[go: up one dir, main page]

EP2714770B1 - Procédé destiné à la fabrication de polyols de polyéther - Google Patents

Procédé destiné à la fabrication de polyols de polyéther Download PDF

Info

Publication number
EP2714770B1
EP2714770B1 EP12729042.7A EP12729042A EP2714770B1 EP 2714770 B1 EP2714770 B1 EP 2714770B1 EP 12729042 A EP12729042 A EP 12729042A EP 2714770 B1 EP2714770 B1 EP 2714770B1
Authority
EP
European Patent Office
Prior art keywords
weight
parts
mixture
oxide
alkylene oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12729042.7A
Other languages
German (de)
English (en)
Other versions
EP2714770A1 (fr
Inventor
Jörg Hofmann
Bert Klesczewski
Michael Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Priority to EP12729042.7A priority Critical patent/EP2714770B1/fr
Publication of EP2714770A1 publication Critical patent/EP2714770A1/fr
Application granted granted Critical
Publication of EP2714770B1 publication Critical patent/EP2714770B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4887Polyethers containing carboxylic ester groups derived from carboxylic acids other than acids of higher fatty oils or other than resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the present invention relates to a process for the preparation of polyethercarbonate polyols from one or more H-functional starter substances, one or more alkylene oxides and carbon dioxide in the presence of at least one double metal cyanide catalyst, the polyethercarbonate polyols having at the chain end a mixing block of at least two alkylene oxides and flexible polyurethane foams obtainable therefrom ,
  • Activation in the context of the invention is a step in which a partial amount of alkylene oxide, optionally in the presence of CO 2 , is added to the DMC catalyst and then the addition of the alkylene oxide is interrupted, wherein due to a subsequent exothermic chemical reaction, a heat, the can lead to a temperature peak ("hotspot"), and due to the reaction of alkylene oxide and optionally CO 2, a pressure drop is observed in the reactor.
  • the activation step is the period of time from the addition of the subset of alkylene oxide compound, optionally in the presence of CO 2 , to the DMC catalyst until the evolution of heat occurs.
  • the activation step is preceded by a step for drying the DMC catalyst and optionally the initiator at elevated temperature and / or reduced pressure, wherein this step of drying is not part of the activation step in the context of the present invention.
  • WO-A 2008/058913 discloses a process for preparing polyethercarbonate polyols having at the chain end one block of pure alkylene oxide units, especially a block of pure propylene oxide units. WO-A 2008/058913 but does not disclose polyethercarbonate polyols having at the chain end a mixing block of at least two alkylene oxides.
  • the object of the present invention was to provide polyethercarbonate polyols which lead to flexible polyurethane foams which have increased compression hardness and increased tensile strength.
  • Such improved polyurethane flexible foam quality has in practice the technical advantage that they have an increased mechanical strength.
  • the preparation of the polyethercarbonate polyol according to step (i) is preferably carried out by addition of one or more alkylene oxides and carbon dioxide in the presence of at least one DMC catalyst to one or more H-functional starter substances ("copolymerization").
  • alkylene oxides (epoxides) having 2-24 carbon atoms can be used for the process according to the invention.
  • the alkylene oxides having 2-24 carbon atoms are, for example, one or more compounds selected from the group consisting of ethylene oxide, propylene oxide, 1-butene oxide, 2,3-butene oxide, 2-methyl-1,2-propene oxide (isobutene oxide), 1-pentene oxide, 2,3-pentene oxide, 2-methyl-1,2-butene oxide, 3-methyl-1,2-butene oxide, 1-hexene oxide, 2,3-hexene oxide, 3,4-hexene oxide, 2-methyl- 1,2-pentene oxide, 4-methyl-1,2-pentene oxide, 2-ethyl-1,2-butene oxide, 1-heptene oxide, 1-octene oxide, 1-nonene oxide, 1-decene oxide, 1-undecene oxide, 1-dodecene oxide, 4-methyl-1,2-pentenoxide, butadiene monoxid
  • active groups having active H atoms are, for example, -OH, -NH 2 (primary amines), -NH- (secondary amines), -SH and -CO 2 H, preferably -OH and -NH 2 , more preferred is -OH.
  • H-functional starter substance for example, one or more compounds selected from the group consisting of mono- or polyhydric alcohols, polyhydric amines, polyhydric thiols, amino alcohols, thioalcohols, Hydroxy esters, polyether polyols, polyester polyols, polyester ether polyols, polyether carbonate polyols, polycarbonate polyols, polycarbonates, polyethyleneimines, polyetheramines (z. B. so-called Jeffamine ® from Huntsman, such as. For example, D-230, D-400, D-2000, T-403, T -3000, T5000 or corresponding BASF products, such.
  • polyetheramine D230, D400, D200, T403, T5000 polytetrahydrofurans
  • polytetrahydrofurans z. B. PolyTHF from BASF ®, such. as PolyTHF ® 250, 650S , 1000, 1000S, 1400, 1800, 2000
  • polytetrahydrofuranamines BASF product polytetrahydrofuranamine 1700
  • polyether thiols polyacrylate polyols, castor oil, the mono- or diglyceride of ricinoleic acid, monoglycerides of fatty acids, chemically modified mono-, di- and / or triglycerides of Fatty acids, and C 1 -C 24 alkyl fatty acid esters containing on average at least 2 OH groups per molecule, used ..
  • Alcohols, amines, thiols and carboxylic acids can be used as monofunctional starter compounds.
  • monofunctional alcohols can be used: methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 3-buten-1-ol, 3-butyn-1-ol, 2-methyl 3-buten-2-ol, 2-methyl-3-butyn-2-ol, propargyl alcohol, 2-methyl-2-propanol, 1-tert-butoxy-2-propanol., 1-pentanol, 2-pentanol, 3-pentanol, 1-hexanol, 2-hexanol, 3-hexanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 3-octanol, 4-octanol, phenol, 2-hydroxybiphenyl, 3-hydroxybi
  • Suitable monofunctional amines are: butylamine, tert-butylamine, pentylamine, hexylamine, aniline, aziridine, pyrrolidine, piperidine, morpholine.
  • monofunctional thiols can be used: ethanethiol, 1-propanethiol, 2-propanethiol, 1-butanethiol, 3-methyl-1-butanethiol, 2-butene-1-thiol, thiophenol.
  • monofunctional carboxylic acids may be mentioned: formic acid, acetic acid, propionic acid, butyric acid, fatty acids such as stearic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, acrylic acid.
