EP2698520A1 - Method for operating a combustion engine - Google Patents
Method for operating a combustion engine Download PDFInfo
- Publication number
- EP2698520A1 EP2698520A1 EP13003562.9A EP13003562A EP2698520A1 EP 2698520 A1 EP2698520 A1 EP 2698520A1 EP 13003562 A EP13003562 A EP 13003562A EP 2698520 A1 EP2698520 A1 EP 2698520A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cylinder
- median
- value
- signal
- max
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 158
- 238000000034 method Methods 0.000 title claims abstract description 31
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000007789 gas Substances 0.000 claims abstract description 30
- 239000000446 fuel Substances 0.000 claims description 63
- 230000002159 abnormal effect Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 description 13
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002737 fuel gas Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000005070 sampling Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/023—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/025—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0027—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0085—Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/401—Controlling injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/02—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
- F02D19/021—Control of components of the fuel supply system
- F02D19/023—Control of components of the fuel supply system to adjust the fuel mass or volume flow
- F02D19/024—Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/06—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D37/00—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
- F02D37/02—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
Definitions
- the invention relates to a method for operating an internal combustion engine, in particular a gas engine, having at least three cylinders, wherein a cylinder-individual signal is detected by each cylinder, wherein from the signals of the cylinder, a desired value is formed, wherein in dependence on the deviation of a signal from the desired value at least one combustion parameter of the corresponding cylinder is set, wherein the signal is tracked to the desired value.
- the cylinders of an internal combustion engine usually have combustion-technical differences, that is, with global control of combustion parameters, such as fuel quantity or ignition timing, the individual contributions of the cylinders to the total performed work of the internal combustion engine are different.
- global or engine-global regulation of combustion parameters means that all cylinders of an internal combustion engine are operated with the same values for the corresponding manipulated variables, that is, for example, that in a global control with respect to fuel quantity, each cylinder is acted upon with the same opening duration of the gas injection valve or that in a global control with respect to ignition timing, the ignition of the cylinder in each case at the same piston position of the respective piston in the cylinder - usually expressed in degrees crank angle before TDC (top dead center of the piston in the cylinder) - are activated.
- a reciprocating engine In a reciprocating engine, the work of a cylinder is transmitted to an operating shaft of the internal combustion engine via a crankshaft connected to a piston connecting rod of the cylinder, wherein often an electric generator is connected to the working shaft in order to convert the mechanical energy of the working shaft into electrical energy.
- an electric generator is connected to the working shaft in order to convert the mechanical energy of the working shaft into electrical energy.
- cylinder equalization is the one in focus, to match the peak pressures in the individual cylinders in order to achieve the most uniform mechanical peak load on the components.
- Alternative gender equality options see, for example, the optimization of engine efficiency or the minimization of pollutant emissions in the foreground.
- each cylinder By equalizing the cylinder tip pressures, each cylinder provides substantially the same power contribution, and thermo-mechanical overloading of individual cylinders can be avoided.
- a knocking combustion can be taken into account in the fuel metering.
- cylinders which exceed a certain knock intensity do not receive an increased fuel supply in order to avoid stronger knocking and possibly mechanical damage.
- the systems described so far use the arithmetic mean of cylinder-individual signals such as e.g. the peak cylinder pressure as a target for a cylinder equalization scheme.
- the use of the arithmetic mean has the disadvantage that strong outliers have a significant effect on the arithmetic mean.
- cylinders which have unfavorable combustion or whose cylinder pressure signal is inaccurate or falsified - for example, due to defective sensors or due to aging effects of sensors or due to electromagnetic interference in signal transmission and / or signal processing - a significant and above all undesirable influence to the target value for all cylinder tip pressures.
- the object of the invention is therefore to avoid the disadvantages described above and to provide a comparison with the prior art improved method for operating an internal combustion engine.
- the target value or target value for the cylinder equalization control should be more robust than in previously known methods.
- the median of the signals is formed as the desired value.
- the median which is often also referred to as the central value or as the 0.5-quantile, is a positional parameter of a sampling distribution, wherein in the context of the invention the distribution of the detected cylinder-individual signals is a sampling distribution.
- the determination or output of the median is usually not provided and is therefore not performed in the known method.
- the median divides the sample distribution into two halves of the same size.
- the median can be determined by first arranging the signals in ascending order according to their signal values. If the number of signals is odd - e.g. with an odd number of cylinders - then the signal value of the middle signal is the median. If the number of signals is even - e.g. with an even number of cylinders - then the median can be determined by taking the arithmetic mean of the two mean signal values of the ordered sample distribution.
- the arithmetic mean of the signal values is expressly not formed and used as the desired value, but the median of the signal values is formed and used as the desired value.
- At least one of the following individual signals of each cylinder is detected: cylinder internal pressure, cylinder exhaust gas temperature, nitrogen oxide emissions, combustion air ratio.
- a particular embodiment provides that a maximum internal cylinder pressure of a combustion cycle is detected as a signal.
- the detected signal is temporally filtered over 10 to 1000 combustion cycles, preferably 40 to 100 combustion cycles, as the signal of a cylinder.
- the combustion parameter of a cylinder is set if the deviation of the signal of the cylinder from the desired value exceeds a predefinable tolerance value. This allows a quieter control dynamics can be achieved.
- a fuel quantity for the corresponding cylinder is set as the combustion parameter.
- this can be the fuel quantity for the respective main combustion chamber of a cylinder.
- the amount of fuel for a cylinder may be increased if the signal of the cylinder is less than the desired value and the fuel quantity for a cylinder may be reduced if the signal of the cylinder is greater than the desired value.
- a fuel metering valve may be provided for each cylinder, wherein the opening duration of the corresponding Brennstoffdosierventils is set to adjust the amount of fuel for a cylinder.
- Such a fuel metering valve may preferably be a port injection valve which is arranged in the region of the inlet tract of a cylinder. It can also port injection valves are used, for example, allow only a fully open or a fully closed position. Here, the opening period may be defined as the period in which the valve is in its fully open position. In general, however, can also stroke-controlled Valves are used, in which for adjusting the amount of fuel for a cylinder, the opening duration and / or the opening stroke of a valve can be adjusted.
- a regulation with respect to the combustion parameter fuel quantity can be carried out in accordance with Table 1 below, depending on the individual cylinder signal used.
- column 1 of Table 1 lists the respective cylinder-specific signal and a suitable possibility for detecting the respective signal.
- column 2 of Table 1 an increase in the amount of fuel for a cylinder takes place if the respective signal of the cylinder is smaller than the desired value.
- column 3 of Table 1 a reduction in the amount of fuel for a cylinder takes place if the respective signal of the cylinder is greater than the desired value.
- the setpoint is in each case the median of the respective signal of all cylinders of the internal combustion engine.
- the amount of fuel can be increased for a cylinder, for example, by increasing the opening time of the cylinder associated Brennstoffdosierventils. Accordingly, the amount of fuel for a cylinder can be reduced by reducing the opening time of the fuel metering valve associated with the cylinder.
- Control measures regarding the fuel quantity Cylinder-individual signal Increase the amount of fuel for a cylinder, if Reducing the amount of fuel for a cylinder, if Cylinder tip pressure, detected by cylinder pressure sensor in the combustion chamber low cusp tip pressure high cylinder tip pressure Cylinder exhaust temperature detected by thermocouple after exhaust valve low cylinder exhaust temperature high cylinder exhaust temperature Nitrogen oxide emissions detected by NOx sensor low nitrogen oxide emissions high nitrogen oxide emissions Inverse of combustion air ratio detected by broadband lambda probe or oxygen sensor low inverse of the combustion air ratio high inverse of the combustion air ratio
- an ignition point for the corresponding cylinder is set as the combustion parameter.
- an ignition device may be provided for each cylinder, wherein the ignition timing of the ignition device in degrees crank angle before TDC (top dead center of the piston in the cylinder) is set.
- the ignition timing is usually expressed in degrees crank angle before TDC (top dead center of the piston in the cylinder) and thus indicates when a corresponding ignition device for igniting a fuel or fuel-air mixture in the cylinder or combustion chamber is triggered.
- the ignition device may be a spark plug (e.g., spark plug or laser spark plug) or a pilot injector for performing a pilot injection of e.g. Diesel fuel act.
- an antechamber can also be used.
- the ignition timing for each cylinder of an internal combustion engine is set at the same globally given value (global default value) expressed in degrees crank angle before TDC.
- this value is 20 to 30 degrees crank angle before TDC, the value depending on the speed of the internal combustion engine and / or can be determined depending on the ignition device used.
- This global default value can be derived from an ignition timing map in which suitable values for the ignition point are stored as a function of the power and / or the charge air pressure and / or the charge air temperature and / or the engine speed of the internal combustion engine.
- the spark timing for a cylinder is set earlier (compared to the global default value) if the signal of the cylinder is less than the target value and the spark timing for a cylinder is set later (compared to the global default value) if the signal of the cylinder is greater than the setpoint.
- a control with respect to the combustion parameter ignition time can be carried out in accordance with Table 2 below, depending on the individual cylinder signal used.
- column 1 of Table 2 lists the respective cylinder-specific signal and a suitable possibility for detecting the respective signal.
- a previous ignition timing is set for a cylinder if the respective signal of the cylinder is smaller than the desired value.
- column 3 of Table 2 a later ignition timing is set for a cylinder if the respective signal of the cylinder is greater than the desired value.
- the setpoint is in each case the median of the respective signal of all cylinders of the internal combustion engine.
- a parameter value to be determined for setting the at least one combustion parameter the parameter value preferably comprising a predefinable global engine target value and a cylinder-specific differential value.
- the cylinder-specific difference value may, for example, be in a range of +/- 4 degrees crank angle before TDC, preferably in a range of +/- 2 degrees crank angle before TDC with respect to setting the combustion parameter ignition timing.
- the predefinable target value may be a global value that applies to all cylinders of the internal combustion engine.
- the predetermined target value with respect to the setting of the ignition timing as the combustion parameter may be the global target value for the ignition timing in the cylinders of a stationary gas engine.
- the predefinable target value can be derived from a Zündzeitticiankennfeld.
- suitable values for the ignition timing in dependence be stored by the power and / or the charge air pressure and / or the charge air temperature and / or the engine speed of the internal combustion engine.
- the values stored in the ignition timing map can be determined on a test bench.
- the predetermined target value with respect to the setting of the fuel quantity as the combustion parameter may be an engine global basic value for the opening times of fuel metering valves or gas injection valves for the cylinders of a stationary gas engine.
- a quantity of fuel to be metered is determined as a function of the operating point of the internal combustion engine and a predefinable target value for the fuel-air ratio in order to obtain a specific emission quantity or a specific charge air pressure.
- the engine controls used usually include an emission regulator.
- a quantity of fuel to be metered is determined as a function of the operating point of the internal combustion engine and a predefinable target value for the power and / or the rotational speed of the internal combustion engine.
- Fuel-guided combustion processes have their application in particular in variable-speed operation of an internal combustion engine, in an internal combustion engine in isolated operation, at engine start or during idling of the internal combustion engine.
- the motor controls used in this case usually include a power controller and / or a speed controller.
- the predefinable target value is determined from a predefinable fuel-air ratio, wherein preferably the predefinable fuel-air ratio from a power equivalent of the output power of the internal combustion engine , Preferably an electrical power of a generator connected to the internal combustion engine, and / or is determined from a charge air pressure and / or from an engine speed of the internal combustion engine.
- a power equivalent is understood to be the actual mechanical power of the internal combustion engine or a substitute variable corresponding to the mechanical power.
- This may be, for example, an electric power of a generator connected to the internal combustion engine, which is measured from the power output of the generator. It may also be a calculated mechanical power of the internal combustion engine, which is calculated from the engine speed and torque or from the electrical power of the generator and the efficiency of the generator. It may also be only about the engine speed, if the power consumption of the consumer is known exactly about the speed.
- the power equivalent may also be the indicated mean pressure, which can be determined in known manner from the in-cylinder pressure curve, or the effective mean pressure, which can be calculated in known manner from the torque output or from the electrical or mechanical power. In this case, a power equivalent of the internal combustion engine can be determined from the known relationship between effective mean pressure, the displacement of a cylinder and the work performed at a power stroke.
