EP2712419B1 - Method for separating air by means of cryogenic distillation - Google Patents
Method for separating air by means of cryogenic distillation Download PDFInfo
- Publication number
- EP2712419B1 EP2712419B1 EP12714821.1A EP12714821A EP2712419B1 EP 2712419 B1 EP2712419 B1 EP 2712419B1 EP 12714821 A EP12714821 A EP 12714821A EP 2712419 B1 EP2712419 B1 EP 2712419B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- sent
- during
- adsorber
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04181—Regenerating the adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04472—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
- F25J3/04478—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
- F25J2205/66—Regenerating the adsorption vessel, e.g. kind of reactivation gas
- F25J2205/72—Pressurising or depressurising the adsorption vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/40—Air or oxygen enriched air, i.e. generally less than 30mol% of O2
Definitions
- the present invention relates to a process for air separation by air distillation, in particular for producing oxygen and / or nitrogen and / or argon, of the type in which the air to be distilled is previously purified by means of at least two adsorbers each of which, in offset, follow a cycle in which an adsorption phase is followed, at a pressure of the cycle, and a regeneration phase ending in a pressurization of the adsorber, in accordance with in the preamble of claim 1 and known FR-A-2,896,860 and WO-2007/033838 .
- the pressures here are absolute pressures.
- the distillation of air is carried out cryogenically and therefore requires purifying the air to remove constituents whose solidification temperatures are higher. at the distillation temperature of the air, namely mainly water and carbon dioxide.
- the main purpose of the distillation of air is to provide, in liquid and / or gaseous form, oxygen and / or nitrogen and / or argon. This production leads to the coproduction of fluids with low oxygen content, such as, for example, impure nitrogen, called residual nitrogen, and higher purity nitrogen, in liquid or gaseous form.
- the purification of the air to be distilled is commonly carried out by adsorption of the troublesome constituents, generally by means of two bottles containing adsorbent substances arranged in a bed and operating in alternating cycles. While a bottle is in adsorption phase, ie it purifies the air to be distilled, the other bottle is in regeneration phase, that is to say that it is swept by a dry regeneration gas, such as residual nitrogen, desorbing the impurities fixed on the adsorbent during its previous adsorption phase.
- a dry regeneration gas such as residual nitrogen
- the regeneration of the adsorbent is all the more effective when it is applied at high temperature and at a low pressure compared with that maintained during the adsorption, which makes it necessary to pressurize a bottle ending its regeneration phase, in order to restore it to a satisfactory pressure condition for its future adsorption phase.
- the state of the art consists in taking a fraction of purified air at the outlet of the bottle in the adsorption phase and relaxing it towards the bottle at the end of regeneration phase, in order to increase the pressure of the latter.
- it is however essential to keep constant the flow of air to be sent to the distillation in order to avoid any fluctuation of supply of the distillation apparatus and to maintain the production of oxygen and / or nitrogen and / or argon.
- the air compression device must provide the excess air that is used for pressurization
- this additional air flow implies oversizing, and therefore an additional cost, of the compression device. It is indeed required to provide an additional compressed air flow of the order of 5% of the nominal air flow treated by the adsorption bottle (depending on the optimization of the cycle), during a period of pressurization of the 15 minutes for a standard size bottle.
- the compression apparatus operates at the nominal air flow rate, that is to say that which corresponds to the separating capacity of the air separation apparatus.
- the normal flow rate of use will be 95 kNm3 / h sent to the cold box where the distillation takes place and 100 kNm3 / h only for the only phase of pressurization at the end of regeneration where 5 kNm3 / h of air is sent to pressurize one of the bottles.
- Some air separation processes use a lost air system in which not all of the purified air is sent to the distillation columns.
- an expansion turbine is generally found which will depressurise the excess air relative to the oxygen requirement to a pressure close to atmospheric pressure.
- FR-A-2896860 and WO-2007/033838 describe the adjustment of the flow rates inside a cold box of an air separation apparatus, in order to maintain the production flow rates during the repressurization phase, but do not concern a lost air system.
- the object of the invention is to avoid over-sizing the compressors by reducing or even eliminating the increase in the air flow to be compressed in order to supply the additional gas necessary for the pressurization of the adsorbent bottles.
- the subject of the invention is a process for the distillation of air, in particular intended to produce oxygen and / or nitrogen and / or argon, of the type in which the air to be distilled is compressed beforehand in a compressor, purified by means of at least two adsorbers each of which, in offset, follow a cycle in which an adsorption phase is followed, at a high pressure of the cycle (P ads ), and a regeneration phase at a low pressure P atmos ending in a phase of repressurization of the adsorber, purified air is cooled in an exchange line and then sent to a distillation column of a system of columns and fluids enriched with Oxygen and nitrogen are withdrawn from a column of the column system, only during the repressurization phase a flow of purified air, constituting between 3 and 20% of the compressed air in the compressor, is used to pressurize, at least partially , the adsorber ending its regeneration phase ration and the compressed air flow in the compressor during the adsorption phase is substantially equal to
- substantially equal covers the case in which the flow rate of compressed air in the compressor during the adsorption phase differs by not more than 5%, preferably not more than 3%, from the compressed air flow rate. the compressor during the pressurization of the adsorber.
- the two flows are preferably strictly equal.
- PSA pressure swing adsorption
- TSA temperature swing adsorption
- TPSA temperature swing adsorption
- FIG. 1 On the figure 1 is represented an air distillation installation 1 according to the invention.
- This installation is for example intended to produce oxygen gas OG, as well as liquid oxygen OL.