  • suitable polyhydric alcohols are, for example, dihydric alcohols (such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-butenediol, 1,4-butynediol, neopentyl glycol, 1 , 5-pentanediol, methylpentanediols (such as 3-methyl-1,5-pentanediol), 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol, bis (hydroxymethyl) - cyclohexanes (such as, for example, 1,4-bis (hydroxymethyl) cyclohexane), triethylene glycol, tetraethylene glycol, polyethylene glycols, dipropylene glycol,
  • the H-functional starter substances can also be selected from the substance class of the polyether polyols, in particular those having a molecular weight Mn in the range from 100 to 4000 g / mol. Preference is given to polyether polyols which are composed of repeating ethylene oxide and propylene oxide units, preferably with a proportion of 35 to 100% propylene oxide units, more preferably with a proportion of 50 to 100% propylene oxide units. These may be random copolymers, gradient copolymers, alternating or block copolymers of ethylene oxide and propylene oxide.
  • Suitable polyether polyols made up of repeating propylene oxide and / or ethylene oxide units are, for example Desmophen ® -, Acclaim ® -, Arcol ® -, Baycoll ® -, Bayfill ® -, Bayflex ® - Baygal ® -, PET ® - and polyether polyols Bayer MaterialScience AG (such.
  • Desmophen ® 3600Z Desmophen ® 1900U
  • Acclaim ® polyol 2200 Acclaim ® polyol 4000i
  • Arcol ® polyol 1004 Arcol ® polyol 1010 Arcol ® polyol 1030 Arcol ® polyol 1070, Baycoll ® BD 1110 Bayfill VPPU ® 0789, Baygal ® K55, PET ® 1004 polyether ® S180).
  • suitable homo-polyethylene oxides are the BASF SE example Pluriol ® E-marks suitable homo-polypropylene oxides such as the BASF SE Pluriol ® P-marks suitable mixed copolymers of ethylene oxide and propylene oxide such as the Pluronic ® PE or PLURIOL ® RPE Brands of BASF SE.
  • the H-functional starter substances can also be selected from the substance class of the polyesterpolyols, in particular those having a molecular weight Mn in the range from 200 to 4500 g / mol.
  • Polyester polyols used are at least difunctional polyesters. Polyester polyols preferably consist of alternating acid and alcohol units.
  • acid components z As succinic acid, maleic acid, maleic anhydride, adipic acid, phthalic anhydride, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride or mixtures of said acids and / or anhydrides used.
  • Ethanediol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,4-bis (hydroxymethyl) cyclohexane, diethylene glycol, Dipropylene glycol, trimethylolpropane, glycerin, Pentaerythritol or mixtures of the alcohols mentioned. If divalent or polyhydric polyether polyols are used as the alcohol component, polyester polyethers are obtained which can likewise serve as starter substances for the preparation of the polyether carbonate polyols. Preference is given to using polyether polyols having Mn 150 to 2000 g / mol for the preparation of the polyester ether polyols.
  • polycarbonate polyols such as polycarbonate diols
  • polycarbonate polyols can be used, in particular those having a molecular weight Mn in the range of 150 to 4500 g / mol, preferably 500 to 2500, for example by reacting phosgene, dimethyl carbonate, diethyl carbonate or diphenyl carbonate and di- and / or polyfunctional alcohols or polyester polyols or polyether polyols.
  • polycarbonate polyols are found, for. B. in the EP-A 1359177 ,
  • the Desmophen ® C-types of Bayer MaterialScience AG can be used as polycarbonate such.
  • polyether carbonate polyols can be used as H-functional starter substances.
  • polyether carbonate polyols which are obtainable by the process according to the invention described here after step (i) or after step (ii) or after step (iii) are used.
  • These polyether carbonate polyols used as H-functional starter substances are prepared beforehand in a separate reaction step for this purpose.
  • the H-functional starter substances generally have a functionality (i.e., number of H atoms active per molecule of polymerization per molecule) of 1 to 8, preferably 2 or 3.
  • the H-functional starter substances are used either individually or as a mixture of at least two H-functional starter substances.
  • Preferred H-functional starter substances are alcohols of the general formula (II), HO- (CH 2 ) x -OH (II) where x is a number from 1 to 20, preferably an even number from 2 to 20.
  • Examples of alcohols according to formula (II) are ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol and 1,12-dodecanediol.
  • H-functional starter substances are neopentyl glycol, trimethylolpropane, glycerol, pentaerythritol, reaction products of the alcohols of the formula (II) with ⁇ -caprolactone, for example reaction products of trimethylolpropane with ⁇ -caprolactone, reaction products of glycerol with ⁇ -caprolactone, and reaction products of pentaerythritol with ⁇ -caprolactone.
  • Preference is furthermore given to using water, diethylene glycol, dipropylene glycol, castor oil, sorbitol and polyetherpolyols composed of repeating polyalkylene oxide units as H-functional starter substances.
  • the H-functional starter substances are one or more compounds selected from the group consisting of ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2-methylpropane-1,3-diol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, dipropylene glycol, glycerol, trimethylolpropane, di- and trifunctional polyether polyols, wherein the polyether polyol from a di- or tri-H-functional starter substance and propylene oxide or a di- or tri-H-functional starter substance, propylene oxide and ethylene oxide is constructed.
  • the polyether polyols preferably have a molecular weight Mn in the range of 62 to 4500 g / mol and a functionality of 2 to 3 and in particular a molecular weight Mn in the range of 62 to 3000 g / mol and a functionality of 2 to 3.
  • the polyether carbonate polyols are prepared by catalytic addition of carbon dioxide and alkylene oxides to H-functional starter substances.
  • H-functional means the number of H atoms active for the alkoxylation per molecule of the starter compound.
  • DMC catalysts for use in the homopolymerization of epoxides are in principle known in the art (see, eg US-A 3 404 109 . US-A 3,829,505 . US-A 3,941,849 and US Pat. No. 5,158,922 ). DMC catalysts, eg in US Pat. No. 5,470,813 . EP-A 700 949 . EP-A 743 093 . EP-A 761 708 . WO 97/40086 .
  • WO 98/16310 and WO 00/47649 have a very high activity in the homopolymerization of epoxides and allow the preparation of polyether polyols at very low catalyst concentrations (25 ppm or less), so that separation of the catalyst from the finished product is no longer required in general.