- the predefinable fuel-air ratio can be determined in a conventional manner from the charge air pressure and the power of the internal combustion engine.
- the predefinable fuel-air ratio for an engine designed as a gas engine for example, according to EP 0 259 382 B1 be determined.
- the predefinable target value for the gas injection duration can be determined from the flow behavior of the gas injection valves and the boundary conditions prevailing at the gas injection valves (such as pressure and temperature of the fuel gas, intake manifold pressure or charge air pressure, respectively). From the conditions in the intake manifold of the gas engine, in particular from charge air pressure and charge air temperature, the air mass equivalent (a value corresponding to the air mass) of the gas engine can be determined. With the predeterminable fuel-air ratio can be determined from the setpoint for the fuel gas mass. With the flow behavior of the gas injection valves and the boundary conditions at the Gaseinblaseventilen then the required global opening duration or Gas Einblasedauer be determined for the gas injection valves to introduce the previously determined fuel gas mass in the gas engine. This global gas injection duration corresponds in this example to the predefinable target value.
- the predefinable target value as a function of the deviation of a power equivalent of the output power of the internal combustion engine from a predetermined target power equivalent and / or in dependence Deviation of an engine speed of the internal combustion engine is determined by a predetermined target speed of the internal combustion engine.
- a power regulator can be provided which, depending on the deviation of a current power equivalent of the output power (actual power) of the internal combustion engine (eg a measured electric power of a generator connected to the internal combustion engine) from the predetermined target power equivalent (target power) of the internal combustion engine, a global motor default value for the fuel mass flow determined.
- a speed controller may be provided which determines a motor global default value for the fuel mass flow as a function of the deviation of a current engine speed (actual speed) of the internal combustion engine from the predefinable target speed (target speed) of the internal combustion engine. From the determined target value for the fuel mass flow, the predefinable target value - e.g. for the engine-global opening duration of fuel metering valves or for the engine global default value for the ignition timing of ignition devices.
- the cylinder-specific difference value contains a cylinder-specific precontrol value, the cylinder-specific pilot control value preferably being determined from a charge air pressure and preferably additionally from a charge air temperature of the internal combustion engine.
- the cylinder-specific precontrol values can thereby originate from measurements during the commissioning of the internal combustion engine and, for example, can also be used as fallback values in the event that a sensor for detecting the cylinder-specific signal fails or is disturbed.
- the cylinder-individual precontrol values can take into account, for example, the gas dynamics in the intake manifold and / or in the gas rail of a gas engine as well as corresponding component tolerances, wherein the gas dynamics can be determined by simulations or measurements.
- the gas dynamics and the effects of component tolerances are influenced inter alia by the charge air pressure, the engine speed and the charge air temperature. It is therefore advantageous to derive suitable cylinder-specific precontrol values from a characteristic map which contains corresponding values for different charge air pressures and charge air temperatures.
- corresponding measurement data can be detected or corresponding maps are determined by experiments or simulations. It is also possible that an adaptive map is generated by online measurements during operation of the gas engine.
- the cylinder-specific difference value is subjected to a compensation value, the compensation value corresponding to the arithmetic mean value of the cylinder-specific difference values.
- This is particularly advantageous in order to install or retrofit the proposed solution in internal combustion engines, which were previously operated without cylinder equalization or only with a global controller.
- a correction of the cylinder-specific difference values it can be achieved, in particular, that a globally metered quantity of fuel is not influenced by the proposed solution and that an optionally existing global emission control of the internal combustion engine does not have to be adapted. Since the values for the respective ignition times can also be incorporated into a global engine control system, by correcting the cylinder-specific difference values, also with respect to the setting of the ignition timing, an undesirable effect on the global engine control can be avoided.
- a combustion state is monitored for each cylinder and evaluated as normal or abnormal with respect to a predeterminable desired state, the combustion parameter of a cylinder being adjusted only if the combustion state of the cylinder is judged to be normal. It can as Combustion state knocking and / or glow ignition and / or exposure to be monitored in the combustion, wherein the combustion state of a cylinder is judged normal, if no knocking and / or no ignition and / or no exposure to the combustion are detected.
- Fig. 1a shows by way of example the respective course of the cylinder-specific signal maximum cylinder internal pressure or peak pressure p max over several combustion cycles c of several cylinders 2 of an internal combustion engine 1.
- each of the arithmetic mean p mean of the detected Cylinder-individual signals p max formed and used as a reference variable for the control.
- outliers have a significant effect on the reference variable and thus on the overall cylinder equalization control.
- the proposed method does not form the arithmetic mean of the cylinder-specific signals p max, but instead the median or central value as the desired value p median .
- This setpoint p median then forms the reference variable for the cylinder equalization control.
- the use of the median of all cylinder-specific signals p max results in a more stable target value for setting a combustion parameter, for example the fuel quantity or gas metering of each individual cylinder 2.
- the influence of individual cylinder tip pressures with disturbance variables can thereby be minimized.
- a more stable and accurate cylinder equalization can be achieved because the setpoint p median is subject to less fluctuation.
- a better equality of the cylinder 2 can be achieved by using the median, especially in transient engine operation (eg load jumps).
- Fig. 1b shows a representation similar to the Fig. 1a in which the signal p max * of a cylinder 2 of the internal combustion engine 1 has falsified values as a result of a faulty internal cylinder pressure sensor 4.
- a control to the arithmetic mean of the prior art which relied on this command variable p maen is strongly influenced by the disturbance of individual sensor signals.
- p mean would in the case shown - at least in the falsified combustion cycle range c 1 - for each cylinder with plausiblem Zylinderspitz horr p max reduces the fuel metering and for the cylinder 2 with disturbed signal p max * would increase the fuel metering.
- individual faulty signals p max * thus cause a clear inequality of all cylinders 2.
- the desired value p median is influenced only slightly, if at all, by a disturbed signal p max *. Only with the cylinder 2 with the disturbed signal p max * could result in control deviations. The equality of all other cylinders 2 could, however, be respected.
- Fig. 2 shows an internal combustion engine 1 with three cylinders 2.
- a cylinder pressure sensor 4 is arranged to detect a cylinder-individual signal.
- the cylinder- specific signal may be the time profile of the cylinder internal pressure p cyl or the maximum cylinder internal pressure p max over a combustion cycle c.
- the cylinder-specific signal may also be a time-filtered signal of the maximum in-cylinder pressure p max over a plurality of combustion cycles c, for example over 10 to 1000 combustion cycles c, preferably 40 to 100 combustion cycles c.
- the detected individual cylinder signal of a cylinder 2 is supplied via a signal line 14 of a control device 7, wherein the determination of the maximum cylinder pressure p max over a combustion cycle c or the temporal filtering of the maximum cylinder pressure p max over several combustion cycles c can also be done by the control device 7.
- a cylinder-specific fuel quantity Q to be metered is determined by the control device 7 according to the proposed method as a combustion parameter for the cylinders 2 and reported to corresponding fuel metering valves 3 by means of control lines 15.
- the corresponding cylinder-specific fuel quantities Q are metered into the cylinders 2 and thus the cylinder-specific signals according to the proposed method tracked by the control device 7 setpoint - the median of the cylinder-specific signals.
- Fig. 3 shows a schematic block diagram of three cylinders 2 of an internal combustion engine 1 with an air-driven combustion process.
- Each cylinder 2 is a Fuel metering valve 3 assigned, which can be adjusted by the respective Brennstoffdosierventil 3, the corresponding cylinder 2 supplied amount of fuel Q.
- a control device 7 controls the fuel metering valves 3 by the control device 7 outputting a respective cylinder-specific opening duration of the fuel metering valve 3 in the form of a cylinder- specific parameter value t cyl .
- the Brennstoffdosierventile 3 are executed in this example as a port injection valves, which know only a fully open and a fully closed position.
- a fuel in the form of a propellant gas is injected into the inlet tract of the cylinder 2 assigned to the fuel metering valve 3.
- the fuel quantity Q for the respective cylinder 2 can thus be established.
- a cylinder-specific signal p max is detected and fed to the control device 7.
- a cylinder-specific signal p max corresponds to the maximum cylinder internal pressure of the corresponding cylinder 2 during a combustion cycle c.
- the cylinder-specific signals p max are supplied to a difference value calculation 8 of the control device 7.
- the difference-value calculating 8 determines a difference value .DELTA.t cyl, the t are each at a predeterminable target value g is added for each cylinder 2, and for each fuel metering valve 3, whereby for each fuel metering valve 3 as the parameter value t cyl a cylinder-specific opening period is obtained.
- the specifiable engine global target value t g is determined in the example shown from a predeterminable fuel-air ratio ⁇ , wherein the predetermined fuel-air ratio ⁇ by an emission controller 5a from a power equivalent P of the output power of the internal combustion engine 1 (eg, a measured electric power a generator connected to the internal combustion engine 1) and / or from a charge air pressure p A and / or from an engine speed n of the internal combustion engine 1 is determined.
- the fuel-air ratio ⁇ can in a target value calculation 6 additionally the pressure p A and the temperature T A of the charge air, the pressure p G and the temperature T G of the fuel supply and the engine speed n the internal combustion engine 1 flow.
- a flow characteristic of the fuel metering valves 3 eg effective flow diameter according to the polytropic outflow equation or a Kv value
- parameters of the fuel or fuel gas eg the gas density, the polytropic exponent or the calorific value
- the target value calculation 6 determines the predefinable target value t g , which corresponds to an engine-global opening duration basic value for the opening durations of all fuel metering valves 3.
- the difference value calculation 8 is used to determine a cylinder- specific opening duration offset or differential value ⁇ t cyl for each individual fuel metering valve 3 .
- These cylinder- specific difference values ⁇ t cyl depend on the deviation of the cylinder peak pressure p max of the respective cylinder 2 from the median p median of the cylinder peak pressures p max of all cylinders 2.
- the respective sum of motorglobal opening duration basic value t g and cylinder- specific opening duration offset ⁇ t cyl indicates the driver electronics of the respective Brennstoffdosierventils 3 commanded target opening time t cyl .
- the use of the respective cylinder-specific cylinder exhaust gas temperature T E is also indicated by dashed lines. Again, from the deviations of the cylinder- specific cylinder exhaust temperatures T E to the median of the cylinder exhaust temperatures T E corresponding cylinder- specific opening duration offsets ⁇ t cyl can be calculated over all cylinders 2.
- the cylinder-specific cylinder exhaust temperatures T E can be used, for example, as an alternative if no cylinder internal pressure sensors 4 are installed or as a fallback solution when cylinder pressure signals fail to increase the availability of the internal combustion engine 1 in the event of a cylinder pressure sensor failure.
- Fig. 4 shows a block diagram according to Fig. 3
- the internal combustion engine 1 is operated with a gas-guided combustion process.
- the predefinable global motor target value t g is determined in the example shown by a controller 5b, which may include a power controller and / or a speed controller.
- the power controller can serve as a predefinable target power equivalent P S (setpoint power) of the internal combustion engine 1 and for the speed controller can be preset in addition to a respective current engine speed n (actual speed) of the internal combustion engine 1 Target speed n S (target speed) of the internal combustion engine 1 serve as input.
- a global engine default value for the fuel mass flow m is determined from the subsequently determined in a target value calculation 6 the predetermined target global engine value t g - eg for the motor global opening duration of Brennstoffdosierventilen or for the engine global default value for the ignition of ignition devices - is determined.
- Fig. 5 shows a block diagram according to Fig. 3 , wherein the control device 7 and the difference value calculation 8 are shown in more detail. This illustration shows the control sequence for only one cylinder 2 of the internal combustion engine 1 in detail. Further cylinders 2 of the internal combustion engine 1 are indicated by dashed lines.
- a cylinder internal pressure sensor 4 is arranged in each cylinder 2.
- a cylinder internal pressure sensor 4 can detect the course of the cylinder internal pressure p cyl via a combustion cycle c.
- a maximum value detection 9 can determine the maximum in-cylinder pressure p max or peak pressure of the respective cylinder 2 in the preceding combustion cycle c.
- the peak pressures of all cylinders 2 are supplied as cylinder-specific signals p max to a setpoint calculation 10.
- This setpoint calculation 10 forms the median from the cylinder-specific signals p max and outputs this as a setpoint p median .