- the air to be distilled 23, previously compressed by the compressor 4, is purified by one of the adsorbers 7A, 7B of the apparatus 6, and then cooled by the main heat exchange line 8 to an intermediate temperature.
- the adsorption may be of the TSA, PSA or TPSA type.
- Part of the air is sent to a lost air turbine 27 and the expanded air is sent to the atmosphere after reheating in the exchanger 8. The rest of the air continues cooling.
- Another portion 29 of the air is sent to the cold compressor 3 and then returned to the exchange line 8.
- Part of the supercharged flow is expanded in a turbine 5 to the medium pressure to form the expanded flow 7.
- the flow the rest of the pressurized air 9 continues to cool in the exchange line 8, is expanded in a valve V and is then sent to a pressure vessel 8 in the vicinity of its dew point. intermediate level of the medium pressure column 12.
- the vaporizer-condenser 16 vaporizes liquid oxygen, for example having a purity of 99.5%, of the tank of the low pressure column 14, by condensing nitrogen gas at the top of the medium pressure column 12.
- Impure nitrogen or "waste" NR withdrawn from the top of the low pressure column 14, is returned to the main heat exchange line 8, where it causes cooling of the air to be distilled.
- OL liquid oxygen is withdrawn from the tank of the low pressure column 14 and feeds the storage tank 18. After pressurization in the pump P, it vaporizes in the main heat exchange line 8 and distributed by a pipe of production 32 to form gaseous oxygen under pressure.
- An argon production column 26 is fed from the low pressure column 14.
- the cycle of figure 2 the period of which is, for example, equal to approximately 360 minutes for an adsorption pressure substantially equal to 20 bars, comprises 4 successive stages I to IV.
- the compressed air by the compressor 4 supplies the adsorber 7A via an open valve 40A.
- the outlet of the adsorber 7A is connected to the exchange line 8 via an open valve 42A.
- the adsorber 7A is in the regeneration phase, while the adsorber 7B is in the adsorption phase. More specifically, during stage II, a valve 44A for venting the adsorber 7A is opened so that the pressure inside the bottle of the adsorber 7A is reduced to a pressure substantially equal to the atmospheric pressure, noted P atmo on the figure 2 .
- step III the valve 44A remains open and residual nitrogen NR withdrawn at the top of the low pressure column 14 and then heated in the exchanger 8 feeds via an open valve 46A, the adsorber 7A to circulate there against a current. This is the actual phase of regeneration during which impurities are desorbed and the beds regenerated.
- step IV the valves 44A and 46A are closed, to allow the pressurization of the adsorber.
- a first step that is to say during a first sub-step IV ', the pressurization of the adsorber is ensured by a stream of purified air, via the open valve 42A, this air flow purified from bottles 7A, 7B.
- Sub-step IV ' is continued by sub-step IV "until the pressure inside the adsorber 7A is substantially equal to the high pressure P ads., By opening the valve 50.
- the pressurization of each adsorber no longer requires, during step IV, to increase the flow rate of the compressor 4.
- the compressor 4 is optimally sized, that is, - say so that its nominal flow is substantially constant. The investment and operating costs of this compression apparatus are reduced, compared with those of prior art installations.
- the compressor 4 compresses 100 kNm 3 / h of air and all the purified air is sent to the exchange line 8. 30 kNm 3 / h of air are sent to the turbine. Air lost 5. 70 kNm 3 / h of air are sent to the system of distillation columns.
- the compressor 4 compresses 100 kNm 3 / h of air, 95 kNm 3 / h are sent to the exchange line 8 and 5 kNm 3 / h are sent to pressurize an adsorption bottle. 25 kNm 3 / h of air (thus 5 kNm 3 / h less) are sent to the lost air turbine 5 and 70 kNm 3 / h of air are always sent to the distillation column system.
- this invention applies to any process involving a lost air turbine, whether there is compression in a cold compressor or not, double column or not, argon production or not, pressurization and vaporization of liquid oxygen or not.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Separation Of Gases By Adsorption (AREA)
Description
La présente invention concerne un procédé de séparation d'air par distillation d'air, notamment destiné à produire de l'oxygène et/ou de l'azote et/ou de l'argon, du type dans lequel l'air à distiller est préalablement épuré au moyen d'au moins deux adsorbeurs qui suivent chacun, en décalage, un cycle où se succèdent une phase d'adsorption, à une pression du cycle, et une phase de régénération se terminant par une pressurisation de l'adsorbeur, conformément au préambule de la revendication 1 et connu des documents
Dans ce type d'installation, la distillation de l'air, préalablement comprimé par un appareil de compression, s'effectue par voie cryogénique et nécessite donc de purifier l'air afin d'en éliminer les constituants dont les températures de solidification sont supérieures à la température de distillation de l'air, à savoir principalement l'eau et le dioxyde de carbone. L'objectif principal de la distillation de l'air est de fournir, sous forme liquide et/ou gazeuse, de l'oxygène et/ou de l'azote et/ou de l'argon. Cette production engendre la coproduction de fluides à faible teneur en oxygène, tels que, par exemple, de l'azote impur, dit azote résiduaire, et de l'azote à plus haute pureté, sous forme liquide ou gazeuse.In this type of installation, the distillation of air, previously compressed by a compression apparatus, is carried out cryogenically and therefore requires purifying the air to remove constituents whose solidification temperatures are higher. at the distillation temperature of the air, namely mainly water and carbon dioxide. The main purpose of the distillation of air is to provide, in liquid and / or gaseous form, oxygen and / or nitrogen and / or argon. This production leads to the coproduction of fluids with low oxygen content, such as, for example, impure nitrogen, called residual nitrogen, and higher purity nitrogen, in liquid or gaseous form.