  • a typical example is the in EP-A 700 949 described highly active DMC catalysts containing a double metal cyanide compound (eg zinc hexacyanocobaltate (III)) and an organic complex ligand (eg tert-butanol) or a polyether having a number average molecular weight greater than 500 g / mol.
  • the double metal cyanide compounds contained in the DMC catalysts are the reaction products of water-soluble metal salts and water-soluble metal cyanide salts.
  • an aqueous solution of zinc chloride preferably in excess, based on the metal cyanide salt such as, for example, potassium hexacyanocobaltate
  • potassium hexacyanocobaltate is mixed and then dimethoxyethane (glyme) or tert- butanol (preferably in excess, based on zinc hexacyanocobaltate) is added to the resulting suspension.
  • dimethoxyethane (glyme) or tert- butanol preferably in excess, based on zinc hexacyanocobaltate
  • suitable metal salts are zinc chloride, zinc bromide, zinc iodide, zinc acetate, zinc acetylacetonate, zinc benzoate, zinc nitrate, ferrous sulfate, iron (II) bromide, ferrous chloride, ferric chloride, cobalt (II) chloride, cobalt ( II) thiocyanate, nickel (II) chloride and nickel (II) nitrate. It is also possible to use mixtures of different metal salts.
  • suitable metal cyanide salts are sodium hexacyanocobaltate (III), potassium hexacyanocobaltate (III), potassium hexacyanoferrate (II), potassium hexacyanoferrate (III), calcium hexacyanocobaltate (III) and lithium hexacyanocobaltate (III).
  • Suitable double metal cyanide compounds a) are zinc hexacyanocobaltate (III), zinc hexacyanoiridate (III), zinc hexacyanoferrate (III) and cobalt (II) hexacyanocobaltate (III).
  • suitable double metal cyanide compounds are, for example US 5,158,922 (Col. 8, lines 29-66). Zinc hexacyanocobaltate (III) is particularly preferably used.
  • organic complexing ligands added in the preparation of the DMC catalysts are, for example, in US 5,158,922 (see in particular column 6, lines 9 to 65), US 3 404 109 . US 3,829,505 . US 3,941,849 . EP-A 700 949 . EP-A 761 708 . JP 4 145 123 . US 5,470,813 . EP-A 743 093 and WO-A 97/40086 ) disclosed.
  • organic complex ligands water-soluble, organic compounds having heteroatoms, such as oxygen, nitrogen, phosphorus or sulfur, which can form complexes with the double metal cyanide compound used.
  • Preferred organic complex ligands are alcohols, aldehydes, ketones, ethers, esters, amides, ureas, nitriles, sulfides and mixtures thereof.
  • Particularly preferred organic complexing ligands are aliphatic ethers (such as dimethoxyethane), water-soluble aliphatic alcohols (such as ethanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, 2-methyl-3-buten-2-ol and 2-methyl-3-butyn-2-ol), compounds containing both aliphatic or cycloaliphatic ether groups as well as aliphatic hydroxyl groups (such as ethylene glycol mono-tert-butyl ether, diethylene glycol mono-tert-butyl ether, tripropylene glycol mono methyl ether and 3-methyl-3-oxetan-methanol).
  • Highly preferred organic complexing ligands are selected from one or more Compounds of the group consisting of dimethoxyethane, tert-butanol 2-methyl-3-buten-2-ol, 2-methyl-3-butyn-2-ol, ethylene glycol mono-tert-butyl ether and 3-methyl-3-oxetane methanol.
  • the metal salt eg zinc chloride
  • metal cyanide salt eg, potassium hexacyanocobaltate
  • organic complexing ligand eg, tertiary butanol
  • the organic complex ligand can be present in the aqueous solution of the metal salt and / or the metal cyanide salt, or it is added directly to the suspension obtained after precipitation of the double metal cyanide compound. It has proven to be advantageous to mix the aqueous solutions of the metal salt and the metal cyanide salt, and the organic complex ligand with vigorous stirring.
  • the suspension formed in the first step is subsequently treated with a further complex-forming component.
  • the complex-forming component is preferably used in a mixture with water and organic complex ligands.
  • a preferred method for carrying out the first step is carried out using a mixing nozzle, more preferably using a jet disperser as in WO-A 01/39883 described.
  • the isolation of the solid (i.e., the precursor of the inventive catalyst) from the suspension is accomplished by known techniques such as centrifugation or filtration.
  • the isolated solid is then washed in a third process step with an aqueous solution of the organic complex ligand (e.g., by resuspension and subsequent reisolation by filtration or centrifugation).
  • an aqueous solution of the organic complex ligand e.g., by resuspension and subsequent reisolation by filtration or centrifugation.
  • water-soluble by-products such as potassium chloride
  • the amount of the organic complex ligand in the aqueous washing solution is between 40 and 80 wt .-%, based on the total solution.
  • the aqueous washing solution further complex-forming component, preferably in the range between 0.5 and 5 wt .-%, based on the total solution added.
  • a first washing step (c-1) with an aqueous solution of the unsaturated alcohol is washed (eg by resuspension and subsequent reisolation by filtration or centrifugation), in order in this way, for example, water-soluble by-products, such as potassium chloride, from the catalyst of the invention remove.
  • the amount of the unsaturated alcohol in the aqueous washing solution is between 40 and 80% by weight, based on the total solution of the first washing step.
  • either the first washing step is repeated once or several times, preferably once to three times, or preferably, a non-aqueous solution, such as e.g. a mixture or solution of unsaturated alcohol and further complexing component (preferably in the range between 0.5 and 5 wt .-%, based on the total amount of the washing solution of step (c-2)), used as a washing solution and the solid so once or washed several times, preferably once to three times.
  • a non-aqueous solution such as e.g. a mixture or solution of unsaturated alcohol and further complexing component (preferably in the range between 0.5 and 5 wt .-%, based on the total amount of the washing solution of step (c-2)
  • the isolated and optionally washed solid is then, optionally after pulverization, at temperatures of generally from 20 to 100 ° C and at pressures of generally 0.1 mbar to atmospheric pressure (1013 mbar) dried.
  • a preferred method for isolating the DMC catalysts of the invention from the suspension by filtration, filter cake washing and drying is in WO-A 01/80994 described.