- the deviation of the signal p max of a cylinder 2 from the setpoint p median is determined and subsequently a difference value .DELTA.t cyl for the fuel metering valve 3, which is assigned to the cylinder 2, determined.
- the respective difference value .DELTA.t cyl is added to a motor global, predetermined target value t g , resulting in an opening period for the Brennstoffdosierventil 3 as a parameter value t cyl .
- the predefinable target value t g is thereby, as in Fig. 3 described, determined from an emission regulator of the internal combustion engine 1. He can basically also off a power controller and / or a speed controller (as in Fig. 4 described) of the internal combustion engine 1 are determined.
- the respective difference value .DELTA.t cyl comprises a cylinder-specific pilot value t p, defined by a pre-control value calculation 12 from the charge air pressure p A and / or the charge air temperature T A and / or the engine speed n of the internal combustion engine is determined.
- This respective precontrol value t p can be determined, for example, by measurements during startup of the internal combustion engine 1 and stored in a map.
- the setpoint controller 11 can be executed, for example, as a P, PI or PID controller.
- controller concepts and controller types can also be used, such as LQ controllers, robust controllers or fuzzy controllers.
- the difference values .DELTA.t cyl be with a compensation value t 0 each acted upon addition of a compensation value calculation. 13
- This equalization value t 0 which is the same for all difference values ⁇ t cyl, corresponds to the arithmetic mean of the difference values ⁇ t cyl of all cylinders 2 and may be positive or negative.
- Fig. 6 shows a schematic block diagram similar to the Fig. 3 However, with the illustrated embodiment of the invention, not the fuel quantities Q are set for the cylinder 2 but the ignition Z of arranged on or in the cylinders 2 igniters 18.
- the global predeterminable target value t g (global default) for the ignition timing Z is determined from a Zündzeitticiankennfeld 16, wherein in Zündzeitticiankennfeld 16 suitable values for the global default value t g depending on the performance or the performance equivalent P and / or the charge air pressure p A and / or the charge air temperature T A and / or the engine speed n of the internal combustion engine 1 are stored.
- the respective parameter value t cyl determined by the control device 7 expressed as degrees Crank angle before TDC - is reported to an ignition controller 17.
- Ignition control 17 activates the respective ignition device 18 for the respective ignition point Z indicated.
- ignition timing Z of a cylinder 2 is set earlier than global default value t g if cylinder peak pressure p max of cylinder 2 is smaller than setpoint value p median and Ignition timing Z of a cylinder 2 later adjusted to the global default value t g , if the cylinder peak pressure p max of the cylinder 2 is greater than the setpoint p median .
- Fig. 7 shows a schematic block diagram of another embodiment of the invention similar to the Fig. 5 , However, not the fuel quantities Q for the cylinder 2 but the ignition timing Z are arranged on or in the cylinders 2 arranged ignition devices 18.
- the nitrogen oxide emissions E cyl of a cylinder 2 are detected by a NOx sensor 19 via a combustion cycle c and supplied to an evaluation unit 20.
- the evaluation unit 20 determines from the time profile of the nitrogen oxide emissions E cyl via a combustion cycle c a filtered emission value, which is supplied as a cylinder- specific signal E of the setpoint calculation 10.
- the setpoint calculation 10 From the cylinder-specific signals E of all cylinders 2, the setpoint calculation 10 forms the median and outputs this as the setpoint value E median to the setpoint value controller 11. In the setpoint controller 11, the deviation of the cylinder-specific signal E from the setpoint value E median is determined and a difference value .DELTA.t.sub.Cyl is determined for the ignition time Z of an ignition device 18 assigned to the corresponding cylinder 2.
- the respective difference value .DELTA.t cyl is added to a motor global, predetermined target value t g , resulting in an ignition Z in degrees crank angle before TDC as a parameter value t cyl , which is reported to an ignition control 17, wherein the ignition control 17 for the specified ignition Z the Ignition 18 (eg a spark plug) activated.
- the predefinable target value t g is thereby, as in Fig. 6 described, from a Zündzeitticiankennfeld 16 determined.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Electrical Control Of Ignition Timing (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere eines Gasmotors, mit wenigstens drei Zylindern, wobei von jedem Zylinder ein zylinderindividuelles Signal erfasst wird, wobei aus den Signalen der Zylinder ein Sollwert gebildet wird, wobei in Abhängigkeit von der Abweichung eines Signals vom Sollwert wenigstens ein Verbrennungsparameter des entsprechenden Zylinders eingestellt wird, wobei das Signal dem Sollwert nachgeführt wird.The invention relates to a method for operating an internal combustion engine, in particular a gas engine, having at least three cylinders, wherein a cylinder-individual signal is detected by each cylinder, wherein from the signals of the cylinder, a desired value is formed, wherein in dependence on the deviation of a signal from the desired value at least one combustion parameter of the corresponding cylinder is set, wherein the signal is tracked to the desired value.
Die Zylinder einer Brennkraftmaschine weisen üblicherweise verbrennungstechnische Unterschiede auf, das heißt, dass bei globaler Regelung von Verbrennungsparametern, wie beispielsweise Brennstoffmenge oder Zündzeitpunkt, die individuellen Beiträge der Zylinder zur gesamten verrichteten Arbeit der Brennkraftmaschine unterschiedlich sind. Unter globaler bzw. motorglobaler Regelung von Verbrennungsparametern ist im Rahmen der Erfindung gemeint, dass alle Zylinder einer Brennkraftmaschine mit denselben Werten für die entsprechenden Stellgrößen betrieben werden, also beispielsweise, dass bei einer globalen Regelung bezüglich Brennstoffmenge jeder Zylinder mit derselben Öffnungsdauer des Gaseinblaseventils beaufschlagt wird oder dass bei einer globalen Regelung bezüglich Zündzeitpunkt die Zündeinrichtungen der Zylinder jeweils bei derselben Kolbenstellung des jeweiligen Kolbens im Zylinder - üblicherweise ausgedrückt in Grad Kurbelwinkel vor OT (oberer Totpunkt des Kolbens im Zylinder) - aktiviert werden.The cylinders of an internal combustion engine usually have combustion-technical differences, that is, with global control of combustion parameters, such as fuel quantity or ignition timing, the individual contributions of the cylinders to the total performed work of the internal combustion engine are different. In the context of the invention, global or engine-global regulation of combustion parameters means that all cylinders of an internal combustion engine are operated with the same values for the corresponding manipulated variables, that is, for example, that in a global control with respect to fuel quantity, each cylinder is acted upon with the same opening duration of the gas injection valve or that in a global control with respect to ignition timing, the ignition of the cylinder in each case at the same piston position of the respective piston in the cylinder - usually expressed in degrees crank angle before TDC (top dead center of the piston in the cylinder) - are activated.
Die Arbeit eines Zylinders wird bei einer Hubkolbenmaschine über eine mit einem Kolbenpleuel des Zylinders verbundene Kurbelwelle auf eine Arbeitswelle der Brennkraftmaschine übertragen, wobei oftmals ein elektrischer Generator mit der Arbeitswelle verbunden ist, um die mechanische Energie der Arbeitswelle in elektrische Energie zu wandeln. Unter den verschiedenen Möglichkeiten einer Zylindergleichstellung steht jene im Fokus, die Spitzendrücke in den einzelnen Zylindern anzugleichen, um eine möglichst gleichmäßige mechanische Spitzenbelastung der Bauteile zu erreichen. Alternative Gleichstellungsvarianten sehen z.B. die Optimierung des Motorwirkungsgrades oder die Minimierung der Schadstoffemissionen im Vordergrund.In a reciprocating engine, the work of a cylinder is transmitted to an operating shaft of the internal combustion engine via a crankshaft connected to a piston connecting rod of the cylinder, wherein often an electric generator is connected to the working shaft in order to convert the mechanical energy of the working shaft into electrical energy. Among the various possibilities of cylinder equalization is the one in focus, to match the peak pressures in the individual cylinders in order to achieve the most uniform mechanical peak load on the components. Alternative gender equality options see, for example, the optimization of engine efficiency or the minimization of pollutant emissions in the foreground.
In Bezug auf eine Zylindergleichstellungsregelung ist in der
Durch die Gleichstellung der Zylinderspitzendrücke leistet jeder Zylinder im Wesentlichen denselben Leistungsbeitrag und thermomechanische Überlastungen einzelner Zylinder können vermieden werden. Darüber hinaus kann bei der Brennstoffdosierung auch eine klopfende Verbrennung berücksichtigt werden. So kann z.B. vorgesehen sein, dass Zylinder, die eine gewisse Klopfintensität überschreiten, keine erhöhte Brennstoffzufuhr erhalten, um ein stärkeres Klopfen und evtl. mechanische Schädigungen zu vermeiden.By equalizing the cylinder tip pressures, each cylinder provides substantially the same power contribution, and thermo-mechanical overloading of individual cylinders can be avoided. In addition, a knocking combustion can be taken into account in the fuel metering. Thus, e.g. It may be provided that cylinders which exceed a certain knock intensity do not receive an increased fuel supply in order to avoid stronger knocking and possibly mechanical damage.
Die bisher beschriebenen Systeme verwenden den arithmetischen Mittelwert von zylinderindividuellen Signalen wie z.B. dem Zylinderspitzendruck als Zielgröße für eine Zylindergleichstellungsregelung. Die Verwendung des arithmetischen Mittelwerts hat jedoch den Nachteil, dass starke Ausreißer eine wesentliche Auswirkung auf den arithmetischen Mittelwert haben. Damit haben beispielsweise Zylinder, die eine ungünstige Verbrennung aufweisen, oder deren Zylinderdrucksignal ungenau oder verfälscht sind - beispielsweise aufgrund von defekten Sensoren oder aufgrund von Alterungseffekten von Sensoren oder aufgrund von elektromagnetischen Einstreuungen in der Signalübertragung und/oder Signalverarbeitung - einen deutlichen und vor allem ungewünschten Einfluss auf den Zielwert für alle Zylinderspitzendrücke.The systems described so far use the arithmetic mean of cylinder-individual signals such as e.g. the peak cylinder pressure as a target for a cylinder equalization scheme. However, the use of the arithmetic mean has the disadvantage that strong outliers have a significant effect on the arithmetic mean. Thus, for example, cylinders which have unfavorable combustion or whose cylinder pressure signal is inaccurate or falsified - for example, due to defective sensors or due to aging effects of sensors or due to electromagnetic interference in signal transmission and / or signal processing - a significant and above all undesirable influence to the target value for all cylinder tip pressures.
Aufgabe der Erfindung ist es daher, die vorbeschriebenen Nachteile zu vermeiden und ein gegenüber dem Stand der Technik verbessertes Verfahren zum Betreiben einer Brennkraftmaschine anzugeben. Insbesondere soll der Zielwert bzw. Sollwert für die Zylindergleichstellungsregelung robuster sein als in bisher bekannten Verfahren.The object of the invention is therefore to avoid the disadvantages described above and to provide a comparison with the prior art improved method for operating an internal combustion engine. In particular, the target value or target value for the cylinder equalization control should be more robust than in previously known methods.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Patentansprüchen angegeben.This object is achieved by the features of
Gemäß der Erfindung ist also vorgesehen, dass als Sollwert der Median der Signale gebildet wird.According to the invention, it is thus provided that the median of the signals is formed as the desired value.
Der Median, der häufig auch als Zentralwert oder als 0,5-Quantil bezeichnet wird, ist ein Lageparameter einer Stichprobenverteilung, wobei im Rahmen der Erfindung die Verteilung der erfassten zylinderindividuellen Signale eine Stichprobenverteilung ist. In den bekannten Steuerungs- oder Regelungssystemen, auf denen eine Steuerung bzw. Regelung einer Brennkraftmaschine beruhen kann, ist die Ermittlung bzw. Ausgabe des Medians üblicherweise nicht vorgesehen und wird daher in den bekannten Verfahren nicht durchgeführt.The median, which is often also referred to as the central value or as the 0.5-quantile, is a positional parameter of a sampling distribution, wherein in the context of the invention the distribution of the detected cylinder-individual signals is a sampling distribution. In the known control or regulation systems on which a control or regulation of an internal combustion engine can be based, the determination or output of the median is usually not provided and is therefore not performed in the known method.
