EP2789707A1 - Method for producing a motor vehicle chassis component - Google Patents
Method for producing a motor vehicle chassis component Download PDFInfo
- Publication number
- EP2789707A1 EP2789707A1 EP14154800.8A EP14154800A EP2789707A1 EP 2789707 A1 EP2789707 A1 EP 2789707A1 EP 14154800 A EP14154800 A EP 14154800A EP 2789707 A1 EP2789707 A1 EP 2789707A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat treatment
- chassis component
- temperature
- stage
- treatment stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 52
- 239000011265 semifinished product Substances 0.000 claims abstract description 27
- 238000007493 shaping process Methods 0.000 claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 19
- 239000000956 alloy Substances 0.000 claims abstract description 19
- 238000001035 drying Methods 0.000 claims abstract description 11
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- 238000005406 washing Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 31
- 238000011282 treatment Methods 0.000 claims description 19
- 238000000137 annealing Methods 0.000 claims description 11
- 230000007797 corrosion Effects 0.000 description 31
- 238000005260 corrosion Methods 0.000 description 31
- 238000003825 pressing Methods 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- PZZOEXPDTYIBPI-UHFFFAOYSA-N 2-[[2-(4-hydroxyphenyl)ethylamino]methyl]-3,4-dihydro-2H-naphthalen-1-one Chemical compound C1=CC(O)=CC=C1CCNCC1C(=O)C2=CC=CC=C2CC1 PZZOEXPDTYIBPI-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019752 Mg2Si Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- -1 aluminum-magnesium-silicon Chemical compound 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004210 cathodic protection Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
Definitions
- the invention relates to a method for producing a motor vehicle chassis component, in particular a spring arm or a guide arm, in which a semi-finished light metal or a light metal alloy, in particular of a AlMgSi wrought alloy is formed in one or more shaping processing steps to the chassis component.
- Chassis components made of light metal or a light metal alloy are used both for production-related aspects and because of the energy absorption capacity and for reasons of weight reduction to reduce fuel consumption and reduce emissions.
- Intergranular corrosion is a specific manifestation of selective corrosion that can occur in most alloys under appropriate conditions and along the grain boundaries.
- intergranular corrosion The tendency of a material to intergranular corrosion is primarily a consequence of the alloy composition and manufacturing conditions. It is known that the intercrystalline corrosion sensitivity is promoted by insufficient quenching rates after solution annealing, e.g. B. when cooling on the extruder or in thick material cross-sections.
- the occurrence of intergranular corrosion can be alleviated by permanent surface protection measures, such as anodization, coating or cathodic protection.
- permanent surface protection measures such as anodization, coating or cathodic protection.
- DE 695 02 508 T2 describes a method for producing articles of AlSiMgCu alloy and such a rolled or extruded article intended to have improved intercrystalline corrosion resistance.
- From the CH 500 287 A discloses a process for heat treating an aluminum-base alloy, the alloy further containing copper, magnesium and zinc.
- the alloy is heated to a temperature between 460 ° C and 477 ° C for a time sufficient for the components of the alloy to enter solid solution.
- the alloy is then quenched with water and the alloy is then aged by first maintaining it at a temperature between 96 ° C and 107 ° C for 6 to 10 hours and then at a temperature between 149 ° C and 193 ° for 2 to 48 hours C heated.
- the CH 218 418 A discloses a method of manufacturing an aluminum alloy article.
- the alloy is subjected to a heat treatment increasing the strength properties and the resistance to intergranular corrosion and stress corrosion.
- the alloy should be tempered after homogenization at temperatures below 150 ° C.
- the EP 1 232 029 B1 describes a guide or connecting link for use in wheel suspensions of motor vehicles.
- the method involves making the handlebar from a single piece of closed hollow section of high strength extruded aluminum.
- the handlebar is produced from a profile that initially has a rectangular cross-section with adjacent walls of different thickness, the forming of the profile being done only with mechanical cold processing involving stretch bending, pressing, cutting and punching.
- the cold process should avoid heating, forging or welding.
- High-strength aluminum alloys in particular aluminum alloys of the alloy type AlMgSi (series 6000), are used in motor vehicle construction. They are characterized by high strength and can therefore contribute mainly to the weight reduction of components that are exposed to great forces or loads.
- a problem with these aluminum alloys is that they tend to intergranular corrosion after long-term heat influence. This intergranular corrosion leads, as already mentioned above, to notch effects in loaded components.
- the chassis of a motor vehicle includes in particular suspension, suspension, steering but also the brakes. This includes axle components such as axle frames and axle stools. These components are exposed to high static and dynamic forces. Also, chassis components are often welded structures. The heat influence associated with a welding process offers further points of attack for the formation of intercrystalline corrosion.
- the semi-finished products consisting of the light metal alloys are usually subjected to several forming steps, efforts are being made to expand the shaping limits of the semi-finished products, for example the light metal sheets, tubes or profiles. For this reason, forming processes increasingly use forming processes or deep-drawing processes with heated tools, or the semi-finished products are brought to an elevated forming temperature.
- the use of hot forming processes can significantly increase the degree of deformation of the semi-finished aluminum products. However, due to the effect of heat during hot forming, softening also takes place. Furthermore, the intercrystalline corrosion resistance decreases.
- the object of the invention based on the state of the art, is to disclose a method for producing motor vehicle chassis components made of light metal or light metal alloys, which have a longer service life expectation and, in particular, have improved intercrystalline corrosion resistance.
- the production of a motor vehicle chassis component is based on a semifinished product of light metal or a light metal alloy.
- the semifinished product and the motor vehicle chassis component produced therefrom preferably consist of an aluminum-magnesium-silicon (AlMgSi) wrought alloy.
- the semifinished product is formed in one, but especially in several shaping processing steps to the chassis component.
- the forming processing steps include both cutting operations and forming processes, in particular deep drawing operations and / or pressing operations.
- the chassis component is subjected to at least two-stage heat treatment after the end-forming processing step.
- the temperature in the first heat treatment stage is between 70 ° C and 90 ° C.
- the temperature in the second heat treatment stage is between 130 ° C and 150 ° C.