  • a mixture of ethylene oxide (EO) and propylene oxide (PO) is used as a mixture of at least two different alkylene oxides, wherein the molar ratio PO / EO of 15/85 used in step (ii) to 60/40, preferably from 15/85 to 40/60.
  • the polyether carbonate polyols resulting from step (ii) and containing a terminal mixing block of EO and PO preferably have a proportion of primary OH groups of from 10 to 90 mol%, particularly preferably from 20 to 50 mol%.
  • the average length of the mixed blocks of at least two different alkylene oxides prepared according to step (ii) is preferably 2.0 to 20.0 alkylene oxide units, more preferably 2.5 to 10.0 alkylene oxide units, each based on an OH group of polyether carbonate polyol.
  • the polyether carbonate polyols resulting after step (ii) and containing a mixing block of at least two alkylene oxides preferably have a hydroxyl number of 20 mg KOH / g to 80 mg KOH / g, more preferably from 25 mg KOH / g to 60 mg KOH / g ,
  • the average length of a pure alkylene oxide block prepared according to step (iii) is preferably from 2 to 30 alkylene oxide units, particularly preferably from 5 to 18 alkylene oxide units, each based on an OH group of the polyethercarbonate polyol.
  • the reaction according to step (iii) can be carried out, for example, in the presence of DMC catalysts, or in the presence of acidic catalysts (such as BF 3 ) or basic catalysts (such as, for example, KOH or CsOH).
  • the reaction according to step (iii) is carried out in the presence of a DMC catalyst.
  • the invention thus also Polyethercarbonatpolyole containing a terminal mixing block of at least two alkylene oxides, preferably a terminal mixing block of ethylene oxide (EO) and propylene oxide (PO).
  • EO ethylene oxide
  • PO propylene oxide
  • the molar ratio of PO / EO is from 15/85 to 60/40, preferably from 15/85 to 40/60.
  • the polyether carbonate polyols which contain a terminal mixing block of EO and PO have a proportion of primary OH groups of from 10 to 90 mol%, particularly preferably from 20 to 50 mol%.
  • Preferred subject matter of the invention are polyether carbonate polyols which have a terminal mixing block of at least two alkylene oxides, characterized in that the average length of the terminal mixing block of at least two different alkylene oxides of 2.0 to 20.0 alkylene oxide units, more preferably 2.5 to 10.0 alkylene oxide units (in each case based on an OH group of the polyethercarbonate polyol).
  • the polyether carbonate polyols according to the invention which contain a mixing block of at least two alkylene oxides preferably have a hydroxyl number of 20 mg KOH / g to 80 mg KOH / g, more preferably from 25 mg KOH / g to 60 mg KOH / g.
  • these polyether carbonate polyols according to the invention may contain at the chain end a pure alkylene oxide block which preferably consists of propylene oxide or ethylene oxide units, more preferably of propylene oxide units.
  • the average length of such a pure alkylene oxide block at the chain end is preferably 2 to 30 alkylene oxide units, more preferably 5 to 18 alkylene oxide units, each based on an OH group of the polyethercarbonate polyol.
  • the preferred subject matter of the invention is a process for producing flexible polyurethane foams having a bulk density in accordance with DIN EN ISO 3386-1-98 in the range from ⁇ 10 kg / m 3 to ⁇ 150 kg / m 3 , preferably from ⁇ 20 kg / m 3 to ⁇ 70 kg / m 3 and a compression hardness according to DIN EN ISO 3386-1-98 in the range of ⁇ 0.5 kPa to ⁇ 20 kPa (at 40% deformation and 4th cycle) by reaction of
  • Containing component A polyol formulation
  • the polyethercarbonate polyol according to component A1 is preferably obtainable by the above-described preparation process according to the invention.
  • Starting components according to component A2 are conventional polyether polyols.
  • Conventional polyether polyols in the context of the invention are compounds which contain alkylene oxide addition products of starter compounds having Zerewitinoff-active hydrogen atoms, ie polyether polyols having a hydroxyl number according to DIN 53240 of ⁇ 15 mg KOH / g to ⁇ 80 mg KOH / g, preferably ⁇ 20 mg KOH / g to ⁇ 60 mg KOH / g.
  • starter compounds having Zerewitinoff-active hydrogen atoms usually have functionalities of 2 to 6, preferably of 3, and preferably the starter compounds are hydroxy-functional.
  • hydroxy-functional starter compounds are propylene glycol, ethylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, hexanediol, pentanediol, 3-methyl-1,5-pentanediol, 1,12-dodecanediol , Glycerol, trimethylolpropane, triethanolamine, pentaerythritol, sorbitol, sucrose, hydroquinone, pyrocatechol, resorcinol, bisphenol F, bisphenol A, 1,3,5-trihydroxybenzene, methylol group-containing condensates of formaldehyde and phenol or mel
  • Suitable alkylene oxides are, for example, ethylene oxide, propylene oxide, 1,2-butylene oxide or 2,3-butylene oxide and styrene oxide.
  • propylene oxide and ethylene oxide are fed to the reaction mixture individually, in a mixture or in succession. If the alkylene oxides are metered in succession, the products produced contain polyether chains with block structures. Products having ethylene oxide endblocks are characterized, for example, by increased levels of primary end groups, which impart advantageous isocyanate reactivity to the systems.
  • component A3 water and / or physical blowing agents are used.
  • physical blowing agents for example, carbon dioxide and / or volatile organic substances are used as blowing agents.
  • auxiliaries and additives are described for example in the EP-A 0 000 389 , Pages 18 - 21 described. Further examples of auxiliaries and additives which may optionally be used according to the invention and details of the mode of use and mode of action of these auxiliaries and additives are disclosed in US Pat Kunststoff-Handbuch, Volume VII, edited by G. Oertel, Carl-Hanser-Verlag, Kunststoff, 3rd edition, 1993, eg on pages 104-127 described.
  • Preferred catalysts are aliphatic tertiary amines (for example trimethylamine, tetramethylbutanediamine), cycloaliphatic tertiary amines (for example 1,4-diaza (2,2,2) bicyclooctane), aliphatic amino ethers (for example dimethylaminoethyl ether and N, N, N-trimethyl-N- hydroxyethyl bisaminoethyl ether), cycloaliphatic amino ethers (e.g., N-ethylmorpholine), aliphatic amidines, cycloaliphatic amidines, urea, derivatives of urea (such as aminoalkyl ureas, see for example EP-A 0 176 013 , in particular (3-dimethylaminopropylamine) urea) and tin catalysts (such as dibutyltin oxide, dibutyltin dilaurate, tin octo