Im Unterschied zum arithmetischen Mittelwert, bei dem alle Werte einer Stichprobenverteilung addiert und durch die Anzahl der einzelnen Werte dividiert wird, teilt der Median die Stichprobenverteilung in zwei Hälften gleicher Größe. Der Median kann dadurch bestimmt werden, dass zunächst die Signale entsprechend ihrer Signalwerte aufsteigend geordnet werden. Wenn die Anzahl der Signale ungerade ist-z.B. bei einer ungeraden Anzahl von Zylindern - dann ist der Signalwert des mittleren Signals der Median. Wenn die Anzahl der Signale gerade ist - z.B. bei einer geraden Anzahl von Zylindern - dann kann der Median ermittelt werden, indem der arithmetische Mittelwert der beiden mittleren Signalwerte der geordneten Stichprobenverteilung gebildet wird.In contrast to the arithmetic mean, in which all values of a sample distribution are added together and divided by the number of individual values, the median divides the sample distribution into two halves of the same size. The median can be determined by first arranging the signals in ascending order according to their signal values. If the number of signals is odd - e.g. with an odd number of cylinders - then the signal value of the middle signal is the median. If the number of signals is even - e.g. with an even number of cylinders - then the median can be determined by taking the arithmetic mean of the two mean signal values of the ordered sample distribution.
Eine wichtige Eigenschaft des Medians ist, dass er im Vergleich zum arithmetischen Mittelwert, der oft auch einfach nur als Mittelwert oder Durchschnitt bezeichnet wird, wesentlich robuster gegenüber Ausreißern bzw. extrem abweichenden Werten innerhalb der Stichprobenverteilung ist.An important feature of the median is that, compared to the arithmetic mean, which is often simply referred to as the mean or average, it is much more robust against outliers or extremely deviant values within the sampling distribution.
Gemäß der vorgeschlagenen Lösung wird also ausdrücklich nicht der arithmetische Mittelwert der Signalwerte gebildet und als Sollwert verwendet, sondern es wird der Median der Signalwerte gebildet und als Sollwert verwendet.Thus, according to the proposed solution, the arithmetic mean of the signal values is expressly not formed and used as the desired value, but the median of the signal values is formed and used as the desired value.
Vorzugsweise kann vorgesehen sein, dass von jedem Zylinder wenigstens eines der folgenden zylinderindividuellen Signale erfasst wird: Zylinderinnendruck, Zylinderabgastemperatur, Stickoxidemissionen, Verbrennungsluftverhältnis. Eine besondere Ausführungsvariante sieht vor, dass als Signal ein maximaler Zylinderinnendruck eines Verbrennungszyklus erfasst wird.Preferably, it may be provided that at least one of the following individual signals of each cylinder is detected: cylinder internal pressure, cylinder exhaust gas temperature, nitrogen oxide emissions, combustion air ratio. A particular embodiment provides that a maximum internal cylinder pressure of a combustion cycle is detected as a signal.
Um eine bessere Signalqualität und damit eine höhere Regelgüte zu erhalten, kann vorzugsweise vorgesehen sein, dass als Signal eines Zylinders das erfasste Signal über 10 bis 1000 Verbrennungszyklen, vorzugsweise 40 bis 100 Verbrennungszyklen, zeitlich gefiltert wird.In order to obtain a better signal quality and thus a higher quality of control, it can preferably be provided that the detected signal is temporally filtered over 10 to 1000 combustion cycles, preferably 40 to 100 combustion cycles, as the signal of a cylinder.
In einer bevorzugten Ausführungsform der Erfindung kann vorgesehen sein, dass der Verbrennungsparameter eines Zylinders eingestellt wird, falls die Abweichung des Signals des Zylinders vom Sollwert einen vorgebbaren Toleranzwert überschreitet. Dadurch kann eine ruhigere Regeldynamik erzielt werden.In a preferred embodiment of the invention, it may be provided that the combustion parameter of a cylinder is set if the deviation of the signal of the cylinder from the desired value exceeds a predefinable tolerance value. This allows a quieter control dynamics can be achieved.
Gemäß einer besonders bevorzugten Ausführungsform kann vorgesehen sein, dass als Verbrennungsparameter eine Brennstoffmenge für den entsprechenden Zylinder eingestellt wird. Bei einer vorkammergezündeten Brennkraftmaschine kann es sich dabei um die Brennstoffmenge für den jeweiligen Hauptbrennraum eines Zylinders handeln. Die Brennstoffmenge für einen Zylinder kann erhöht werden, falls das Signal des Zylinders kleiner dem Sollwert ist und die Brennstoffmenge für einen Zylinder kann verringert werden, falls das Signal des Zylinders größer dem Sollwert ist. Vorzugsweise kann dabei für jeden Zylinder ein Brennstoffdosierventil vorgesehen sein, wobei zum Einstellen der Brennstoffmenge für einen Zylinder die Öffnungsdauer des entsprechenden Brennstoffdosierventils eingestellt wird. Bei einem solchen Brennstoffdosierventil kann es sich vorzugsweise um ein Port-Injection-Ventil handeln, das im Bereich des Einlasstraktes eines Zylinders angeordnet ist. Es können dabei auch Port-Injection-Ventile eingesetzt werden, die beispielsweise nur eine vollständig geöffnete oder eine vollständig geschlossene Position ermöglichen. Hierbei kann die Öffnungsdauer als der Zeitraum definiert sein, in dem sich das Ventil in seiner vollständig geöffneten Position befindet. Generell können aber auch hubgesteuerte Ventile zum Einsatz kommen, bei denen zum Einstellen der Brennstoffmenge für einen Zylinder die Öffnungsdauer und/oder der Öffnungshub eines Ventils eingestellt werden.According to a particularly preferred embodiment it can be provided that a fuel quantity for the corresponding cylinder is set as the combustion parameter. In the case of an internal combustion chamber engine ignited by an internal combustion chamber, this can be the fuel quantity for the respective main combustion chamber of a cylinder. The amount of fuel for a cylinder may be increased if the signal of the cylinder is less than the desired value and the fuel quantity for a cylinder may be reduced if the signal of the cylinder is greater than the desired value. Preferably, a fuel metering valve may be provided for each cylinder, wherein the opening duration of the corresponding Brennstoffdosierventils is set to adjust the amount of fuel for a cylinder. Such a fuel metering valve may preferably be a port injection valve which is arranged in the region of the inlet tract of a cylinder. It can also port injection valves are used, for example, allow only a fully open or a fully closed position. Here, the opening period may be defined as the period in which the valve is in its fully open position. In general, however, can also stroke-controlled Valves are used, in which for adjusting the amount of fuel for a cylinder, the opening duration and / or the opening stroke of a valve can be adjusted.
Eine Regelung bezüglich des Verbrennungsparameters Brennstoffmenge kann dabei, in Abhängigkeit des verwendeten zylinderindividuellen Signals, gemäß nachfolgender Tabelle 1 erfolgen. Dabei listet Spalte 1 der Tabelle 1 das jeweilige zylinderindividuelle Signal und eine geeignete Möglichkeit zur Erfassung des jeweiligen Signals auf. Gemäß Spalte 2 der Tabelle 1 erfolgt eine Erhöhung der Brennstoffmenge für einen Zylinder, falls das jeweilige Signal des Zylinders kleiner dem Sollwert ist. Gemäß Spalte 3 der Tabelle 1 erfolgt eine Verringerung der Brennstoffmenge für einen Zylinder, falls das jeweilige Signal des Zylinders größer dem Sollwert ist. Der Sollwert ist dabei jeweils der Median des jeweiligen Signals von allen Zylindern der Brennkraftmaschine. Die Brennstoffmenge kann dabei für einen Zylinder erhöht werden, indem beispielsweise die Öffnungsdauer eines dem Zylinder zugeordneten Brennstoffdosierventils erhöht wird. Entsprechend kann die Brennstoffmenge für einen Zylinder verringert werden, indem die Öffnungsdauer des dem Zylinder zugeordneten Brennstoffdosierventils verringert wird.
In einer weiteren bevorzugten Ausführungsform kann vorgesehen sein, dass als Verbrennungsparameter ein Zündzeitpunkt für den entsprechenden Zylinder eingestellt wird. Vorzugsweise kann dabei für jeden Zylinder eine Zündeinrichtung vorgesehen sein, wobei der Zündzeitpunkt der Zündeinrichtung in Grad Kurbelwinkel vor OT (oberer Totpunkt des Kolbens im Zylinder) eingestellt wird.In a further preferred embodiment it can be provided that an ignition point for the corresponding cylinder is set as the combustion parameter. Preferably, an ignition device may be provided for each cylinder, wherein the ignition timing of the ignition device in degrees crank angle before TDC (top dead center of the piston in the cylinder) is set.
Der Zündzeitpunkt wird üblicherweise ausgedrückt in Grad Kurbelwinkel vor OT (oberer Totpunkt des Kolbens im Zylinder) und gibt somit an, wann eine entsprechende Zündeinrichtung zur Entflammung eines Brennstoffs oder Brennstoff-Luft-Gemischs im Zylinder bzw. Brennraum ausgelöst wird. Bei der Zündeinrichtung kann es sich dabei um eine Zündkerze (z.B. Elektrodenzündkerze oder Laserzündkerze) oder um einen Pilot-Injektor zur Durchführung einer Piloteinspritzung von z.B. Dieselkraftstoff handeln. Als Zündeinrichtung kann auch eine Vorkammer zum Einsatz kommen. Üblicherweise wird der Zündzeitpunkt für jeden Zylinder einer Brennkraftmaschine mit demselben, global vorgegebenen Wert (globaler Vorgabewert) - ausgedrückt in Grad Kurbelwinkel vor OT - festgelegt. Beispielsweise beträgt dieser Wert 20 bis 30 Grad Kurbelwinkel vor OT, wobei der Wert abhängig von der Drehzahl der Brennkraftmaschine und/oder abhängig von der eingesetzten Zündeinrichtung festgelegt werden kann. Dieser globale Vorgabewert kann aus einem Zündzeitpunktkennfeld abgeleitet werden, in dem geeignete Werte für den Zündzeitpunkt in Abhängigkeit von der Leistung und/oder des Ladeluftdrucks und/oder der Ladelufttemperatur und/oder der Motordrehzahl der Brennkraftmaschine abgelegt sind.The ignition timing is usually expressed in degrees crank angle before TDC (top dead center of the piston in the cylinder) and thus indicates when a corresponding ignition device for igniting a fuel or fuel-air mixture in the cylinder or combustion chamber is triggered. The ignition device may be a spark plug (e.g., spark plug or laser spark plug) or a pilot injector for performing a pilot injection of e.g. Diesel fuel act. As an ignition device, an antechamber can also be used. Usually, the ignition timing for each cylinder of an internal combustion engine is set at the same globally given value (global default value) expressed in degrees crank angle before TDC. For example, this value is 20 to 30 degrees crank angle before TDC, the value depending on the speed of the internal combustion engine and / or can be determined depending on the ignition device used. This global default value can be derived from an ignition timing map in which suitable values for the ignition point are stored as a function of the power and / or the charge air pressure and / or the charge air temperature and / or the engine speed of the internal combustion engine.
In einer bevorzugten Ausführungsform der Erfindung kann vorgesehen sein, dass der Zündzeitpunkt für einen Zylinder früher (gegenüber dem globalen Vorgabewert) eingestellt wird, falls das Signal des Zylinders kleiner dem Sollwert ist und dass der Zündzeitpunkt für einen Zylinder später (gegenüber dem globalen Vorgabewert) eingestellt wird, falls das Signal des Zylinders größer dem Sollwert ist.In a preferred embodiment of the invention, it may be provided that the spark timing for a cylinder is set earlier (compared to the global default value) if the signal of the cylinder is less than the target value and the spark timing for a cylinder is set later (compared to the global default value) if the signal of the cylinder is greater than the setpoint.
