC)C=C2OC3=CC(N(CC)CC)=CC=C3N=C21 IURGIPVDZKDLIX-UHFFFAOYSA-M 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- BEKFRUBWDIJKOB-UHFFFAOYSA-N acetic acid;2,2,2-tri(cyclodecen-1-yl)acetic acid Chemical compound CC(O)=O.C=1CCCCCCCCC=1C(C=1CCCCCCCCC=1)(C(=O)O)C1=CCCCCCCCC1 BEKFRUBWDIJKOB-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- OOCCDEMITAIZTP-UHFFFAOYSA-N allylic benzylic alcohol Natural products OCC=CC1=CC=CC=C1 OOCCDEMITAIZTP-UHFFFAOYSA-N 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- OGCGGWYLHSJRFY-UHFFFAOYSA-N alpha-campholenic aldehyde Natural products CC1=CCC(CC=O)C1(C)C OGCGGWYLHSJRFY-UHFFFAOYSA-N 0.000 description 1
- GUUHFMWKWLOQMM-NTCAYCPXSA-N alpha-hexylcinnamaldehyde Chemical compound CCCCCC\C(C=O)=C/C1=CC=CC=C1 GUUHFMWKWLOQMM-NTCAYCPXSA-N 0.000 description 1
- GUUHFMWKWLOQMM-UHFFFAOYSA-N alpha-n-hexylcinnamic aldehyde Natural products CCCCCCC(C=O)=CC1=CC=CC=C1 GUUHFMWKWLOQMM-UHFFFAOYSA-N 0.000 description 1
- 229940088601 alpha-terpineol Drugs 0.000 description 1
- USMNOWBWPHYOEA-UHFFFAOYSA-N alpha-thujone Natural products CC1C(=O)CC2(C(C)C)C1C2 USMNOWBWPHYOEA-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940072049 amyl acetate Drugs 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 1
- 230000001153 anti-wrinkle effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000001387 apium graveolens Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000010619 basil oil Substances 0.000 description 1
- 229940018006 basil oil Drugs 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- FFSAXUULYPJSKH-UHFFFAOYSA-N butyrophenone Chemical compound CCCC(=O)C1=CC=CC=C1 FFSAXUULYPJSKH-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- RECUKUPTGUEGMW-UHFFFAOYSA-N carvacrol Chemical compound CC(C)C1=CC=C(C)C(O)=C1 RECUKUPTGUEGMW-UHFFFAOYSA-N 0.000 description 1
- HHTWOMMSBMNRKP-UHFFFAOYSA-N carvacrol Natural products CC(=C)C1=CC=C(C)C(O)=C1 HHTWOMMSBMNRKP-UHFFFAOYSA-N 0.000 description 1
- 235000007746 carvacrol Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000010627 cedar oil Substances 0.000 description 1
- DHNRXBZYEKSXIM-UHFFFAOYSA-N chloromethylisothiazolinone Chemical compound CN1SC(Cl)=CC1=O DHNRXBZYEKSXIM-UHFFFAOYSA-N 0.000 description 1
- 229930007050 cineol Natural products 0.000 description 1
- RFFOTVCVTJUTAD-UHFFFAOYSA-N cineole Natural products C1CC2(C)CCC1(C(C)C)O2 RFFOTVCVTJUTAD-UHFFFAOYSA-N 0.000 description 1
- CCRCUPLGCSFEDV-UHFFFAOYSA-N cinnamic acid methyl ester Natural products COC(=O)C=CC1=CC=CC=C1 CCRCUPLGCSFEDV-UHFFFAOYSA-N 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- NPFVOOAXDOBMCE-PLNGDYQASA-N cis-3-Hexenyl acetate Natural products CC\C=C/CCOC(C)=O NPFVOOAXDOBMCE-PLNGDYQASA-N 0.000 description 1
- RRGOKSYVAZDNKR-ARJAWSKDSA-M cis-3-hexenylacetate Chemical compound CC\C=C/CCCC([O-])=O RRGOKSYVAZDNKR-ARJAWSKDSA-M 0.000 description 1
- IVLCENBZDYVJPA-ARJAWSKDSA-N cis-Jasmone Natural products C\C=C/CC1=C(C)CCC1=O IVLCENBZDYVJPA-ARJAWSKDSA-N 0.000 description 1
- BJIOGJUNALELMI-ARJAWSKDSA-N cis-isoeugenol Chemical compound COC1=CC(\C=C/C)=CC=C1O BJIOGJUNALELMI-ARJAWSKDSA-N 0.000 description 1
- NNWHUJCUHAELCL-PLNGDYQASA-N cis-isomethyleugenol Chemical compound COC1=CC=C(\C=C/C)C=C1OC NNWHUJCUHAELCL-PLNGDYQASA-N 0.000 description 1
- ZDKZHVNKFOXMND-NBEYISGCSA-N cis-trans-nepetalactone Chemical compound O=C1OC=C(C)[C@@H]2[C@H]1[C@@H](C)CC2 ZDKZHVNKFOXMND-NBEYISGCSA-N 0.000 description 1
- 229940043350 citral Drugs 0.000 description 1
- 235000000484 citronellol Nutrition 0.000 description 1
- 239000010500 citrus oil Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- HJZLEGIHUQOJBA-UHFFFAOYSA-N cyclohexane propionic acid Chemical compound OC(=O)CCC1CCCCC1 HJZLEGIHUQOJBA-UHFFFAOYSA-N 0.000 description 1
- 239000001941 cymbopogon citratus dc and cymbopogon flexuosus oil Substances 0.000 description 1
- DWUPJMHAPOQKGJ-UHFFFAOYSA-N delta1-nonen-3-ol Chemical compound CCCCCCC(O)C=C DWUPJMHAPOQKGJ-UHFFFAOYSA-N 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 1
- PEUGOJXLBSIJQS-UHFFFAOYSA-N diethyl octanedioate Chemical compound CCOC(=O)CCCCCCC(=O)OCC PEUGOJXLBSIJQS-UHFFFAOYSA-N 0.000 description 1
- 229960001673 diethyltoluamide Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229930007024 dihydrocarveol Natural products 0.000 description 1
- 229930008394 dihydromyrcenol Natural products 0.000 description 1
- XSNQECSCDATQEL-UHFFFAOYSA-N dihydromyrcenol Chemical compound C=CC(C)CCCC(C)(C)O XSNQECSCDATQEL-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000000986 disperse dye Substances 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- OZZYKXXGCOLLLO-TWTPFVCWSA-N ethyl (2e,4e)-hexa-2,4-dienoate Chemical compound CCOC(=O)\C=C\C=C\C OZZYKXXGCOLLLO-TWTPFVCWSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 229940093858 ethyl acetoacetate Drugs 0.000 description 1
- JJOYCHKVKWDMEA-UHFFFAOYSA-N ethyl cyclohexanecarboxylate Chemical compound CCOC(=O)C1CCCCC1 JJOYCHKVKWDMEA-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940005667 ethyl salicylate Drugs 0.000 description 1
- 229940044949 eucalyptus oil Drugs 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- IAIHUHQCLTYTSF-UHFFFAOYSA-N fenchyl alcohol Natural products C1CC2(C)C(O)C(C)(C)C1C2 IAIHUHQCLTYTSF-UHFFFAOYSA-N 0.000 description 1
- 239000010643 fennel seed oil Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- OALYTRUKMRCXNH-QMMMGPOBSA-N gamma-Nonalactone Natural products CCCCC[C@H]1CCC(=O)O1 OALYTRUKMRCXNH-QMMMGPOBSA-N 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 239000010647 garlic oil Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 239000010648 geranium oil Substances 0.000 description 1
- 235000019717 geranium oil Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- YDZCHDQXPLJVBG-UHFFFAOYSA-N hex-1-enyl acetate Chemical compound CCCCC=COC(C)=O YDZCHDQXPLJVBG-UHFFFAOYSA-N 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- WPFVBOQKRVRMJB-UHFFFAOYSA-N hydroxycitronellal Chemical compound O=CCC(C)CCCC(C)(C)O WPFVBOQKRVRMJB-UHFFFAOYSA-N 0.000 description 1
- 229950011440 icaridin Drugs 0.000 description 1
- SNWQUNCRDLUDEX-UHFFFAOYSA-N inden-1-one Chemical compound C1=CC=C2C(=O)C=CC2=C1 SNWQUNCRDLUDEX-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- XAOGXQMKWQFZEM-UHFFFAOYSA-N isoamyl propanoate Chemical compound CCC(=O)OCCC(C)C XAOGXQMKWQFZEM-UHFFFAOYSA-N 0.000 description 1
- RGFNRWTWDWVHDD-UHFFFAOYSA-N isobutyl butyrate Chemical compound CCCC(=O)OCC(C)C RGFNRWTWDWVHDD-UHFFFAOYSA-N 0.000 description 1
- WYXXLXHHWYNKJF-UHFFFAOYSA-N isocarvacrol Natural products CC(C)C1=CC=C(O)C(C)=C1 WYXXLXHHWYNKJF-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- VDBNYAPERZTOOF-UHFFFAOYSA-N isoquinolin-1(2H)-one Chemical compound C1=CC=C2C(=O)NC=CC2=C1 VDBNYAPERZTOOF-UHFFFAOYSA-N 0.000 description 1
- 239000000171 lavandula angustifolia l. flower oil Substances 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Natural products CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 230000002366 lipolytic effect Effects 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229930007503 menthone Natural products 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- WVWZECQNFWFVFW-UHFFFAOYSA-N methyl 2-methylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C WVWZECQNFWFVFW-UHFFFAOYSA-N 0.000 description 1
- QSSJZLPUHJDYKF-UHFFFAOYSA-N methyl 4-methylbenzoate Chemical compound COC(=O)C1=CC=C(C)C=C1 QSSJZLPUHJDYKF-UHFFFAOYSA-N 0.000 description 1
- 229940102398 methyl anthranilate Drugs 0.000 description 1
- CCRCUPLGCSFEDV-BQYQJAHWSA-N methyl trans-cinnamate Chemical compound COC(=O)\C=C\C1=CC=CC=C1 CCRCUPLGCSFEDV-BQYQJAHWSA-N 0.000 description 1
- 229940116837 methyleugenol Drugs 0.000 description 1
- PRHTXAOWJQTLBO-UHFFFAOYSA-N methyleugenol Natural products COC1=CC=C(C(C)=C)C=C1OC PRHTXAOWJQTLBO-UHFFFAOYSA-N 0.000 description 1
- JPTOCTSNXXKSSN-UHFFFAOYSA-N methylheptenone Chemical compound CCCC=CC(=O)CC JPTOCTSNXXKSSN-UHFFFAOYSA-N 0.000 description 1
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical compound CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000011929 mousse Nutrition 0.000 description 1
- WMKBLOXVQBXSQM-UHFFFAOYSA-N n'-(2-aminoethyl)ethane-1,2-diamine;2-hydroxy-1,3,2$l^{5}-dioxaphosphocane 2-oxide Chemical compound NCCNCCN.OP1(=O)OCCCCCO1 WMKBLOXVQBXSQM-UHFFFAOYSA-N 0.000 description 1
- ZOCHHNOQQHDWHG-UHFFFAOYSA-N n-hexan-3-ol Natural products CCCC(O)CC ZOCHHNOQQHDWHG-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- WSGCRAOTEDLMFQ-UHFFFAOYSA-N nonan-5-one Chemical compound CCCCC(=O)CCCC WSGCRAOTEDLMFQ-UHFFFAOYSA-N 0.000 description 1
- 239000004669 nonionic softener Substances 0.000 description 1
- 239000001702 nutmeg Substances 0.000 description 1
- YWXLSHOWXZUMSR-UHFFFAOYSA-N octan-4-one Chemical compound CCCCC(=O)CCC YWXLSHOWXZUMSR-UHFFFAOYSA-N 0.000 description 1
- YSIMAPNUZAVQER-UHFFFAOYSA-N octanenitrile Chemical compound CCCCCCCC#N YSIMAPNUZAVQER-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 150000004967 organic peroxy acids Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- UPPSFGGDKACIKP-UHFFFAOYSA-N p-Tolyl isobutyrate Chemical compound CC(C)C(=O)OC1=CC=C(C)C=C1 UPPSFGGDKACIKP-UHFFFAOYSA-N 0.000 description 1
- 229930007459 p-menth-8-en-3-one Natural products 0.000 description 1
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 229940055076 parasympathomimetics choline ester Drugs 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 229960000490 permethrin Drugs 0.000 description 1
- RLLPVAHGXHCWKJ-UHFFFAOYSA-N permethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OCC1=CC=CC(OC=2C=CC=CC=2)=C1 RLLPVAHGXHCWKJ-UHFFFAOYSA-N 0.000 description 1
- 125000005342 perphosphate group Chemical group 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- QQBPIHBUCMDKFG-UHFFFAOYSA-N phenazopyridine hydrochloride Chemical group Cl.NC1=NC(N)=CC=C1N=NC1=CC=CC=C1 QQBPIHBUCMDKFG-UHFFFAOYSA-N 0.000 description 1
- JDQVBGQWADMTAM-UHFFFAOYSA-N phenethyl isobutyrate Chemical compound CC(C)C(=O)OCCC1=CC=CC=C1 JDQVBGQWADMTAM-UHFFFAOYSA-N 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- 229950009215 phenylbutanoic acid Drugs 0.000 description 1
- 229940067107 phenylethyl alcohol Drugs 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229940027411 picaridin Drugs 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 229940015367 pyrethrum Drugs 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- KUIXZSYWBHSYCN-UHFFFAOYSA-L remazol brilliant blue r Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C(N)=C2C(=O)C3=CC=CC=C3C(=O)C2=C1NC1=CC=CC(S(=O)(=O)CCOS([O-])(=O)=O)=C1 KUIXZSYWBHSYCN-UHFFFAOYSA-L 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010668 rosemary oil Substances 0.000 description 1
- 229940058206 rosemary oil Drugs 0.000 description 1
- 235000015639 rosmarinus officinalis Nutrition 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- NVIFVTYDZMXWGX-UHFFFAOYSA-N sodium metaborate Chemical compound [Na+].[O-]B=O NVIFVTYDZMXWGX-UHFFFAOYSA-N 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000992 solvent dye Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 239000010677 tea tree oil Substances 0.000 description 1
- 229940111630 tea tree oil Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 239000001585 thymus vulgaris Substances 0.000 description 1
- NPFVOOAXDOBMCE-UHFFFAOYSA-N trans-3-hexenyl acetate Natural products CCC=CCCOC(C)=O NPFVOOAXDOBMCE-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- BJIOGJUNALELMI-UHFFFAOYSA-N trans-isoeugenol Natural products COC1=CC(C=CC)=CC=C1O BJIOGJUNALELMI-UHFFFAOYSA-N 0.000 description 1
- XMLSXPIVAXONDL-UHFFFAOYSA-N trans-jasmone Natural products CCC=CCC1=C(C)CCC1=O XMLSXPIVAXONDL-UHFFFAOYSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- LADGBHLMCUINGV-UHFFFAOYSA-N tricaprin Chemical compound CCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCC)COC(=O)CCCCCCCCC LADGBHLMCUINGV-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- VLPFTAMPNXLGLX-UHFFFAOYSA-N trioctanoin Chemical compound CCCCCCCC(=O)OCC(OC(=O)CCCCCCC)COC(=O)CCCCCCC VLPFTAMPNXLGLX-UHFFFAOYSA-N 0.000 description 1
- 150000004961 triphenylmethanes Chemical class 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- AQLJVWUFPCUVLO-UHFFFAOYSA-N urea hydrogen peroxide Chemical compound OO.NC(N)=O AQLJVWUFPCUVLO-UHFFFAOYSA-N 0.000 description 1
- 235000016788 valerian Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- YEIGUXGHHKAURB-UHFFFAOYSA-N viridine Natural products O=C1C2=C3CCC(=O)C3=CC=C2C2(C)C(O)C(OC)C(=O)C3=COC1=C23 YEIGUXGHHKAURB-UHFFFAOYSA-N 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/18—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/18—Hydrocarbons
- C11D3/181—Hydrocarbons linear
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/18—Hydrocarbons
- C11D3/182—Hydrocarbons branched
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
- C11D3/505—Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
Definitions
- the present invention relates to laundry detergent compositions comprising volatile benefit agent in encapsulated and non-encapsulated forms, encapsulated phase change material and an anionic and a non-ionic surfactant.