- An essential aspect of the invention is the heat treatment after the shaping of the chassis component. It has been found that the intercrystalline corrosion resistance of the motor vehicle chassis component can be significantly increased by the temperature regime according to the invention. By the heat treatment according to the invention, the intercrystalline susceptibility to corrosion can be avoided, but at least greatly reduced. Samples and their micrographs examined after corrosion tests have shown intercrystalline corrosion attacks below the grain boundaries. The samples were to be evaluated as "without IK (without intergranular corrosion)". The maximum depth of intercrystalline corrosion in microns was less than 50 ⁇ m.
- the method according to the invention makes it possible to produce heavy-duty motor vehicle chassis components with very good intercrystalline corrosion resistance and correspondingly increased service life expectancy.
- an extruded profile is used as semifinished product.
- the temperature and time regime according to the invention avoids the susceptibility to intergranular corrosion or greatly reduces it.
- the two-stage heat treatment after the forming process of the semifinished product and the production of the chassis component is to be regarded as essential for the high intercrystalline corrosion resistance.
- the temperature in the first heat treatment stage is between 70 ° C and 90 ° C, in particular the temperature of the first heat treatment stage is 80 ° C ⁇ 5 ° C.
- the second heat treatment stage sees a temperature in one Range between 130 ° C and 150 ° C.
- the temperature in the second heat treatment step is 140 ° C ⁇ 5 ° C.
- the treatment time or duration of the first heat treatment stage is between 4 minutes (min.) And 12 minutes. Particularly preferably, the treatment time in the first heat treatment stage is 6 min. ⁇ 2 min.
- the treatment time in the second heat treatment step is 8 minutes to 20 minutes.
- the heat treatment after the final shaping takes place within subsequent treatment processes on the molded component.
- the heat treatment of the first heat treatment stage is part of a washing process in which the chassis component is washed and rinsed.
- the heat treatment in the second heat treatment stage is part of a drying process in which the chassis component is subjected to drying after washing and rinsing.
- the drying is carried out by charging the mold component with hot gas.
- hot air is used for drying.
- An essential aspect of the invention accordingly provides that the heat treatment takes place after completion of the mold component within conventional treatment operations, but with the modified temperature and time regime according to the invention.
- the semifinished product is heat treated before being subjected to the shaping operations.
- the semifinished product is subjected to an annealing treatment at temperatures between 500 ° C and 560 ° C, preferably between 500 ° C and 540 ° C.
- a solution annealing or a homogenization of the light metal alloy takes place.
- the semifinished product Before the first shaping processing step, ie after the annealing treatment, the semifinished product is cooled. The quenching after the annealing treatment is performed so as to maintain a uniform distribution of the alloying elements remains. Thereafter, the semi-finished product is fed to the forming process with the shaping processing steps.
- the forming process is designed in particular multi-stage. In this case, preferably a molding shape of the semifinished product up to the mold component.
- the shaping processing steps may also include a final deburring operation.
- the shaping processing steps take place at room temperature.
- the shaping processing steps can take place at a temperature of the semifinished product between 20 ° C and 75 ° C.
- aging in particular hot aging of the motor vehicle mold components, can be carried out.
- different material states of the light metal alloy of the motor vehicle chassis component can be adjusted.
- the semifinished product 1 consists of an AlMgSi alloy (series 6000). This alloy is characterized by its very good pressability, good deep-drawability and good weathering and corrosion resistance. In addition, it is easily weldable.
- the semifinished product 1 is subjected to a heat treatment in a heat treatment plant 2.
- the heat treatment plant 2 may have several, also differently heated and / or tempered furnace zones 3, 4, 5.
- a solution annealing is carried out at a temperature between 500 ° C and 560 ° C, preferably at an average of 520 ° C.
- the duration of experts is chosen so that all possibly present undesirable precipitates, in particular of Mg2Si, the previous heat treatments, for example from the continuous casting process still be present, can be solved with certainty in alpha ( ⁇ ) mixed crystal.
- a duration of about 20 minutes is provided for this first step of the heat treatment for solution annealing a duration of about 20 minutes is provided.
- the semifinished product 1 is quenched to room temperature.
- the homogeneous alpha ( ⁇ ) mixed crystal is fixed at room temperature.
- the quenching process takes place in a cooling unit 6, which may be an immersion cooling.
- the semifinished product 1 is then trimmed in a cutting unit 7, pre-fabricated by cutting technology and / or preconfigured by stamping technology. Thereafter, the semifinished product 1 is subjected to forming processing steps in a plurality of pressing stations 8, 9 and finally shaped to form the chassis component 10. In the figure, two pressing stations 8, 9 are shown.
- the shaping processing may in principle include only one, but in particular also more than two processing stations.
- the forming temperature T u at which the deformation of the semifinished product 1 takes place up to the final shaping of the chassis component 10, is at room temperature.
- the forming temperature T u can be between 20 ° C and 75 ° C.
- handling units such as robots or conveyors are connected between the individual stations shown in the figure.
- an intermediate storage can take place.
- the chassis component 10 is subjected to a two-stage heat treatment.
- the first heat treatment stage is part of a washing process of the chassis component 10.
- the chassis component 10 is supplied to a washing station 11, in which the chassis component 10 is washed and rinsed off.
- the chassis component 10 is heated to a temperature between 70 ° C and 90 ° C, in particular to a temperature T1 of 80 ° C ⁇ 5 ° C.
- the treatment time D1 in the first heat treatment stage is between 4 minutes and 12 minutes, preferably 6 minutes ⁇ 2 minutes. That means, that the chassis component 10 is maintained at the temperature T1 for the duration of the treatment time D1.
- the heat treated chassis member 10 is fed to a second heat treatment stage.
- the second heat treatment stage is integrated in a drying process in a drying station 12.
- the chassis component 10 is dried by exposure to hot air and in this case heated to a temperature T2 between 130 ° C and 140 ° C.
- the treatment time or duration D2 in the second heat treatment stage is 8 minutes to 20 minutes, preferably the treatment time D2 is 10 minutes, + 6 minutes, - 1 minutes.
- the chassis components 10 are removed from the drying station 12 by means of a handling robot 13 and fed to the further treatment or processing.