La purification de l'air à distiller est couramment effectuée par adsorption des constituants gênants, au moyen en général de deux bouteilles contenant des substances adsorbantes disposées en lit et fonctionnant en cycles alternés. Pendant qu'une bouteille est en phase d'adsorption, c'est à dire qu'elle épure l'air devant être distillé, l'autre bouteille est en phase de régénération, c'est à dire qu'elle est balayée par un gaz de régénération sec, tel que l'azote résiduaire, désorbant les impuretés fixées sur l'adsorbant lors de sa phase d'adsorption précédente. La régénération de l'adsorbant est d'autant plus efficace qu'elle est appliquée à haute température et à une basse pression par rapport à celle maintenue pendant l'adsorption, ce qui oblige à pressuriser une bouteille terminant sa phase de régénération, afin de la remettre en condition de pression satisfaisante pour sa phase d'adsorption à venir.The purification of the air to be distilled is commonly carried out by adsorption of the troublesome constituents, generally by means of two bottles containing adsorbent substances arranged in a bed and operating in alternating cycles. While a bottle is in adsorption phase, ie it purifies the air to be distilled, the other bottle is in regeneration phase, that is to say that it is swept by a dry regeneration gas, such as residual nitrogen, desorbing the impurities fixed on the adsorbent during its previous adsorption phase. The regeneration of the adsorbent is all the more effective when it is applied at high temperature and at a low pressure compared with that maintained during the adsorption, which makes it necessary to pressurize a bottle ending its regeneration phase, in order to restore it to a satisfactory pressure condition for its future adsorption phase.
Pour cela, l'état de l'art consiste à prélever une fraction d'air épuré en sortie de la bouteille en phase d'adsorption et de la détendre vers la bouteille en fin de phase régénération, afin d'augmenter la pression de cette dernière. Pendant cette opération, il est cependant indispensable de maintenir constant le débit d'air à envoyer à la distillation afin d'éviter toute fluctuation d'alimentation de l'appareil de distillation et pour maintenir la production d'oxygène et/ou d'azote et/ou d'argon. Aussi, pendant chaque repressurisation, l'appareil de compression d'air doit fournir ce surplus d'air qui sert à la pressurisation Cependant, ce débit d'air supplémentaire implique un surdimensionnement, et donc un surcoût, de l'appareil de compression. Il lui est en effet demandé de fournir un débit d'air comprimé supplémentaire de l'ordre de 5% du débit d'air nominal traité par la bouteille en adsorption (selon l'optimisation du cycle), pendant une durée de pressurisation de l'ordre de 15 minutes pour une bouteille de dimension courante.For this, the state of the art consists in taking a fraction of purified air at the outlet of the bottle in the adsorption phase and relaxing it towards the bottle at the end of regeneration phase, in order to increase the pressure of the latter. During this operation, it is however essential to keep constant the flow of air to be sent to the distillation in order to avoid any fluctuation of supply of the distillation apparatus and to maintain the production of oxygen and / or nitrogen and / or argon. Also, during each repressurization, the air compression device must provide the excess air that is used for pressurization However, this additional air flow implies oversizing, and therefore an additional cost, of the compression device. It is indeed required to provide an additional compressed air flow of the order of 5% of the nominal air flow treated by the adsorption bottle (depending on the optimization of the cycle), during a period of pressurization of the 15 minutes for a standard size bottle.
Par suite, en dehors de la durée de pressurisation, l'appareil de compression fonctionne au débit d'air nominal, c'est-à-dire celui qui correspond à la capacité de séparation de l'appareil de séparation d'air.Consequently, outside the pressurization time, the compression apparatus operates at the nominal air flow rate, that is to say that which corresponds to the separating capacity of the air separation apparatus.
Ainsi pour un débit maximal de compresseur de 100 kNm3/h, le débit normal d'utilisation sera 95 kNm3/h envoyé à la boîte froide où a lieu la distillation et 100 kNm3/h uniquement pour la seule phase de pressurisation en fin de régénération où 5 kNm3/h d'air sont envoyés pour pressuriser une des bouteilles.Thus for a maximum compressor flow rate of 100 kNm3 / h, the normal flow rate of use will be 95 kNm3 / h sent to the cold box where the distillation takes place and 100 kNm3 / h only for the only phase of pressurization at the end of regeneration where 5 kNm3 / h of air is sent to pressurize one of the bottles.
Certains procédés de séparation d'air utilisent un système à air perdu dans lequel la totalité de l'air épuré n'est pas envoyée aux colonnes de distillation. On trouve généralement dans ce cas une turbine de détente qui détendra jusqu'à une pression proche de la pression atmosphérique l'air excédentaire par rapport au besoin d'oxygène.Some air separation processes use a lost air system in which not all of the purified air is sent to the distillation columns. In this case, an expansion turbine is generally found which will depressurise the excess air relative to the oxygen requirement to a pressure close to atmospheric pressure.
Dans ce type de procédé, il est préférable de ne pas appliquer la méthode conventionnelle de pressurisation des adsorbeurs.In this type of process, it is preferable not to apply the conventional method of adsorber pressurization.
Le but de l'invention est d'éviter le surdimensionnement des compresseurs en réduisant, voire en supprimant, l'augmentation du débit d'air à comprimer pour fournir le gaz supplémentaire nécessaire à la pressurisation des bouteilles d'adsorbant.The object of the invention is to avoid over-sizing the compressors by reducing or even eliminating the increase in the air flow to be compressed in order to supply the additional gas necessary for the pressurization of the adsorbent bottles.