- Fragrances are a valuable and ubiquitously employed benefit agent in home and personal care applications.
- the use of perfumes in laundering signals to the consumer that the washing process has been achieved to an acceptable level.
- Encapsulated perfume technologies are known for use in laundry products. Such technologies provide enhanced fragrance delivery over conventional free perfume oil by overcoming the issue of perfume loss during the drying process by protecting the perfume in the capsule. Encapsulation also ensures that perfume is released at the optimal time to enable the provision of a perceivable benefit to the wearer of laundered garments. Examples of the mode of action of encapsulates include: shear sensitive action, where the perfume core is released in response to mechanical rupture of the encapsulate, and diffusive action, wherein perfume is released by diffusion through the outer wall of the encapsulate. Some encaps are capable of both release mechanisms.
- One type of capsule that has been used in laundry compositions has a melamine formaldehyde shell and a perfume core. Release of perfume from melamine formaldehyde capsules is friction based, the benefit becoming apparent after a rubbing process is applied to the treated fabric. This benefit is provided by a boost in perfume intensity during wear.
- WO 2010/060677 (Henkel AG & Co KGAA) discloses scented washing or cleaning agents, comprising anionic and non-ionic surfactants, encapsulated scents and non-encapsulated scents.
- a preferred embodiment further comprises an encapsulated active comprising urea or other skin conditioning agents.
- WO95/33817 concerns a wax-encapsulated core material particle for use in liquid cleaning compositions, wherein the core includes oxygen bleaching agents.
- WO2009/083941 concerns an encapsulate comprising a core of a benefit agent encapsulated within a shell. The encapsulate also includes a density balancing agent.
- US 5112688 discloses microcapsules prepared using coacervation processes which have a large central core of encapsulated material such as perfume and the walls contain small particles that can be activated to disrupt the wall.
- the present invention provides a laundry detergent composition, which comprises:
- a process for treating fabric comprising the step of treating a fabric article with a composition as defined by the first aspect.
- the encapsulated volatile benefit agent comprises a capsule and a volatile benefit agent.
- the capsule comprises a shell and a core.
- the capsule comprising the volatile benefit agent comprises a shell that is comprised of materials including but not limited to polyurethane, polyamide, polyolefin, polysaccaharide, protein, silicone, lipid, modified cellulose, gums, polyacrylate, polyphosphate, polystyrene, polyesters or combinations of these materials.
- Other encapsulating material which may be used effectively in the present invention, such as polymethylmethacrylate.
- Preferred encapsulating polymers include those formed from melamine formaldehyde or urea formaldehyde condensates, as well as similar types of aminoplasts.
- the shell comprises melamine formaldehyde.
- microcapsules made via the simple or complex coacervation of gelatin are suitable for use in compositions of the invention.
- a representative process used for aminoplast encapsulation is disclosed in 3516941 USA U.S. Patent No. 3,516,941 though it is recognised that many variations with regard to materials and process steps are possible.
- a representative process used for gelatin encapsulation is disclosed in 2800457USA U.S. Patent No, 2,800,457 though it is recognized that many variations with regard to materials and process steps are possible. Both of these processes are discussed in the context of fragrance encapsulation for use in consumer products in 4145184USA U.S. Patent Nos. 4,145,184 and 5112688 USA5,112,688 respectively.
- Encapsulation can provide pore vacancies or interstitial openings depending on the encapsulation techniques employed.
- Fragrance capsules known in the art and suitable for use in the present invention comprise a wall or shell comprising a three-dimensional cross-linked network of an aminoplast resin, more specifically a substituted or un-substituted acrylic acid polymer or co-polymer cross-linked with a urea-formaldehyde pre-condensate or a melamine-formaldehyde pre-condensate.
- Microcapsule formation using mechanisms similar to the foregoing mechanism, using (i) melamine-formaldehyde or urea-formaldehyde pre-condensates and (ii) polymers containing substituted vinyl monomeric units having proton-donating functional group moieties (e.g. sulfonic acid groups or carboxylic acid anhydride groups) bonded thereto is disclosed in 44068162USB U.S.
- Patent 4,406,816 (2-acrylamido-2-methyl-propane sulfonic acid groups), 2062570GBA UK published Patent Application GB 2,062,570 A (styrene sulfonic acid groups) and 2006709GBA UK published Patent Application GB 2,006,709 A (carboxylic acid anhydride groups).
- the capsules for use in the invention may further comprise a carrier oil in the core.
- the carrier oils are hydrophobic materials that are miscible in the volatile benefit agent materials used in the present invention. Suitable oils are those having reasonable affinity for the benefit agent.
- suitable materials include, but are not limited to triglyceride oil, mono and diglycerides, mineral oil, silicone oil, diethyl phthalate, polyalpha olefins, castor oil and isopropyl myristate.
- the oil is a triglyceride oil, most preferably a capric/caprylic triglyceride oil.
- the capsules may be used in the form of a slurry, which preferably comprises about 40% solids.
- Particle size and average diameter of the capsules can vary from about 10 nanometers to about 1000 microns, preferably from about 50 nanometers to about 100 microns, more preferably from about 2 to about 40 microns, even more preferably from about 4 to 15 microns. A particularly preferred range is from about 5 to 10 microns, for example 6 to 7 microns.
- the capsule distribution can be narrow, broad or multimodal. Multimodal distributions may be composed of different types of capsule chemistries.
- the shell may further comprise a deposition aid, which is preferably covalently attached.
- a preferred deposition aid is a polysaccharide.
- the polysaccharide preferably has a ⁇ -1,4-linked backbone.
- the polysaccharide is a cellulose, a cellulose derivative, or another ⁇ -1,4-linked polysaccharide having an affinity for cellulose, such as polymannan, polyglucan, polyglucomannan, polyxyloglucan and polygalactomannan or a mixture thereof. More preferably, the polysaccharide is selected from the group consisting of polyxyloglucan and polygalactomannan.
- Highly preferred polysaccharides are selected from locust bean gum, tamarind gum, xyloglucan, non-ionic guar gum, cationic starch and mixtures thereof.
- the deposition aid is locust bean gum.
- the polysaccharide backbone has only ⁇ -1,4 linkages.
- the polysaccharide has linkages in addition to the ⁇ -1,4 linkages, such as ⁇ -1,3 linkages.
- linkages in addition to the ⁇ -1,4 linkages, such as ⁇ -1,3 linkages.
- polysaccharide backbones which include some material which is not a saccharide ring are also within the ambit of the present invention (whether terminal or within the polysaccharide chain).
- the polysaccharide may be straight or branched. Many naturally occurring polysaccharides have at least some degree of branching, or at any rate at least some saccharide rings are in the form of pendant side groups (which are therefore not in themselves counted in determining the degree of substitution) on a main polysaccharide backbone.
- the polysaccharide is present at levels of between 0.1 % to 10% w/w by weight of the total amount of the particle.
- the deposition aid which is preferably a polysaccharide, is attached to the particle by means of a covalent bond, entanglement or strong adsorption, preferably by a covalent bond or entanglement and most preferably by means of a covalent bond.
- entanglement as used herein is meant that the deposition aid is adsorbed onto the particle as the polymerisation proceeds and the particle grows in size, part of the adsorbed deposition aid becomes buried within the interior of the particle. Hence at the end of the polymerisation, part of the deposition aid is entrapped and bound in the polymer matrix of the particle, whilst the remainder is free to extend into the aqueous phase.
- strong adsorption as used herein is meant strong adsorption of the deposition aid to the surface of the particle; such adsorption can, for example, occur due to hydrogen bonding, Van Der Waals or electrostatic attraction between the deposition aid and the particle.
- the deposition aid is thus mainly attached to the particle surface and is not, to any significant extent, distributed throughout the internal bulk of the particle.
- This is distinct from graft copolymers in which e.g. a polysaccharide may be grafted along the length of a polymer chain.
- a particle which is formed from a graft copolymer would, therefore, contain polysaccharide throughout the internal bulk of the particle as well as on the particle surface and the present invention is not intended to cover such a particle.
- the particle which is produced when using a polysaccharide as the deposition aid according to the process of the invention can be thought of as a "hairy particle", which is different from a graft copolymer.
- This feature of the invention provides significant cost reduction opportunities for the manufacturer as much less deposition aid is required to achieve the same level of activity as systems which utilise polysaccharide copolymers.
- the deposition aid is present in the outermost portion of the shell, which is made of melamine formaldehyde polymer having a thickness of from 5 to 20 nm.
- Polyesters of terephthalic and other aromatic dicarboxylic acids having soil release properties in particular, the so-called PET/POET (polyethylene terephthalate/polyoxyethylene terephthalate) and PET/PEG (polyethylene terephthalate/polyethylene glycol) polyesters may be employed as deposition aids.
- PET/POET polyethylene terephthalate/polyoxyethylene terephthalate
- PET/PEG polyethylene terephthalate/polyethylene glycol
- the polymer must have at least one mole free OH group per mole polymer, to allow covalent binding to the reactive dye(s). Most preferably the polymer comprises at least two free OH groups. Preferably the OH groups are the terminal groups of the polymer.
- the oxyalkyleneoxy [-O(CH 2 ) t O-] is selected from: oxy-1,2-propyleneoxy [-OCH 2 CH(Me)O-]; oxy-1,3-propyleneoxy [O-CH 2 CH 2 CH 2 O-]; and, oxy-1,2-ethyleneoxy [-OCH 2 CH 2 O-] (t is an interger).
- one or more of the CH 2 groups of the oxyalkyleneoxy may be substituted by C1 to C4 alkyl group(s).
- the polyoxyalkyleneoxy facilitates water solubility of the polymer.
- the polyoxyalkyleneoxy [-O(CH 2 ) w -] s O- is selected from: polyoxy-1,2-propyleneoxy [-O(CH 2 CH(Me)-] s O-; polyoxy-1,3-propyleneoxy [O-CH 2 CH 2 CH 2 -] s O-; and, polyoxy-1,2-ethyleneoxy [O-CH 2 CH 2 -] s O-;
- the polyoxyalkyleneoxy may be a mixture of different oxyalkyleneoxy. Different polyoxyalkyleneoxy types may present in the polymer. (s and w are intergers).
- the phenyl dicarboxylate is a 1,4-phenyl dicarboxylate.
- the phenyl dicarboxylate is of the form: -OC(O)C 6 H 4 C(O)O-.
- PET/POET Polyethylene terephthalate/polyoxyethylene terephthalate
- PEG/POET Polyethyleneglycol/ polyoxyethylene terephthalate
- PET/PEG Polyethylene terephthalate/ Polyethyleneglycol
- the polymers may be synthesised by a variety of routes, for example an esterification reaction of dimethyl terephthalate with ethyleneglycol and polyethyleneglycol, this reaction is discussed in Polymer Bulletin 28, 451-458 (1992 ). Another example would be the direct esterification of terephthalic acid with ethylene glycol and/or propylene glycol and polypropylene glycol.
- a further example would be a transesterification of a polyethyleneterephthalate with a polyethyleneglycol or polypropylene gycol.
- the number average molecular weight of the polymer is in the range from 1000 to 50,000, preferably the average molecular weight of the polymer is in the range of from 1000 to 15000, more preferably from 2000 to 10000.
- the volatile benefit agent is an agent which is volatile and which confers a benefit to fabric.
- Suitable volatile benefit agents include perfumes, essential oils, sensates such as menthol and aromatherapy actives, preferably perfumes. Mixtures of volatile benefit agents may be used.
- the total amount of volatile benefit agent is preferably from 0.01 to 10 % by weight, more preferably from 0.05 to 5 % by weight, even more preferably from 0.1 to 4.0 %, most preferably from 0.15 to 4.0 % by weight, based on the total weight of the composition.
- the preferred volatile benefit agent is a perfume.
- the compositions of the compositions of the invention also comprise an unconfined (also called non- encapsulated) volatile benefit agent.
- the volatile benefit agent is a perfume
- the perfumes described below are suitable for use as the encapsulated volatile benefit agent and also as the unconfined perfume component.
- Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
- perfume in this context is not only meant a fully formulated product fragrance, but also selected components of that fragrance, particularly those which are prone to loss, such as the so-called 'top notes'.
- Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]). Examples of well known top-notes include citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. Top notes typically comprise 15-25%wt of a perfume composition and in those embodiments of the invention which contain an increased level of top-notes it is envisaged at that least 20%wt would be present within the encapsulate.
- perfume or pro-fragrance may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius and pro-fragrances which can produce such components.
- perfume components which have a low Clog P (i.e. those which will be partitioned into water), preferably with a Clog P of less than 3.0.
- Clog P i.e. those which will be partitioned into water
- materials, of relatively low boiling point and relatively low Clog P have been called the "delayed blooming" perfume ingredients and include the following materials:
- Preferred non-encapsulated perfume ingredients are those hydrophobic perfume components with a ClogP above 3.
- ClogP means the calculated logarithm to base 10 of the octanol/water partition coefficient (P).
- the octanol/water partition coefficient of a perfume raw material (PRM) is the ratio between its equilibrium concentrations in octanol and water. Given that this measure is a ratio of the equilibrium concentration of a PRM in a non-polar solvent (octanol) with its concentration in a polar solvent (water), ClogP is also a measure of the hydrophobicity of a material--the higher the ClogP value, the more hydrophobic the material.
- ClogP values can be readily calculated from a program called "CLOGP" which is available from Daylight Chemical Information Systems Inc., Irvine Calif., USA. Octanol/water partition coefficients are described in more detail in U.S. Pat. No. 5,578,563 .
- Perfume components with a ClogP above 3 comprise: Iso E super, citronellol, Ethyl cinnamate, Bangalol, 2,4,6-Trimethylbenzaldehyde, Hexyl cinnamic aldehyde, 2,6-Dimethyl-2-heptanol, Diisobutylcarbinol, Ethyl salicylate, Phenethyl isobutyrate, Ethyl hexyl ketone, Propyl amyl ketone, Dibutyl ketone, Heptyl methyl ketone, 4,5-Dihydrotoluene, Caprylic aldehyde, Citral, Geranial, Isopropyl benzoate, Cyclohexanepropionic acid, Campholene aldehyde, Caprylic acid, Caprylic alcohol, Cuminaldehyde, 1-Ethyl-4-nitrobenzene, Heptyl formate, 4-I
- compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above and/or the list of perfume components with a ClogP above 3 present in the perfume.
- the volatile benefit agent may include an insect repellent.
- insect repellent actives belong to one of four groups: amides, alcohols, esters or ethers.
- amides, alcohols, esters or ethers are suitable for use in the present invention.
- Those suitable for use in the present invention are liquids or solids with a relatively low melting point and a boiling point above 150 °C, preferably liquids. They evaporate slowly at room temperature.
- the volatile benefit agent is an insect repellent
- the repellents described below are suitable for use as the encapsulated volatile benefit agent and also as the unconfined repellent component.
- insect repellents are related to perfume species (many fall into both classes).
- the most commonly used insect repellents include: DEET (N,N-diethyl- m-toluamide), essential oil of the lemon eucalyptus (Corymbia citriodora) and its active compound p-menthane-3,8-diol (PMD), Icaridin, also known as Picaridin, 0- Limonene, Bayrepel, and KBR 3023, Nepetalactone, also known as "catnip oil”, Citronella oil, Permethrin, Neem oil and Bog Myrtle.
- Known insect repellents derived from natural sources include: Achillea alpina, alpha-terpinene, Basil oil (Ocimum basilicum), Callicarpa americana (Beautyberry), Camphor, Carvacrol, Castor oil (Ricinus communis), Catnip oil (Nepeta species), Cedar oil (Cedrus atlantica), Celery extract (Apium graveolens), Cinnamon (Cinnamomum Zeylanicum, leaf oil), Citronella oil (Cymbopogon fleusus), Clove oil (Eugenic caryophyllata), Eucalyptus oil (70%+ eucalyptol, also known as cineol), Fennel oil (Foeniculum vulgare), Garlic Oil (Allium sativum), Geranium oil (also known as Pelargonium graveolens), Lavender oil (Lavandula officinalis), Lemon eucalyptus (Corymbia citri
- cinerariifolium and C. coccineum Rosemary oil (Rosmarinus officinalis), Spanish Flag Lantana camara (Helopeltis theivora), Solanum villosum berry juice, Tea tree oil (Melaleuca alternifolia) and Thyme (Thymus species) and mixtures thereof.