- Part of a subsequent treatment operation may be a aging, in particular a thermal aging, at a temperature of 140 ° C ⁇ 20 ° C.
- the produced chassis component 10 is in particular a spring link or a guide link for use in the chassis of a motor vehicle.
- the chassis component 10 is characterized by a component-oriented strength and load capacity.
- the chassis component 10 is less prone to corrosion, especially against intergranular corrosion and has a long life expectancy.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Herstellung eines Kraftfahrzeug-Fahrwerksbauteils 10, insbesondere eines Federlenkers oder eines Führungslenkers. Ein Halbzeug 1 aus Leichtmetall bzw. einer Leichtmetalllegierung, vorzugsweise aus einer AlMgSi-Knetlegierung, wird in einem oder mehreren formgebenden Bearbeitungsschritten zum Fahrwerksbauteil 10 umgeformt. Erfindungsgemäß wird das Fahrwerksbauteil 10 nach dem endformgebenden Bearbeitungsschritt einer zumindest zweistufigen Wärmebehandlung unterzogen. In einer ersten Wärmebehandlungsstufe beträgt die Temperatur zwischen 70° C und 90° C. In einer zweiten Wärmebehandlungsstufe beträgt die Temperatur zwischen 130° C und 150° C. Vorzugsweise erfolgt die Wärmebehandlung innerhalb eines Waschvorgangs und eines Trocknungsvorgangs am Fahrwerksbauteil 10.The invention relates to a method for producing a motor vehicle chassis component 10, in particular a spring link or a guide link. A semifinished product 1 made of light metal or a light metal alloy, preferably of an AlMgSi wrought alloy, is formed into the chassis component 10 in one or more shaping processing steps. According to the invention, the chassis component 10 is subjected to at least two-stage heat treatment after the end-forming processing step. In a first heat treatment stage, the temperature is between 70 ° C and 90 ° C. In a second heat treatment stage, the temperature is between 130 ° C and 150 ° C. Preferably, the heat treatment takes place within a washing process and a drying process on the chassis component 10.
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines Kraftfahrzeug-Fahrwerksbauteils, insbesondere eines Federlenkers oder eines Führungslenkers, bei welchem ein Halbzeug aus Leichtmetall bzw. einer Leichtmetalllegierung, insbesondere aus einer AlMgSi-Knetlegierung, in einem oder mehreren formgebenden Bearbeitungsschritten zum Fahrwerksbauteil geformt wird.The invention relates to a method for producing a motor vehicle chassis component, in particular a spring arm or a guide arm, in which a semi-finished light metal or a light metal alloy, in particular of a AlMgSi wrought alloy is formed in one or more shaping processing steps to the chassis component.
Komponenten von Fahrwerken bzw. Fahrwerksbauteile unterliegen hohen statischen und dynamischen Belastungen und sollen darüber hinaus im Falle eines Unfalls Verformungen möglichst ohne Bruch verkraften. Sowohl unter fertigungstechnischen Aspekten als auch wegen des Energieabsorptionsvermögens und aus Gründen der Gewichtsreduzierung zur Verminderung des Kraftstoffverbrauchs und der Schadstoffemissionsreduzierung kommen Fahrwerksbauteile aus Leichtmetall bzw. einer Leichtmetalllegierung zur Anwendung.Components of chassis or chassis components are subject to high static and dynamic loads and, moreover, should withstand deformation in the event of an accident as far as possible without breakage. Chassis components made of light metal or a light metal alloy are used both for production-related aspects and because of the energy absorption capacity and for reasons of weight reduction to reduce fuel consumption and reduce emissions.
Bei Bauteilen aus Legierungen besteht generell das Problem der sogenannten interkristallinen Korrosion. Die interkristalline Korrosion ist eine spezielle Erscheinungsform selektiver Korrosion, die in den meisten Legierungen bei entsprechenden Bedingungen auftreten kann und entlang der Korngrenzen verläuft.In the case of components made of alloys, there is generally the problem of so-called intergranular corrosion. Intergranular corrosion is a specific manifestation of selective corrosion that can occur in most alloys under appropriate conditions and along the grain boundaries.
Die Neigung eines Werkstoffs zur interkristallinen Korrosion ist vorrangig eine Folge der Legierungszusammensetzung und der Herstellungsbedingungen. Es ist bekannt, dass die interkristalline Korrosionsempfindlichkeit gefördert wird durch ungenügende Abschreckgeschwindigkeiten nach dem Lösungsglühen, z. B. beim Abkühlen an der Strangpresse oder in dicken Materialquerschnitten. Das Auftreten von interkristalliner Korrosion kann durch dauerhafte Oberflächenschutzmaßnahmen gemildert werden, wie Anodisieren, Beschichten oder durch einen kathodischen Schutz. Diese Maßnahmen sind jedoch aufwendig und kostenrelevant.The tendency of a material to intergranular corrosion is primarily a consequence of the alloy composition and manufacturing conditions. It is known that the intercrystalline corrosion sensitivity is promoted by insufficient quenching rates after solution annealing, e.g. B. when cooling on the extruder or in thick material cross-sections. The occurrence of intergranular corrosion can be alleviated by permanent surface protection measures, such as anodization, coating or cathodic protection. However, these measures are complex and cost-relevant.