  • catalysts are: (3-dimethylaminopropylamine) urea, 2- (2-dimethylaminoethoxy) ethanol, N, N-bis (3-dimethylaminopropyl) -N-isopropanolamine, N, N, N-trimethyl-N hydroxyethyl bisaminoethyl ether and 3-dimethylaminopropylamine.
  • compounds A5 having at least two isocyanate-reactive hydrogen atoms and a molecular weight of from 32 to 399 are used as component A5.
  • These are to be understood as meaning hydroxyl-containing and / or amino-containing and / or thiol-containing and / or carboxyl-containing compounds, preferably hydroxyl-containing and / or amino-containing compounds which serve as chain extenders or crosslinkers.
  • These compounds usually have 2 to 8, preferably 2 to 4, isocyanate-reactive hydrogen atoms.
  • ethanolamine, diethanolamine, triethanolamine, sorbitol and / or glycerol can be used as component A5. Further examples of compounds according to component A5 are described in EP-A 0 007 502 , Pages 16 - 17.
  • polyisocyanates as described in US Pat EP-A 0 007 502 , Pages 7 - 8.
  • polyisocyanates for example the 2,4- and 2,6-toluene diisocyanate, and any desired mixtures of these isomers (“TDI”) are preferred;
  • Polyphenylpolymethylenpolyisocyanate as prepared by aniline-formaldehyde condensation and subsequent phosgenation (“crude MDI”) and carbodiimide groups, urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret polyisocyanates (“modified polyisocyanates"), in particular such modified polyisocyanates, which differs from the Derive 2,4- and / or 2,6-toluene diisocyanate or from 4,4'- and / or 2,4'-diphenylmethane diisocyanate.
  • At least one compound selected from the group consisting of 2,4- and 2,6-tolylene diisocyanate, 4,4'- and 2,4'- and 2,2'-diphenylmethane diisocyanate and polyphenylpolymethylene polyisocyanate (“multi-core MDI") is used as the polyisocyanate.
  • a mixture containing 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate and Polyphenylpolymethylenpolyisocyanat is used as the polyisocyanate.
  • the reaction components are reacted according to the known one-step process, often using mechanical equipment, for example those which are used in the EP-A 355 000 to be discribed. Details about Processing devices, which are also according to the invention in question are in Plastics Handbook, Volume VII, edited by Vieweg and Hochtlen, Carl-Hanser-Verlag, Kunststoff 1993, eg on pages 139 to 265 , described.
  • the flexible polyurethane foams can be produced as molded or also as block foams.
  • the invention therefore relates to a process for the preparation of flexible polyurethane foams, the flexible polyurethane foams produced by these processes, the flexible polyurethane foams or flexible polyurethane foams produced by these processes, the use of the flexible polyurethane foams for the production of molded parts and the moldings themselves.
  • the flexible polyurethane foams obtainable according to the invention find, for example the following uses: furniture upholstery, textile inserts, mattresses, automobile seats, headrests, armrests, sponges and building components.
  • index indicates the percentage ratio of the actual amount of isocyanate used to the stoichiometric, ie calculated for the implementation of OH equivalents amount of isocyanate groups (NCO) amount.
  • identification number isocyanate - Quantity used : isocyanate - Quantity calculated • 100
  • the density was determined according to DIN EN ISO 3386-1-98.
  • the compression hardness was determined according to DIN EN ISO 3386-1-98 (at 40% deformation and 4th cycle).
  • the tensile strength and elongation at break were determined according to DIN EN ISO 1798.
  • the factor 102 results from the sum of the molar masses of CO 2 (molar mass 44 g / mol) and that of propylene oxide (molar mass 58 g / mol), the factor 58 results from the molar mass of propylene oxide and the factor 146 results from the molar mass of the employed Starters 1,8-octanediol (if available).
  • the composition based on the polymer portion (consisting of polyether polyol, which was composed of starter and propylene oxide during the activation steps taking place under CO 2 -free conditions, and polyether carbonate polyol, composed of starter, propylene oxide and carbon dioxide during to calculate the activation steps taking place in the presence of CO 2 and during the copolymerization), the non-polymer constituents of the reaction mixture (ie cyclic propylene carbonate and possibly present, unreacted propylene oxide) were computationally eliminated.
  • the indication of the CO 2 content in the polyethercarbonate polyol is normalized to the proportion of the polyethercarbonate polyol molecule which has been formed during the copolymerization and, if appropriate, the activation steps in the presence of CO 2 (ie the proportion of the polyethercarbonate polyol molecule selected from the starter (1 , 8-octanediol, if any) as well as resulting from the reaction of the initiator with epoxide added under CO 2 -free conditions was not considered).
  • the Schlifferlenmeyer flask was fitted with a riser (air cooler) and the sample was boiled for 75 minutes at low reflux.
  • the sample mixture was then transferred to a 500 ml round bottom flask and volatile components (essentially pyridine, acetic acid and excess acetic anhydride) were distilled off over a period of 30 minutes at 80 ° C and 10 mbar (absolute).
  • volatile components essentially pyridine, acetic acid and excess acetic anhydride
  • the distillation residue was then added three times with 100 ml of cyclohexane (alternatively, toluene was used in cases where the distillation residue in cyclohexane did not dissolve) and volatile components in each case at 80 ° C and 400 mbar (absolute) removed.
  • volatiles of the sample were removed for one hour at 100 ° C and 10 mbar (absolute).
  • F is the area of resonance at 2.04 ppm and 2.07 ppm, respectively.
  • polyurethane soft block foams according to the invention in which polyether carbonate polyols having a terminal block of propylene oxide (PO) and ethylene oxide (EO) were processed in a molar ratio PO / EO of 15/85 to 60/40 surprisingly had a higher Compression hardness and higher tensile strength compared to soft block foams based on a polyether polyol (A2-1, see Table 1, Comparative Example 1) or a polyether carbonate polyol having a terminal propylene oxide block (A1-2, see Table 1, Comparative Example 2).
  • PO propylene oxide
  • EO ethylene oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyethers (AREA)