Eine Regelung bezüglich des Verbrennungsparameters Zündzeitpunkt kann dabei, in Abhängigkeit des verwendeten zylinderindividuellen Signals, gemäß nachfolgender Tabelle 2 erfolgen. Dabei listet Spalte 1 der Tabelle 2 das jeweilige zylinderindividuelle Signal und eine geeignete Möglichkeit zur Erfassung des jeweiligen Signals auf. Gemäß Spalte 2 der Tabelle 2 wird für einen Zylinder ein früherer Zündzeitpunkt eingestellt, falls das jeweilige Signal des Zylinders kleiner dem Sollwert ist. Gemäß Spalte 3 der Tabelle 2 wird für einen Zylinder ein späterer Zündzeitpunkt eingestellt, falls das jeweilige Signal des Zylinders größer dem Sollwert ist. Der Sollwert ist dabei jeweils der Median des jeweiligen Signals von allen Zylindern der Brennkraftmaschine.
Gemäß einer besonders bevorzugten Ausführungsform kann vorgesehen sein, dass zum Einstellen des wenigstens einen Verbrennungsparameters ein Parameterwert ermittelt wird, wobei vorzugsweise der Parameterwert einen vorgebbaren motorglobalen Zielwert und einen zylinderindividuellen Differenzwert umfasst.According to a particularly preferred embodiment, provision can be made for a parameter value to be determined for setting the at least one combustion parameter, the parameter value preferably comprising a predefinable global engine target value and a cylinder-specific differential value.
Der zylinderindividuelle Differenzwert kann in Bezug auf ein Einstellen des Verbrennungsparameters Zündzeitpunkt beispielsweise in einem Bereich von +/- 4 Grad Kurbelwinkel vor OT, vorzugsweise in einem Bereich von +/- 2 Grad Kurbelwinkel vor OT, liegen.The cylinder-specific difference value may, for example, be in a range of +/- 4 degrees crank angle before TDC, preferably in a range of +/- 2 degrees crank angle before TDC with respect to setting the combustion parameter ignition timing.
Beim vorgebbaren Zielwert kann es sich um einen globalen Wert handeln, der für alle Zylinder der Brennkraftmaschine gilt.The predefinable target value may be a global value that applies to all cylinders of the internal combustion engine.
Beim vorgebbaren Zielwert in Bezug auf das Einstellen des Zündzeitpunkts als Verbrennungsparameter kann es sich um den globalen Vorgabewert für den Zündzeitpunkt in den Zylindern eines stationären Gasmotors handeln. Der vorgebbare Zielwert kann dabei aus einem Zündzeitpunktkennfeld abgeleitet werden. Im Zündzeitpunktkennfeld können geeignete Werte für den Zündzeitpunkt in Abhängigkeit von der Leistung und/oder des Ladeluftdrucks und/oder der Ladelufttemperatur und/oder der Motordrehzahl der Brennkraftmaschine abgelegt sein. Die im Zündzeitpunktkennfeld abgelegten Werte können dabei auf einem Prüfstand ermittelt werden.The predetermined target value with respect to the setting of the ignition timing as the combustion parameter may be the global target value for the ignition timing in the cylinders of a stationary gas engine. The predefinable target value can be derived from a Zündzeitpunktkennfeld. In the Zündzeitpunktkennfeld suitable values for the ignition timing in dependence be stored by the power and / or the charge air pressure and / or the charge air temperature and / or the engine speed of the internal combustion engine. The values stored in the ignition timing map can be determined on a test bench.
Beim vorgebbaren Zielwert in Bezug auf das Einstellen der Brennstoffmenge als Verbrennungsparameter kann es sich um einen motorglobalen Grundwert für die Öffnungsdauern von Brennstoffdosierventilen bzw. Gaseinblaseventilen für die Zylinder eines stationären Gasmotors handeln.The predetermined target value with respect to the setting of the fuel quantity as the combustion parameter may be an engine global basic value for the opening times of fuel metering valves or gas injection valves for the cylinders of a stationary gas engine.
Grundsätzlich kann bei in Brennkraftmaschinen eingesetzten Brennverfahren zwischen luftgeführten und brennstoffgeführten Brennverfahren unterschieden werden. Bei einem luftgeführten Brennverfahren wird abhängig vom Betriebspunkt der Brennkraftmaschine und einem vorgebbaren Zielwert für das Brennstoff-Luft-Verhältnis beispielsweise eine zu dosierende Brennstoffmenge ermittelt, um eine bestimmte Emissionsmenge oder einen bestimmten Ladeluftdruck zu erhalten. Die dabei eingesetzten Motorregelungen umfassen üblicherweise einen Emissionsregler. Bei einem brennstoffgeführten bzw. gasgeführten Brennverfahren wird abhängig vom Betriebspunkt der Brennkraftmaschine und einem vorgebbaren Zielwert für die Leistung und/oder die Drehzahl der Brennkraftmaschine eine zu dosierende Brennstoffmenge ermittelt. Brennstoffgeführte Brennverfahren haben ihre Anwendung insbesondere bei drehzahlvariablem Betrieb einer Brennkraftmaschine, bei einer Brennkraftmaschine im Inselbetrieb, bei Motorstart oder im Leerlauf der Brennkraftmaschine. Die dabei eingesetzten Motorregelungen umfassen üblicherweise einen Leistungsregler und/oder einen Drehzahlregler.In principle, it is possible to distinguish between air-guided and fuel-guided combustion processes in the case of combustion processes used in internal combustion engines. In the case of an air-guided combustion method, for example, a quantity of fuel to be metered is determined as a function of the operating point of the internal combustion engine and a predefinable target value for the fuel-air ratio in order to obtain a specific emission quantity or a specific charge air pressure. The engine controls used usually include an emission regulator. In a fuel-guided or gas-fired combustion process, a quantity of fuel to be metered is determined as a function of the operating point of the internal combustion engine and a predefinable target value for the power and / or the rotational speed of the internal combustion engine. Fuel-guided combustion processes have their application in particular in variable-speed operation of an internal combustion engine, in an internal combustion engine in isolated operation, at engine start or during idling of the internal combustion engine. The motor controls used in this case usually include a power controller and / or a speed controller.
Für luftgeführte Brennverfahren, bei denen beispielsweise ein Emissionsregler zum Einsatz kommt, kann vorzugsweise vorgesehen sein, dass der vorgebbare Zielwert aus einem vorgebbaren Brennstoff-Luft-Verhältnis ermittelt wird, wobei vorzugsweise das vorgebbare Brennstoff-Luft-Verhältnis aus einem Leistungsäquivalent der abgegebenen Leistung der Brennkraftmaschine, vorzugsweise einer elektrischen Leistung eines mit der Brennkraftmaschine verbundenen Generators, und/oder aus einem Ladeluftdruck und/oder aus einer Motordrehzahl der Brennkraftmaschine ermittelt wird.For air-driven combustion processes in which, for example, an emission regulator is used, it can preferably be provided that the predefinable target value is determined from a predefinable fuel-air ratio, wherein preferably the predefinable fuel-air ratio from a power equivalent of the output power of the internal combustion engine , Preferably an electrical power of a generator connected to the internal combustion engine, and / or is determined from a charge air pressure and / or from an engine speed of the internal combustion engine.
Unter einem Leistungsäquivalent wird im Rahmen dieser Erfindung die tatsächliche mechanische Leistung der Brennkraftmaschine oder eine der mechanischen Leistung entsprechende Ersatzgröße verstanden. Dabei kann es sich beispielsweise um eine elektrische Leistung eines mit der Brennkraftmaschine verbundenen Generators handeln, die aus der Leistungsabgabe des Generators gemessen wird. Es kann sich dabei auch um eine berechnete mechanische Leistung der Brennkraftmaschine handeln, die aus Motordrehzahl und Drehmoment oder aus der elektrischen Leistung des Generators und dem Wirkungsgrad des Generators berechnet wird. Es kann sich dabei auch nur um die Motordrehzahl handeln, falls die Leistungsaufnahme des Verbrauchers über die Drehzahl genau bekannt ist. Weiters kann es sich beim Leistungsäquivalent auch um den indizierten Mitteldruck, der in bekannter Weise aus dem Zylinderinnendruckverlauf ermittelt werden kann, oder um den effektiven Mitteldruck, der sich in bekannter Weise aus dem abgegebenen Drehmoment oder aus der elektrischen oder mechanischen Leistung errechnen lässt, handeln. Dabei kann aus dem bekannten Zusammenhang zwischen effektivem Mitteldruck, dem Hubraum eines Zylinders und der bei einem Arbeitstakt geleisteten Arbeit in weiterer Folge ein Leistungsäquivalent der Brennkraftmaschine ermittelt werden.In the context of this invention, a power equivalent is understood to be the actual mechanical power of the internal combustion engine or a substitute variable corresponding to the mechanical power. This may be, for example, an electric power of a generator connected to the internal combustion engine, which is measured from the power output of the generator. It may also be a calculated mechanical power of the internal combustion engine, which is calculated from the engine speed and torque or from the electrical power of the generator and the efficiency of the generator. It may also be only about the engine speed, if the power consumption of the consumer is known exactly about the speed. Furthermore, the power equivalent may also be the indicated mean pressure, which can be determined in known manner from the in-cylinder pressure curve, or the effective mean pressure, which can be calculated in known manner from the torque output or from the electrical or mechanical power. In this case, a power equivalent of the internal combustion engine can be determined from the known relationship between effective mean pressure, the displacement of a cylinder and the work performed at a power stroke.
Das vorgebbare Brennstoff-Luft-Verhältnis kann in an sich bekannter Weise aus dem Ladeluftdruck und der Leistung der Brennkraftmaschine ermittelt werden. So kann das vorgebbare Brennstoff-Luft-Verhältnis für eine als Gasmotor ausgebildete Brennkraftmaschine beispielsweise gemäß
Der vorgebbare Zielwert für die Gaseinblasedauer kann dabei aus dem Durchflussverhalten der Gaseinblaseventile und den an den Gaseinblaseventilen vorherrschenden Randbedingungen (wie z.B. Druck und Temperatur des Brenngases, Saugrohrdruck bzw. Ladeluftdruck) ermittelt werden. Aus den Bedingungen im Saugrohr des Gasmotors, insbesondere aus Ladeluftdruck und Ladelufttemperatur, kann das Luftmasseäquivalent (ein der Luftmasse entsprechender Wert) des Gasmotors ermittelt werden. Mit dem vorgebbaren Brennstoff-Luft-Verhältnis kann daraus der Sollwert für die Brenngasmasse bestimmt werden. Mit dem Durchflussverhalten der Gaseinblaseventile und den Randbedingungen an den Gaseinblaseventilen kann dann die benötigte globale Öffnungsdauer bzw. Gaseinblasedauer für die Gaseinblaseventile ermittelt werden, um die zuvor ermittelte Brenngasmasse in den Gasmotor einzubringen. Diese globale Gaseinblasedauer entspricht in diesem Beispiel dem vorgebbaren Zielwert.The predefinable target value for the gas injection duration can be determined from the flow behavior of the gas injection valves and the boundary conditions prevailing at the gas injection valves (such as pressure and temperature of the fuel gas, intake manifold pressure or charge air pressure, respectively). From the conditions in the intake manifold of the gas engine, in particular from charge air pressure and charge air temperature, the air mass equivalent (a value corresponding to the air mass) of the gas engine can be determined. With the predeterminable fuel-air ratio can be determined from the setpoint for the fuel gas mass. With the flow behavior of the gas injection valves and the boundary conditions at the Gaseinblaseventilen then the required global opening duration or Gas Einblasedauer be determined for the gas injection valves to introduce the previously determined fuel gas mass in the gas engine. This global gas injection duration corresponds in this example to the predefinable target value.
Für gasgeführte Brennverfahren, bei denen beispielsweise ein Leistungsregler und/oder ein Drehzahlregler zum Einsatz kommt, kann vorzugsweise vorgesehen sein, dass der vorgebbare Zielwert in Abhängigkeit von der Abweichung eines Leistungsäquivalents der abgegebenen Leistung der Brennkraftmaschine von einem vorgebbaren Zielleistungsäquivalent und/oder in Abhängigkeit von der Abweichung einer Motordrehzahl der Brennkraftmaschine von einer vorgebbaren Zieldrehzahl der Brennkraftmaschine ermittelt wird.For gas-fired combustion processes in which, for example, a power controller and / or a speed controller is used, it can be preferably provided that the predefinable target value as a function of the deviation of a power equivalent of the output power of the internal combustion engine from a predetermined target power equivalent and / or in dependence Deviation of an engine speed of the internal combustion engine is determined by a predetermined target speed of the internal combustion engine.