- Preferred encapsulated insect repellents are mosquito repellents available from Celessence, Rochester, England. Celessence Repel, containing the active ingredient SaltidinTM and Celessence Repel Natural, containing the active CitrepelTM 75. Saltidin is a man made molecule developed originally by the Bayer Corporation. Citrepel is produced from eucalyptus oils and is high in p-menthane-3,8-diol (PMD). A preferred non-encapsulated repellent is CitriodiolTM supplied by Citrefine.
- 'aromatherapy' materials include components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
- Phase change actives are materials that can absorb, store and release heat whilst the material changes its physical form. This is known as a phase change. Water changing from solid (ice) to liquid is an example of this phenomenon. During these phase changes large amounts of heat are absorbed or released.
- the phase change active has a thermal phase transition temperature (TPTT) in the range 24 to 39°C.
- TPTT thermal phase transition temperature
- the TPTT may conveniently be measured by the Perkin & Elmer thermal analysis system.
- the Perkin & Elmer thermal analysis system measures the heat flow into a material to be heated as a function of the temperature of the material. By investigating a material at various temperatures, a temperature profile is obtained. Such a temperature profile usually has one or more peaks, each peak corresponding to a maximum for the heat flow into the material at a specific temperature. The temperature corresponding to the major peak in the temperature profile is referred to as the thermal phase transition temperature. Generally a high TPTT corresponds to a high softening temperature of the material. The material has a TPTT in the range 24 to 39°C, preferably from 25 to 39°C, more preferably from 26 to 38°C and most preferably from 26 to 30°C.
- Phase change actives possess a latent heat and show a phase transition phenomena between phases at a phase transition temperature.
- the phase transition of the present invention incorporated solid to liquid, liquid to vapor, solid to vapor, gel to liquid-crystalline phase changes.
- preferable phase transitions are solid to liquid phase or liquid to solid phase changes.
- PTMs reversibly absorb or release heat from the environment at around the phase transition temperature, which is accompanied with a corresponding change in the ambient temperature.
- the phase change active may be in the form of a composition (or mixture) provided that the total composition has a TPTT in the range 24 to 39°C, preferably from 25 to 39°C, more preferably from 26 to 38°C and most preferably from 26 to 30°C, and comprises hydrocarbon materials comprising a linear or branched alkyl chain an average of from 12 to 50 carbon atoms per molecule, preferably from 12 to 30 carbon atoms.
- the hydrocarbon materials are either alkanes or alkenes. Relatively small amounts of non-alkyl substituent groups may be present provided the hydrocarbon nature of the product is not substantially affected. Mixtures of these materials may be used.
- suitable hydrocarbon materials for use in the hydrocarbon composition are the liquid hydrocarbon materials of natural source.
- Other liquid hydrocarbon materials including the liquid fractions derived from crude oil, such as mineral oil, liquid paraffins, cracked hydrocarbons and mixtures thereof.
- a preferred material is paraffin wax (n-Octadecane).
- solid or semi-solid hydrocarbon materials are the paraffinic materials of longer chain length, and hydrogenated versions of some of the liquid materials mentioned above.
- a particularly useful combination of hydrocarbon materials is a mixture of mineral oil (for example, M85 ex Daltons Company) and petroleum jelly (for example, Silkolene 910 ex Daltons), wherein the weight ratio of mineral oil to petroleum jelly is chosen such that the TPTT of the mixture is in the range of from 24 to 39 °C.
- this result was obtained by using a ratio of mineral oil to petroleum jelly of less than 3:1, preferably from 2:1 to 1:3.
- the mineral oil was a liquid mixture of linear and branched hydrocarbons having an average number of carbon atoms per molecule of 26.
- Petroleum jelly was a semi-solid mixture of linear and branched hydrocarbons having an average number of carbon atoms per molecule of 26, and having a softening temperature of about 50°C.
- the encapsulated phase change active comprises a capsule and a phase change active.
- the capsule comprises a shell and a core.
- the capsule for the phase change material preferably has a shell that is permeable to the unconfined volatile benefit agent in the composition.
- a mixture of encapsulated phase change actives may be present.
- the phase change active is encapsulated in a polymer shell to form encapsulated particles having a preferred particle size of from 10 nm to 1000 ⁇ m, preferably 50 nm to 100 ⁇ m, more preferably 0.2 to 30 ⁇ m.
- encapsulated materials has the advantage that the materials may be readily dispersed without interference or interaction with the fabric softener compound.
- An additional advantage is that the encapsulated material does not cause a "messiness" feeling when deposited on the fabric which may be present with materials of a semi-liquid nature.
- Suitable encapsulating polymers include those formed from melamine-formaldehyde or urea formaldehyde condensates, as well as similar types of aminoplasts. Additionally, capsules made via the simple or complex coacervation of gelatin are also preferred for use with the coating. Capsules having shell walls comprised of polyurethane, polyamide, polyolefin, polysaccaharide, protein, silicone, lipid, modified cellulose, gums, polyacrylate, polyphosphate, polystyrene, and polyesters or combinations of these materials are also functional.
- phase change actives are disclosed in WO 03/0144460 having a phase transition temperature of from 24 to 39 °C, referred to therein as "Phase Transition Materials” or “PTM's" at page 6, final paragraph to the penultimate line on page 8.
- Lurapret TX PMC 28 commercially available from BASF which is a material, specifically paraffin wax (comprising n-Octadecane), encapsulated in polymethylmethacrylate having a particle size in the range 0.2 to 20 ⁇ m. This material has a phase transition temperature of about 28°C.
- the phase change actives are generally deposited to apply from 0.2 to 1 %, preferably 0.2 to 0.5 % by weight of the fabric after drying.
- the encapsulated phase change actives are preferably present in an amount of from 0.01 to 15 wt %, more preferably 0.01 to 10 wt %, even more preferably from 0.05 to 5 wt %, still more preferably from 0.05 to 2 wt %, more preferably still from 0.05 to 1 wt % and most preferably from 0.05 to 0.5 wt % by weight of the fabric softening composition.
- the encapsulated phase change material comprises a shell that is permeable to the unconfined volatile benefit agent in the composition.
- Suitable encapsulating polymers include those formed from melamine-formaldehyde or urea formaldehyde condensates, as well as similar types of aminoplasts. Additionally, capsules made via the simple or complex coacervation of gelatin are also preferred for use with the coating.
- Capsules having shell walls comprised of polyurethane, polyamide, polyolefin, polysaccaharide, protein, silicone, lipid, modified cellulose, gums, polyacrylate, polyphosphate, polystyrene, and polyesters or combinations of these materials are also suitable.
- a preferred material is polymethylmethacrylate.
- composition of the invention comprises at least one anionic surfactant and at least one nonionic surfactant.
- Suitable anionic surfactants include alkylbenzene sulfonates, such as linear alkylbenzene sulfonate, particularly linear alkylbenzene sulfonates having an alkyl chain length of C 8 -C 15 . It is preferred that the level of linear alkylbenzene sulfonate is from 0 wt% to 30 wt%, more preferably 1 wt% to 25 wt%, most preferably from 2 wt% to 15 wt%.
- compositions of the invention may contain other anionic surfactants in amounts additional to the percentages quoted above.
- Suitable anionic surfactants are well-known to those skilled in the art. Examples include primary and secondary alkyl sulfates, particularly C 8 -C 20 primary alkyl sulfates; alkyl ether sulfates; olefin sulfonates; alkyl xylene sulfonates; dialkyl sulfosuccinates; and fatty acid ester sulfonates. Sodium salts are generally preferred.
- compositions of the invention also contain at least one non-ionic surfactant.
- Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C 8 -C 20 aliphatic alcohols ethoxylated with an average of from 1 to 20 moles of ethylene oxide per mole of alcohol, and more especially the C 10 -C 15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
- Non-ethoxylated nonionic surfactants include alkylpolyglycosides, glycerol monoethers, and polyhydroxyamides (glucamide).
- the level of non-ionic surfactant is from 0.5 wt% to 30 wt%, preferably from 1 wt% to 25 wt%, most preferably from 2 wt% to 15 wt%.
- the laundry detergent composition of the invention is preferably a main wash cleaning composition, or a softening-in-the-wash composition.
- compositions of the invention may be in any physical form e.g. a solid such as a powder or granules, a tablet, a solid bar, a paste, gel or liquid, for example an aqueous based liquid, a spray, a stick, an impregnated substrate, foam or mousse.
- the compositions may be liquid, powder, or unit dose such as tablet laundry compositions.
- the liquid products of the invention may have pH ranging from 6 to 12 (for fabric softening-in-the-wash compositions). This pH range preferably remains stable over the shelf life of the product.
- Compositions in accordance with the invention may comprise at least one further surface-active compound, selected from soaps, cationic surfactants, zwitterionic surfactants, amphoteric surfactants and mixtures thereof.
- surface-active compound surfactant
- the choice of surface-active compound (surfactant), and the amount present, will depend on the intended use of the detergent composition. In fabric washing compositions, different surfactant systems may be chosen, as is well known to the skilled formulator, for handwashing products and for products intended for use in different types of washing machine.
- the total amount of surfactant present will also depend on the intended end use and may be as high as 60 wt%, for example, in a composition for washing fabrics by hand. In compositions for machine washing of fabrics, a total amount of from 5 to 40 wt% is generally appropriate. Typically the compositions will comprise at least 2 wt% total surfactant e.g. 2-60%, preferably 15-40% most preferably 25-35%.
- Detergent compositions suitable for use in most automatic fabric washing machines generally contain anionic non-soap surfactant, or non-ionic surfactant, or combinations of the two in any suitable ratio, optionally together with soap.
- Cationic surfactants which can be used in main-wash compositions for fabrics.
- Cationic surfactants that may be used include quaternary ammonium salts of the general formula R 1 R 2 R 3 R 4 N + X - wherein the R groups are long or short hydrocarbon chains, typically alkyl, hydroxyalkyl or ethoxylated alkyl groups, and X is a counter-ion (for example, compounds in which R 1 is a C 8 -C 22 alkyl group, preferably a C 8 -C 10 or C 12 -C 14 alkyl group, R 2 is a methyl group, and R 3 and R 4 , which may be the same or different, are methyl or hydroxyethyl groups); and cationic esters (for example, choline esters).
- Amphoteric and zwitterionic surfactants that may be used include alkyl amine oxides, betaines and sulfobetaines.
- composition is a softening from the wash composition
- it may comprise a sugar polyester or a softening silicone oil.
- the sugar polyester is preferably selected from the group consisting of sucrose polyesters, glucose polyesters and cellobiose polyesters, and is most preferably a sucrose polyester.
- the sugar polyester may be liquid, soft solid or solid.
- the preferred sucrose polyesters for use in the present invention have 2 to 4 hydrocarbon chains per sugar ring, where the hydrocarbon chain has a length of from 12 to 22 carbon atoms.
- a particularly preferred sucrose polyester is sucrose tetraerucate.
- sucrose polyester is Ryoto Sugar Ester ER290 supplied by Mitsubishi Kagaku Foods Corporation, which is a sucrose tetraerucate and according to the manufacturer's specification is mainly Tetraerucate, Pentaerucate and Hexaerucate and has a HLB value of 2.
- the sugar polyester may be pure, or may contain impurities.
- the impurities are preferably selected from the group consisting of free fatty acid, fatty acid methyl ester, soap, inorganic salts and mixtures thereof.
- the most preferred SPEs are commercially available, such as Emanon SCR-PK (ex KAO), which is a palm kernel derived SPE containing mainly C 12 -C 14 with about 20% C 18 mono unsaturatation and SPE-THSBO (ex Clariant), which is derived from touch hardened soy bean oil, having mainly C 16 -C 18 chains with about 80% mono and di unsaturation.
- Emanon SCR-PK ex KAO
- SPE-THSBO Clariant
- the average degree of esterification of the above preferred SPEs is between 4.2-4.7.
- SCR-PK contains up to 20% impurities but SPE-THSBO is pure.
- SCR-PK contains from 4 to 6 wt% of K soap, 2.5 wt% of free fatty acid, from 10 to 15 wt% of fatty acid methyl ester and less than 1 % of KCI.
- the sugar polyester being non-ionic oil, requires an emulsifier, that is to say, the sugar polyester must be in an emulsified form.
- the emulsifier is preferably selected from cationic surfactant, anionic surfactant, non-ionic surfactant, and mixtures thereof.
- the ultra-fine particles of the invention themselves can act as stabilizer and emulsifier for the nonionic softeners such as sugar polyesters (SPEs).
- SPEs sugar polyesters
- compositions of the invention when used as main wash fabric washing compositions, will generally also contain one or more detergency builder.
- the total amount of detergency builder in the compositions will typically range from 0 to 80 wt%, preferably from 0 to 60 wt%.
- Inorganic builders that may be present include sodium carbonate, if desired in combination with a crystallisation seed for calcium carbonate, as disclosed in GB 1 437 950 (Unilever); crystalline and amorphous aluminosilicates, for example, zeolites as disclosed in GB 1 473 201 (Henkel), amorphous aluminosilicates as disclosed in GB 1 473 202 (Henkel) and mixed crystalline/amorphous aluminosilicates as disclosed in GB 1 470 250 (Procter & Gamble); and layered silicates as disclosed in EP 164 514B (Hoechst).
- Inorganic phosphate builders for example, sodium orthophosphate, pyrophosphate and tripolyphosphate are also suitable for use with this invention.
- compositions of the invention preferably contain an alkali metal, preferably sodium, aluminosilicate builder.
- Sodium aluminosilicates may generally be incorporated in amounts of from 5 to 60% by weight (anhydrous basis), preferably from 10 to 50 wt%, especially from 25 to 50 wt%.
- the alkali metal aluminosilicate may be either crystalline or amorphous or mixtures thereof, having the general formula: 0.8-1.5 Na 2 O. Al 2 O 3 . 0.8-6 SiO 2 These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
- the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units (in the formula above). Both the amorphous and the crystalline materials can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. Suitable crystalline sodium aluminosilicate ion-exchange detergency builders are described, for example, in GB 1 429 143 (Procter & Gamble).
- the preferred sodium aluminosilicates of this type are the well-known commercially available zeolites A and X, and mixtures thereof.
- the zeolite may be the commercially available zeolite 4A now wisely used in laundry detergent powders.
- the zeolite builder incorporated in the compositions of the invention is maximum aluminium zeolite P (zeolite MAP) as described and claimed in EP 384 070A (Unilever).
- Zeolite MAP is defined as an alkali metal aluminosilicate of the zeolite P type having a silicon to aluminium ratio not exceeding 1.33, preferably within the range of from 0.90 to 1.33, and more preferably within the range of from 0.90 to 1.20.
- zeolite MAP having a silicon to aluminium ratio not exceeding 1.07, more preferably about 1.00, is especially preferred.
- the calcium binding capacity of zeolite MAP is generally at least 150 mg CaO per g of anhydrous material.
- the zeolites may be supplemented by other inorganic builders, for example, amorphous aluminosilicates, or layered silicates such as SKS-6 ex Clariant.
- the zeolite may be supplemented by organic builders.
- Organic builders that may be present include polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates; monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di and trisuccinates, carboxymethyloxy succinates, carboxymethyloxymalonates, dipicolinates, hydroxyethyl iminodiacetates, alkyl- and alkenylmalonates and succinates; and sulfonated fatty acid salts. This list is not intended to be exhaustive.
- Especially preferred organic builders are citrates, suitably used in amounts of from 1 to 30 wt%, preferably from 5 to 30 wt%, more preferably from 10 to 25 wt%; and acrylic polymers, more especially acrylic/maleic copolymers, suitably used in amounts of from 0.5 to 15 wt%, preferably from 1 to 10 wt%.
- Builders both inorganic and organic, are preferably present in alkali metal salt, especially sodium salt, form.
- Builders are suitably present in total amounts of from 10 to 80 wt%, more preferably from 20 to 60 wt%. Builders may be inorganic or organic. A built composition in accordance with the invention may most preferably comprise from 10 to 80 wt% of a detergency builder (b) selected from zeolites, phosphates, and citrates.
- a detergency builder b
- the laundry detergent composition will generally comprise other detergent ingredients well known in the art. These may suitably be selected from bleach ingredients, enzymes, sodium carbonate, sodium silicate, sodium sulphate, foam controllers, foam boosters, perfumes, clays, soil release polymers, dye transfer inhibitors, photobleaches, fluorescers and coloured speckles.