Claims (15)

  1. Procédé de fabrication de polyéthercarbonate-polyols, caractérisé en ce que
    (i) lors d'une première étape, un polyéthercarbonate-polyol est fabriqué à partir d'une ou de plusieurs substances de départ à fonction H, à partir d'un ou de plusieurs oxydes d'alkylène et de dioxyde de carbone, en présence d'au moins un catalyseur DMC, et
    (ii) lors d'une seconde étape, le polyéthercarbonate-polyol est soumis à un allongement de chaînes avec un mélange d'au moins deux oxydes d'alkylène différents en présence d'au moins un catalyseur DMC,
    caractérisé en ce que, lors de la seconde étape (ii), un mélange contenant de l'oxyde de propylène (PO) et de l'oxyde d'éthylène (EO) en un rapport molaire PO/EO de 15/85 à 60/40 est utilisé en tant que mélange d'au moins deux oxydes d'alkylène différents.
  2. Procédé selon la revendication 1, caractérisé en ce que, lors de la première étape (i),
    (α) la substance de départ à fonction H ou un mélange d'au moins deux substances de départ à fonction H est chargé, et de l'eau et/ou d'autres composés volatils sont éventuellement éliminés par une température élevée et/ou une pression réduite (« séchage »), le catalyseur DMC étant ajouté à la substance de départ à fonction H ou au mélange d'au moins deux substances de départ à fonction H avant ou après le séchage,
    (β) pour l'activation, une partie (par rapport à la totalité de la quantité d'oxydes d'alkylène utilisée lors de l'activation et de la copolymérisation) d'un ou de plusieurs oxydes d'alkylène est ajoutée au mélange résultant de l'étape (α), cet ajout d'une partie d'oxyde d'alkylène pouvant éventuellement avoir lieu en présence de CO2, et la pointe de température (« point chaud ») qui se produit en raison de la réaction chimique exotherme suivante et/ou une chute de pression dans le réacteur étant à chaque fois attendues, et l'étape (β) pour l'activation pouvant également avoir lieu à plusieurs reprises,
    (γ) un ou plusieurs oxydes d'alkylène et du dioxyde de carbone sont ajoutés au mélange résultant de l'étape (β), les oxydes d'alkylène utilisés à l'étape (γ) pouvant être identiques ou différents des oxydes d'alkylène utilisés à l'étape (β).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que, lors de la seconde étape (ii), un mélange constitué par de l'oxyde de propylène (PO) et de l'oxyde d'éthylène (EO) en un rapport molaire PO/EO de 15/85 à 60/40 est utilisé en tant que mélange d'au moins deux oxydes d'alkylène différents.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que, lors de la seconde étape (ii), le rapport molaire entre l'oxyde de propylène (PO) et l'oxyde d'éthylène (EO) est de 15/85 à 40/60.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que
    (iii) le polyéthercarbonate-polyol résultant de l'étape (ii) comprenant une séquence mixte terminale est soumis à un allongement de chaînes avec un oxyde d'alkylène.
  6. Polyéthercarbonate-polyol, qui contient une séquence mixte terminale constituée d'au moins deux oxydes d'alkylène, caractérisé en ce que la séquence mixte terminale contient un mélange d'oxyde de propylène (PO) et d'oxyde d'éthylène (EO) en un rapport molaire PO/EO de 15/85 à 60/40.
  7. Polyéthercarbonate-polyol selon la revendication 6, caractérisé en ce que la séquence mixte terminale est constituée d'un mélange d'oxyde de propylène (PO) et d'oxyde d'éthylène (EO) en un rapport molaire PO/EO de 15/85 à 60/40.
  8. Polyéthercarbonate-polyol selon la revendication 6 ou 7, caractérisé en ce que le rapport molaire entre l'oxyde de propylène (PO) et l'oxyde d'éthylène (EO) dans la séquence mixte est de 15/85 à 40/60.
  9. Polyéthercarbonate-polyol selon l'une quelconque des revendications 6 à 8, caractérisé en ce que la séquence mixte terminale est soumise à un allongement de chaînes avec un oxyde d'alkylène.
  10. Polyéthercarbonate-polyol selon l'une quelconque des revendications 6 à 9, caractérisé en ce que la longueur moyenne de la séquence mixte terminale constituée d'au moins deux oxydes d'alkylène différents est de 2,0 à 20,0 unités oxyde d'alkylène.
  11. Procédé de fabrication de mousses souples de polyuréthane, selon lequel un composant polyol (composant A) est utilisé, qui contient un polyéthercarbonate-polyol selon l'une quelconque des revendications 6 à 10.
  12. Procédé de fabrication de mousses souples de polyuréthane ayant une densité brute selon DIN EN ISO 3386-1-98 dans la plage allant de ≥ 10 kg/m3 à ≤ 150 kg/m3 et une dureté sous compression selon DIN EN ISO 3386-1-98 dans la plage allant de ≥ 0,5 kPa à ≤ 20 kPa (à 40 % de déformation et 4 cycles), par mise en réaction de
    un composant A contenant
    A1 100 à 10 parties en poids (par rapport à la somme des parties en poids des composants A1 et A2) de polyéthercarbonate-polyol selon l'une quelconque des revendications 6 à 10,
    A2 0 à 90 parties en poids (par rapport à la somme des parties en poids des composants A1 et A2) de polyéther-polyol classique,
    A3 0,5 à 25 parties en poids (par rapport à la somme des parties en poids des composants A1 et A2) d'eau et/ou d'un agent gonflant physique,
    A4 0,05 à 10 parties en poids (par rapport à la somme des parties en poids des composants A1 et A2) d'adjuvants et d'additifs, tels que
    d) des catalyseurs,
    e) des additifs tensioactifs,
    f) des pigments ou des agents ignifuges,
    A5 0 à 10 parties en poids (par rapport à la somme des parties en poids des composants A1 et A2) de composés comprenant des atomes d'hydrogène réactifs avec les isocyanates ayant un poids moléculaire de 62 à 399,
    avec un composant B contenant des polyisocyanates,
    la fabrication ayant lieu à un indice caractéristique de 50 à 250, et toutes les indications de parties en poids des composants A1 à A5 dans la présente demande étant normées de sorte que la somme des parties en poids des composants A1+A2 dans la composition soit de 100.
  13. Procédé selon la revendication 12, selon lequel un composant A constitué par
    A1 100 parties en poids d'un polyéthercarbonate-polyol selon l'une quelconque des revendications 6 à 10,
    A2 le composant A est exempt de polyéther-polyol classique,
    A3 0,5 à 25 parties en poids (par rapport aux parties en poids du composant A1) d'eau et/ou d'un agent gonflant physique,
    A4 0,05 à 10 parties en poids (par rapport aux parties en poids du composant A1) d'adjuvants et d'additifs, tels que
    g) des catalyseurs,
    h) des additifs tensioactifs,
    i) des pigments ou des agents ignifuges, et
    A5 0 à 10 parties en poids (par rapport aux parties en poids du composant A1) de composés comprenant des atomes d'hydrogène réactifs avec les isocyanates ayant un poids moléculaire de 62 à 399,
    est utilisé.
  14. Procédé de fabrication de mousses souples de polyuréthane, selon lequel un composant polyol (composant A) est utilisé, qui contient un polyéthercarbonate-polyol pouvant être obtenu selon l'une quelconque des revendications 1 à 5.
  15. Mousses souples de polyuréthane ayant une densité brute selon DIN EN ISO 3386-1-98 dans la plage allant de ≥ 10 kg/m3 à ≤ 150 kg/m3 et une dureté sous compression selon DIN EN ISO 3386-1-98 dans la plage allant de ≥ 0,5 kPa à ≤ 20 kPa (à 40 % de déformation et 4 cycles), pouvant être obtenues par un procédé selon l'une quelconque des revendications 11 à 14.
EP12729042.7A 2011-06-01 2012-05-30 Procédé destiné à la fabrication de polyols de polyéther Not-in-force EP2714770B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12729042.7A EP2714770B1 (fr) 2011-06-01 2012-05-30 Procédé destiné à la fabrication de polyols de polyéther