Dabei kann ein Leistungsregler vorgesehen sein, der in Abhängigkeit der Abweichung eines aktuellen Leistungsäquivalents der abgegebenen Leistung (Istleistung) der Brennkraftmaschine (z.B. eine gemessene elektrische Leistung eines mit der Brennkraftmaschine verbundenen Generators) vom vorgebbaren Zielleistungsäquivalent (Sollleistung) der Brennkraftmaschine einen motorglobalen Vorgabewert für den Brennstoffmassenstrom ermittelt. Alternativ oder zusätzlich kann ein Drehzahlregler vorgesehen sein, der in Abhängigkeit der Abweichung einer aktuellen Motordrehzahl (Istdrehzahl) der Brennkraftmaschine von der vorgebbaren Zieldrehzahl (Solldrehzahl) der Brennkraftmaschine einen motorglobalen Vorgabewert für den Brennstoffmassenstrom ermittelt. Aus dem ermittelten Zielwert für den Brennstoffmassenstrom kann in weiterer Folge der vorgebbare Zielwert - z.B. für die motorglobale Öffnungsdauer von Brennstoffdosierventilen oder für den motorglobalen Vorgabewert für den Zündzeitpunkt von Zündeinrichtungen - ermittelt werden.In this case, a power regulator can be provided which, depending on the deviation of a current power equivalent of the output power (actual power) of the internal combustion engine (eg a measured electric power of a generator connected to the internal combustion engine) from the predetermined target power equivalent (target power) of the internal combustion engine, a global motor default value for the fuel mass flow determined. Alternatively or additionally, a speed controller may be provided which determines a motor global default value for the fuel mass flow as a function of the deviation of a current engine speed (actual speed) of the internal combustion engine from the predefinable target speed (target speed) of the internal combustion engine. From the determined target value for the fuel mass flow, the predefinable target value - e.g. for the engine-global opening duration of fuel metering valves or for the engine global default value for the ignition timing of ignition devices.
Eine besondere Ausführungsvariante sieht vor, dass der zylinderindividuelle Differenzwert einen zylinderindividuellen Vorsteuerwert enthält, wobei vorzugsweise der zylinderindividuelle Vorsteuerwert aus einem Ladeluftdruck und vorzugsweise zusätzlich aus einer Ladelufttemperatur der Brennkraftmaschine ermittelt wird. Die zylinderindividuellen Vorsteuerwerte können dabei aus Messungen während der Inbetriebnahme der Brennkraftmaschine stammen und beispielsweise auch als Rückfallwerte verwendet werden für den Fall, dass ein Sensor zur Erfassung des zylinderindividuellen Signals ausfällt oder gestört ist.A particular embodiment variant provides that the cylinder-specific difference value contains a cylinder-specific precontrol value, the cylinder-specific pilot control value preferably being determined from a charge air pressure and preferably additionally from a charge air temperature of the internal combustion engine. The cylinder-specific precontrol values can thereby originate from measurements during the commissioning of the internal combustion engine and, for example, can also be used as fallback values in the event that a sensor for detecting the cylinder-specific signal fails or is disturbed.
Die zylinderindividuellen Vorsteuerwerte können beispielsweise die Gasdynamik im Saugrohr und/oder im Gasrail eines Gasmotors sowie entsprechende Bauteiltoleranzen berücksichtigen, wobei die Gasdynamik durch Simulationen oder Messungen ermittelt werden kann. Die Gasdynamik sowie Auswirkungen von Bauteiltoleranzen sind unter anderem durch den Ladeluftdruck, die Motordrehzahl und die Ladelufttemperatur beeinflusst. Daher ist es günstig, geeignete zylinderindividuelle Vorsteuerwerte aus einem Kennfeld abzuleiten, das entsprechende Werte für unterschiedliche Ladeluftdrücke und Ladelufttemperaturen beinhaltet. So können bei Inbetriebnahme des Gasmotors entsprechende Messdaten erfasst werden oder entsprechende Kennfelder durch Versuche oder Simulationen ermittelt werden. Es ist auch möglich, dass durch Online-Messungen während des Betriebs des Gasmotors ein adaptives Kennfeld generiert wird.The cylinder-individual precontrol values can take into account, for example, the gas dynamics in the intake manifold and / or in the gas rail of a gas engine as well as corresponding component tolerances, wherein the gas dynamics can be determined by simulations or measurements. The gas dynamics and the effects of component tolerances are influenced inter alia by the charge air pressure, the engine speed and the charge air temperature. It is therefore advantageous to derive suitable cylinder-specific precontrol values from a characteristic map which contains corresponding values for different charge air pressures and charge air temperatures. Thus, upon commissioning of the gas engine corresponding measurement data can be detected or corresponding maps are determined by experiments or simulations. It is also possible that an adaptive map is generated by online measurements during operation of the gas engine.
Als besonders vorteilhaft hat es sich herausgestellt, wenn der zylinderindividuelle Differenzwert mit einem Ausgleichswert beaufschlagt wird, wobei der Ausgleichswert dem arithmetischen Mittelwert der zylinderindividuellen Differenzwerte entspricht. Dies ist insbesondere dann vorteilhaft, um die vorgeschlagene Lösung in Brennkraftmaschinen einzubauen oder nachzurüsten, die bisher ohne Zylindergleichstellung bzw. nur mit einem globalen Regler betrieben wurden. Durch eine derartige Korrektur der zylinderindividuellen Differenzwerte kann insbesondere erreicht werden, dass eine global dosierte Brennstoffmenge nicht durch die vorgeschlagene Lösung beeinflusst wird und eine gegebenenfalls vorhandene globale Emissionsregelung der Brennkraftmaschine nicht angepasst werden muss. Da auch die Werte für die jeweiligen Zündzeitpunkte in eine globale Motorregelung einfließen können, kann durch eine Korrektur der zylinderindividuellen Differenzwerte auch in Bezug auf das Einstellen des Zündzeitpunkts eine unerwünschte Auswirkung auf die globale Motorregelung vermieden werden.It has proved to be particularly advantageous when the cylinder-specific difference value is subjected to a compensation value, the compensation value corresponding to the arithmetic mean value of the cylinder-specific difference values. This is particularly advantageous in order to install or retrofit the proposed solution in internal combustion engines, which were previously operated without cylinder equalization or only with a global controller. By means of such a correction of the cylinder-specific difference values, it can be achieved, in particular, that a globally metered quantity of fuel is not influenced by the proposed solution and that an optionally existing global emission control of the internal combustion engine does not have to be adapted. Since the values for the respective ignition times can also be incorporated into a global engine control system, by correcting the cylinder-specific difference values, also with respect to the setting of the ignition timing, an undesirable effect on the global engine control can be avoided.
In einer bevorzugten Ausführungsform der Erfindung kann vorgesehen sein, dass für jeden Zylinder ein Verbrennungszustand überwacht und in Bezug auf einen vorgebbaren Sollzustand als normal oder abnormal bewertet wird, wobei der Verbrennungsparameter eines Zylinders nur eingestellt wird, falls der Verbrennungszustand des Zylinders als normal bewertet wird. Dabei kann als Verbrennungszustand Klopfen und/oder Glühzünden und/oder Aussetzen in der Verbrennung überwacht werden, wobei der Verbrennungszustand eines Zylinders als normal bewertet wird, falls kein Klopfen und/oder kein Glühzünden und/oder kein Aussetzen in der Verbrennung erkannt werden.In a preferred embodiment of the invention, it may be provided that a combustion state is monitored for each cylinder and evaluated as normal or abnormal with respect to a predeterminable desired state, the combustion parameter of a cylinder being adjusted only if the combustion state of the cylinder is judged to be normal. It can as Combustion state knocking and / or glow ignition and / or exposure to be monitored in the combustion, wherein the combustion state of a cylinder is judged normal, if no knocking and / or no ignition and / or no exposure to the combustion are detected.
Weitere Einzelheiten und Vorteile der vorliegenden Erfindung werden anhand der nachfolgenden Figurenbeschreibung erläutert. Dabei zeigt:
- Fig. 1a
- Zylinderinnendruckverläufe von mehreren Zylindern einer Brennkraftmaschine über mehrere Verbrennungszyklen und die jeweils daraus ermittelten arithmetischen Mittelwerte und Mediane,
- Fig. 1b
- eine Darstellung gemäß
Fig. 1a mit einem gestörten Zylinderdrucksignal eines Zylinderinnendrucksensors eines Zylinders, - Fig. 2
- eine Brennkraftmaschine mit mehreren Zylindern und einer Regelungsvorrichtung zum Betreiben der Brennkraftmaschine gemäß einer Ausführungsvariante des vorgeschlagenen Verfahrens,
- Fig. 3
- eine
schematische Darstellung von 3 Zylindern einer Brennkraftmaschine und eine Regelungsvorrichtung zum Betreiben der Brennkraftmaschine gemäß einer Ausführungsvariante des vorgeschlagenen Verfahrens, - Fig. 4
- eine schematische Darstellung gemäß
Fig. 3 mit einer Brennkraftmaschine mit einem brennstoffgeführten Brennverfahren, - Fig. 5
- eine schematische Detaildarstellung einer vorgeschlagenen Regelungsvorrichtung,
- Fig. 6
- eine schematische Darstellung gemäß
Fig. 3 einer weiteren Ausführungsvariante des vorgeschlagenen Verfahrens und - Fig. 7
- eine schematische Detaildarstellung einer Regelungsvorrichtung einer weiteren Ausführungsvariante des vorgeschlagenen Verfahrens.
- Fig. 1a
- Cylinder internal pressure curves of several cylinders of an internal combustion engine over several combustion cycles and the respectively determined therefrom arithmetic mean values and medians,
- Fig. 1b
- a representation according to
Fig. 1a with a faulty cylinder pressure signal of a cylinder internal pressure sensor of a cylinder, - Fig. 2
- an internal combustion engine having a plurality of cylinders and a control device for operating the internal combustion engine according to an embodiment of the proposed method,
- Fig. 3
- 3 a schematic representation of three cylinders of an internal combustion engine and a control device for operating the internal combustion engine according to an embodiment variant of the proposed method,
- Fig. 4
- a schematic representation according to
Fig. 3 with an internal combustion engine with a fuel-fired combustion process, - Fig. 5
- a schematic detail of a proposed control device,
- Fig. 6
- a schematic representation according to
Fig. 3 a further embodiment of the proposed method and - Fig. 7
- a schematic detail of a control device of another embodiment of the proposed method.
Beim vorgeschlagenen Verfahren wird hingegen nicht der arithmetische Mittelwert der zylinderindividuellen Signale pmax sondern der Median bzw. Zentralwert als Sollwert pmedian gebildet. Dieser Sollwert pmedian bildet dann die Führungsgröße für die Zylindergleichstellungsregelung. Durch die Verwendung des Medians aller zylinderindividuellen Signale pmax ergibt sich ein stabilerer Zielwert für das Einstellen eines Verbrennungsparameters, beispielsweise der Brennstoffmenge bzw. Gasdosierung eines jeden einzelnen Zylinders 2. Der Einfluss einzelner Zylinderspitzendrücke mit Störgrößen kann dadurch minimiert werden. Somit lässt sich eine stabilere und genauere Zylindergleichstellung erreichen, da der Sollwert pmedian geringeren Schwankungen unterliegt. Außerdem kann durch Verwendung des Medians insbesondere im transienten Motorbetrieb (z.B. bei Lastsprüngen) eine bessere Gleichstellung der Zylinder 2 erzielt werden. Dies ist insbesondere dann der Fall, wenn als jeweiliges zylinderindividuelles Signal ein über mehrere Verbrennungszyklen c zeitlich gefiltertes Signal des erfassten Signals pmax verwendet wird. Durch die höhere Stabilität des Medians im Vergleich zum arithmetischen Mittelwert können dadurch auch die Filterungszeiten über mehrere Verbrennungszyklen c verkürzt werden.In contrast, the proposed method does not form the arithmetic mean of the cylinder-specific signals p max, but instead the median or central value as the desired value p median . This setpoint p median then forms the reference variable for the cylinder equalization control. The use of the median of all cylinder-specific signals p max results in a more stable target value for setting a combustion parameter, for example the fuel quantity or gas metering of each
Wird jedoch gemäß dem vorgeschlagenen Verfahren der Median der Zylinderspitzendrücke pmax als Zielgröße bzw. Sollwert pmedian verwendet, so wird der Sollwert pmedian durch ein gestörtes Signal pmax* nur geringfügig bis gar nicht beeinflusst. Nur bei dem Zylinder 2 mit dem gestörten Signal pmax* könnten sich Regelungsabweichungen ergeben. Die Gleichstellung aller anderen Zylinder 2 könnte jedoch gewahrt werden.However, according to the proposed method, if the median of the cylinder peak pressures p max is used as the target variable or setpoint p median , then the desired value p median is influenced only slightly, if at all, by a disturbed signal p max *. Only with the
Insgesamt kann mit einer vorgeschlagenen medianbasierten Zylindergleichstellung eine robustere Motorregelung mit höherer Genauigkeit bei gleichzeitig verbessertem Verhalten im transienten Motorbetrieb erreicht werden.Overall, with a proposed median-based cylinder equalization, a more robust motor control can be achieved with higher accuracy with simultaneously improved transient engine operation.