- compositions according to the invention may also suitably contain a bleach system.
- Fabric washing compositions may desirably contain peroxy bleach compounds, for example, inorganic persalts or organic peroxyacids, capable of yielding hydrogen peroxide in aqueous solution.
- Suitable peroxy bleach compounds include organic peroxides such as urea peroxide, and inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulfates.
- organic peroxides such as urea peroxide
- inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulfates.
- Preferred inorganic persalts are sodium perborate monohydrate and tetrahydrate, and sodium percarbonate.
- sodium percarbonate having a protective coating against destabilisation by moisture Especially preferred is sodium percarbonate having a protective coating against destabilisation by moisture.
- Sodium percarbonate having a protective coating comprising sodium metaborate and sodium silicate is disclosed in GB 2 123 044B (Kao).
- the peroxy bleach compound is suitably present in an amount of from 0.1 to 35 wt%, preferably from 0.5 to 25 wt%.
- the peroxy bleach compound may be used in conjunction with a bleach activator (bleach precursor) to improve bleaching action at low wash temperatures.
- the bleach precursor is suitably present in an amount of from 0.1 to 8 wt%, preferably from 0.5 to 5 wt%.
- Preferred bleach precursors are peroxycarboxylic acid precursors, more especially peracetic acid precursors and pernonanoic acid precursors.
- Especially preferred bleach precursors suitable for use in the present invention are N,N,N',N',-tetracetyl ethylenediamine (TAED) and sodium nonanoyloxybenzene sulphonate (SNOBS).
- TAED N,N,N',N',-tetracetyl ethylenediamine
- SNOBS sodium nonanoyloxybenzene sulphonate
- the novel quaternary ammonium and phosphonium bleach precursors disclosed in US 4 751 015 and US 4 818 426 (Lever Brothers Company) and EP 402 971A (Unilever), and the cationic bleach precursors disclosed in EP 284 292A and EP 303 520A (Kao) are also of interest.
- the bleach system can be either supplemented with or replaced by a peroxyacid, examples of such peracids can be found in US 4 686 063 and US 5 397 501 (Unilever).
- a preferred example is the imido peroxycarboxylic class of peracids described in EP A 325 288 , EP A 349 940 , DE 382 3172 and EP 325 289 .
- a particularly preferred example is phthalimido peroxy caproic acid (PAP).
- PAP phthalimido peroxy caproic acid
- Such peracids are suitably present at 0.1 - 12%, preferably 0.5 - 10%.
- a bleach stabiliser may also be present.
- Suitable bleach stabilisers include ethylenediamine tetra-acetate (EDTA), diethylenetriamine pentaacetate (DTPA), the polyphosphonates such as Dequest (Trade Mark), ethylenediamine tetramethylene phosphonate (EDTMP) and diethylenetriamine pentamethylene phosphate (DETPMP) and non-phosphate stabilisers such as EDDS (ethylene diamine disuccinate).
- EDTA ethylenediamine tetra-acetate
- DTPA diethylenetriamine pentaacetate
- the polyphosphonates such as Dequest (Trade Mark)
- EDTMP ethylenediamine tetramethylene phosphonate
- DETPMP diethylenetriamine pentamethylene phosphate
- non-phosphate stabilisers such as EDDS (ethylene diamine disuccinate).
- An especially preferred bleach system comprises a peroxy bleach compound (preferably sodium percarbonate optionally together with a bleach activator), and a transition metal bleach catalyst as described and claimed in EP 458 397A , EP 458 398A and EP 509 787A (Unilever).
- a peroxy bleach compound preferably sodium percarbonate optionally together with a bleach activator
- a transition metal bleach catalyst as described and claimed in EP 458 397A , EP 458 398A and EP 509 787A (Unilever).
- compositions according to the invention may also contain one or more enzyme(s).
- Suitable enzymes include the proteases, amylases, cellulases, oxidases, peroxidases and lipases usable for incorporation in detergent compositions.
- Preferred proteolytic enzymes are, catalytically active protein materials which degrade or alter protein types of stains when present as in fabric stains in a hydrolysis reaction. They may be of any suitable origin, such as vegetable, animal, bacterial or yeast origin.
- proteolytic enzymes or proteases of various qualities and origins and having activity in various pH ranges of from 4-12 are available and can be used in the instant invention.
- suitable proteolytic enzymes are the subtilins which are obtained from particular strains of B .
- Subtilis B . licheniformis such as the commercially available subtilisins Maxatase (Trade Mark), as supplied by Gist Brocades N.V., Delft, Holland, and Alcalase (Trade Mark), as supplied by Novo Industri A/S, Copenhagen, Denmark.
- protease obtained from a strain of Bacillus having maximum activity throughout the pH range of 8-12, being commercially available, e.g. from Novo Industri A/S under the registered trade-names Esperase (Trade Mark) and Savinase (Trade-Mark).
- Esperase Trade Mark
- Savinase Trade-Mark
- Other commercial proteases are Kazusase (Trade Mark obtainable from Showa-Denko of Japan), Optimase (Trade Mark from Miles Kali-Chemie, Hannover, West Germany), and Superase (Trade Mark obtainable from Pfizer of U.S.A.).
- Detergency enzymes are commonly employed in granular form in amounts of from about 0.1 to about 3.0 wt%. However, any suitable physical form of enzyme may be used.
- compositions of the invention may contain alkali metal, preferably sodium, carbonate, in order to increase detergency and ease processing.
- Sodium carbonate may suitably be present in amounts ranging from 1 to 60 wt%, preferably from 2 to 40 wt%.
- compositions containing little or no sodium carbonate are also within the scope of the invention.
- Powder flow may be improved by the incorporation of a small amount of a powder structurant, for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate.
- a powder structurant for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate.
- a powder structurant for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate.
- fatty acid soap suitably present in an amount of from 1 to 5 wt%.
- the amount of sodium silicate may suitably range from 0.1 to 5 wt%.
- detergent compositions of the invention include sodium silicate; antiredeposition agents such as cellulosic polymers; soil release polymers; inorganic salts such as sodium sulfate; lather control agents or lather boosters as appropriate; proteolytic and lipolytic enzymes; dyes; coloured speckles; perfumes; foam controllers; fluorescers and decoupling polymers. This list is not intended to be exhaustive.
- the detergent composition when diluted in the wash liquor will typically give a pH of the wash liquor from 7 to 10.5 for a main wash detergent.
- Particulate detergent compositions are suitably prepared by spray-drying a slurry of compatible heat-insensitive ingredients, and then spraying on or post-dosing those ingredients unsuitable for processing via the slurry.
- the skilled detergent formulator will have no difficulty in deciding which ingredients should be included in the slurry and which should not.
- Particulate detergent compositions of the invention preferably have a bulk density of at least 400 g/litre, more preferably at least 500 g/litre. Especially preferred compositions have bulk densities of at least 650 g/litre, more preferably at least 700 g/litre.
- Such powders may be prepared either by post-tower densification of spray-dried powder, or by wholly non-tower methods such as dry mixing and granulation; in both cases a high-speed mixer/granulator may advantageously be used. Processes using high-speed mixer/granulators are disclosed, for example, in EP 340 013A , EP 367 339A , EP 390 251A and EP 420 317A (Unilever).
- micro-powders of the invention are particularly well suited to incorporation into detergent powders.
- Liquid detergent compositions can be prepared by admixing the essential and optional ingredients thereof in any desired order to provide compositions containing components in the requisite concentrations.
- Liquid compositions according to the present invention can also be in compact form which means it will contain a lower level of water compared to a conventional liquid detergent.
- the fabric treatment compositions of the invention can also contain adjuvants that are normal in the cosmetic, pharmaceutical and/or dermatological field, such as hydrophilic or lipophilic gelling agents, hydrophilic or lipophilic active agents, preserving agents, antioxidants, solvents, fragrances, fillers, screening agents, bactericides, odour absorbers, photobleaches (singlet oxygen or radical type) and dyestuffs.
- adjuvants that are normal in the cosmetic, pharmaceutical and/or dermatological field, such as hydrophilic or lipophilic gelling agents, hydrophilic or lipophilic active agents, preserving agents, antioxidants, solvents, fragrances, fillers, screening agents, bactericides, odour absorbers, photobleaches (singlet oxygen or radical type) and dyestuffs.
- the amounts of these various adjuvants are those conventionally used in the field under consideration and are, for example, from 0.01 to 20% of the total weight of the composition.
- the treatment of the substrate with the composition of the invention can be made by any suitable method such as washing, soaking or rinsing of the substrate but also by direct application such as spraying, rubbing, spotting, smearing, etc.
- the treatment may involve contacting the substrate with an aqueous medium comprising the material of the invention.
- the treatment may be provided as a spray composition e.g., for domestic (or industrial) application to fabric in a treatment separate from a conventional domestic laundering process.
- Suitable spray dispensing devices are disclosed in WO 96/15310 (Procter & Gamble) and are incorporated herein by reference.
- Optional shading dyes can be used. Preferred dyes are violet or blue. Suitable and preferred classes of dyes are discussed below. Moreover the unsaturated quaternary ammonium compounds are subject to some degree of UV light and/or transition metal ion catalysed radical auto-oxidation, with an attendant risk of yellowing of fabric. The presence of a shading dye also reduces the risk of yellowing from this source.
- the level of shading dye present in the compositions of the present invention depend, therefore, on the type of shading dye.
- Preferred overall ranges, suitable for the present invention are from 0.00001 to 0.1 wt %, more preferably 0.0001 to 0.01 wt %, most preferably 0.0005 to 0.005 wt % by weight of the total composition.
- Direct dyes are the class of water soluble dyes which have an affinity for fibres and are taken up directly. Direct violet and direct blue dyes are preferred.
- the dye are bis -azo or tris -azo dyes are used.
- the direct dye is a direct violet of the following structures: or wherein:
- Preferred dyes are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, and direct violet 99.
- Bis-azo copper containing dyes such as direct violet 66 may be used.
- the benzidene based dyes are less preferred.
- the direct dye is present at 0.00001 wt% to 0.0010 wt% of the formulation.
- the direct dye may be covalently linked to the photo-bleach, for example as described in WO2006/024612 .
- Cotton substantive acid dyes give benefits to cotton containing garments.
- Preferred dyes and mixes of dyes are blue or violet.
- Preferred acid dyes are:
- Preferred azine dyes are: acid blue 98, acid violet 50, and acid blue 59, more preferably acid violet 50 and acid blue 98.
- non-azine acid dyes are acid violet 17, acid black 1 and acid blue 29.
- the acid dye is present at 0.0005 wt% to 0.01 wt% of the formulation.
- composition of the invention may comprise one or more hydrophobic dyes selected from benzodifuranes, methine, triphenylmethanes, napthalimides, pyrazole, napthoquinone, anthraquinone and mono-azo or di-azo dye chromophores.
- Hydrophobic dyes are dyes which do not contain any charged water solubilising group. Hydrophobic dyes may be selected from the groups of disperse and solvent dyes. Blue and violet anthraquinone and mono-azo dye are preferred.
- Preferred dyes include solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63 and disperse violet 77.
- the hydrophobic dye is present at 0.0001 wt% to 0.005 wt% of the formulation.
- Basic dyes are organic dyes which carry a net positive charge. They deposit onto cotton. They are of particular utility for used in composition that contain predominantly cationic surfactants. Dyes may be selected from the basic violet and basic blue dyes listed in the Colour Index International.
- Preferred examples include triarylmethane basic dyes, methane basic dye, anthraquinone basic dyes, basic blue 16, basic blue 65, basic blue 66, basic blue 67, basic blue 71, basic blue 159, basic violet 19, basic violet 35, basic violet 38, basic violet 48; basic blue 3, basic blue 75, basic blue 95, basic blue 122, basic blue 124, basic blue 141.
- Reactive dyes are dyes which contain an organic group capable of reacting with cellulose and linking the dye to cellulose with a covalent bond. They deposit onto cotton.
- the reactive group is hydrolysed or reactive group of the dyes has been reacted with an organic species such as a polymer, so as to the link the dye to this species.
- Dyes may be selected from the reactive violet and reactive blue dyes listed in the Colour Index International.
- Preferred examples include reactive blue 19, reactive blue 163, reactive blue 182 and reactive blue 96.
- Dye conjugates are formed by binding direct, acid or basic dyes to polymers or particles via physical forces.
- Particularly preferred dyes are: direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, direct violet 99, acid blue 98, acid violet 50, acid blue 59, acid violet 17, acid black 1, acid blue 29, solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63, disperse violet 77 and mixtures thereof.
- compositions of the invention may contain one or more other ingredients.
- ingredients include further preservatives (e.g. bactericides), pH buffering agents, perfume carriers, hydrotropes, anti-redeposition agents, soil-release agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents, ironing aids, silicones, antifoams, colourants, pearlisers and/or opacifiers, natural oils/extracts, processing aids, e.g. electrolytes, hygiene agents, e.g. anti-bacterials and antifungals, thickeners and skin benefit agents.
- Examples of the invention are represented by a number. Comparative examples are represented by a letter.
- Example 1 - Preparation and composition of Laundry Liquid Detergent 1, in accordance with the invention, and Comparative Example A.
- Detergent 1 and Comparative Example A had the following compostions.
- Ingredient 1 A Nonionic 7EO, branched (100%) 5 5 Fatty acid (100%) 0.8 0.8 Anionic surfactant 5.5 5.5 Organic acid 0.2 0.2 NaOH solution (50%) + Triethanolamine To pH 8.25 To pH 8.25 Encapsulated Perfume slurry 1.00 1.00 Encapsulated Phase Change Material 0.30 - Perfume oil 1.00 1.00 Water and minors (dyes etc) To 100 To 100
- A is based on a commercially available laundry detergent liquid composition, containing encapsulated perfume and free perfume.
- Encapsulated phase change material Lurapret TX PMC 28, available from BASF was post dosed into Detergent 1.
- Example 2 Treatment of Fabric using Detergent 1 and Comparative Example A
- An untreated monitor was used as a control.
- Example 3 - Perfume intensity arising from fabric treated with Detergent 1 and Comparative Example A
- the boost on rubbing for 1 is 18.5% larger than that for comparative example A. This is a surprising effect given the low level of encapsulated phase change material used in the composition.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Detergent Compositions (AREA)
- Fats And Perfumes (AREA)
Description
- The present invention relates to laundry detergent compositions comprising volatile benefit agent in encapsulated and non-encapsulated forms, encapsulated phase change material and an anionic and a non-ionic surfactant.
- Fragrances are a valuable and ubiquitously employed benefit agent in home and personal care applications. The use of perfumes in laundering signals to the consumer that the washing process has been achieved to an acceptable level.
- Encapsulated perfume technologies are known for use in laundry products. Such technologies provide enhanced fragrance delivery over conventional free perfume oil by overcoming the issue of perfume loss during the drying process by protecting the perfume in the capsule. Encapsulation also ensures that perfume is released at the optimal time to enable the provision of a perceivable benefit to the wearer of laundered garments. Examples of the mode of action of encapsulates include: shear sensitive action, where the perfume core is released in response to mechanical rupture of the encapsulate, and diffusive action, wherein perfume is released by diffusion through the outer wall of the encapsulate. Some encaps are capable of both release mechanisms. One type of capsule that has been used in laundry compositions has a melamine formaldehyde shell and a perfume core. Release of perfume from melamine formaldehyde capsules is friction based, the benefit becoming apparent after a rubbing process is applied to the treated fabric. This benefit is provided by a boost in perfume intensity during wear.
-
WO 2010/060677 (Henkel AG & Co KGAA) discloses scented washing or cleaning agents, comprising anionic and non-ionic surfactants, encapsulated scents and non-encapsulated scents. A preferred embodiment further comprises an encapsulated active comprising urea or other skin conditioning agents. -
WO95/33817 WO2009/083941 concerns an encapsulate comprising a core of a benefit agent encapsulated within a shell. The encapsulate also includes a density balancing agent.US 5112688 discloses microcapsules prepared using coacervation processes which have a large central core of encapsulated material such as perfume and the walls contain small particles that can be activated to disrupt the wall. - We have now found that the inclusion of a low level of encapsulated phase change material significantly increase the shear release effect associated with a fabric cleaning formulation containing conventional encapsulated volatile benefit agents, for example perfume.