Die
Aus der
Auch die
Durch die
Die
Hochfeste Aluminiumlegierungen, insbesondere Aluminiumlegierungen des Legierungstyps AlMgSi (Serie 6000), werden im Kraftfahrzeugbau verwendet. Sie zeichnen sich durch hohe Festigkeiten aus und können daher vor allem zur Gewichtsreduktion von Bauteilen beitragen, die großen Kräften oder Belastungen ausgesetzt sind. Problematisch bei diesen Aluminiumlegierungen ist, dass diese nach dauerhaftem Wärmeeinfluss zur interkristallinen Korrosion neigen. Diese interkristalline Korrosion führt, wie vorstehend bereits erwähnt, zu Kerbwirkungen in belasteten Bauteilen. Damit besteht beim Auftreten interkristalliner Korrosion unter Last prinzipiell eine Bruchgefahr für diese Bauteile. Dies gilt vor allem für Bauteile des Fahrwerks eines Kraftfahrzeugs. Zum Fahrwerk eines Kraftfahrzeugs gehören insbesondere Radaufhängung, Federung, Lenkung aber auch die Bremsen. Darunter fallen auch Achsbauteile wie beispielsweise Achsrahmen und Achsschemel. Diese Bauteile sind hohen statischen und dynamischen Kräften ausgesetzt. Auch handelt es sich bei Fahrwerksbauteilen häufig um Schweißkonstruktionen. Die mit einem Schweißvorgang einhergehende Wärmebeeinflussung bietet weitere Angriffspunkte für die Entstehung von interkristalliner Korrosion.High-strength aluminum alloys, in particular aluminum alloys of the alloy type AlMgSi (series 6000), are used in motor vehicle construction. They are characterized by high strength and can therefore contribute mainly to the weight reduction of components that are exposed to great forces or loads. A problem with these aluminum alloys is that they tend to intergranular corrosion after long-term heat influence. This intergranular corrosion leads, as already mentioned above, to notch effects in loaded components. Thus, when intercrystalline corrosion occurs under load, there is a risk of breakage for these components. This is especially true for components of the chassis of a motor vehicle. The chassis of a motor vehicle includes in particular suspension, suspension, steering but also the brakes. This includes axle components such as axle frames and axle stools. These components are exposed to high static and dynamic forces. Also, chassis components are often welded structures. The heat influence associated with a welding process offers further points of attack for the formation of intercrystalline corrosion.
Da bei der Herstellung von Fahrwerksbauteilen die aus den Leichtmetalllegierungen bestehenden Halbzeuge zumeist mehreren Umformschritten unterzogen werden, ist man bestrebt, die Formgebungsgrenzen der Halbzeuge, beispielsweise der Leichtmetallbleche, -rohre oder -profile zu erweitern. Deshalb werden bei den Umformungen vermehrt auch Umformprozesse bzw. Tiefziehvorgänge mit beheizten Werkzeugen verwendet bzw. die Halbzeuge auf eine erhöhte Umformtemperatur gebracht. Durch die Verwendung von Warmumformprozessen lassen sich die Umformgrade der Leichtmetallhalbzeuge deutlich steigern. Allerdings erfolgt durch die Wärmeeinwirkung beim Warmumformen auch eine Entfestigung. Des Weiteren nimmt die interkristalline Korrosionsbeständigkeit ab.Since, in the production of suspension components, the semi-finished products consisting of the light metal alloys are usually subjected to several forming steps, efforts are being made to expand the shaping limits of the semi-finished products, for example the light metal sheets, tubes or profiles. For this reason, forming processes increasingly use forming processes or deep-drawing processes with heated tools, or the semi-finished products are brought to an elevated forming temperature. The use of hot forming processes can significantly increase the degree of deformation of the semi-finished aluminum products. However, due to the effect of heat during hot forming, softening also takes place. Furthermore, the intercrystalline corrosion resistance decreases.
Gerade bei Kraftfahrzeug-Fahrwerkskomponenten aus Leichtmetalllegierungen ist daher auf eine ausreichende interkristalline Korrosionsbeständigkeit zu achten, da diese Bauteile, wie vorstehend bereits erwähnt, aufgrund ihrer schwingenden Beanspruchung hohen dynamischen Belastungen unterworfen sind. Korrosionsstellen können hier zu Bauteilbeeinträchtigungen führen.Especially in automotive chassis components made of light metal alloys is therefore to pay attention to a sufficient intercrystalline corrosion resistance, since these components, as already mentioned above, are subjected to high dynamic loads due to their oscillatory stress. Corrosion points can lead to component impairments.
Der Erfindung liegt ausgehend vom Stand der Technik die Aufgabe zugrunde, ein Verfahren zur Herstellung von Kraftfahrzeug-Fahrwerkskomponenten aus Leichtmetall bzw. Leichtmetalllegierungen aufzuzeigen, die eine höhere Lebensdauererwartung haben und insbesondere eine verbesserte interkristalline Korrosionsbeständigkeit besitzen.The object of the invention, based on the state of the art, is to disclose a method for producing motor vehicle chassis components made of light metal or light metal alloys, which have a longer service life expectation and, in particular, have improved intercrystalline corrosion resistance.
Die Lösung dieser Aufgabe besteht nach der Erfindung in einem Verfahren gemäß Anspruch 1.The solution to this problem consists according to the invention in a method according to claim 1.
Die Herstellung eines Kraftfahrzeug-Fahrwerksbauteils, insbesondere eines Federlenkers oder eines Führungslenkers, geht von einem Halbzeug aus Leichtmetall bzw. einer Leichtmetalllegierung aus. Vorzugsweise besteht das Halbzeug und das daraus gefertigte Kraftfahrzeug-Fahrwerksbauteil aus einer Aluminium-Magnesium-Silizium (AlMgSi)-Knetlegierung. Das Halbzeug wird in einem, insbesondere jedoch in mehreren formgebenden Bearbeitungsschritten zum Fahrwerksbauteil geformt. Zu den formgebenden Bearbeitungsschritten zählen sowohl Schneidoperationen als auch Umformprozesse, insbesondere Tiefziehoperationen und/oder Pressoperationen. Erfindungsgemäß wird das Fahrwerksbauteil nach dem endformgebenden Bearbeitungsschritt einer zumindest zweistufigen Wärmebehandlung unterzogen. Die Temperatur in der ersten Wärmebehandlungsstufe liegt zwischen 70° C und 90° C. Die Temperatur in der zweiten Wärmebehandlungsstufe beträgt zwischen 130° C und 150° C.The production of a motor vehicle chassis component, in particular a spring link or a guide link, is based on a semifinished product of light metal or a light metal alloy. The semifinished product and the motor vehicle chassis component produced therefrom preferably consist of an aluminum-magnesium-silicon (AlMgSi) wrought alloy. The semifinished product is formed in one, but especially in several shaping processing steps to the chassis component. The forming processing steps include both cutting operations and forming processes, in particular deep drawing operations and / or pressing operations. According to the invention, the chassis component is subjected to at least two-stage heat treatment after the end-forming processing step. The temperature in the first heat treatment stage is between 70 ° C and 90 ° C. The temperature in the second heat treatment stage is between 130 ° C and 150 ° C.