Die Brennstoffdosierventile 3 sind in diesem Beispiel als Port-Injection-Ventile ausgeführt, welche nur eine vollständig geöffnete und eine vollständig geschlossene Stellung kennen. Bei vollständig geöffneter Stellung eines Brennstoffdosierventils 3 wird in den Einlasstrakt des dem Brennstoffdosierventil 3 zugeordneten Zylinders 2 ein Brennstoff in Form eines Treibgases eingedüst. Durch die Öffnungsdauer des Brennstoffdosierventils 3 kann somit die Brennstoffmenge Q für den jeweiligen Zylinder 2 festgelegt werden.The
Von jedem Zylinder 2 wird ein zylinderindividuelles Signal pmax erfasst und der Regelungsvorrichtung 7 zugeführt. Ein zylinderindividuelles Signal pmax entspricht dabei dem maximalen Zylinderinnendruck des entsprechenden Zylinders 2 während eines Verbrennungszyklus c. Im gezeigten Beispiel werden die zylinderindividuellen Signale pmax einer Differenzwertberechnung 8 der Regelungsvorrichtung 7 zugeführt. Die Differenzwertberechnung 8 ermittelt für jeden Zylinder 2 bzw. für jedes Brennstoffdosierventil 3 einen Differenzwert Δtcyl, der jeweils zu einem vorgebbaren Zielwert tg addiert wird, wodurch sich für jedes Brennstoffdosierventil 3 als Parameterwert tcyl eine zylinderindividuelle Öffnungsdauer ergibt.From each
Der vorgebbare motorglobale Zielwert tg wird im gezeigten Beispiel aus einem vorgebbaren Brennstoff-Luft-Verhältnis λ ermittelt, wobei das vorgebbare Brennstoff-Luft-Verhältnis λ durch einen Emissionsregler 5a aus einem Leistungsäquivalent P der abgegebenen Leistung der Brennkraftmaschine 1 (z.B. eine gemessene elektrische Leistung eines mit der Brennkraftmaschine 1 verbundenen Generators) und/oder aus einem Ladeluftdruck pA und/oder aus einer Motordrehzahl n der Brennkraftmaschine 1 ermittelt wird. Neben dem Brennstoff-Luft-Verhältnis λ können in eine Zielwertberechnung 6 zusätzlich der Druck pA und die Temperatur TA der Ladeluft, der Druck pG und die Temperatur TG der Brennstoffzuführung sowie die Motordrehzahl n der Brennkraftmaschine 1 einfließen. Darüber hinaus können noch ein Durchflusskennwert der Brennstoffdosierventile 3 (z.B. effektiver Strömungsdurchmesser gemäß der polytropen Ausflussgleichung oder ein Kv-Wert) sowie Kenngrößen des Brennstoffs bzw. Brenngases (z.B. die Gasdichte, der Polytropenexponent oder der Heizwert) in die Zielwertberechnung 6 einfließen. Daraus ermittelt die Zielwertberechnung 6 den vorgebbaren Zielwert tg, der einem motorglobalen Öffnungsdauer-Grundwert für die Öffnungsdauern aller Brennstoffdosierventile 3 entspricht.The specifiable engine global target value t g is determined in the example shown from a predeterminable fuel-air ratio λ, wherein the predetermined fuel-air ratio λ by an
Durch die Differenzwertberechnung 8 wird für jedes einzelne Brennstoffdosierventil 3 ein zylinderindividueller Öffnungsdauer-Offset bzw. Differenzwert Δtcyl ermittelt. Diese zylinderindividuellen Differenzwerte Δtcyl sind abhängig von der Abweichung des Zylinderspitzendrucks pmax des jeweiligen Zylinders 2 vom Median pmedian der Zylinderspitzendrücke pmax aller Zylinder 2. Die jeweilige Summe aus motorglobalem Öffnungsdauer-Grundwert tg und zylinderindividuellem Öffnungsdauer-Offset Δtcyl ergibt die an die Treiberelektronik des jeweiligen Brennstoffdosierventils 3 kommandierte Zielöffnungsdauer tcyl.The difference value calculation 8 is used to determine a cylinder- specific opening duration offset or differential value Δt cyl for each individual fuel metering valve 3 . These cylinder- specific difference values Δt cyl depend on the deviation of the cylinder peak pressure p max of the
Alternativ oder zusätzlich zur Verwendung des maximalen Zylinderinnendrucks pmax als zylinderindividuelles Signal ist auch die Verwendung der jeweiligen zylinderindividuellen Zylinderabgastemperatur TE strichliert angedeutet. Dabei können wiederum aus den Abweichungen der zylinderindividuellen Zylinderabgastemperaturen TE zum Median der Zylinderabgastemperaturen TE über alle Zylinder 2 entsprechende zylinderindividuelle Öffnungsdauer-Offsets Δtcyl errechnet werden. Die zylinderindividuellen Zylinderabgastemperaturen TE können beispielsweise als Alternative verwendet werden, wenn keine Zylinderinnendrucksensoren 4 verbaut sind oder auch als Rückfalllösung, wenn Zylinderdrucksignale ausfallen, um die Verfügbarkeit der Brennkraftmaschine 1 im Falle eines Zylinderdrucksensorausfalles zu erhöhen.As an alternative or in addition to the use of the maximum cylinder internal pressure p max as a cylinder-specific signal, the use of the respective cylinder-specific cylinder exhaust gas temperature T E is also indicated by dashed lines. Again, from the deviations of the cylinder- specific cylinder exhaust temperatures T E to the median of the cylinder exhaust temperatures T E corresponding cylinder- specific opening duration offsets Δt cyl can be calculated over all
In jedem Zylinder 2 ist ein Zylinderinnendrucksensor 4 angeordnet. Ein Zylinderinnendrucksensor 4 kann dabei den Verlauf des Zylinderinnendrucks pcyl über einen Verbrennungszyklus c erfassen. Eine Maximalwerterfassung 9 kann dabei den maximalen Zylinderinnendruck pmax bzw. Spitzendruck des jeweiligen Zylinders 2 im vorangegangenen Verbrennungszyklus c ermitteln.In each
Die Spitzendrücke aller Zylinder 2 werden als zylinderindividuelle Signale pmax einer Sollwertberechnung 10 zugeführt. Diese Sollwertberechnung 10 bildet aus den zylinderindividuellen Signalen pmax den Median und gibt diesen als Sollwert pmedian aus. In einem Sollwertregler 11 wird die Abweichung des Signals pmax eines Zylinders 2 vom Sollwert pmedian ermittelt und in weiterer Folge ein Differenzwert Δtcyl für das Brennstoffdosierventil 3, das dem Zylinder 2 zugeordnet ist, ermittelt. Der jeweilige Differenzwert Δtcyl wird dabei zu einem motorglobalen, vorgebbaren Zielwert tg addiert, wodurch sich eine Öffnungsdauer für das Brennstoffdosierventil 3 als Parameterwert tcyl ergibt. Der vorgebbare Zielwert tg wird dabei, wie in
Im gezeigten Beispiel umfasst der jeweilige Differenzwert Δtcyl einen zylinderindividuellen Vorsteuerwert tp, der durch eine Vorsteuerwertberechnung 12 aus dem Ladeluftdruck pA und/oder der Ladelufttemperatur TA und/oder der Motordrehzahl n der Brennkraftmaschine 1 ermittelt wird. Dieser jeweilige Vorsteuerwert tp kann dabei beispielsweise durch Messungen bei Inbetriebnahme der Brennkraftmaschine 1 ermittelt und in einem Kennfeld abgelegt werden.In the example shown, the respective difference value .DELTA.t cyl comprises a cylinder-specific pilot value t p, defined by a
Generell kann der Sollwertregler 11 beispielsweise als P-, PI- oder PID-Regler ausgeführt werden. Es sind aber auch andere Reglerkonzepte und Reglertypen einsetzbar, wie beispielsweise LQ-Regler, robuste Regler oder Fuzzy-Regler.In general, the
Um unerwünschte Auswirkungen auf die globale Motorregelung und insbesondere auf den Emissionsregler 5a zu vermeiden, werden die Differenzwerte Δtcyl jeweils zusätzlich noch mit einem Ausgleichswert t0 aus einer Ausgleichswertberechnung 13 beaufschlagt. Dieser für alle Differenzwerte Δtcyl gleiche Ausgleichswert t0 entspricht dem arithmetischen Mittelwert der Differenzwerte Δtcyl aller Zylinder 2 und kann positiv oder negativ sein. Insgesamt ist es damit möglich, das vorgeschlagene Verfahren auch bei Brennkraftmaschinen 1 nachzurüsten, die bisher ohne Zylindergleichstellung bzw. nur mit einem globalen Regler betrieben wurden, ohne dass diese zusätzliche Regelung eine Auswirkung auf die globale Motorregelung hat.In order to avoid unwanted effects on the global engine control, and in particular to the
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA896/2012A AT513139B1 (en) | 2012-08-17 | 2012-08-17 | Method for operating an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2698520A1 true EP2698520A1 (en) | 2014-02-19 |
EP2698520B1 EP2698520B1 (en) | 2024-08-28 |
Family
ID=48876984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13003562.9A Active EP2698520B1 (en) | 2012-08-17 | 2013-07-16 | Method for operating a combustion engine |
Country Status (7)
Country | Link |
---|---|
US (1) | US9316169B2 (en) |
EP (1) | EP2698520B1 (en) |
JP (1) | JP2014037835A (en) |
KR (1) | KR20140023233A (en) |
CN (1) | CN103590917B (en) |
AT (1) | AT513139B1 (en) |
BR (1) | BR102013020924B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155695A (en) * | 2014-02-20 | 2015-08-27 | ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー | Internal combustion engine operating method |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT513359B1 (en) | 2012-08-17 | 2014-07-15 | Ge Jenbacher Gmbh & Co Og | Method for operating an internal combustion engine |
JP5708674B2 (en) * | 2013-01-24 | 2015-04-30 | トヨタ自動車株式会社 | Control device for internal combustion engine |
DE102014207272B4 (en) * | 2014-04-15 | 2016-07-28 | Mtu Friedrichshafen Gmbh | Method for operating an internal combustion engine, control unit for an internal combustion engine and internal combustion engine |
DE102014207268A1 (en) * | 2014-04-15 | 2015-10-15 | Mtu Friedrichshafen Gmbh | Method for operating an internal combustion engine and internal combustion engine |
DE102014005986B4 (en) * | 2014-04-25 | 2018-06-14 | Mtu Friedrichshafen Gmbh | Operating procedure for a lean gas engine and lean gas engine |
DE102014007009B4 (en) * | 2014-05-13 | 2018-01-18 | Mtu Friedrichshafen Gmbh | Engine monitoring by means of cylinder-specific pressure sensors excellently with lean gas engines with purged prechamber |
EP3283748B1 (en) | 2015-04-14 | 2023-07-26 | Woodward, Inc. | Combustion pressure feedback based engine control with variable resolution sampling windows |
AT517206B1 (en) * | 2015-06-30 | 2016-12-15 | Ge Jenbacher Gmbh & Co Og | Method for controlling an internal combustion engine |
DE102015218835B3 (en) * | 2015-09-30 | 2016-11-24 | Continental Automotive Gmbh | Method and apparatus for injecting gaseous fuel |
ITUB20154998A1 (en) * | 2015-11-03 | 2017-05-03 | Magneti Marelli Spa | ESTIMATION METHOD OF THE MFB50 COMBUSTION INDEX AND INSTANTANEOUS TORQUE GENERATED BY THE CYLINDERS OF AN INTERNAL COMBUSTION ENGINE |
KR102110626B1 (en) * | 2015-12-18 | 2020-05-14 | 한국조선해양 주식회사 | Low load operation system of dual fuel engine and low load operation using the same method |
JP6669637B2 (en) * | 2016-11-25 | 2020-03-18 | ヤンマー株式会社 | Diagnostic device and method for internal combustion engine, and control device and control method for internal combustion engine |
CN108798914A (en) * | 2018-03-15 | 2018-11-13 | 江苏科技大学 | A kind of dual fuel engine declared working condition NOx emission and detonating combustion control strategy |
US10934965B2 (en) | 2019-04-05 | 2021-03-02 | Woodward, Inc. | Auto-ignition control in a combustion engine |
JP7329488B2 (en) * | 2019-11-15 | 2023-08-18 | エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド | Crosshead large low speed turbocharged two stroke uniflow scavenging internal combustion engine and method of operating same |