A cet effet, l'invention a pour objet un procédé de distillation d'air, notamment destiné à produire de l'oxygène et/ou de l'azote et/ou de l'argon, du type dans lequel l'air à distiller est préalablement comprimé dans un compresseur, épuré au moyen d'au moins deux adsorbeurs qui suivent chacun, en décalage, un cycle où se succèdent une phase d'adsorption, à une haute pression du cycle (Pads), et une phase de régénération à une basse pression Patmos se terminant par une phase de repressurisation de l'adsorbeur, de l'air épuré est refroidi dans une ligne d'échange et ensuite envoyé à une colonne de distillation d'un système de colonnes et des fluides enrichis en oxygène et en azote sont soutirés d'une colonne du système de colonnes, uniquement pendant la phase de repressurisation un débit d'air épuré, constituant entre 3 et 20 % de l'air comprimé dans le compresseur, sert à pressuriser, au moins partiellement, l'adsorbeur terminant sa phase de régénération et le débit d'air comprimé dans le compresseur pendant la phase d'adsorption est sensiblement égal au débit d'air comprimé dans le compresseur pendant la pressurisation de l'adsorbeur, caractérisé en ce qu'une partie de l'air épuré est envoyée à une turbine où elle est détendue et ensuite envoyée à l'atmosphère pour assurer au moins partiellement le maintien en froid pendant le cycle entier et en ce que le débit d'air détendu envoyé à l'air pendant la pressurisation d'un adsorbeur est inférieur à celui envoyé à l'air pendant la phase d'adsorption du même adsorbeur, voire pendant le reste du cycle en dehors de phase de pressurisation.For this purpose, the subject of the invention is a process for the distillation of air, in particular intended to produce oxygen and / or nitrogen and / or argon, of the type in which the air to be distilled is compressed beforehand in a compressor, purified by means of at least two adsorbers each of which, in offset, follow a cycle in which an adsorption phase is followed, at a high pressure of the cycle (P ads ), and a regeneration phase at a low pressure P atmos ending in a phase of repressurization of the adsorber, purified air is cooled in an exchange line and then sent to a distillation column of a system of columns and fluids enriched with Oxygen and nitrogen are withdrawn from a column of the column system, only during the repressurization phase a flow of purified air, constituting between 3 and 20% of the compressed air in the compressor, is used to pressurize, at least partially , the adsorber ending its regeneration phase ration and the compressed air flow in the compressor during the adsorption phase is substantially equal to the compressed air flow rate in the compressor during the pressurization of the adsorber, characterized in that a portion of the purified air is sent to a turbine where it is expanded and then sent to the atmosphere to at least partially maintain the cold during the entire cycle and in that the expanded air flow sent to the air during the pressurization of an adsorber is less than that sent to air during the adsorption phase of the same adsorber, or even during the rest of the cycle outside the pressurization phase.
Le terme « sensiblement égal » couvre le cas dans lequel le débit d'air comprimé dans le compresseur pendant la phase d'adsorption diffère d'au plus 5%, de préférence d'au plus 3%, du débit d'air comprimé dans le compresseur pendant la pressurisation de l'adsorbeur. Les deux débits sont de préférence strictement égaux.The term "substantially equal" covers the case in which the flow rate of compressed air in the compressor during the adsorption phase differs by not more than 5%, preferably not more than 3%, from the compressed air flow rate. the compressor during the pressurization of the adsorber. The two flows are preferably strictly equal.
Suivant d'autres caractéristiques de ce procédé, prises isolément ou selon les combinaisons techniquement possibles :
- le débit d'air comprimé dans le compresseur pendant la phase d'adsorption d'un adsorbeur est égal au débit d'air comprimé dans le compresseur pendant la pressurisation de l'adsorbeur ;
- la réduction du débit d'air envoyé à la turbine et ensuite à l'air pendant la repressurisation est égale au débit d'air utilisée pendant la repressurisation pour pressuriser l'adsorbeur terminant sa phase de repressurisation ;
- la quantité d'air envoyée à la distillation est constante pendant tout le cycle ;
- la réduction du débit d'air envoyé à la turbine et ensuite à l'air pendant la pressurisation d'un adsorbeur est inférieure au débit d'air utilisée pendant la repressurisation pour pressuriser l'adsorbeur terminant sa phase de repressurisation ;
- pendant la phase de repressurisation le débit d'air comprimé dans le compresseur augmente par rapport au débit envoyé pendant le reste du cycle et la quantité d'air envoyée à la distillation reste égale à celle envoyée pendant le reste du cycle ;
- un débit liquide est produit comme produit final ;
- lequel le procédé d'épuration est une adsorption de type PSA, TSA ou TPSA ;
- de l'air est détendu dans une turbine et envoyé à une colonne du système de colonnes :
- le système de colonnes est constitué par une double colonne comprenant une colonne moyenne pression et une colonne basse pression
- on soutire un débit riche en oxygène de la colonne basse pression et on le vaporise dans la ligne d'échange.