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11168433A EP2530101A1 (fr) 2011-06-01 2011-06-01 Procédé destiné à la fabrication de polyols de polyéther
EP12729042.7A EP2714770B1 (fr) 2011-06-01 2012-05-30 Procédé destiné à la fabrication de polyols de polyéther
PCT/EP2012/060102 WO2012163944A1 (fr) 2011-06-01 2012-05-30 Procédé de fabrication de polyols de polyéther

Publications (2)

Publication Number Publication Date
EP2714770A1 EP2714770A1 (fr) 2014-04-09
EP2714770B1 true EP2714770B1 (fr) 2016-09-14

Family

ID=46331245

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11168433A Withdrawn EP2530101A1 (fr) 2011-06-01 2011-06-01 Procédé destiné à la fabrication de polyols de polyéther
EP12729042.7A Not-in-force EP2714770B1 (fr) 2011-06-01 2012-05-30 Procédé destiné à la fabrication de polyols de polyéther

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11168433A Withdrawn EP2530101A1 (fr) 2011-06-01 2011-06-01 Procédé destiné à la fabrication de polyols de polyéther

Country Status (11)

Country Link
US (2) US20140107245A1 (fr)
EP (2) EP2530101A1 (fr)
JP (1) JP2014515429A (fr)
KR (1) KR20140035455A (fr)
CN (1) CN103703052B (fr)
BR (1) BR112013030898A2 (fr)
CA (1) CA2837624A1 (fr)
ES (1) ES2606000T3 (fr)
MX (1) MX2013013827A (fr)
SG (1) SG195061A1 (fr)
WO (1) WO2012163944A1 (fr)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130760A1 (fr) * 2011-03-28 2012-10-04 Bayer Materialscience Ag Procédé de production de mousses souples de polyuréthane
EP2730602A1 (fr) * 2012-11-09 2014-05-14 Bayer MaterialScience AG Procédé destiné à la fabrication de polyéthercarbonatpolyoles
KR20150084820A (ko) 2012-11-09 2015-07-22 바이엘 머티리얼사이언스 아게 폴리에테르 카르보네이트 폴리올의 제조 방법
JP2016525619A (ja) * 2013-08-02 2016-08-25 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag ポリエーテルカーボネートポリオールの製造方法
EP2845871A1 (fr) * 2013-09-05 2015-03-11 Bayer MaterialScience AG Réticulation de polyols de polyéthercarbonates contenant des liaisons doubles par ajout de mercaptans
EP3077437A1 (fr) 2013-11-27 2016-10-12 Covestro Deutschland AG Mélanges de polyéthercarbonatepolyols et de polyétherpolyols pour fabriquer des matières alvéolaires molles en polyuréthane
EP2910585B1 (fr) * 2014-02-21 2018-07-04 Covestro Deutschland AG Corps de ballast et procédé de fabrication de corps de ballast
ES2702327T3 (es) * 2014-04-07 2019-02-28 Covestro Deutschland Ag Procedimiento para la producción de copolímeros de bloques de polioximetileno
CA2946217C (fr) * 2014-04-24 2022-06-07 Covestro Deutschland Ag Mousses de polyurethane a base de polyether-carbonate-polyol
EP3050907A1 (fr) * 2015-01-28 2016-08-03 Covestro Deutschland AG Procédé destiné à la fabrication de polyéthercarbonatpolyoles
JP6698666B2 (ja) * 2015-01-30 2020-05-27 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag ポリエーテルカーボネートポリオール系ポリウレタンフォーム
EP3098250A1 (fr) * 2015-05-26 2016-11-30 Covestro Deutschland AG Procédé de production de polyéthercarbonatpolyoles
CN108473657A (zh) * 2015-11-19 2018-08-31 科思创德国股份有限公司 基于聚醚碳酸酯多元醇的聚氨酯泡沫材料
EP3387035B1 (fr) * 2015-12-09 2022-05-04 Covestro Intellectual Property GmbH & Co. KG Mousses de polyurethane à base de polyethercarbonatpolyoles
EP3219741A1 (fr) 2016-03-18 2017-09-20 Covestro Deutschland AG Procede de production de polyethercarbonatpolyoles
EP3260483A1 (fr) 2016-06-22 2017-12-27 Covestro Deutschland AG Procédé de production de polyéthercarbonatpolyoles
US10119223B2 (en) 2016-07-15 2018-11-06 Covestro Llc Carpet and synthetic turf backings prepared from a polyether carbonate polyol
KR102482386B1 (ko) 2016-11-11 2022-12-29 다우 글로벌 테크놀로지스 엘엘씨 이산화탄소와 옥시란의 공중합화를 통한 폴리카보네이트 폴리올을 제조하기 위한 반 회분식 공정
CN108070082B (zh) * 2016-11-18 2020-09-04 中国石油化工股份有限公司 一种制备较低粘度高分子量聚醚多元醇的方法
EP3336137A1 (fr) * 2016-12-19 2018-06-20 Covestro Deutschland AG Utilisation d'agents de gonflement physiques pour produire des mousses polyuréthane à base de polyol de polyéther-carbonate ayant une faible émission de carbonate de propylène cyclique
EP3385295A1 (fr) * 2017-04-05 2018-10-10 Covestro Deutschland AG Polyols de polyéthercarbonate à fonction phosphorée ignifuges et leur procédé de fabrication
EP3502158A1 (fr) * 2017-12-19 2019-06-26 Covestro Deutschland AG Polyols de polycarbonate, prépolymères de polyisocyanate et polyuréthanes de polyuréthane-urée et élastomères de polyuréthane-urée à base desdits polyols de polycarbonate, prépolymères de polyisocyanate
US20200339732A1 (en) * 2017-12-21 2020-10-29 Econic Technologies Ltd Rigid foams
EP3536727A1 (fr) * 2018-03-07 2019-09-11 Covestro Deutschland AG Mousses de polyuréthane à base de polyéther carbonates polyoles
EP3549969A1 (fr) * 2018-04-06 2019-10-09 Covestro Deutschland AG Mousses de polyuréthane à base de polyéther carbonates polyoles
US20210292468A1 (en) * 2018-07-25 2021-09-23 Basf Se Silicone-free foam stabilizers for producing polyurethane foams
CN109912768B (zh) * 2019-01-21 2021-05-25 聚源化学工业股份有限公司 一种聚醚组合物、低voc聚氨酯泡沫及其制备方法
GB201906210D0 (en) 2019-05-02 2019-06-19 Econic Tech Limited A polyol block copolymer, compositions and processes therefor
GB201906214D0 (en) 2019-05-02 2019-06-19 Econic Tech Ltd A polyol block copolymer, compositions and processes therefor
CN113906081A (zh) 2019-06-11 2022-01-07 科思创德国股份有限公司 制备聚醚碳酸酯多元醇的方法
EP3750940A1 (fr) 2019-06-11 2020-12-16 Covestro Deutschland AG Procédé de production de polyéthercarbonate polyols
EP3771724A1 (fr) 2019-07-31 2021-02-03 Covestro Deutschland AG Procédé de production de polyéthercarbonate polyols
WO2021018753A1 (fr) 2019-07-31 2021-02-04 Covestro Deutschland Ag Procédé de production de polyols de polyéthercarbonate
CN112694607B (zh) * 2019-10-22 2022-12-09 中国石油化工股份有限公司 聚醚多元醇及其制备方法和应用
EP3878885A1 (fr) * 2020-03-10 2021-09-15 Covestro Deutschland AG Procédé de fabrication de polyéthercarbonate polyols
EP3916055A1 (fr) 2020-05-26 2021-12-01 Covestro Deutschland AG Compositions de polycarbonate contenant des polyols de polyéthercarbonate
CN112538150B (zh) * 2020-11-24 2022-02-18 中国科学院长春应用化学研究所 一种高回弹聚氨酯泡沫及其制备方法
CN113234218B (zh) * 2021-04-26 2023-06-30 南京威尔生物科技有限公司 一种乙酰基封端烯丙醇聚醚的制备方法
CN115703875A (zh) * 2021-08-16 2023-02-17 江苏赛胜新材料科技有限公司 轻量化、高强度聚氨酯高分子材料及其制备方法与用途
CN115028801A (zh) * 2022-05-06 2022-09-09 江苏利宏科技发展有限公司 一种慢回弹聚氨酯海绵及其制备方法
WO2024215452A1 (fr) 2023-04-10 2024-10-17 ExxonMobil Technology and Engineering Company Polyols copolymères et procédés associés
CN119219881A (zh) * 2024-12-04 2024-12-31 山东一诺威新材料有限公司 用于制备托盘制品的高分子材料及其制备方法和应用