DE102019133383A1 (en) * | 2019-12-06 | 2021-06-10 | Volkswagen Aktiengesellschaft | Cylinder-selective ignition angle adjustment with lambda splitting with an increase in exhaust gas temperature to optimize gasoline particulate filter regeneration |
CN112709649A (en) * | 2020-12-29 | 2021-04-27 | 东台市建东机械制造有限公司 | Method for correcting fuel injection quantity deviation of diesel engine |
CN114320704B (en) * | 2021-12-31 | 2024-06-14 | 中国第一汽车股份有限公司 | Cylinder balance control method, device, equipment and storage medium |
CN115045752B (en) * | 2022-06-30 | 2023-06-20 | 东风柳州汽车有限公司 | Combustion system of engine |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0259382B1 (en) | 1986-03-05 | 1989-10-04 | Jenbacher Werke AG | Device for regulating the proportion of combustion air to gaz |
DE19754353A1 (en) * | 1997-12-08 | 1999-06-10 | Man B & W Diesel Ag | Diesel gas engine |
US7467040B2 (en) * | 2006-08-28 | 2008-12-16 | Ifp | Method of real time-estimation of indicators of the combustion state of an internal-combustion engine |
WO2009122012A1 (en) * | 2008-03-31 | 2009-10-08 | Wärtsilä Finland Oy | An adjustment system for balancing the cylinders of a gas -burning internal combustion engine |
US20100089364A1 (en) * | 2008-10-02 | 2010-04-15 | Edward Flanagan | Method and apparatus for automatic pressure balancing of industrial large-bore internal combustion engines |
DE102009008247B3 (en) * | 2009-02-06 | 2010-08-19 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Detecting pre-ignition in internal combustion engines, makes successive comparisons of measured changes in angular displacements of cam- or crank shaft during working cycle |
DE102010045689A1 (en) * | 2010-09-16 | 2011-04-21 | Daimler Ag | Method for operating internal combustion engine of passenger car, involves accomplishing measure for compensation of deviation, and adjusting quantity of fuel for compensating deviation, where measure affects combustion in cylinder |
DE102010042736A1 (en) * | 2010-10-21 | 2012-04-26 | Robert Bosch Gmbh | Volume compensation regulating method for common rail motor designed internal combustion engine of passenger car, involves calculating specific cylinder pressure drop based on variable dependent of mean value of cylinder pressure drops |
WO2012097389A2 (en) * | 2011-01-18 | 2012-07-26 | Ge Jenbacher Gmbh & Co Ohg | Method for operating an internal combustion engine having at least two cylinders |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005240712A (en) | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | Gas engine |
US7877195B2 (en) * | 2005-04-01 | 2011-01-25 | Hoerbiger Kompressortechnik Holding Gmbh | Method for the estimation of combustion parameters |
JP2007023973A (en) * | 2005-07-20 | 2007-02-01 | Honda Motor Co Ltd | Control device of internal combustion engine |
DE102007050302A1 (en) * | 2007-10-22 | 2009-04-23 | Robert Bosch Gmbh | Method and device for determining a cylinder pressure feature |
DE102008005524A1 (en) * | 2008-01-22 | 2009-07-23 | Robert Bosch Gmbh | Method for controlling a self-igniting internal combustion engine and control device for controlling a self-igniting internal combustion engine |
JP2010001745A (en) * | 2008-06-18 | 2010-01-07 | Hitachi Automotive Systems Ltd | Combustion controller of spark-ignition multi-cylinder engine |
GB2477122A (en) * | 2010-01-22 | 2011-07-27 | Gm Global Tech Operations Inc | Determining the pressure offset of an in-cylinder pressure sensor of an i.c. engine |
JP4893857B2 (en) | 2010-04-19 | 2012-03-07 | トヨタ自動車株式会社 | Control device for internal combustion engine |
DE102010043920B4 (en) | 2010-11-15 | 2014-09-11 | Ford Global Technologies, Llc | Method for avoiding turbocharger damage |
-
2012
- 2012-08-17 AT ATA896/2012A patent/AT513139B1/en active
-
2013
- 2013-07-16 EP EP13003562.9A patent/EP2698520B1/en active Active
- 2013-08-12 US US13/964,362 patent/US9316169B2/en active Active
- 2013-08-13 JP JP2013168085A patent/JP2014037835A/en active Pending
- 2013-08-16 KR KR1020130097265A patent/KR20140023233A/en not_active Ceased
- 2013-08-16 CN CN201310357228.1A patent/CN103590917B/en active Active
- 2013-08-16 BR BR102013020924-4A patent/BR102013020924B1/en active IP Right Grant
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0259382B1 (en) | 1986-03-05 | 1989-10-04 | Jenbacher Werke AG | Device for regulating the proportion of combustion air to gaz |
DE19754353A1 (en) * | 1997-12-08 | 1999-06-10 | Man B & W Diesel Ag | Diesel gas engine |
US7467040B2 (en) * | 2006-08-28 | 2008-12-16 | Ifp | Method of real time-estimation of indicators of the combustion state of an internal-combustion engine |
WO2009122012A1 (en) * | 2008-03-31 | 2009-10-08 | Wärtsilä Finland Oy | An adjustment system for balancing the cylinders of a gas -burning internal combustion engine |
US7957889B2 (en) | 2008-03-31 | 2011-06-07 | Wartsila Finland Oy | Adjustment system for balancing the cylinders of a gas-burning internal combustion engine |
US20100089364A1 (en) * | 2008-10-02 | 2010-04-15 | Edward Flanagan | Method and apparatus for automatic pressure balancing of industrial large-bore internal combustion engines |
DE102009008247B3 (en) * | 2009-02-06 | 2010-08-19 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Detecting pre-ignition in internal combustion engines, makes successive comparisons of measured changes in angular displacements of cam- or crank shaft during working cycle |
DE102010045689A1 (en) * | 2010-09-16 | 2011-04-21 | Daimler Ag | Method for operating internal combustion engine of passenger car, involves accomplishing measure for compensation of deviation, and adjusting quantity of fuel for compensating deviation, where measure affects combustion in cylinder |
DE102010042736A1 (en) * | 2010-10-21 | 2012-04-26 | Robert Bosch Gmbh | Volume compensation regulating method for common rail motor designed internal combustion engine of passenger car, involves calculating specific cylinder pressure drop based on variable dependent of mean value of cylinder pressure drops |
WO2012097389A2 (en) * | 2011-01-18 | 2012-07-26 | Ge Jenbacher Gmbh & Co Ohg | Method for operating an internal combustion engine having at least two cylinders |
Non-Patent Citations (1)
Title |
---|
GALLAGHER N C JR ET AL: "A Theoretical Analysis of the Properties of Median Filters", IEEE TRANSACTIONS ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, IEEE INC. NEW YORK, USA, vol. 29, no. 6, 31 December 1981 (1981-12-31), pages 1136 - 1141, XP002580384, ISSN: 0096-3518 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015155695A (en) * | 2014-02-20 | 2015-08-27 | ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー | Internal combustion engine operating method |
US10161320B2 (en) | 2014-02-20 | 2018-12-25 | Ge Jenbacher Gmbh & Co Og | Method of operating an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
CN103590917B (en) | 2020-09-08 |
CN103590917A (en) | 2014-02-19 |
AT513139A4 (en) | 2014-02-15 |
BR102013020924B1 (en) | 2021-08-03 |
AT513139B1 (en) | 2014-02-15 |
US9316169B2 (en) | 2016-04-19 |
US20140052362A1 (en) | 2014-02-20 |
KR20140023233A (en) | 2014-02-26 |
JP2014037835A (en) | 2014-02-27 |
BR102013020924A2 (en) | 2015-10-27 |
EP2698520B1 (en) | 2024-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2698520B1 (en) | Method for operating a combustion engine | |
EP2698521B1 (en) | Method for operating a combustion engine | |
AT511001B1 (en) | METHOD FOR OPERATING A COMBUSTION ENGINE THROUGHOUT AT LEAST TWO CYLINDER | |
DE19749817B4 (en) | Apparatus and method for determining the start of injection | |
DE112011105773B4 (en) | Fuel injection control device for an internal combustion engine | |
DE102008002261A1 (en) | Method and device for determining one or more combustion starts in a cylinder of an internal combustion engine from a provided cylinder pressure curve | |
DE3918772A1 (en) | MOTOR CONTROL UNIT | |
DE102011102029A1 (en) | METHOD AND DEVICE FOR OPERATING A COMBUSTION ENGINE IN A BURNING MODE WITH HOMOGENEOUS COMPRESSION IGNITION | |
DE102014207272B4 (en) | Method for operating an internal combustion engine, control unit for an internal combustion engine and internal combustion engine | |
DE102012214518B3 (en) | Method for controlling an ignition system of an internal combustion engine and ignition system | |
DE60318195T2 (en) | DIESEL ENGINE WITH A DEVICE FOR CONTROLLING THE STREAM OF INJECTION-MOLDED FUEL | |
WO2009143858A1 (en) | Method for controlling an injection process of an internal combustion engine, control device for an internal combustion engine and an internal combustion engine | |
DE112011105782T5 (en) | Fuel injection control device for internal combustion engine | |
DE102019213092A1 (en) | Method for diagnosing misfires in an internal combustion engine | |
WO2008043784A1 (en) | Method and device for determining an operating characteristic of an injection system | |
DE102011004068B3 (en) | Method for coordinating dispensed torques and/or lambda values of burning cylinders for combustion engine of motor vehicle, involves providing parameters for supply of fuel for incineration in cylinders depending on correction values | |
EP1132601B1 (en) | Method for controlling combustion of fossil fuel | |
DE102016219575B3 (en) | Method and device for operating an internal combustion engine | |
DE102007034337A1 (en) | Method for determining the amount of fuel injected | |
DE102014210206A1 (en) | Control device and control method for internal combustion engine | |
WO2007141083A1 (en) | Internal combustion engine and associated operating method | |
DE102017107552A1 (en) | METHOD AND DEVICE FOR CONTROLLING THE OPERATION OF A COMBUSTION ENGINE | |
DE102016224643A1 (en) | Method for operating an internal combustion engine and internal combustion engine | |
DE102016222022A1 (en) | Method and arrangement for lambda-based control of a mechanism for adjusting a valve lift curve | |
EP2357346A1 (en) | Method for operating a combustion machine with multiple combustion events in an operating cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140811 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: INNIO JENBACHER GMBH & CO OG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200714 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230614 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02D 29/06 20060101ALN20240522BHEP Ipc: F02D 37/02 20060101ALN20240522BHEP Ipc: F02D 41/40 20060101ALI20240522BHEP Ipc: F02D 35/02 20060101ALI20240522BHEP Ipc: F02D 19/02 20060101ALI20240522BHEP Ipc: F02D 41/00 20060101AFI20240522BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20240618 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013016535 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241129 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241230 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241128 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241230 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241128 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241228 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241129 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240828 |