Ein wesentlicher Aspekt der Erfindung bildet die Wärmebehandlung nach der Formgebung des Fahrwerksbauteils. Es wurde festgestellt, dass sich durch das erfindungsgemäße Temperaturregime die interkristalline Korrosionsbeständigkeit des Kraftfahrzeug-Fahrwerksbauteils deutlich steigern lässt. Durch die erfindungsgemäße Wärmebehandlung kann die interkristalline Korrosionsanfälligkeit vermieden, zumindest jedoch stark vermindert werden. Nach Korrosionsversuchen untersuchte Proben und deren Schliffbilder haben Angriffe durch interkristalline Korrosion gezeigt, die unterhalb der Korngrenzen liegen. Die Proben waren als "ohne IK (ohne interkristalline Korrosion)" zu beurteilen. Die maximale Tiefe der interkristallinen Korrosion in Mikron lag unter 50 µm.An essential aspect of the invention is the heat treatment after the shaping of the chassis component. It has been found that the intercrystalline corrosion resistance of the motor vehicle chassis component can be significantly increased by the temperature regime according to the invention. By the heat treatment according to the invention, the intercrystalline susceptibility to corrosion can be avoided, but at least greatly reduced. Samples and their micrographs examined after corrosion tests have shown intercrystalline corrosion attacks below the grain boundaries. The samples were to be evaluated as "without IK (without intergranular corrosion)". The maximum depth of intercrystalline corrosion in microns was less than 50 μm.
Das erfindungsgemäße Verfahren ermöglicht die Herstellung von hochbelastbaren Kraftfahrzeug-Fahrwerksbauteilen mit sehr guter interkristalliner Korrosionsbeständigkeit und entsprechend gesteigerter Lebensdauererwartung.The method according to the invention makes it possible to produce heavy-duty motor vehicle chassis components with very good intercrystalline corrosion resistance and correspondingly increased service life expectancy.
Vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Verfahrens sind Gegenstand der abhängigen Ansprüche 2 bis 12.Advantageous embodiments and further developments of the method according to the invention are the subject matter of the dependent claims 2 to 12.
Vorzugsweise wird als Halbzeug ein Strangpressprofil verwendet.Preferably, an extruded profile is used as semifinished product.
Durch das erfindungsgemäße Temperatur- und Zeitregime wird die Anfälligkeit gegen interkristalline Korrosion vermieden oder ganz stark vermindert. Die zweistufige Wärmebehandlung nach der umformtechnischen Bearbeitung des Halbzeugs und der Herstellung des Fahrwerksbauteils ist als wesentlich für die hohe interkristalline Korrosionsbeständigkeit anzusehen.The temperature and time regime according to the invention avoids the susceptibility to intergranular corrosion or greatly reduces it. The two-stage heat treatment after the forming process of the semifinished product and the production of the chassis component is to be regarded as essential for the high intercrystalline corrosion resistance.
Die Temperatur in der ersten Wärmebehandlungsstufe beträgt zwischen 70° C und 90° C, insbesondere liegt die Temperatur der ersten Wärmebehandlungsstufe bei 80° C ± 5° C. Die zweite Wärmebehandlungsstufe sieht eine Temperatur in einem Bereich zwischen 130° C und 150° C vor. Bevorzugt beträgt die Temperatur in der zweiten Wärmebehandlungsstufe 140° C ± 5° C.The temperature in the first heat treatment stage is between 70 ° C and 90 ° C, in particular the temperature of the first heat treatment stage is 80 ° C ± 5 ° C. The second heat treatment stage sees a temperature in one Range between 130 ° C and 150 ° C. Preferably, the temperature in the second heat treatment step is 140 ° C ± 5 ° C.
Die Behandlungszeit bzw. -dauer der ersten Wärmebehandlungsstufe liegt zwischen 4 Minuten (min.) und 12 Minuten. Besonders bevorzugt liegt die Behandlungszeit in der ersten Wärmebehandlungsstufe bei 6 min. ± 2 min.The treatment time or duration of the first heat treatment stage is between 4 minutes (min.) And 12 minutes. Particularly preferably, the treatment time in the first heat treatment stage is 6 min. ± 2 min.
Die Behandlungszeit in der zweiten Wärmebehandlungsstufe beträgt 8 Minuten bis 20 min.. Für die Praxis wird eine Behandlungszeit in der zweiten Wärmebehandlungsstufe von 10 min. + 6 min./- 1 min. als besonders vorteilhaft angesehen.The treatment time in the second heat treatment step is 8 minutes to 20 minutes. In practice, a treatment time in the second heat treatment step of 10 minutes. + 6 min. - 1 min. considered particularly advantageous.
Ein Aspekt der Erfindung sieht vor, dass die Wärmebehandlung nach der Endformgebung innerhalb von nachfolgenden Behandlungsvorgängen am Formbauteil erfolgt. Die Wärmebehandlung der ersten Wärmebehandlungsstufe ist Bestandteil eines Waschvorgangs, bei dem das Fahrwerksbauteil gewaschen und abgespült wird. Die Wärmebehandlung in der zweiten Wärmebehandlungsstufe ist Bestandteil eines Trocknungsvorgangs, bei dem das Fahrwerksbauteil nach dem Waschen und Abspülen einer Trocknung unterzogen wird. Insbesondere erfolgt die Trocknung durch Beaufschlagung des Formbauteils mit heißem Gas. Insbesondere kommt zum Trocknen heiße Luft zur Anwendung.One aspect of the invention provides that the heat treatment after the final shaping takes place within subsequent treatment processes on the molded component. The heat treatment of the first heat treatment stage is part of a washing process in which the chassis component is washed and rinsed. The heat treatment in the second heat treatment stage is part of a drying process in which the chassis component is subjected to drying after washing and rinsing. In particular, the drying is carried out by charging the mold component with hot gas. In particular, hot air is used for drying.
Ein wesentlicher Aspekt der Erfindung sieht demzufolge vor, dass die Wärmebehandlung nach Fertigstellung des Formbauteils innerhalb konventioneller Behandlungsoperationen erfolgt, allerdings mit dem geänderten erfindungsgemäßen Temperatur- und Zeitregime.An essential aspect of the invention accordingly provides that the heat treatment takes place after completion of the mold component within conventional treatment operations, but with the modified temperature and time regime according to the invention.