- the flow rate of compressed air in the compressor during the adsorption phase of an adsorber is equal to the compressed air flow rate in the compressor during the pressurization of the adsorber;
- the reduction of the air flow sent to the turbine and then to the air during repressurization is equal to the air flow rate used during the repressurization to pressurize the adsorber ending its repressurization phase;
- the amount of air sent to the distillation is constant throughout the cycle;
- the reduction of the air flow to the turbine and then to the air during the pressurization of an adsorber is less than the air flow rate used during repressurization to pressurize the adsorber completing its repressurization phase;
- during the repressurization phase the compressed air flow rate in the compressor increases with respect to the flow rate sent during the remainder of the cycle and the quantity of air sent for distillation remains equal to that sent during the remainder of the cycle;
- a liquid flow is produced as the final product;
- which the purification process is PSA, TSA or TPSA type adsorption;
- air is expanded in a turbine and sent to a column of the column system:
- the column system consists of a double column comprising a medium pressure column and a low pressure column
- a high oxygen flow rate is withdrawn from the low pressure column and vaporized in the exchange line.
Le terme « PSA » utilisé dans ce document signifie « Adsorption à pression modulée » ou Pressure swing adsorption » en anglais. Le terme « TSA » utilisé dans ce document signifie « Adsorption à température modulée » ou « Temperature swing adsorption » en anglais. Le terme « TPSA » utilisé dans ce document signifie « Adsorption à pression et température modulées » ou « Temperature and pressure swing adsorption » en anglais. »The term "PSA" used in this document means "pressure swing adsorption". The term "TSA" used in this document means "temperature swing adsorption" or "temperature swing adsorption". The term "TPSA" as used herein means "Adsorption at Modulated Pressure and Temperature" or "Temperature and Pressure Swing Adsorption". "
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant au dessin annexé, sur lequel :
- la
figure 1 est une vue schématique d'une installation pour opérer le procédé selon l'invention.
- the
figure 1 is a schematic view of an installation for operating the method according to the invention.
Sur la
L'installation 1 comprend essentiellement :
- un compresseur d'air 4 ;
- un appareil 6 d'épuration d'air par adsorption, lequel appareil comporte, d'une part, deux
7A, 7B sous forme de deux bouteilles contenant chacune des matériaux adsorbants, par exemple du tamis moléculaire avec éventuellement de l'alumine, capable d'adsorber l'eau et le dioxyde de carbone présents dans l'air, et, d'autre part, des conduites et des vannes de raccordement dont la disposition apparaîtra clairement lors de la description du procédé mis en oeuvre dans l'installation 1 et qui permettent de soumettre successivement chaqueadsorbeurs 7A, 7B au flux d'air à distiller et à un gaz de régénération de l'adsorbant ;adsorbeur - une turbine d'air perdu 27 ;
- un compresseur froid 3 ;
- une
turbine 5 dite Claude envoyant de l'air à la colonne moyenne pression ; - une ligne principale d'échange thermique 8 ;
- un appareil de distillation d'air sous forme d'une
double colonne 10 comportant une colonnemoyenne pression 12, une colonnebasse pression 14 et un vaporiseur-condenseur 16 couplant ces deux colonnes, ainsi qu'une colonne de séparation d'argon 26 ; et - un
réservoir 18 de stockage d'oxygène liquide.
- an
air compressor 4; - an apparatus 6 for purifying air by adsorption, which apparatus comprises, on the one hand, two
7A, 7B in the form of two bottles each containing adsorbent materials, for example molecular sieve with optionally alumina, capable of adsorbing the water and carbon dioxide present in the air, and, on the other hand, pipes and connection valves whose arrangement will be clearly apparent when describing the process implemented in the installation 1 and which make it possible successively to subject eachadsorbers 7A, 7B to the flow of air to be distilled and to a regeneration gas of the adsorbent;adsorber - a lost
air turbine 27; - a
cold compressor 3; - a so-called Claude turbine 13 sending air to the medium pressure column;
- a main heat exchange line 8;
- an air distillation apparatus in the form of a
double column 10 comprising amedium pressure column 12, alow pressure column 14 and a vaporizer-condenser 16 coupling these two columns, as well as anargon separation column 26; and - a
reservoir 18 for storing liquid oxygen.
Le fonctionnement de l'installation 1 de la
L'air à distiller 23, préalablement comprimé par le compresseur 4, est épuré par l'un des adsorbeurs 7A, 7B de l'appareil 6, puis refroidi par la ligne principale d'échange thermique 8 jusqu' à une température intermédiaire. L'adsorption peut être du type TSA, PSA ou TPSA. Une partie 25 de l'air est envoyée à une turbine d'air perdu 27 et l'air détendu est envoyé à l'atmosphère après réchauffage dans l'échangeur 8. Le reste de l'air poursuit son refroidissement. Une autre partie 29 de l'air est envoyée au compresseur froid 3 puis renvoyée à la ligne d'échange 8. Une partie du débit surpressé est détendue dans une turbine 5 jusqu'à la moyenne pression pour former le débit détendu 7. Le débit détendu 7 au voisinage de son point de rosée est introduit en cuve de la colonne moyenne pression 12. Le reste de l'air surpressé 9 poursuit son refroidissement dans la ligne d'échange 8, est détendu dans une vanne V puis est envoyé à un niveau intermédiaire de la colonne moyenne pression 12.The air to be distilled 23, previously compressed by the