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1063525A (en) 1963-02-14 1967-03-30 Gen Tire & Rubber Co Organic cyclic oxide polymers, their preparation and tires prepared therefrom
US3829505A (en) 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
US3941849A (en) 1972-07-07 1976-03-02 The General Tire & Rubber Company Polyethers and method for making the same
DE2732292A1 (de) 1977-07-16 1979-02-01 Bayer Ag Verfahren zur herstellung von polyurethankunststoffen
DE2832253A1 (de) 1978-07-22 1980-01-31 Bayer Ag Verfahren zur herstellung von formschaumstoffen
US4500704A (en) 1983-08-15 1985-02-19 The Dow Chemical Company Carbon dioxide oxirane copolymers prepared using double metal cyanide complexes
DE3435070A1 (de) 1984-09-25 1986-04-03 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von gegebenenfalls geschaeumten polyurethanen, die mit einem anderen werkstoff verbunden oder konfektioniert worden sind
DE3827595A1 (de) 1988-08-13 1990-02-22 Bayer Ag Verfahren zur herstellung von urethangruppen ausweisenden polyharnstoff-elastomeren
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
US5712216A (en) 1995-05-15 1998-01-27 Arco Chemical Technology, L.P. Highly active double metal cyanide complex catalysts
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
US5482908A (en) 1994-09-08 1996-01-09 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5545601A (en) 1995-08-22 1996-08-13 Arco Chemical Technology, L.P. Polyether-containing double metal cyanide catalysts
US5627120A (en) 1996-04-19 1997-05-06 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5714428A (en) 1996-10-16 1998-02-03 Arco Chemical Technology, L.P. Double metal cyanide catalysts containing functionalized polymers
DE19905611A1 (de) 1999-02-11 2000-08-17 Bayer Ag Doppelmetallcyanid-Katalysatoren für die Herstellung von Polyetherpolyolen
DE19918727A1 (de) * 1999-04-24 2000-10-26 Bayer Ag Langkettige Polyetherpolyole mit hohem Anteil primärer OH-Gruppen
DE19958355A1 (de) 1999-12-03 2001-06-07 Bayer Ag Verfahren zur Herstellung von DMC-Katalysatoren
KR100769003B1 (ko) 2000-04-20 2007-10-22 바이엘 악티엔게젤샤프트 이중 금속 시아나이드 (dmc) 촉매의 제조 방법
US6762278B2 (en) * 2002-02-04 2004-07-13 Basf Corporation Process for the copolymerization of alkylene oxides and carbon dioxide using suspensions of multi-metal cyanide compounds
DE10219028A1 (de) 2002-04-29 2003-11-06 Bayer Ag Herstellung und Verwendung von hochmolekularen aliphatischen Polycarbonaten
JP4145123B2 (ja) 2002-11-18 2008-09-03 株式会社オンダ製作所 継手
US20060223973A1 (en) * 2005-03-29 2006-10-05 Basf Corporation Method of forming a polyethercarbonate polyol
US7977501B2 (en) * 2006-07-24 2011-07-12 Bayer Materialscience Llc Polyether carbonate polyols made via double metal cyanide (DMC) catalysis
CN101535364B (zh) * 2006-11-15 2012-10-03 巴斯夫欧洲公司 生产软质聚氨酯泡沫的方法
ES2358861T5 (es) * 2007-01-30 2014-12-10 Basf Se Procedimiento para la obtención de polioles de polietercarbonato
CN102933637B (zh) * 2010-01-20 2015-07-01 拜耳知识产权有限责任公司 活化用于制备聚醚碳酸酯多元醇的双金属氰化物催化剂的方法
US20110230581A1 (en) * 2010-03-17 2011-09-22 Bayer Materialscience Llc Process for the production of polyether polyols with a high ethylene oxide content
JP2013522438A (ja) * 2010-03-24 2013-06-13 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ポリエーテルカーボネートポリオールの製造方法
EP2465890A1 (fr) * 2010-12-17 2012-06-20 Bayer MaterialScience AG Procédé de fabrication de polyols de polyéther carbonates dotés de groupes terminaux d'hydroxyle et polymères de polyuréthane obtenus à partir de celui-ci
KR20150084820A (ko) * 2012-11-09 2015-07-22 바이엘 머티리얼사이언스 아게 폴리에테르 카르보네이트 폴리올의 제조 방법

Also Published As

Publication number Publication date
JP2014515429A (ja) 2014-06-30
EP2530101A1 (fr) 2012-12-05
CN103703052B (zh) 2016-02-03
MX2013013827A (es) 2014-02-27
KR20140035455A (ko) 2014-03-21
BR112013030898A2 (pt) 2016-12-06
SG195061A1 (en) 2013-12-30
US20140107245A1 (en) 2014-04-17
WO2012163944A1 (fr) 2012-12-06
US20190002634A1 (en) 2019-01-03
US11130842B2 (en) 2021-09-28
CN103703052A (zh) 2014-04-02
EP2714770A1 (fr) 2014-04-09
ES2606000T3 (es) 2017-03-17
CA2837624A1 (fr) 2012-12-06

Similar Documents

Publication Publication Date Title
EP2714770B1 (fr) Procédé destiné à la fabrication de polyols de polyéther
EP2691434B1 (fr) Procédé de production de mousses souples de polyuréthane
EP2917264B1 (fr) Procédé destiné à la fabrication de polyéthercarbonatpolyoles
EP2571922B1 (fr) Procédé pour produire des polyéthercarbonate polyols
EP2652008B1 (fr) Procédé de production de polyols de polyéthercarbonate comprenant des groupes terminaux hydroxyle primaires et polymères de polyuréthane produits à partir de ceux-ci
EP2734567B1 (fr) Procédé d&#39;activation de catalyseurs à base de cyanure métallique double pour produire des polyols de polyéthercarbonate
EP3433298B1 (fr) Mousse souple d&#39;ether ignifuge
EP3387035B1 (fr) Mousses de polyurethane à base de polyethercarbonatpolyoles
EP3077437A1 (fr) Mélanges de polyéthercarbonatepolyols et de polyétherpolyols pour fabriquer des matières alvéolaires molles en polyuréthane
EP3619251B1 (fr) Procédé de fabrication de polyols de poly(éther-carbonate), à base d&#39;alcools qui contiennent au moins deux groupes uréthane
WO2017085201A1 (fr) Mousses de polyuréthane à base de polyéthercarbonate polyols
EP3549969A1 (fr) Mousses de polyuréthane à base de polyéther carbonates polyoles
EP2730602A1 (fr) Procédé destiné à la fabrication de polyéthercarbonatpolyoles
WO2019180024A1 (fr) Procédé de fabrication de mousses de polyuréthane souples
WO2016188838A1 (fr) Utilisation d&#39;alcools contenant au moins deux groupes uréthane pour produire des polyéther polyols
EP3762442B1 (fr) Mousses de polyuréthane à base de polyéther carbonates polyoles
EP3762441B1 (fr) Mousses de polyuréthane à base de polyéther carbonates polyoles
EP3178858A1 (fr) Mousses de polyurethane a base de polyethercarbonatpolyoles
EP3630859B1 (fr) Mousses de polyuréthane à base de polyéther carbonates polyoles
EP3768746A1 (fr) Procédé de fabrication de mousses de polyuréthane souples de densité apparente élevée
EP3892660A1 (fr) Mousses de polyuréthane à base de polyéther carbonates polyoles
EP4194476A1 (fr) Mousses de polyuréthane à base de polyéther carbonates polyoles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO DEUTSCHLAND AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 828914

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012008252

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2606000

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012008252

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

26N No opposition filed

Effective date: 20170615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170530

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 828914

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210512

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220603

Year of fee payment: 11

Ref country code: DE

Payment date: 20220420

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20220502

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012008252

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531