Das Halbzeug wird, bevor es den formgebenden Bearbeitungsschritten unterzogen wird, wärmebehandelt. Hierbei wird das Halbzeug einer Glühbehandlung bei Temperaturen zwischen 500° C und 560° C, vorzugsweise zwischen 500° C und 540° C unterzogen. Bei dieser Glühbehandlung erfolgt ein Lösungsglühen bzw. eine Homogenisierung der Leichtmetalllegierung.The semifinished product is heat treated before being subjected to the shaping operations. Here, the semifinished product is subjected to an annealing treatment at temperatures between 500 ° C and 560 ° C, preferably between 500 ° C and 540 ° C. In this annealing, a solution annealing or a homogenization of the light metal alloy takes place.
Vor dem ersten formgebenden Bearbeitungsschritt, also nach der Glühbehandlung, wird das Halbzeug abgekühlt. Das Abschrecken nach der Glühbehandlung erfolgt derart, dass eine gleichmäßige Verteilung der Legierungselemente beibehalten bleibt. Danach wird das Halbzeug dem Umformprozess mit den formgebenden Bearbeitungsschritten zugeführt. Wie bereits angeführt, ist der Umformprozess insbesondere mehrstufig ausgelegt. Hierbei erfolgt vorzugsweise eine pressformtechnische Formgebung des Halbzeugs bis hin zum Formbauteil.Before the first shaping processing step, ie after the annealing treatment, the semifinished product is cooled. The quenching after the annealing treatment is performed so as to maintain a uniform distribution of the alloying elements remains. Thereafter, the semi-finished product is fed to the forming process with the shaping processing steps. As already stated, the forming process is designed in particular multi-stage. In this case, preferably a molding shape of the semifinished product up to the mold component.
Die formgebenden Bearbeitungsschritte können auch einen abschließenden Entgratungsvorgang beinhalten.The shaping processing steps may also include a final deburring operation.
Besonders ökonomisch erfolgen die formgebenden Bearbeitungsschritte bei Raumtemperatur. Grundsätzlich können die formgebenden Bearbeitungsschritte bei einer Temperatur des Halbzeugs zwischen 20° C und 75° C erfolgen.Particularly economically, the shaping processing steps take place at room temperature. In principle, the shaping processing steps can take place at a temperature of the semifinished product between 20 ° C and 75 ° C.
Im Anschluss an die erfindungsgemäße Wärmebehandlung mit dem erfindungsgemäßen Temperatur- und Zeitregime kann ein Auslagern (Altern), insbesondere ein Warmauslagern der Kraftfahrzeug-Formbauteile durchgeführt werden. In Abhängigkeit von Auslagerungstemperatur und -zeit können verschiedene Werkstoffzustände der Leichtmetalllegierung des Kraftfahrzeug-Fahrwerksbauteils eingestellt werden.Following the heat treatment according to the invention with the temperature and time regime according to the invention, aging (aging), in particular hot aging of the motor vehicle mold components, can be carried out. Depending on aging temperature and time different material states of the light metal alloy of the motor vehicle chassis component can be adjusted.
Die Erfindung ist nachfolgend anhand eines in der Figur dargestellten Prozessschemas nochmals erläutert.The invention is explained again below with reference to a process scheme shown in the figure.
Es wird ein aus einem Strangpressprofil abgelenktes Halbzeug 1 aus einer Leichtmetalllegierung bereitgestellt. Insbesondere besteht das Halbzeug 1 aus einer AlMgSi-Legierung (Serie 6000). Diese Legierung zeichnet sich durch ihre sehr gute Pressbarkeit, gute Tiefziehfähigkeit und gute Witterungs- und Korrosionsbeständigkeit aus. Zudem ist sie gut schweißbar.It is provided a distracted from an extruded semi-finished product 1 made of a light metal alloy. In particular, the semifinished product 1 consists of an AlMgSi alloy (series 6000). This alloy is characterized by its very good pressability, good deep-drawability and good weathering and corrosion resistance. In addition, it is easily weldable.
Das Halbzeug 1 wird in einer Wärmebehandlungsanlage 2 einer Wärmebehandlung unterzogen. Die Wärmebehandlungsanlage 2 kann mehrere, auch unterschiedlich beheizte und/oder temperierte Ofenzonen 3, 4, 5 besitzen. Bei dieser Glühbehandlung in der Wärmebehandlungsanlage 2 erfolgt ein Lösungsglühen bei einer Temperatur zwischen 500° C und 560° C, vorzugsweise bei durchschnittlich 520° C. Die Dauer des Lösungsglühens wird so gewählt, dass alle eventuell vorhandenen unerwünschten Ausscheidungen, insbesondere an Mg2Si, die von vorhergegangenen Wärmebehandlungen, beispielsweise aus dem Stranggießprozess noch vorhanden sein können, mit Sicherheit in Alpha (α)-Mischkristall gelöst werden. Für diesen ersten Schritt der Wärmebehandlung zum Lösungsglühen wird eine Dauer von rund 20 Minuten vorgesehen. Anschließend wird das Halbzeug 1 auf Raumtemperatur abgeschreckt. Der homogene Alpha (α)-Mischkristall wird auf Raumtemperatur fixiert. Der Abschreckvorgang erfolgt in einer Kühleinheit 6, die eine Tauchkühlung sein kann.The semifinished product 1 is subjected to a heat treatment in a heat treatment plant 2. The heat treatment plant 2 may have several, also differently heated and / or tempered
Das Halbzeug 1 wird dann in einer Schneideinheit 7 beschnitten, schneidtechnisch vorkonfektioniert und/oder stanztechnisch vorkonfiguriert. Danach wird das Halbzeug 1 in mehreren Pressstationen 8, 9 formgebenden Bearbeitungsschritten unterzogen und zum Fahrwerksbauteil 10 endgeformt. In der Figur sind zwei Pressstationen 8, 9 dargestellt. Die formgebende Bearbeitung kann jedoch grundsätzlich auch nur eine, insbesondere aber auch mehr als zwei Bearbeitungsstationen beinhalten. Die Umformtemperatur Tu, bei der die Umformung des Halbzeuges 1 bis hin zur Endformgebung des Fahrwerksbauteils 10 erfolgt, liegt bei Raumtemperatur. Die Umformtemperatur Tu kann zwischen 20° C und 75° C liegen.The semifinished product 1 is then trimmed in a cutting unit 7, pre-fabricated by cutting technology and / or preconfigured by stamping technology. Thereafter, the semifinished product 1 is subjected to forming processing steps in a plurality of pressing