Le vaporiseur-condenseur 16 vaporise de l'oxygène liquide, par exemple en ayant une pureté de 99,5%, de la cuve de la colonne basse pression 14, par condensation d'azote gazeux de tête de la colonne moyenne pression 12.The vaporizer-
Du « liquide riche » LR (air enrichi en oxygène), prélevé en cuve de la colonne moyenne pression 12, est injecté, après détente, à un niveau intermédiaire de la colonne basse pression 14, tandis que de l'azote liquide NL, sensiblement pur, est prélevé en tête de la colonne moyenne pression 12 pour alimenter le réservoir 22 et la tête de la colonne basse pression 14. De l'azote liquide et/ou de l'oxygène liquide est produit comme produit final, envoyé au client sous forme liquide."Rich liquid" LR (air enriched with oxygen), taken from the bottom of the
De l'azote impur ou « résiduaire » NR, soutiré du sommet de la colonne basse pression 14, est renvoyé à la ligne principale d'échange thermique 8, où il provoque le refroidissement de l'air à distiller.Impure nitrogen or "waste" NR, withdrawn from the top of the
De l'oxygène liquide OL est soutiré de la cuve de la colonne basse pression 14 et alimente le réservoir de stockage 18. Après pressurisation dans la pompe P, il se vaporise dans la ligne principale d'échange thermique 8 et distribué par une conduite de production 32 pour former de l'oxygène gazeux sous pression.OL liquid oxygen is withdrawn from the tank of the
Une colonne de production d'argon 26 est alimentée à partir de la colonne basse pression 14.An
Le fonctionnement de l'installation qui vient d'être décrit peut être mis en oeuvre de façon continue, à l'exception du fonctionnement de l'appareil d'épuration 6, qui suit dans le temps un cycle de pressions de la
Le cycle de la
Ces quatre étapes vont maintenant être décrites successivement pour l'adsorbeur 7A, étant entendu que l'adsorbeur 7B suit ces mêmes étapes avec un décalage temporel valant sensiblement
Lors de l'étape I, c'est à dire de t = 0 à
Lors des étapes II, III et IV, l'adsorbeur 7A est en phase de régénération, tandis que l'adsorbeur 7B est en phase d'adsorption. Plus précisément, lors de l'étape II, une vanne 44A de mise à l'air de l'adsorbeur 7A est ouverte de façon à ce que la pression à l'intérieur de la bouteille de l'adsorbeur 7A soit ramenée à une pression sensiblement égale à la pression atmosphérique, notée Patmo sur la
Lors de l'étape III, la vanne 44A reste ouverte et de l'azote résiduaire NR soutiré en tête de la colonne basse pression 14 puis réchauffé dans l'échangeur 8 alimente, via une vanne 46A ouverte, l'adsorbeur 7A pour y circuler à contre-courant. Il s'agit de la phase effective de la régénération pendant laquelle les impuretés sont désorbées et les lits régénérés. Lors de l'étape IV, les vannes 44A et 46A sont fermées, afin de permettre la pressurisation de l'adsorbeur. Dans un premier temps, c'est-à-dire lors d'une première sous-étape IV', la pressurisation de l'adsorbeur est assurée par un flux d'air épuré, via la vanne 42A ouverte, ce flux d'air épuré venant des bouteilles 7A, 7B. La sous-étape IV' se poursuit par la sous-étape IV" jusqu'à ce que la pression à l'intérieur de l'adsorbeur 7A soit sensiblement égale à la pression haute Pads., par ouverture de la vanne 50.In step III, the
Par le procédé selon l'invention, la pressurisation de chaque adsorbeur ne nécessite plus, pendant l'étape IV, d'augmenter le débit du compresseur 4. De cette façon, le compresseur 4 est dimensionné de façon optimale, c'est-à- dire de sorte que son débit nominal soit sensiblement constant. Les coûts d'investissement et de fonctionnement de cet appareil de compression s'en trouvent diminués, par rapport à ceux des installations relevant de l'art antérieur.By the method according to the invention, the pressurization of each adsorber no longer requires, during step IV, to increase the flow rate of the
Lors de la phase d'adsorption, le compresseur 4 comprime 100 kNm3/h d'air et tout l'air épuré est envoyé à la ligne d'échange 8. 30 kNm3/h d'air sont envoyés à la turbine d'air perdu 5. 70 kNm3/h d'air sont envoyés au système de colonnes de distillation.During the adsorption phase, the
Lors de la phase de pressurisation en fin de phase de régénération, le compresseur 4 comprime 100 kNm3/h d'air, 95 kNm3/h sont envoyés à la ligne d'échange 8 et 5 kNm3/h sont envoyés pour pressuriser une bouteille d'adsorption. 25 kNm3/h d'air (donc 5 kNm3/h en moins) sont envoyés à la turbine d'air perdu 5 et 70 kNm3/h d'air sont toujours envoyés au système de colonnes de distillation.During the pressurization phase at the end of the regeneration phase, the
Il sera compris que cette invention s'applique à tout procédé impliquant une turbine d'air perdu, qu'il y ait compression dans un compresseur froid ou pas, double colonne ou pas, production d'argon ou pas, pressurisation et vaporisation d'oxygène liquide ou pas.It will be understood that this invention applies to any process involving a lost air turbine, whether there is compression in a cold compressor or not, double column or not, argon production or not, pressurization and vaporization of liquid oxygen or not.
Il sera compris également que si la réduction du débit d'air perdu est inférieur au débit envoyé à la pressurisation, soit le débit comprimé devra augmenter pendant la pressurisation et le débit d'air distillé reste inchangé soit moins d'air sera envoyé à la distillation et le débit comprimé restera inchangé.It will also be understood that if the reduction of the flow of air lost is less than the flow rate sent to the pressurization, the compressed flow will have to increase during the pressurization and the distilled air flow remains unchanged or less air will be sent to the pressurization. distillation and the compressed flow will remain unchanged.