- In a first aspect, the present invention provides a laundry detergent composition, which comprises:
- (i) an encapsulated volatile benefit agent;
- (ii) an encapsulated phase change active having a phase change temperature of from 24 to 39 °C, and which comprises hydrocarbon materials comprising a linear or branched alkyl chain comprising an average of from 12 to 50 carbon atoms per molecule;
- (iii) at least one anionic surfactant;
- (iv) at least one non-ionic surfactant; and
- (v) a non-encapsulated volatile benefit agent, wherein the volatile benefit agent is selected from perfumes, essential oils, sensates such as menthol and aromatherapy actives.
- In a second aspect of the present invention there is provided a process for treating fabric comprising the step of treating a fabric article with a composition as defined by the first aspect.
- The encapsulated volatile benefit agent comprises a capsule and a volatile benefit agent. The capsule comprises a shell and a core.
- The capsule comprising the volatile benefit agent comprises a shell that is comprised of materials including but not limited to polyurethane, polyamide, polyolefin, polysaccaharide, protein, silicone, lipid, modified cellulose, gums, polyacrylate, polyphosphate, polystyrene, polyesters or combinations of these materials. Other encapsulating material which may be used effectively in the present invention, such as polymethylmethacrylate. Preferred encapsulating polymers include those formed from melamine formaldehyde or urea formaldehyde condensates, as well as similar types of aminoplasts. Most preferably the shell comprises melamine formaldehyde.
- Additionally, microcapsules made via the simple or complex coacervation of gelatin are suitable for use in compositions of the invention.
- A representative process used for aminoplast encapsulation is disclosed in
3516941 USA U.S. Patent No. 3,516,941 though it is recognised that many variations with regard to materials and process steps are possible. A representative process used for gelatin encapsulation is disclosed in2800457USA U.S. Patent No, 2,800,457 though it is recognized that many variations with regard to materials and process steps are possible. Both of these processes are discussed in the context of fragrance encapsulation for use in consumer products in4145184USA U.S. Patent Nos. 4,145,184 and5112688 USA5,112,688 respectively. - Encapsulation can provide pore vacancies or interstitial openings depending on the encapsulation techniques employed.
- Fragrance capsules known in the art and suitable for use in the present invention comprise a wall or shell comprising a three-dimensional cross-linked network of an aminoplast resin, more specifically a substituted or un-substituted acrylic acid polymer or co-polymer cross-linked with a urea-formaldehyde pre-condensate or a melamine-formaldehyde pre-condensate.
- Microcapsule formation using mechanisms similar to the foregoing mechanism, using (i) melamine-formaldehyde or urea-formaldehyde pre-condensates and (ii) polymers containing substituted vinyl monomeric units having proton-donating functional group moieties (e.g. sulfonic acid groups or carboxylic acid anhydride groups) bonded thereto is disclosed in
44068162USB U.S. Patent 4,406,816 (2-acrylamido-2-methyl-propane sulfonic acid groups),2062570GBA GB 2,062,570 A 2006709GBA GB 2,006,709 A - The capsules for use in the invention may further comprise a carrier oil in the core. The carrier oils are hydrophobic materials that are miscible in the volatile benefit agent materials used in the present invention. Suitable oils are those having reasonable affinity for the benefit agent. Where the benefit agent is a perfume, suitable materials include, but are not limited to triglyceride oil, mono and diglycerides, mineral oil, silicone oil, diethyl phthalate, polyalpha olefins, castor oil and isopropyl myristate. Preferably, the oil is a triglyceride oil, most preferably a capric/caprylic triglyceride oil.
- For liquid laundry detergent compositions, the capsules may be used in the form of a slurry, which preferably comprises about 40% solids.
- Particle size and average diameter of the capsules can vary from about 10 nanometers to about 1000 microns, preferably from about 50 nanometers to about 100 microns, more preferably from about 2 to about 40 microns, even more preferably from about 4 to 15 microns. A particularly preferred range is from about 5 to 10 microns, for example 6 to 7 microns. The capsule distribution can be narrow, broad or multimodal. Multimodal distributions may be composed of different types of capsule chemistries.
- The shell may further comprise a deposition aid, which is preferably covalently attached.
- A preferred deposition aid is a polysaccharide. The polysaccharide preferably has a β-1,4-linked backbone.
- Preferably the polysaccharide is a cellulose, a cellulose derivative, or another β-1,4-linked polysaccharide having an affinity for cellulose, such as polymannan, polyglucan, polyglucomannan, polyxyloglucan and polygalactomannan or a mixture thereof. More preferably, the polysaccharide is selected from the group consisting of polyxyloglucan and polygalactomannan.
- Highly preferred polysaccharides are selected from locust bean gum, tamarind gum, xyloglucan, non-ionic guar gum, cationic starch and mixtures thereof. Most preferably, the deposition aid is locust bean gum.
- Preferably, the polysaccharide backbone has only β-1,4 linkages. Optionally, the polysaccharide has linkages in addition to the β-1,4 linkages, such as β-1,3 linkages. Thus, optionally some other linkages are present. Polysaccharide backbones which include some material which is not a saccharide ring are also within the ambit of the present invention (whether terminal or within the polysaccharide chain).
- The polysaccharide may be straight or branched. Many naturally occurring polysaccharides have at least some degree of branching, or at any rate at least some saccharide rings are in the form of pendant side groups (which are therefore not in themselves counted in determining the degree of substitution) on a main polysaccharide backbone.
- Preferably, the polysaccharide is present at levels of between 0.1 % to 10% w/w by weight of the total amount of the particle.
- The deposition aid, which is preferably a polysaccharide, is attached to the particle by means of a covalent bond, entanglement or strong adsorption, preferably by a covalent bond or entanglement and most preferably by means of a covalent bond. By entanglement as used herein is meant that the deposition aid is adsorbed onto the particle as the polymerisation proceeds and the particle grows in size, part of the adsorbed deposition aid becomes buried within the interior of the particle. Hence at the end of the polymerisation, part of the deposition aid is entrapped and bound in the polymer matrix of the particle, whilst the remainder is free to extend into the aqueous phase.
- By strong adsorption as used herein is meant strong adsorption of the deposition aid to the surface of the particle; such adsorption can, for example, occur due to hydrogen bonding, Van Der Waals or electrostatic attraction between the deposition aid and the particle.
- The deposition aid is thus mainly attached to the particle surface and is not, to any significant extent, distributed throughout the internal bulk of the particle. This is distinct from graft copolymers in which e.g. a polysaccharide may be grafted along the length of a polymer chain. A particle which is formed from a graft copolymer would, therefore, contain polysaccharide throughout the internal bulk of the particle as well as on the particle surface and the present invention is not intended to cover such a particle. Thus the particle which is produced when using a polysaccharide as the deposition aid according to the process of the invention can be thought of as a "hairy particle", which is different from a graft copolymer. This feature of the invention provides significant cost reduction opportunities for the manufacturer as much less deposition aid is required to achieve the same level of activity as systems which utilise polysaccharide copolymers.
- The deposition aid is present in the outermost portion of the shell, which is made of melamine formaldehyde polymer having a thickness of from 5 to 20 nm.
- Polyesters of terephthalic and other aromatic dicarboxylic acids having soil release properties, in particular, the so-called PET/POET (polyethylene terephthalate/polyoxyethylene terephthalate) and PET/PEG (polyethylene terephthalate/polyethylene glycol) polyesters may be employed as deposition aids.
- The polymer must have at least one mole free OH group per mole polymer, to allow covalent binding to the reactive dye(s). Most preferably the polymer comprises at least two free OH groups. Preferably the OH groups are the terminal groups of the polymer.
- Preferably, the oxyalkyleneoxy [-O(CH2)tO-] is selected from: oxy-1,2-propyleneoxy [-OCH2CH(Me)O-]; oxy-1,3-propyleneoxy [O-CH2CH2CH2O-]; and, oxy-1,2-ethyleneoxy [-OCH2CH2O-] (t is an interger). As is evident one or more of the CH2 groups of the oxyalkyleneoxy may be substituted by C1 to C4 alkyl group(s).
- The polyoxyalkyleneoxy facilitates water solubility of the polymer. Preferably, the polyoxyalkyleneoxy [-O(CH2)w-]sO- is selected from: polyoxy-1,2-propyleneoxy [-O(CH2CH(Me)-]sO-; polyoxy-1,3-propyleneoxy [O-CH2CH2CH2-]sO-; and, polyoxy-1,2-ethyleneoxy [O-CH2CH2-]sO-; The polyoxyalkyleneoxy may be a mixture of different oxyalkyleneoxy. Different polyoxyalkyleneoxy types may present in the polymer. (s and w are intergers).
- Preferably the phenyl dicarboxylate is a 1,4-phenyl dicarboxylate. Preferably the phenyl dicarboxylate is of the form: -OC(O)C6H4C(O)O-.
- Examples of preferred polymers are a PET/POET (Polyethylene terephthalate/polyoxyethylene terephthalate), PEG/POET (Polyethyleneglycol/ polyoxyethylene terephthalate) or PET/PEG (Polyethylene terephthalate/ Polyethyleneglycol) polymer. Most preferable a PET/POET.
-
- R2 is selected from H or CH3, preferably H;
- b is 2 or 3, preferably 2;
- y is 2 to 100, preferably 5 to 50;
- n and m are independently 1 to 100, preferably 2 to 30; and, the terminal (end) groups of the polymer are (CH2)bOH.
- The polymers may be synthesised by a variety of routes, for example an esterification reaction of dimethyl terephthalate with ethyleneglycol and polyethyleneglycol, this reaction is discussed in Polymer Bulletin 28, 451-458 (1992). Another example would be the direct esterification of terephthalic acid with ethylene glycol and/or propylene glycol and polypropylene glycol.
- A further example would be a transesterification of a polyethyleneterephthalate with a polyethyleneglycol or polypropylene gycol.
- It is preferred that the number average molecular weight of the polymer is in the range from 1000 to 50,000, preferably the average molecular weight of the polymer is in the range of from 1000 to 15000, more preferably from 2000 to 10000.
- The volatile benefit agent is an agent which is volatile and which confers a benefit to fabric.
- Suitable volatile benefit agents include perfumes, essential oils, sensates such as menthol and aromatherapy actives, preferably perfumes. Mixtures of volatile benefit agents may be used.
- The total amount of volatile benefit agent is preferably from 0.01 to 10 % by weight, more preferably from 0.05 to 5 % by weight, even more preferably from 0.1 to 4.0 %, most preferably from 0.15 to 4.0 % by weight, based on the total weight of the composition.
- The preferred volatile benefit agent is a perfume. The compositions of the compositions of the invention also comprise an unconfined (also called non- encapsulated) volatile benefit agent. Where the volatile benefit agent is a perfume, the perfumes described below are suitable for use as the encapsulated volatile benefit agent and also as the unconfined perfume component.
- Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA). These substances are well known to the person skilled in the art of perfuming, flavouring, and/or aromatizing consumer products, i.e., of imparting an odour and/or a flavour or taste to a consumer product traditionally perfumed or flavoured, or of modifying the odour and/or taste of said consumer product.
- By perfume in this context is not only meant a fully formulated product fragrance, but also selected components of that fragrance, particularly those which are prone to loss, such as the so-called 'top notes'.
- Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Examples of well known top-notes include citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. Top notes typically comprise 15-25%wt of a perfume composition and in those embodiments of the invention which contain an increased level of top-notes it is envisaged at that least 20%wt would be present within the encapsulate.
- Some or all of the perfume or pro-fragrance may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius and pro-fragrances which can produce such components.
- It is also advantageous to encapsulate perfume components which have a low Clog P (i.e. those which will be partitioned into water), preferably with a Clog P of less than 3.0. These materials, of relatively low boiling point and relatively low Clog P have been called the "delayed blooming" perfume ingredients and include the following materials:
- Allyl Caproate, Amyl Acetate, Amyl Propionate, Anisic Aldehyde, Anisole, Benzaldehyde, Benzyl Acetate, Benzyl Acetone, Benzyl Alcohol, Benzyl Formate, Benzyl Iso Valerate, Benzyl Propionate, Beta Gamma Hexenol, Camphor Gum, Laevo-Carvone, d-Carvone, Cinnamic Alcohol, Cinamyl Formate, Cis-Jasmone, cis-3-Hexenyl Acetate, Cuminic Alcohol, Cyclal C, Dimethyl Benzyl Carbinol, Dimethyl Benzyl Carbinol Acetate, Ethyl Acetate, Ethyl Aceto Acetate, Ethyl Amyl Ketone, Ethyl Benzoate, Ethyl Butyrate, Ethyl Hexyl Ketone, Ethyl Phenyl Acetate, Eucalyptol, Eugenol, Fenchyl Acetate, Flor Acetate (tricyclo Decenyl Acetate), Frutene (tricyclco Decenyl Propionate), Geraniol, Hexenol, Hexenyl Acetate, Hexyl Acetate, Hexyl Formate, Hydratropic Alcohol, Hydroxycitronellal, Indone, Isoamyl Alcohol, Iso Menthone, Isopulegyl Acetate, Isoquinolone, Ligustral, Linalool, Linalool Oxide, Linalyl Formate, Menthone, Menthyl Acetphenone, Methyl Amyl Ketone, Methyl Anthranilate, Methyl Benzoate, Methyl Benyl Acetate, Methyl Eugenol, Methyl Heptenone, Methyl Heptine Carbonate, Methyl Heptyl Ketone, Methyl Hexyl Ketone, Methyl Phenyl Carbinyl Acetate, Methyl Salicylate, Methyl-N-Methyl Anthranilate, Nerol, Octalactone, Octyl Alcohol, p-Cresol, p-Cresol Methyl Ether, p-Methoxy Acetophenone, p-Methyl Acetophenone, Phenoxy Ethanol, Phenyl Acetaldehyde, Phenyl Ethyl Acetate, Phenyl Ethyl Alcohol, Phenyl Ethyl Dimethyl Carbinol, Prenyl Acetate, Propyl Bornate, Pulegone, Rose Oxide, Safrole, 4-Terpinenol, Alpha-Terpinenol, and/or Viridine.
- Preferred non-encapsulated perfume ingredients are those hydrophobic perfume components with a ClogP above 3. As used herein, the term "ClogP" means the calculated logarithm to base 10 of the octanol/water partition coefficient (P). The octanol/water partition coefficient of a perfume raw material (PRM) is the ratio between its equilibrium concentrations in octanol and water. Given that this measure is a ratio of the equilibrium concentration of a PRM in a non-polar solvent (octanol) with its concentration in a polar solvent (water), ClogP is also a measure of the hydrophobicity of a material--the higher the ClogP value, the more hydrophobic the material. ClogP values can be readily calculated from a program called "CLOGP" which is available from Daylight Chemical Information Systems Inc., Irvine Calif., USA. Octanol/water partition coefficients are described in more detail in
U.S. Pat. No. 5,578,563 . - Perfume components with a ClogP above 3 comprise: Iso E super, citronellol, Ethyl cinnamate, Bangalol, 2,4,6-Trimethylbenzaldehyde, Hexyl cinnamic aldehyde, 2,6-Dimethyl-2-heptanol, Diisobutylcarbinol, Ethyl salicylate, Phenethyl isobutyrate, Ethyl hexyl ketone, Propyl amyl ketone, Dibutyl ketone, Heptyl methyl ketone, 4,5-Dihydrotoluene, Caprylic aldehyde, Citral, Geranial, Isopropyl benzoate, Cyclohexanepropionic acid, Campholene aldehyde, Caprylic acid, Caprylic alcohol, Cuminaldehyde, 1-Ethyl-4-nitrobenzene, Heptyl formate, 4-Isopropylphenol, 2-Isopropylphenol, 3-Isopropylphenol, Allyl disulfide, 4-Methyl-1-phenyl-2-pentanone, 2-Propylfuran, Allyl caproate, Styrene, Isoeugenyl methyl ether, Indonaphthene, Diethyl suberate, L-Menthone, Menthone racemic, p-Cresyl isobutyrate, Butyl butyrate, Ethyl hexanoate, Propyl valerate, n-Pentyl propanoate, Hexyl acetate, Methyl heptanoate, trans-3,3,5-Trimethylcyclohexanol, 3,3,5-Trimethylcyclohexanol, Ethyl p-anisate, 2-Ethyl-1-hexanol, Benzyl isobutyrate, 2,5-Dimethylthiophene, Isobutyl 2-butenoate, Caprylnitrile, gamma-Nonalactone, Nerol, trans-Geraniol, 1-Vinylheptanol, Eucalyptol, 4-Terpinenol, Dihydrocarveol, Ethyl 2-methoxybenzoate, Ethyl cyclohexanecarboxylate, 2-Ethylhexanal, Ethyl amyl carbinol, 2-Octanol, 2-Octanol, Ethyl methylphenylglycidate, Diisobutyl ketone, Coumarone, Propyl isovalerate, Isobutyl butanoate, Isopentyl propanoate, 2-Ethylbutyl acetate, 6-Methyl-tetrahydroquinoline, Eugenyl methyl ether, Ethyl dihydrocinnamate, 3,5-Dimethoxytoluene, Toluene, Ethyl benzoate, n-Butyrophenone, alpha-Terpineol, Methyl 2-methylbenzoate, Methyl 4-methylbenzoate, Methyl 3, methylbenzoate, sec. Butyl n-butyrate, 1,4-Cineole, Fenchyl alcohol, Pinanol, cis-2-Pinanol, 2,4, Dimethylacetophenone, Isoeugenol, Safrole, Methyl 2-octynoate, o-Methylanisole, p-Cresyl methyl ether, Ethyl anthranilate, Linalool, Phenyl butyrate, Ethylene glycol dibutyrate, Diethyl phthalate, Phenyl mercaptan, Cumic alcohol, m-Toluquinoline, 6-Methylquinoline, Lepidine, 2-Ethylbenzaldehyde, 4-Ethylbenzaldehyde, o-Ethylphenol, p-Ethylphenol, m-Ethylphenol, (+)-Pulegone, 2,4-Dimethylbenzaldehyde, Isoxylaldehyde, Ethyl sorbate, Benzyl propionate, 1,3-Dimethylbutyl acetate, Isobutyl isobutanoate, 2,6-Xylenol, 2,4-Xylenol, 2,5-Xylenol, 3,5-Xylenol, Methyl cinnamate, Hexyl methyl ether, Benzyl ethyl ether, Methyl salicylate, Butyl propyl ketone, Ethyl amyl ketone, Hexyl methyl ketone, 2,3-Xylenol, 3,4, Xylenol, Cyclopentadenanolide and Phenyl ethyl 2 phenylacetate 2.
- It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above and/or the list of perfume components with a ClogP above 3 present in the perfume.
- The volatile benefit agent may include an insect repellent. In chemical terms, most repellent actives belong to one of four groups: amides, alcohols, esters or ethers. Those suitable for use in the present invention are liquids or solids with a relatively low melting point and a boiling point above 150 °C, preferably liquids. They evaporate slowly at room temperature. Where the volatile benefit agent is an insect repellent, the repellents described below are suitable for use as the encapsulated volatile benefit agent and also as the unconfined repellent component.
- Many suitable insect repellents are related to perfume species (many fall into both classes). The most commonly used insect repellents include: DEET (N,N-diethyl- m-toluamide), essential oil of the lemon eucalyptus (Corymbia citriodora) and its active compound p-menthane-3,8-diol (PMD), Icaridin, also known as Picaridin, 0- Limonene, Bayrepel, and KBR 3023, Nepetalactone, also known as "catnip oil", Citronella oil, Permethrin, Neem oil and Bog Myrtle.
- Known insect repellents derived from natural sources include: Achillea alpina, alpha-terpinene, Basil oil (Ocimum basilicum), Callicarpa americana (Beautyberry), Camphor, Carvacrol, Castor oil (Ricinus communis), Catnip oil (Nepeta species), Cedar oil (Cedrus atlantica), Celery extract (Apium graveolens), Cinnamon (Cinnamomum Zeylanicum, leaf oil), Citronella oil (Cymbopogon fleusus), Clove oil (Eugenic caryophyllata), Eucalyptus oil (70%+ eucalyptol, also known as cineol), Fennel oil (Foeniculum vulgare), Garlic Oil (Allium sativum), Geranium oil (also known as Pelargonium graveolens), Lavender oil (Lavandula officinalis), Lemon eucalyptus (Corymbia citriodora) essential oil and its active ingredient p-menthane-3,8-diol (PMD), Lemongrass oil (Cymbopogon flexuosus), Marigolds (Tagetes species), Marjoram (Tetranychus urticae and Eutetranychus orientalis), Neem oil (Azadirachta indica), Oleic acid, Peppermint (Mentha x piperita), Pennyroyal (Mentha pulegium), Pyrethrum (from Chrysanthemum species, particularly C. cinerariifolium and C. coccineum), Rosemary oil (Rosmarinus officinalis), Spanish Flag Lantana camara (Helopeltis theivora), Solanum villosum berry juice, Tea tree oil (Melaleuca alternifolia) and Thyme (Thymus species) and mixtures thereof.
- Preferred encapsulated insect repellents are mosquito repellents available from Celessence, Rochester, England. Celessence Repel, containing the active ingredient Saltidin™ and Celessence Repel Natural, containing the active Citrepel™ 75. Saltidin is a man made molecule developed originally by the Bayer Corporation. Citrepel is produced from eucalyptus oils and is high in p-menthane-3,8-diol (PMD). A preferred non-encapsulated repellent is Citriodiol™ supplied by Citrefine.
- Another group of volatile benefit agents with which the present invention can be applied are the so-called 'aromatherapy' materials. These include components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
- Phase change actives are materials that can absorb, store and release heat whilst the material changes its physical form. This is known as a phase change. Water changing from solid (ice) to liquid is an example of this phenomenon. During these phase changes large amounts of heat are absorbed or released.
- The phase change active has a thermal phase transition temperature (TPTT) in the range 24 to 39°C. The TPTT may conveniently be measured by the Perkin & Elmer thermal analysis system.
- The Perkin & Elmer thermal analysis system measures the heat flow into a material to be heated as a function of the temperature of the material. By investigating a material at various temperatures, a temperature profile is obtained. Such a temperature profile usually has one or more peaks, each peak corresponding to a maximum for the heat flow into the material at a specific temperature. The temperature corresponding to the major peak in the temperature profile is referred to as the thermal phase transition temperature. Generally a high TPTT corresponds to a high softening temperature of the material. The material has a TPTT in the range 24 to 39°C, preferably from 25 to 39°C, more preferably from 26 to 38°C and most preferably from 26 to 30°C. Phase change actives possess a latent heat and show a phase transition phenomena between phases at a phase transition temperature. The phase transition of the present invention incorporated solid to liquid, liquid to vapor, solid to vapor, gel to liquid-crystalline phase changes. In the present invention, preferable phase transitions are solid to liquid phase or liquid to solid phase changes. At these phase changes, PTMs reversibly absorb or release heat from the environment at around the phase transition temperature, which is accompanied with a corresponding change in the ambient temperature.
- The phase change active may be in the form of a composition (or mixture) provided that the total composition has a TPTT in the range 24 to 39°C, preferably from 25 to 39°C, more preferably from 26 to 38°C and most preferably from 26 to 30°C, and comprises hydrocarbon materials comprising a linear or branched alkyl chain an average of from 12 to 50 carbon atoms per molecule, preferably from 12 to 30 carbon atoms. Preferably, the hydrocarbon materials are either alkanes or alkenes. Relatively small amounts of non-alkyl substituent groups may be present provided the hydrocarbon nature of the product is not substantially affected. Mixtures of these materials may be used.
- Examples of suitable hydrocarbon materials for use in the hydrocarbon composition are the liquid hydrocarbon materials of natural source. Other liquid hydrocarbon materials including the liquid fractions derived from crude oil, such as mineral oil, liquid paraffins, cracked hydrocarbons and mixtures thereof. A preferred material is paraffin wax (n-Octadecane).
- Examples of solid or semi-solid hydrocarbon materials are the paraffinic materials of longer chain length, and hydrogenated versions of some of the liquid materials mentioned above.
- A particularly useful combination of hydrocarbon materials is a mixture of mineral oil (for example, M85 ex Daltons Company) and petroleum jelly (for example, Silkolene 910 ex Daltons), wherein the weight ratio of mineral oil to petroleum jelly is chosen such that the TPTT of the mixture is in the range of from 24 to 39 °C. In our experiments this result was obtained by using a ratio of mineral oil to petroleum jelly of less than 3:1, preferably from 2:1 to 1:3. The mineral oil was a liquid mixture of linear and branched hydrocarbons having an average number of carbon atoms per molecule of 26. Petroleum jelly was a semi-solid mixture of linear and branched hydrocarbons having an average number of carbon atoms per molecule of 26, and having a softening temperature of about 50°C.
- The encapsulated phase change active comprises a capsule and a phase change active. The capsule comprises a shell and a core. The capsule for the phase change material preferably has a shell that is permeable to the unconfined volatile benefit agent in the composition. A mixture of encapsulated phase change actives may be present.
- The phase change active is encapsulated in a polymer shell to form encapsulated particles having a preferred particle size of from 10 nm to 1000 µm, preferably 50 nm to 100 µm, more preferably 0.2 to 30 µm. The use of encapsulated materials has the advantage that the materials may be readily dispersed without interference or interaction with the fabric softener compound. An additional advantage is that the encapsulated material does not cause a "messiness" feeling when deposited on the fabric which may be present with materials of a semi-liquid nature.
- Suitable encapsulating polymers include those formed from melamine-formaldehyde or urea formaldehyde condensates, as well as similar types of aminoplasts. Additionally, capsules made via the simple or complex coacervation of gelatin are also preferred for use with the coating. Capsules having shell walls comprised of polyurethane, polyamide, polyolefin, polysaccaharide, protein, silicone, lipid, modified cellulose, gums, polyacrylate, polyphosphate, polystyrene, and polyesters or combinations of these materials are also functional.
- Further examples of suitable phase change actives are disclosed in
WO 03/0144460 - A preferred material is Lurapret TX PMC 28 commercially available from BASF which is a material, specifically paraffin wax (comprising n-Octadecane), encapsulated in polymethylmethacrylate having a particle size in the range 0.2 to 20µm. This material has a phase transition temperature of about 28°C.
- The phase change actives are generally deposited to apply from 0.2 to 1 %, preferably 0.2 to 0.5 % by weight of the fabric after drying. The encapsulated phase change actives are preferably present in an amount of from 0.01 to 15 wt %, more preferably 0.01 to 10 wt %, even more preferably from 0.05 to 5 wt %, still more preferably from 0.05 to 2 wt %, more preferably still from 0.05 to 1 wt % and most preferably from 0.05 to 0.5 wt % by weight of the fabric softening composition.
- The encapsulated phase change material comprises a shell that is permeable to the unconfined volatile benefit agent in the composition. Suitable encapsulating polymers include those formed from melamine-formaldehyde or urea formaldehyde condensates, as well as similar types of aminoplasts. Additionally, capsules made via the simple or complex coacervation of gelatin are also preferred for use with the coating. Capsules having shell walls comprised of polyurethane, polyamide, polyolefin, polysaccaharide, protein, silicone, lipid, modified cellulose, gums, polyacrylate, polyphosphate, polystyrene, and polyesters or combinations of these materials are also suitable. A preferred material is polymethylmethacrylate.
- The composition of the invention comprises at least one anionic surfactant and at least one nonionic surfactant.
- Examples of suitable anionic surfactants include alkylbenzene sulfonates, such as linear alkylbenzene sulfonate, particularly linear alkylbenzene sulfonates having an alkyl chain length of C8-C15. It is preferred that the level of linear alkylbenzene sulfonate is from 0 wt% to 30 wt%, more preferably 1 wt% to 25 wt%, most preferably from 2 wt% to 15 wt%.
- The compositions of the invention may contain other anionic surfactants in amounts additional to the percentages quoted above. Suitable anionic surfactants are well-known to those skilled in the art. Examples include primary and secondary alkyl sulfates, particularly C8-C20 primary alkyl sulfates; alkyl ether sulfates; olefin sulfonates; alkyl xylene sulfonates; dialkyl sulfosuccinates; and fatty acid ester sulfonates. Sodium salts are generally preferred.
- The compositions of the invention also contain at least one non-ionic surfactant. Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C8-C20 aliphatic alcohols ethoxylated with an average of from 1 to 20 moles of ethylene oxide per mole of alcohol, and more especially the C10-C15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol. Non-ethoxylated nonionic surfactants include alkylpolyglycosides, glycerol monoethers, and polyhydroxyamides (glucamide).
- It is preferred that the level of non-ionic surfactant is from 0.5 wt% to 30 wt%, preferably from 1 wt% to 25 wt%, most preferably from 2 wt% to 15 wt%.
- The laundry detergent composition of the invention is preferably a main wash cleaning composition, or a softening-in-the-wash composition.
- The compositions of the invention may be in any physical form e.g. a solid such as a powder or granules, a tablet, a solid bar, a paste, gel or liquid, for example an aqueous based liquid, a spray, a stick, an impregnated substrate, foam or mousse. In particular the compositions may be liquid, powder, or unit dose such as tablet laundry compositions.
- The liquid products of the invention may have pH ranging from 6 to 12 (for fabric softening-in-the-wash compositions). This pH range preferably remains stable over the shelf life of the product.
- Compositions in accordance with the invention may comprise at least one further surface-active compound, selected from soaps, cationic surfactants, zwitterionic surfactants, amphoteric surfactants and mixtures thereof. The choice of surface-active compound (surfactant), and the amount present, will depend on the intended use of the detergent composition. In fabric washing compositions, different surfactant systems may be chosen, as is well known to the skilled formulator, for handwashing products and for products intended for use in different types of washing machine.
- Many suitable surface-active compounds are available and are described in the literature, for example, in "Surface-Active Agents and Detergents", Volumes I and II, by Schwartz, Perry and Berch.
- The total amount of surfactant present will also depend on the intended end use and may be as high as 60 wt%, for example, in a composition for washing fabrics by hand. In compositions for machine washing of fabrics, a total amount of from 5 to 40 wt% is generally appropriate. Typically the compositions will comprise at least 2 wt% total surfactant e.g. 2-60%, preferably 15-40% most preferably 25-35%.
- Detergent compositions suitable for use in most automatic fabric washing machines generally contain anionic non-soap surfactant, or non-ionic surfactant, or combinations of the two in any suitable ratio, optionally together with soap.
- It is possible to include certain mono-alkyl cationic surfactants which can be used in main-wash compositions for fabrics. Cationic surfactants that may be used include quaternary ammonium salts of the general formula R1R2R3R4N+ X- wherein the R groups are long or short hydrocarbon chains, typically alkyl, hydroxyalkyl or ethoxylated alkyl groups, and X is a counter-ion (for example, compounds in which R1 is a C8-C22 alkyl group, preferably a C8-C10 or C12-C14 alkyl group, R2 is a methyl group, and R3 and R4, which may be the same or different, are methyl or hydroxyethyl groups); and cationic esters (for example, choline esters).
- Amphoteric and zwitterionic surfactants that may be used include alkyl amine oxides, betaines and sulfobetaines.
- Where the composition is a softening from the wash composition, it may comprise a sugar polyester or a softening silicone oil.
- The sugar polyester is preferably selected from the group consisting of sucrose polyesters, glucose polyesters and cellobiose polyesters, and is most preferably a sucrose polyester.
- The sugar polyester may be liquid, soft solid or solid.
- The preferred sucrose polyesters for use in the present invention have 2 to 4 hydrocarbon chains per sugar ring, where the hydrocarbon chain has a length of from 12 to 22 carbon atoms. A particularly preferred sucrose polyester is sucrose tetraerucate.
- An example of a preferred sucrose polyester is Ryoto Sugar Ester ER290 supplied by Mitsubishi Kagaku Foods Corporation, which is a sucrose tetraerucate and according to the manufacturer's specification is mainly Tetraerucate, Pentaerucate and Hexaerucate and has a HLB value of 2.
- The sugar polyester may be pure, or may contain impurities. When present, the impurities are preferably selected from the group consisting of free fatty acid, fatty acid methyl ester, soap, inorganic salts and mixtures thereof.
- The most preferred SPEs are commercially available, such as Emanon SCR-PK (ex KAO), which is a palm kernel derived SPE containing mainly C12-C14 with about 20% C18 mono unsaturatation and SPE-THSBO (ex Clariant), which is derived from touch hardened soy bean oil, having mainly C16-C18 chains with about 80% mono and di unsaturation. The average degree of esterification of the above preferred SPEs is between 4.2-4.7.
- SCR-PK contains up to 20% impurities but SPE-THSBO is pure. SCR-PK contains from 4 to 6 wt% of K soap, 2.5 wt% of free fatty acid, from 10 to 15 wt% of fatty acid methyl ester and less than 1 % of KCI.
- The sugar polyester, being non-ionic oil, requires an emulsifier, that is to say, the sugar polyester must be in an emulsified form. The emulsifier is preferably selected from cationic surfactant, anionic surfactant, non-ionic surfactant, and mixtures thereof.
- Alternatively, the ultra-fine particles of the invention themselves can act as stabilizer and emulsifier for the nonionic softeners such as sugar polyesters (SPEs). Recently the interest in study of solid particles as emulsifies has been reawakened (Binks, B. P. Current Opinions in Colloid Interface Science, 2002, 7, 21).
- Most of recent activities on surface active colloidal particles have focused on very low aspect ratio (spherical) particles. Only recently Alargova et al, Langmuir, 2006, 22, 765-774, have shown that high aspect ratio particles can be used for emulsion stabilisation.
- The compositions of the invention, when used as main wash fabric washing compositions, will generally also contain one or more detergency builder. The total amount of detergency builder in the compositions will typically range from 0 to 80 wt%, preferably from 0 to 60 wt%.
- Inorganic builders that may be present include sodium carbonate, if desired in combination with a crystallisation seed for calcium carbonate, as disclosed in
GB 1 437 950 GB 1 473 201 GB 1 473 202 GB 1 470 250 EP 164 514B - The compositions of the invention preferably contain an alkali metal, preferably sodium, aluminosilicate builder. Sodium aluminosilicates may generally be incorporated in amounts of from 5 to 60% by weight (anhydrous basis), preferably from 10 to 50 wt%, especially from 25 to 50 wt%.
- The alkali metal aluminosilicate may be either crystalline or amorphous or mixtures thereof, having the general formula: 0.8-1.5 Na2O. Al2O3. 0.8-6 SiO2 These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 SiO2 units (in the formula above). Both the amorphous and the crystalline materials can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. Suitable crystalline sodium aluminosilicate ion-exchange detergency builders are described, for example, in
GB 1 429 143 - The zeolite may be the commercially available zeolite 4A now wisely used in laundry detergent powders. In an alternative embodiment of the invention, the zeolite builder incorporated in the compositions of the invention is maximum aluminium zeolite P (zeolite MAP) as described and claimed in
EP 384 070A - In the case of zeolite MAP, zeolite MAP having a silicon to aluminium ratio not exceeding 1.07, more preferably about 1.00, is especially preferred. The calcium binding capacity of zeolite MAP is generally at least 150 mg CaO per g of anhydrous material.
- The zeolites may be supplemented by other inorganic builders, for example, amorphous aluminosilicates, or layered silicates such as SKS-6 ex Clariant.
- The zeolite may be supplemented by organic builders. Organic builders that may be present include polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates; monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di and trisuccinates, carboxymethyloxy succinates, carboxymethyloxymalonates, dipicolinates, hydroxyethyl iminodiacetates, alkyl- and alkenylmalonates and succinates; and sulfonated fatty acid salts. This list is not intended to be exhaustive.
- Especially preferred organic builders are citrates, suitably used in amounts of from 1 to 30 wt%, preferably from 5 to 30 wt%, more preferably from 10 to 25 wt%; and acrylic polymers, more especially acrylic/maleic copolymers, suitably used in amounts of from 0.5 to 15 wt%, preferably from 1 to 10 wt%.
- Builders, both inorganic and organic, are preferably present in alkali metal salt, especially sodium salt, form.
- Builders are suitably present in total amounts of from 10 to 80 wt%, more preferably from 20 to 60 wt%. Builders may be inorganic or organic.
A built composition in accordance with the invention may most preferably comprise from 10 to 80 wt% of a detergency builder (b) selected from zeolites, phosphates, and citrates. - The laundry detergent composition will generally comprise other detergent ingredients well known in the art. These may suitably be selected from bleach ingredients, enzymes, sodium carbonate, sodium silicate, sodium sulphate, foam controllers, foam boosters, perfumes, clays, soil release polymers, dye transfer inhibitors, photobleaches, fluorescers and coloured speckles.
- Compositions according to the invention may also suitably contain a bleach system. Fabric washing compositions may desirably contain peroxy bleach compounds, for example, inorganic persalts or organic peroxyacids, capable of yielding hydrogen peroxide in aqueous solution.
- Suitable peroxy bleach compounds include organic peroxides such as urea peroxide, and inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulfates. Preferred inorganic persalts are sodium perborate monohydrate and tetrahydrate, and sodium percarbonate.
- Especially preferred is sodium percarbonate having a protective coating against destabilisation by moisture. Sodium percarbonate having a protective coating comprising sodium metaborate and sodium silicate is disclosed in
GB 2 123 044B - The peroxy bleach compound is suitably present in an amount of from 0.1 to 35 wt%, preferably from 0.5 to 25 wt%. The peroxy bleach compound may be used in conjunction with a bleach activator (bleach precursor) to improve bleaching action at low wash temperatures. The bleach precursor is suitably present in an amount of from 0.1 to 8 wt%, preferably from 0.5 to 5 wt%.
- Preferred bleach precursors are peroxycarboxylic acid precursors, more especially peracetic acid precursors and pernonanoic acid precursors. Especially preferred bleach precursors suitable for use in the present invention are N,N,N',N',-tetracetyl ethylenediamine (TAED) and sodium nonanoyloxybenzene sulphonate (SNOBS). The novel quaternary ammonium and phosphonium bleach precursors disclosed in
US 4 751 015 andUS 4 818 426 (Lever Brothers Company) andEP 402 971A EP 284 292A EP 303 520A - The bleach system can be either supplemented with or replaced by a peroxyacid, examples of such peracids can be found in
US 4 686 063 andUS 5 397 501 (Unilever). A preferred example is the imido peroxycarboxylic class of peracids described inEP A 325 288 EP A 349 940 DE 382 3172 andEP 325 289 - A bleach stabiliser (transition metal sequestrant) may also be present. Suitable bleach stabilisers include ethylenediamine tetra-acetate (EDTA), diethylenetriamine pentaacetate (DTPA), the polyphosphonates such as Dequest (Trade Mark), ethylenediamine tetramethylene phosphonate (EDTMP) and diethylenetriamine pentamethylene phosphate (DETPMP) and non-phosphate stabilisers such as EDDS (ethylene diamine disuccinate). These bleach stabilisers are also useful for stain removal especially in products containing low levels of bleaching species or no bleaching species.
- An especially preferred bleach system comprises a peroxy bleach compound (preferably sodium percarbonate optionally together with a bleach activator), and a transition metal bleach catalyst as described and claimed in
EP 458 397A EP 458 398A EP 509 787A - The compositions according to the invention may also contain one or more enzyme(s). Suitable enzymes include the proteases, amylases, cellulases, oxidases, peroxidases and lipases usable for incorporation in detergent compositions. Preferred proteolytic enzymes (proteases) are, catalytically active protein materials which degrade or alter protein types of stains when present as in fabric stains in a hydrolysis reaction. They may be of any suitable origin, such as vegetable, animal, bacterial or yeast origin.
- Proteolytic enzymes or proteases of various qualities and origins and having activity in various pH ranges of from 4-12 are available and can be used in the instant invention. Examples of suitable proteolytic enzymes are the subtilins which are obtained from particular strains of B. Subtilis B. licheniformis, such as the commercially available subtilisins Maxatase (Trade Mark), as supplied by Gist Brocades N.V., Delft, Holland, and Alcalase (Trade Mark), as supplied by Novo Industri A/S, Copenhagen, Denmark.
- Particularly suitable is a protease obtained from a strain of Bacillus having maximum activity throughout the pH range of 8-12, being commercially available, e.g. from Novo Industri A/S under the registered trade-names Esperase (Trade Mark) and Savinase (Trade-Mark). The preparation of these and analogous enzymes is described in
GB 1 243 785 - Detergency enzymes are commonly employed in granular form in amounts of from about 0.1 to about 3.0 wt%. However, any suitable physical form of enzyme may be used.
- The compositions of the invention may contain alkali metal, preferably sodium, carbonate, in order to increase detergency and ease processing. Sodium carbonate may suitably be present in amounts ranging from 1 to 60 wt%, preferably from 2 to 40 wt%. However, compositions containing little or no sodium carbonate are also within the scope of the invention.
- Powder flow may be improved by the incorporation of a small amount of a powder structurant, for example, a fatty acid (or fatty acid soap), a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate. One preferred powder structurant is fatty acid soap, suitably present in an amount of from 1 to 5 wt%. The amount of sodium silicate may suitably range from 0.1 to 5 wt%.
- Other materials that may be present in detergent compositions of the invention include sodium silicate; antiredeposition agents such as cellulosic polymers; soil release polymers; inorganic salts such as sodium sulfate; lather control agents or lather boosters as appropriate; proteolytic and lipolytic enzymes; dyes; coloured speckles; perfumes; foam controllers; fluorescers and decoupling polymers. This list is not intended to be exhaustive.
- The detergent composition when diluted in the wash liquor (during a typical wash cycle) will typically give a pH of the wash liquor from 7 to 10.5 for a main wash detergent.
- Particulate detergent compositions are suitably prepared by spray-drying a slurry of compatible heat-insensitive ingredients, and then spraying on or post-dosing those ingredients unsuitable for processing via the slurry. The skilled detergent formulator will have no difficulty in deciding which ingredients should be included in the slurry and which should not.
- Particulate detergent compositions of the invention preferably have a bulk density of at least 400 g/litre, more preferably at least 500 g/litre. Especially preferred compositions have bulk densities of at least 650 g/litre, more preferably at least 700 g/litre.
- Such powders may be prepared either by post-tower densification of spray-dried powder, or by wholly non-tower methods such as dry mixing and granulation; in both cases a high-speed mixer/granulator may advantageously be used. Processes using high-speed mixer/granulators are disclosed, for example, in
EP 340 013A EP 367 339A EP 390 251A EP 420 317A - The micro-powders of the invention are particularly well suited to incorporation into detergent powders.
- Liquid detergent compositions can be prepared by admixing the essential and optional ingredients thereof in any desired order to provide compositions containing components in the requisite concentrations. Liquid compositions according to the present invention can also be in compact form which means it will contain a lower level of water compared to a conventional liquid detergent.
- The fabric treatment compositions of the invention can also contain adjuvants that are normal in the cosmetic, pharmaceutical and/or dermatological field, such as hydrophilic or lipophilic gelling agents, hydrophilic or lipophilic active agents, preserving agents, antioxidants, solvents, fragrances, fillers, screening agents, bactericides, odour absorbers, photobleaches (singlet oxygen or radical type) and dyestuffs. The amounts of these various adjuvants are those conventionally used in the field under consideration and are, for example, from 0.01 to 20% of the total weight of the composition. Examples of suitable biocides for use in the present invention include Proxel (1,2-benzisothiazolin-3-one), available from, for example, Univar, Avecia and Uniqema; and Kathon CG (Methylchloroisothiazolinone and Methylisothiazolinone), available from Rhom and Haas.
- The treatment of the substrate with the composition of the invention can be made by any suitable method such as washing, soaking or rinsing of the substrate but also by direct application such as spraying, rubbing, spotting, smearing, etc.
The treatment may involve contacting the substrate with an aqueous medium comprising the material of the invention. - The treatment may be provided as a spray composition e.g., for domestic (or industrial) application to fabric in a treatment separate from a conventional domestic laundering process. Suitable spray dispensing devices are disclosed in
WO 96/15310 - Optional shading dyes can be used. Preferred dyes are violet or blue. Suitable and preferred classes of dyes are discussed below. Moreover the unsaturated quaternary ammonium compounds are subject to some degree of UV light and/or transition metal ion catalysed radical auto-oxidation, with an attendant risk of yellowing of fabric. The presence of a shading dye also reduces the risk of yellowing from this source.
- Different shading dyes give different levels of colouring. The level of shading dye present in the compositions of the present invention depend, therefore, on the type of shading dye. Preferred overall ranges, suitable for the present invention are from 0.00001 to 0.1 wt %, more preferably 0.0001 to 0.01 wt %, most preferably 0.0005 to 0.005 wt % by weight of the total composition.
- Direct dyes (otherwise known as substantive dyes) are the class of water soluble dyes which have an affinity for fibres and are taken up directly. Direct violet and direct blue dyes are preferred.
- Preferably the dye are bis-azo or tris-azo dyes are used.
-
- ring D and E may be independently naphthyl or phenyl as shown;
- R1 is selected from: hydrogen and C1-C4-alkyl, preferably hydrogen;
- R2 is selected from: hydrogen, C1-C4-alkyl, substituted or unsubstituted phenyl and substituted or unsubstituted naphthyl, preferably phenyl;
- R3 and R4 are independently selected from: hydrogen and C1-C4-alkyl, preferably hydrogen or methyl;
- X and Y are independently selected from: hydrogen, C1-C4-alkyl and C1-C4-alkoxy; preferably the dye has X= methyl; and, Y = methoxy and n is 0, 1 or 2, preferably 1 or 2.
- Preferred dyes are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, and direct violet 99. Bis-azo copper containing dyes such as direct violet 66 may be used.
- The benzidene based dyes are less preferred.
- Preferably the direct dye is present at 0.00001 wt% to 0.0010 wt% of the formulation.
- In another embodiment the direct dye may be covalently linked to the photo-bleach, for example as described in
WO2006/024612 . - Cotton substantive acid dyes give benefits to cotton containing garments. Preferred dyes and mixes of dyes are blue or violet. Preferred acid dyes are:
- (i) azine dyes, wherein the dye is of the following core structure:
- wherein Ra, Rb, Rc and Rd are selected from: H, a branched or linear C1 to C7-alkyl chain, benzyl a phenyl, and a naphthyl;
- the dye is substituted with at least one SO3 - or -COO- group;
- the B ring does not carry a negatively charged group or salt thereof;
- and the A ring may further substituted to form a naphthyl;
- the dye is optionally substituted by groups selected from: amine, methyl, ethyl, hydroxyl, methoxy, ethoxy, phenoxy, Cl, Br, I, F, and NO2.
- Preferred azine dyes are: acid blue 98, acid violet 50, and acid blue 59, more preferably acid violet 50 and acid blue 98.
- Other preferred non-azine acid dyes are acid violet 17, acid black 1 and acid blue 29.
- Preferably the acid dye is present at 0.0005 wt% to 0.01 wt% of the formulation.
- The composition of the invention may comprise one or more hydrophobic dyes selected from benzodifuranes, methine, triphenylmethanes, napthalimides, pyrazole, napthoquinone, anthraquinone and mono-azo or di-azo dye chromophores. Hydrophobic dyes are dyes which do not contain any charged water solubilising group. Hydrophobic dyes may be selected from the groups of disperse and solvent dyes. Blue and violet anthraquinone and mono-azo dye are preferred.
- Preferred dyes include solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63 and disperse violet 77.
- Preferably the hydrophobic dye is present at 0.0001 wt% to 0.005 wt% of the formulation.
- Basic dyes are organic dyes which carry a net positive charge. They deposit onto cotton. They are of particular utility for used in composition that contain predominantly cationic surfactants. Dyes may be selected from the basic violet and basic blue dyes listed in the Colour Index International.
- Preferred examples include triarylmethane basic dyes, methane basic dye, anthraquinone basic dyes, basic blue 16, basic blue 65, basic blue 66, basic blue 67, basic blue 71, basic blue 159, basic violet 19, basic violet 35, basic violet 38, basic violet 48; basic blue 3, basic blue 75, basic blue 95, basic blue 122, basic blue 124, basic blue 141.
- Reactive dyes are dyes which contain an organic group capable of reacting with cellulose and linking the dye to cellulose with a covalent bond. They deposit onto cotton.
- Preferably the reactive group is hydrolysed or reactive group of the dyes has been reacted with an organic species such as a polymer, so as to the link the dye to this species. Dyes may be selected from the reactive violet and reactive blue dyes listed in the Colour Index International.
- Preferred examples include reactive blue 19, reactive blue 163, reactive blue 182 and reactive blue 96.
- Dye conjugates are formed by binding direct, acid or basic dyes to polymers or particles via physical forces.
- Dependent on the choice of polymer or particle they deposit on cotton or synthetics. A description is given in
WO2006/055787 . They are not preferred. - Particularly preferred dyes are: direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, direct violet 99, acid blue 98, acid violet 50, acid blue 59, acid violet 17, acid black 1, acid blue 29, solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63, disperse violet 77 and mixtures thereof.
- The compositions of the invention may contain one or more other ingredients. Such ingredients include further preservatives (e.g. bactericides), pH buffering agents, perfume carriers, hydrotropes, anti-redeposition agents, soil-release agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, sunscreens, anti-corrosion agents, drape imparting agents, anti-static agents, ironing aids, silicones, antifoams, colourants, pearlisers and/or opacifiers, natural oils/extracts, processing aids, e.g. electrolytes, hygiene agents, e.g. anti-bacterials and antifungals, thickeners and skin benefit agents.
- Embodiments of the invention will now be illustrated by the following non-limiting examples. Further modifications will be apparent to the person skilled in the art.
- Examples of the invention are represented by a number. Comparative examples are represented by a letter.
- Unless otherwise stated, amounts of components are expressed as a percentage of the total weight of the composition.
- Detergent 1 and Comparative Example A had the following compostions.
Ingredient 1 A Nonionic 7EO, branched (100%) 5 5 Fatty acid (100%) 0.8 0.8 Anionic surfactant 5.5 5.5 Organic acid 0.2 0.2 NaOH solution (50%) + Triethanolamine To pH 8.25 To pH 8.25 Encapsulated Perfume slurry 1.00 1.00 Encapsulated Phase Change Material 0.30 - Perfume oil 1.00 1.00 Water and minors (dyes etc) To 100 To 100 - A is based on a commercially available laundry detergent liquid composition, containing encapsulated perfume and free perfume.
- Encapsulated phase change material, Lurapret TX PMC 28, available from BASF was post dosed into Detergent 1.
- 100 % cotton terry towelling monitors were washed with Detergent 1 and Comparative Example A using a method that simulated a domestic machine wash, as follows:-
- 1. 40 g of fabric was treated in 1000 ml of water containing 5.5 g of Liquid Detergent (Detergent 1 or Comparative Example A)
- 2. The fabric was then washed in a Tergotometer at 30°C for 30 minutes
- 3. The fabric wash then spun in a Creda Debonair Autopump spin drier for 15 seconds and allowed to dry in air at ambient temperature.
- An untreated monitor was used as a control.
- The dry monitors were then assessed using a standard perfume test (blind sequential monadic, randomised, using 8 expert assessors). Assessments were made both prior to rubbing and after rubbing.
Table 2: Perfume intensity of washed-only fabric (control), and fabric treated with comparative example A and Detergent 1. Perfume intensity difference upon Shear1 No Treatment (control) -0.03571 A 0.7857 1 0.9642 Increased in intensity express as a percentage benefit 18.51% 1Perfume intensity upon shear = difference in perfume intensity between unrubbed and rubbed fabric. - The higher the number, the higher the perfume intensity.
- It will be seen that fabric treated in accordance with the invention provided improved perfume boost.
- The boost on rubbing for 1 is 18.5% larger than that for comparative example A. This is a surprising effect given the low level of encapsulated phase change material used in the composition.
Claims (11)
- A laundry detergent composition, which comprises:(i) an encapsulated volatile benefit agent;(ii) an encapsulated phase change active having a phase transition temperature of from 24 to 39°C;(iii) at least one anionic surfactant; and(iv) at least one non-ionic surfactant;wherein the composition further comprises a non-encapsulated volatile benefit agent, wherein the volatile benefit agent is selected from perfumes, essential oils, sensates such as menthol and aromatherapy actives, wherein the phase change active comprises hydrocarbon materials comprising a linear or branched alkyl chain comprising an average of from 12 to 50 carbon atoms per molecule.
- A composition according to claim 1, which further comprises a sugar polyester.
- A composition according to any preceding claim, wherein the volatile benefit agent is a perfume.
- A composition according to any preceding claim, wherein the volatile benefit agent is present in an amount of from 0.01 to 10 % by weight, based on the total weight of the composition.
- A composition according to any preceding claim, wherein the encapsulated phase change material is present in an amount of from 0.01 to 15 wt % by total weight of the composition.
- A composition according to any preceding claim, wherein the phase change active is selected from mineral oil, liquid paraffins, cracked hydrocarbons and mixtures thereof.
- A composition according to claim 6, wherein the phase change active is n-octadecane.
- A composition according to claims 1-5, wherein the phase change active comprises a mixture of mineral oil and petroleum jelly.
- A composition according to any preceding claim, wherein the encapsulated phase change material has a particle size of from 10 nm to 1000 microns.
- A composition according to any preceding claim, which is an aqueous composition.
- A process for treating fabric comprising the step of treating a fabric article with a composition as defined in any preceding claim.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12805999.5A EP2791309B1 (en) | 2011-12-16 | 2012-12-10 | Improvements relating to fabric treatment compositions |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11193990 | 2011-12-16 | ||
PCT/EP2012/074893 WO2013087549A1 (en) | 2011-12-16 | 2012-12-10 | Improvements relating to fabric treatment compositions |
EP12805999.5A EP2791309B1 (en) | 2011-12-16 | 2012-12-10 | Improvements relating to fabric treatment compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2791309A1 EP2791309A1 (en) | 2014-10-22 |
EP2791309B1 true EP2791309B1 (en) | 2018-02-07 |
Family
ID=47429781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12805999.5A Not-in-force EP2791309B1 (en) | 2011-12-16 | 2012-12-10 | Improvements relating to fabric treatment compositions |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2791309B1 (en) |
CN (1) | CN103987830B (en) |
BR (1) | BR112014013945A2 (en) |
WO (1) | WO2013087549A1 (en) |
ZA (1) | ZA201403696B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11421186B2 (en) | 2019-02-28 | 2022-08-23 | Ecolab Usa Inc. | Hardness additives and block detergents containing hardness additives to improve edge hardening |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104220577B (en) | 2012-04-17 | 2017-12-08 | 荷兰联合利华有限公司 | It is related to the improvement of fabric conditioner |
US9326524B1 (en) | 2014-02-27 | 2016-05-03 | Nantucket Spider, LLC | Insect repellent compositions |
CN111615551B (en) * | 2018-01-17 | 2021-10-01 | 联合利华知识产权控股有限公司 | Laundry detergent |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US112688A (en) | 1871-03-14 | Improvement in rotating cylinder-engines | ||
US2800457A (en) | 1953-06-30 | 1957-07-23 | Ncr Co | Oil-containing microscopic capsules and method of making them |
US3516941A (en) | 1966-07-25 | 1970-06-23 | Minnesota Mining & Mfg | Microcapsules and process of making |
GB1243785A (en) | 1967-10-12 | 1971-08-25 | De La Rue Instr | Improvements in sheet counting apparatus |
GB1437950A (en) | 1972-08-22 | 1976-06-03 | Unilever Ltd | Detergent compositions |
AT330930B (en) | 1973-04-13 | 1976-07-26 | Henkel & Cie Gmbh | PROCESS FOR THE PRODUCTION OF SOLID, SPILLABLE DETERGENTS OR CLEANING AGENTS WITH A CONTENT OF CALCIUM BINDING SUBSTANCES |
US4605509A (en) | 1973-05-11 | 1986-08-12 | The Procter & Gamble Company | Detergent compositions containing sodium aluminosilicate builders |
DE2433485A1 (en) | 1973-07-16 | 1975-02-06 | Procter & Gamble | ALUMINOSILICATE ION EXCHANGERS SUITABLE FOR USE IN DETERGENTS |
US4145184A (en) | 1975-11-28 | 1979-03-20 | The Procter & Gamble Company | Detergent composition containing encapsulated perfume |
JPS602100B2 (en) | 1977-09-28 | 1985-01-19 | 三菱製紙株式会社 | Method for manufacturing microcapsules |
JPS5651238A (en) | 1979-10-02 | 1981-05-08 | Fuji Photo Film Co Ltd | Production of microminiature capsule |
DE2940786A1 (en) | 1979-10-08 | 1981-04-16 | Basf Ag, 6700 Ludwigshafen | METHOD FOR PRODUCING MICROCAPSULES |
CA1202854A (en) | 1982-06-10 | 1986-04-08 | Muthumi Kuroda | Bleaching detergent composition |
DE3413571A1 (en) | 1984-04-11 | 1985-10-24 | Hoechst Ag, 6230 Frankfurt | USE OF CRYSTALLINE LAYERED SODIUM SILICATES FOR WATER SOFTENING AND METHOD FOR WATER SOFTENING |
US4686063A (en) | 1986-09-12 | 1987-08-11 | The Procter & Gamble Company | Fatty peroxyacids or salts thereof having amide moieties in the fatty chain and low levels of exotherm control agents |
US4751015A (en) | 1987-03-17 | 1988-06-14 | Lever Brothers Company | Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions |
US4818426A (en) | 1987-03-17 | 1989-04-04 | Lever Brothers Company | Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions |
US4933103A (en) | 1987-03-23 | 1990-06-12 | Kao Corporation | Bleaching composition |
US4915863A (en) | 1987-08-14 | 1990-04-10 | Kao Corporation | Bleaching composition |
IT1215739B (en) | 1988-01-20 | 1990-02-22 | Ausimont Spa | IMMIDO AROMATIC PEROXYCIDES AS WHITENING AGENTS. |
IT1233846B (en) | 1988-01-20 | 1992-04-21 | Ausimont Spa | IMMEDIATE AROMATIC PEROXIDES |
GB8810193D0 (en) | 1988-04-29 | 1988-06-02 | Unilever Plc | Detergent compositions & process for preparing them |
DE3823172C2 (en) | 1988-07-08 | 1998-01-22 | Hoechst Ag | Omega-phthalimidoperoxihexanoic acid, process for its preparation and its use |
CA2001535C (en) | 1988-11-02 | 1995-01-31 | Peter Willem Appel | Process for preparing a high bulk density granular detergent composition |
CA2001927C (en) | 1988-11-03 | 1999-12-21 | Graham Thomas Brown | Aluminosilicates and detergent compositions |
CA2009047C (en) | 1989-02-27 | 1999-06-08 | Daniel Wayne Michael | Microcapsules containing hydrophobic liquid core |
GB8907187D0 (en) | 1989-03-30 | 1989-05-10 | Unilever Plc | Detergent compositions and process for preparing them |
US4988451A (en) | 1989-06-14 | 1991-01-29 | Lever Brothers Company, Division Of Conopco, Inc. | Stabilization of particles containing quaternary ammonium bleach precursors |
GB8922018D0 (en) | 1989-09-29 | 1989-11-15 | Unilever Plc | Detergent compositions and process for preparing them |
ES2100924T3 (en) | 1990-05-21 | 1997-07-01 | Unilever Nv | WHITENING ACTIVATION. |
GB9108136D0 (en) | 1991-04-17 | 1991-06-05 | Unilever Plc | Concentrated detergent powder compositions |
US5397501A (en) | 1993-07-26 | 1995-03-14 | Lever Brothers Company, Division Of Conopco, Inc. | Amido peroxycarboxylic acids for bleaching |
US5480577A (en) * | 1994-06-07 | 1996-01-02 | Lever Brothers Company, Division Of Conopco, Inc. | Encapsulates containing surfactant for improved release and dissolution rates |
US5578563A (en) | 1994-08-12 | 1996-11-26 | The Procter & Gamble Company | Composition for reducing malodor impression on inanimate surfaces |
WO1996015310A2 (en) | 1994-11-10 | 1996-05-23 | The Procter & Gamble Company | Wrinkle reducing composition |
CN1145946A (en) * | 1995-09-21 | 1997-03-26 | 温州市工业科学研究所 | Water-free hand-cleaning detergent |
WO2003014446A1 (en) | 2001-08-07 | 2003-02-20 | Teijin Limited | Reinforcing composite yarn and production method therefor |
US6927201B2 (en) * | 2001-08-28 | 2005-08-09 | Unilever Home & Personal Care Usa Division Of Conopco, Inc. | Capsules for incorporation into detergent or personal care compositions |
ES2404533T3 (en) | 2004-08-30 | 2013-05-28 | Basf Se | Matting Process |
US7686892B2 (en) | 2004-11-19 | 2010-03-30 | The Procter & Gamble Company | Whiteness perception compositions |
GB0623005D0 (en) * | 2006-11-17 | 2006-12-27 | Unilever Plc | Fabric treatment method and composition |
ES2398622T3 (en) * | 2008-06-05 | 2013-03-20 | Unilever N.V. | Improvements related to tissue conditioners |
DE102008059448A1 (en) | 2008-11-27 | 2010-06-02 | Henkel Ag & Co. Kgaa | Perfumed washing or cleaning agent |
US20100190673A1 (en) * | 2009-01-29 | 2010-07-29 | Johan Smets | Encapsulates |
-
2012
- 2012-12-10 EP EP12805999.5A patent/EP2791309B1/en not_active Not-in-force
- 2012-12-10 BR BR112014013945A patent/BR112014013945A2/en active Search and Examination
- 2012-12-10 WO PCT/EP2012/074893 patent/WO2013087549A1/en active Search and Examination
- 2012-12-10 CN CN201280062081.7A patent/CN103987830B/en not_active Expired - Fee Related
-
2014
- 2014-05-21 ZA ZA2014/03696A patent/ZA201403696B/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11421186B2 (en) | 2019-02-28 | 2022-08-23 | Ecolab Usa Inc. | Hardness additives and block detergents containing hardness additives to improve edge hardening |
US11788032B2 (en) | 2019-02-28 | 2023-10-17 | Ecolab Usa Inc. | Hardness additives comprising an aminocarboxylate chelant mixture and block detergents containing this mixture to improve edge hardening |
US12065629B2 (en) | 2019-02-28 | 2024-08-20 | Ecolab Usa Inc. | Hardness additives comprising an acrylate/aminocarboxylate mixture and block detergents containing said mixture to improve edge hardening |
Also Published As
Publication number | Publication date |
---|---|
CN103987830B (en) | 2018-07-31 |
WO2013087549A1 (en) | 2013-06-20 |
CN103987830A (en) | 2014-08-13 |
ZA201403696B (en) | 2015-12-23 |
BR112014013945A2 (en) | 2017-06-13 |
EP2791309A1 (en) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2991414C (en) | Fabric care composition comprising metathesized unsaturated polyol esters | |
US11072766B2 (en) | Process for preparing polyurea microcapsules | |
EP1954796B1 (en) | Improvements relating to fabric treatment compositions | |
US6855681B1 (en) | Detergent composition | |
EP2298439B1 (en) | Encapsulated active material | |
EP2950778B1 (en) | Compositions with improved aesthetic and sensorial properties | |
AU2014257815A1 (en) | Cleansing compositions with improved dispensing and suspension properties | |
EP2925843B1 (en) | Polymer structured aqueous detergent compositions | |
JP2010518271A (en) | Perfume | |
EP2366012B1 (en) | Improvements relating to fabric treatment compositions | |
WO2013087548A2 (en) | Improvements relating to laundry compositions | |
BR112015008135B1 (en) | particle, liquid composition and substrate treatment method | |
DE102008059448A1 (en) | Perfumed washing or cleaning agent | |
EP2791309B1 (en) | Improvements relating to fabric treatment compositions | |
EP2791307B1 (en) | Improvements relating to fabric treatment compositions | |
EP2791311B1 (en) | Fabric treatment | |
WO2010105922A1 (en) | Improvements relating to benefit agent delivery | |
KR20240134016A (en) | Biodegradable prepolymer microcapsules | |
CN113614214A (en) | Encapsulated pro-fragrance compounds | |
EP3130657A1 (en) | Hard surface cleaning composition and process | |
WO2023057323A2 (en) | Composition | |
WO2013189661A1 (en) | Improvements relating to fabric conditioners |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140612 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20151120 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20171031 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 968806 Country of ref document: AT Kind code of ref document: T Effective date: 20180215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012042678 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180207 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 968806 Country of ref document: AT Kind code of ref document: T Effective date: 20180207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180507 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180607 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180508 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180507 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012042678 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20181108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181210 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181210 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181210 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191210 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20191220 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121210 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180207 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602012042678 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201210 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210701 |