Es versteht sich, dass zwischen den einzelnen in der Figur dargestellten Stationen Handlingeinheiten wie Roboter oder Förderer geschaltet sind. Nach der Endformgebung des Fahrwerksbauteils 10 und gegebenenfalls einem Entgraten kann auch eine Zwischenlagerung erfolgen.It is understood that handling units such as robots or conveyors are connected between the individual stations shown in the figure. After the final shaping of the
Im Anschluss an den letzten Bearbeitungsschritt, bei dem das Fahrwerksbauteil 10 seine Endform erhält, mithin die wesentlichen Bearbeitungsschritte abgeschlossen sind, wird das Fahrwerksbauteil 10 einer zweistufigen Wärmebehandlung unterzogen. Die erste Wärmebehandlungsstufe ist Bestandteil eines Waschvorgangs des Fahrwerksbauteils 10. Hierzu wird das Fahrwerksbauteil 10 einer Waschstation 11 zugeführt, bei dem das Fahrwerksbauteil 10 gewaschen und abgespült wird. Bei diesem Waschvorgang, der die erste Wärmebehandlungsstufe beinhaltet, wird das Fahrwerksbauteil 10 auf eine Temperatur zwischen 70° C und 90° C, insbesondere auf eine Temperatur T1 von 80° C ± 5° C, erwärmt.Subsequent to the last processing step in which the
Die Behandlungszeit D1 in der ersten Wärmebehandlungsstufe liegt zwischen 4 Minuten und 12 Minuten, vorzugsweise bei 6 Minuten ± 2 Minuten. Das bedeutet, dass das Fahrwerksbauteil 10 für die Dauer der Behandlungszeit D1 auf der Temperatur T1 gehalten wird.The treatment time D1 in the first heat treatment stage is between 4 minutes and 12 minutes, preferably 6 minutes ± 2 minutes. That means, that the
Unmittelbar im Anschluss an die erste Wärmebehandlungsstufe wird das wärmebehandelte Fahrwerksbauteil 10 einer zweiten Wärmebehandlungsstufe zugeführt. Die zweite Wärmebehandlungsstufe ist in einen Trocknungsvorgang in einer Trocknungsstation 12 integriert. Das Fahrwerksbauteil 10 wird durch Beaufschlagung mit heißer Luft getrocknet und hierbei auf eine Temperatur T2 zwischen 130° C und 140° C erwärmt.Immediately following the first heat treatment stage, the heat treated
Die Behandlungszeit bzw. -dauer D2 in der zweiten Wärmebehandlungsstufe beträgt 8 Minuten bis 20 Minuten, vorzugsweise liegt die Behandlungszeit D2 bei 10 Minuten, + 6 Minuten, - 1 Minuten.The treatment time or duration D2 in the second heat treatment stage is 8 minutes to 20 minutes, preferably the treatment time D2 is 10 minutes, + 6 minutes, - 1 minutes.
Im Anschluss an die durch die zweite Wärmebehandlungsstufe werden die Fahrwerksbauteile 10 mittels eines Handlingroboters 13 aus der Trocknungsstation 12 entnommen und der Weiterbehandlung bzw. Verarbeitung zugeführt. Bestandteil einer nachfolgenden Behandlungsoperation kann ein Auslagern, insbesondere ein Warmauslagern, bei einer Temperatur von 140° C ± 20° C sein.Following on through the second heat treatment stage, the
Das hergestellte Fahrwerksbauteil 10 ist insbesondere ein Federlenker oder ein Führungslenker für den Einsatz im Fahrwerk eines Kraftfahrzeugs. Das Fahrwerksbauteil 10 zeichnet sich durch eine bauteilgereichte Festigkeit und Belastbarkeit aus. Darüber hinaus ist das Fahrwerksbauteil 10 wenig korrosionsanfällig, insbesondere gegenüber interkristalliner Korrosion und besitzt eine hohe Lebenserwartung.The produced
- 11
- - Halbzeug- Workpiece
- 22
- - Wärmebehandlungsanlage- Heat treatment plant
- 33
- - Ofenzone- oven zone
- 44
- - Ofenzone- oven zone
- 55
- - Ofenzone- oven zone
- 66
- - Kühleinheit- Cooling unit
- 77
- - Schneideinheit- Cutting unit
- 88th
- - Pressstation- pressing station
- 99
- - Pressstation- pressing station
- 1010
- - Fahrwerksbauteil- Suspension component
- 1111
- - Waschstation- Wash station
- 1212
- - Trocknungsstation- Drying station
- 1313
- - Handlingroboter- Handling robot
- D1D1
- - Dauer- Duration
- D2D2
- - Dauer- Duration
- T1T1
- - Temperatur- temperature
- T2T2
- - Temperatur- temperature
- Th T h
- - Temperatur- temperature
- Tu T u
- - Temperatur- temperature
Claims (12)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013103469.1A DE102013103469A1 (en) | 2013-04-08 | 2013-04-08 | Method for producing a motor vehicle chassis component |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2789707A1 true EP2789707A1 (en) | 2014-10-15 |
EP2789707B1 EP2789707B1 (en) | 2017-08-09 |
Family
ID=50097591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14154800.8A Active EP2789707B1 (en) | 2013-04-08 | 2014-02-12 | Method for producing a motor vehicle chassis component |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2789707B1 (en) |
DE (1) | DE102013103469A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017117675B4 (en) * | 2017-08-03 | 2022-07-28 | Benteler Automobiltechnik Gmbh | Process for manufacturing a motor vehicle component from a 6000 aluminum alloy |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH218418A (en) | 1937-07-24 | 1941-12-15 | Ig Farbenindustrie Ag | Method of making an aluminum alloy article. |
CH500287A (en) | 1964-11-25 | 1970-12-15 | Harvey Aluminum Inc | Aluminium alloy with copper, magnesium and - zinc |
EP0787217B1 (en) | 1994-10-25 | 1998-05-13 | Pechiney Rhenalu | METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE |
EP1195449A2 (en) * | 2000-09-14 | 2002-04-10 | Aluminium Ranshofen Walzwerk Gesellschaft mbH | Precipitation hardening of an aluminium alloy |
WO2006005573A1 (en) * | 2004-07-09 | 2006-01-19 | Corus Aluminium Nv | Process for producing aluminium alloy sheet material with improved bake-hardening response |
EP1232029B1 (en) | 1999-11-03 | 2006-06-28 | Raufoss Technology AS | Control arm and method for manufacturing |
DE102009037928A1 (en) | 2009-08-19 | 2011-02-24 | Alcan Technology & Management Ltd. | Mold and / or structural part of aluminum or an aluminum alloy and method for their surface protection |
US20130032255A1 (en) * | 2010-03-31 | 2013-02-07 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminium alloy forging and method of manufacture for same |
-
2013
- 2013-04-08 DE DE102013103469.1A patent/DE102013103469A1/en not_active Withdrawn
-
2014
- 2014-02-12 EP EP14154800.8A patent/EP2789707B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH218418A (en) | 1937-07-24 | 1941-12-15 | Ig Farbenindustrie Ag | Method of making an aluminum alloy article. |
CH500287A (en) | 1964-11-25 | 1970-12-15 | Harvey Aluminum Inc | Aluminium alloy with copper, magnesium and - zinc |
EP0787217B1 (en) | 1994-10-25 | 1998-05-13 | Pechiney Rhenalu | METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE |
DE69502508T2 (en) | 1994-10-25 | 1998-09-10 | Pechiney Rhenalu | METHOD FOR PRODUCING ITEMS FROM AlSiMgCu ALLOY WITH IMPROVED INTERCRYSTAL INCORROSION RESISTANCE |
EP1232029B1 (en) | 1999-11-03 | 2006-06-28 | Raufoss Technology AS | Control arm and method for manufacturing |
EP1195449A2 (en) * | 2000-09-14 | 2002-04-10 | Aluminium Ranshofen Walzwerk Gesellschaft mbH | Precipitation hardening of an aluminium alloy |
WO2006005573A1 (en) * | 2004-07-09 | 2006-01-19 | Corus Aluminium Nv | Process for producing aluminium alloy sheet material with improved bake-hardening response |
DE102009037928A1 (en) | 2009-08-19 | 2011-02-24 | Alcan Technology & Management Ltd. | Mold and / or structural part of aluminum or an aluminum alloy and method for their surface protection |
US20130032255A1 (en) * | 2010-03-31 | 2013-02-07 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminium alloy forging and method of manufacture for same |
Also Published As
Publication number | Publication date |
---|---|
DE102013103469A1 (en) | 2014-10-09 |
EP2789707B1 (en) | 2017-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102008033027B4 (en) | Process for increasing the strength and deformability of precipitation-hardenable materials | |
EP3314031B1 (en) | High strength and easily reformable almg tape and method for producing the same | |
DE69024418T2 (en) | Titanium-based alloy and process for its superplastic shaping | |
DE112015000385B4 (en) | Warm forming of cold-worked sheet alloys | |
EP0902842B2 (en) | Method of producing a component | |
DE112011103669T5 (en) | A process for producing an automotive structural part from a rolled AIZn alloy | |
DE112011103667T5 (en) | Automobile molding of aluminum alloy product and process for its production | |
CN111004950B (en) | 2000 aluminium alloy section bar and its manufacturing method | |
EP2415895B2 (en) | Method for the production of a metal moulded part for motor vehicle | |
DE102009008282A1 (en) | Process for producing a sheet metal part from a hard, non-hardenable aluminum alloy | |
EP2415882B1 (en) | Method for producing a shaped metal sheet from a rolled, non-hardenable aluminium alloy | |
DE69519012T2 (en) | CORROSION-RESISTANT ROLLED SHEET IN ALUMINUM ALLOY | |
DE69328835T2 (en) | COLD-FORMED HIGH-STRENGTH STEEL PARTS | |
DE112019000856T5 (en) | Process for the manufacture of aluminum alloy components | |
DE60006670T2 (en) | HEAT TREATMENT FOR MOLDED ALUMINUM ALLOY PRODUCTS | |
DE69026658T2 (en) | Process for the production of titanium and titanium alloys with a fine coaxial microstructure | |
EP2789707B1 (en) | Method for producing a motor vehicle chassis component | |
DE69921146T2 (en) | METHOD FOR THE PRODUCTION OF HEAT-TREATABLE PANEL OBJECTS | |
DE202017100517U1 (en) | Al-Cu-Li-Mg-Mn-Zn wrought alloy product | |
DE102013018744A1 (en) | Making component for motor vehicle involves preparing melt of aluminum alloy, continuously casting melt in casting matrix, cooling melt in matrix to form continuous casting mass with solidified outer shell, and performing annealing of mass | |
DE19909519B4 (en) | Method for producing a light metal wheel | |
DE102016117474A1 (en) | Body component with reduced tendency to crack and method of manufacture | |
EP1748088B1 (en) | Process for producing a semi-finished product or component for chassis or structural automotive applications | |
EP0779372B1 (en) | Overhead contact wire for high speed electrical railways and process for manufacturing the same | |
EP0517087B1 (en) | Method for manufacturing copper alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20141028 |
|
17Q | First examination report despatched |
Effective date: 20160810 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502014004873 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C22C0021080000 Ipc: C22F0001040000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 21/08 20060101ALI20170317BHEP Ipc: C22F 1/05 20060101ALI20170317BHEP Ipc: C22F 1/04 20060101AFI20170317BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170425 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 916938 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014004873 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171110 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171209 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014004873 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180212 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180212 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180212 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 916938 Country of ref document: AT Kind code of ref document: T Effective date: 20190212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240227 Year of fee payment: 11 |