Claims (13)
- Method for distilling air, in particular intended to produce oxygen and/or nitrogen and/or argon, of the type wherein the air to be distilled is compressed beforehand in a compressor (4), purified by means of two adsorbers (7A, 7B) which each follow, offset, a cycle with in succession an adsorption phase, at a high pressure of the cycle (Pads), and a regeneration phase at a low pressure Patmos ending with a repressurisation phase of the adsorber, purified air is cooled in an exchange line (8) and is then sent to a distillation column (12) of a system of columns and oxygen- and nitrogen-rich fluids are extracted from a column (14) of the system of columns, only during the repressurisation phase a purified airflow, constituting between 3 and 20% of the compressed air in the compressor, used to at least partially pressurise the adsorber completing the regeneration phase thereof and the airflow compressed in the compressor during the adsorption phase is substantially equal to the compressed airflow in the compressor during the pressurisation of the adsorber, characterised in that a portion of the purified air is sent to a turbine (27) where it is decompressed and then sent into the atmosphere so as to at least partially ensure the maintaining cold of the method during the entire cycle and in that the amount of decompressed airflow sent into the air during the pressurisation of an adsorber is less than the amount sent into the air during the adsorption phase of the same adsorber.
- Method according to claim 1 wherein the amount of decompressed airflow sent into the air during the pressurisation of an adsorber is less than that sent into the air during the rest of the cycle outside of the pressurisation phase.
- Method according to claim 1 or 2 wherein the airflow compressed in the compressor (4) during the adsorption phase of an adsorber is equal to the compressed airflow in the compressor during the pressurisation of the adsorber.
- Method according to claim 1 or 2 or 3 wherein the reduction in the airflow sent to the turbine (27) and then into the air during the repressurisation is equal to the airflow used during repressurisation in order to pressurise the adsorber complete the repressurisation phase thereof.
- Method according to claim 4 wherein the quantity of air sent to distillation is constant throughout the entire cycle.
- Method according to one of claims 1 or 2 or 3 wherein the reduction in the airflow sent to the turbine (27) and then into the air during the pressurisation of an adsorber is less than the airflow used during the repressurisation to pressurise the adsorber completing the repressurisation phase thereof.
- Method according to claim 6 when the latter does not depend on claim 3 wherein during the repressurisation phase the airflow compressed in the compressor (4) increases in relation to the flow sent during the rest of the cycle and the quantity of air sent to distillation remains equal to that sent during the rest of the cycle.
- Method according to one of the preceding claims wherein a liquid flow (22) is produced as a final product.
- Method according to one of the preceding claims wherein the method of purification is an adsorption of the PSA, TSA or TPSA type.
- Method according to one of the preceding claims wherein air is decompressed in a turbine (5) and sent to a column of the system of columns.
- Method according to one of the preceding claims wherein the amount of decompressed airflow sent into the air during the pressurisation of an adsorber is less than that sent to the air during the rest of the cycle outside any phase of pressurisation.
- Method according to one of the preceding claims wherein the system of columns is comprised of a double column (10) comprising an average pressure column (12) and a low pressure column (14).
- Method according to claim 12 wherein an oxygen-rich flow is extracted from the low pressure column (14) and it is vaporised in the exchange line (8).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1152733A FR2973486B1 (en) | 2011-03-31 | 2011-03-31 | AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION |
PCT/FR2012/050587 WO2012131231A2 (en) | 2011-03-31 | 2012-03-21 | Method for separating air by means of cryogenic distillation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2712419A2 EP2712419A2 (en) | 2014-04-02 |
EP2712419B1 true EP2712419B1 (en) | 2017-08-09 |
Family
ID=45974440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12714821.1A Not-in-force EP2712419B1 (en) | 2011-03-31 | 2012-03-21 | Method for separating air by means of cryogenic distillation |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140013798A1 (en) |
EP (1) | EP2712419B1 (en) |
CN (1) | CN104246401B (en) |
FR (1) | FR2973486B1 (en) |
WO (1) | WO2012131231A2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2957421A1 (en) * | 2014-08-15 | 2016-02-18 | Biomerieux, Inc. | Methods, systems, and computer program products for detecting pipette tip integrity |
CN107580670B (en) * | 2015-03-13 | 2020-02-28 | 林德股份公司 | Apparatus for producing oxygen by cryogenic air separation |
US10895417B2 (en) | 2016-03-25 | 2021-01-19 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for the production of air gases by the cryogenic separation of air with improved front end purification and air compression |
FR3074274B1 (en) * | 2017-11-29 | 2020-01-31 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
US11137205B2 (en) * | 2018-12-21 | 2021-10-05 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and apparatus for eliminating heat bumps following regeneration of adsorbers in an air separation unit |
US11029086B2 (en) * | 2018-12-21 | 2021-06-08 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and apparatus for reducing process disturbances during pressurization of an adsorber in an air separation unit |
CN110787587A (en) | 2019-11-08 | 2020-02-14 | 乔治洛德方法研究和开发液化空气有限公司 | Air separation purification pressure equalizing system and control method |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52124468A (en) * | 1976-04-14 | 1977-10-19 | Kobe Steel Ltd | Raw air flowing volume regulation of air separator |
US5419136A (en) * | 1993-09-17 | 1995-05-30 | The Boc Group, Inc. | Distillation column utilizing structured packing having varying crimp angle |
US6073463A (en) * | 1998-10-09 | 2000-06-13 | Air Products And Chemicals, Inc. | Operation of a cryogenic air separation unit which intermittently uses air feed as the repressurization gas for a two bed PSA system |
FR2787560B1 (en) * | 1998-12-22 | 2001-02-09 | Air Liquide | PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES |
FR2818920B1 (en) * | 2000-12-29 | 2003-09-26 | Air Liquide | METHOD FOR TREATING A GAS BY ABSORPTION AND CORRESPONDING INSTALLATION |
WO2007033838A1 (en) * | 2005-09-23 | 2007-03-29 | Linde Aktiengesellschaft | Air cryogenic separation method and device |
FR2895069B1 (en) * | 2005-12-20 | 2014-01-31 | Air Liquide | APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
FR2896860A1 (en) * | 2006-01-31 | 2007-08-03 | Air Liquide | Air separation method for use in purification installation, involves separating part of purified air in medium pressure column into oxygen and nitrogen enriched liquids, and sending liquid from column to low pressure column |
FR2903483B1 (en) * | 2006-07-04 | 2014-07-04 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
FR2910604B1 (en) * | 2006-12-22 | 2012-10-26 | Air Liquide | METHOD AND APPARATUS FOR SEPARATING A GAS MIXTURE BY CRYOGENIC DISTILLATION |
FR2913759B1 (en) * | 2007-03-13 | 2013-08-16 | Air Liquide | METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION |
CN101779092A (en) * | 2007-08-10 | 2010-07-14 | 乔治洛德方法研究和开发液化空气有限公司 | Process and apparatus for the separation of air by cryogenic distillation |
CN101779093A (en) * | 2007-08-10 | 2010-07-14 | 乔治洛德方法研究和开发液化空气有限公司 | Be used for method and apparatus by separating air by cryogenic distillation |
-
2011
- 2011-03-31 FR FR1152733A patent/FR2973486B1/en not_active Expired - Fee Related
-
2012
- 2012-03-21 US US14/004,264 patent/US20140013798A1/en not_active Abandoned
- 2012-03-21 EP EP12714821.1A patent/EP2712419B1/en not_active Not-in-force
- 2012-03-21 WO PCT/FR2012/050587 patent/WO2012131231A2/en active Application Filing
- 2012-03-21 CN CN201280016801.6A patent/CN104246401B/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2712419A2 (en) | 2014-04-02 |
FR2973486B1 (en) | 2013-05-03 |
WO2012131231A2 (en) | 2012-10-04 |
US20140013798A1 (en) | 2014-01-16 |
CN104246401A (en) | 2014-12-24 |
WO2012131231A3 (en) | 2015-08-20 |
CN104246401B (en) | 2016-02-03 |
FR2973486A1 (en) | 2012-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2712419B1 (en) | Method for separating air by means of cryogenic distillation | |
EP0456575B1 (en) | Process and apparatus for purifying, by adsorption, air to be distilled | |
EP0420725B1 (en) | Refrigeration production process, the refrigeration cycle used and application in the distillation of air | |
EP0628778B2 (en) | Process and high pressure gas supply unit for an air constituent consuming installation | |
EP0689019B1 (en) | Process and apparatus for producing gaseous oxygen under pressure | |
AU711711B2 (en) | Integrated air separation process | |
EP0848220B1 (en) | Method and plant for supplying an air gas at variable quantities | |
EP0605262B1 (en) | Process and apparatus for the production of gaseous oxygen under pressure | |
AU2009200347B2 (en) | Process for obtaining helium | |
FR2723184A1 (en) | PROCESS AND PLANT FOR THE PRODUCTION OF GAS OXYGEN UNDER PRESSURE WITH VARIABLE FLOW RATE | |
EP0914584B1 (en) | Method and plant for producing an air gas with a variable flow rate | |
WO2020128205A1 (en) | Apparatus and method for separating air by cryogenic distillation | |
FR2849172A1 (en) | Improved air distillation process, for oxygen production, uses vaporized gas from storage for at least partial pressurization of adsorber ending regeneration phase | |
EP0359628B1 (en) | Process and installation for the recuperation of the most heavy hydrocarbons in a mixture of gases | |
EP1090670B1 (en) | Process for treating a gas using temperature swing adsorption | |
EP0611218B1 (en) | Process and installation for producing oxygen under pressure | |
EP2227309B1 (en) | Method for drying a gas flow rich in carbon dioxide | |
CA2147573C (en) | Process and unit for segregating a gaseous mixture by cryogenic distillation | |
FR2960444A1 (en) | Method for purifying air sent to distillation apparatus to produce oxygen and/or nitrogen and/or argon, involves utilizing non-purified air flow from compressor to pressurize absorbers terminating regeneration phase | |
FR2739304A1 (en) | Compressed air purification, esp. prior to distillation | |
FR2790823A1 (en) | METHOD AND APPARATUS FOR CRYOGENIC AIR PURIFICATION AND SEPARATION WITHOUT PRE-COOLING | |
FR2890575A1 (en) | Installation for production of gas enriched in carbon dioxide and gas reduced in carbon dioxide comprises pressure swing adsorption unit, turbine, compressor and an outlet unit to send gas reduced in carbon dioxide to turbine | |
FR2881063A1 (en) | Production of carbon monoxide and optionally hydrogen involves separating carbon monoxide, hydrogen and methane gas mixtures by adsorption followed by cryogenic distillation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
R17D | Deferred search report published (corrected) |
Effective date: 20150820 |
|
17P | Request for examination filed |
Effective date: 20160222 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170410 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 917298 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012035606 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 917298 Country of ref document: AT Kind code of ref document: T Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171209 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171110 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180322 Year of fee payment: 7 Ref country code: GB Payment date: 20180321 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012035606 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180328 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602012035606 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191001 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170809 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |