EP2694624B1 - Method of operation of process to produce syngas from carbonaceous material - Google Patents
Method of operation of process to produce syngas from carbonaceous material Download PDFInfo
- Publication number
- EP2694624B1 EP2694624B1 EP12715788.1A EP12715788A EP2694624B1 EP 2694624 B1 EP2694624 B1 EP 2694624B1 EP 12715788 A EP12715788 A EP 12715788A EP 2694624 B1 EP2694624 B1 EP 2694624B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- syngas
- cooled
- carbonaceous material
- produce
- gasification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003575 carbonaceous material Substances 0.000 title claims description 117
- 238000000034 method Methods 0.000 title claims description 75
- 230000008569 process Effects 0.000 title claims description 61
- 238000002309 gasification Methods 0.000 claims description 133
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 68
- 229910001882 dioxygen Inorganic materials 0.000 claims description 63
- 238000010438 heat treatment Methods 0.000 claims description 32
- 230000003647 oxidation Effects 0.000 claims description 22
- 238000007254 oxidation reaction Methods 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 6
- 238000007669 thermal treatment Methods 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 71
- 239000001569 carbon dioxide Substances 0.000 description 55
- 229910002092 carbon dioxide Inorganic materials 0.000 description 55
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 50
- 229910002091 carbon monoxide Inorganic materials 0.000 description 50
- 239000007789 gas Substances 0.000 description 41
- 238000004519 manufacturing process Methods 0.000 description 33
- 239000000428 dust Substances 0.000 description 25
- 238000007792 addition Methods 0.000 description 20
- 239000011269 tar Substances 0.000 description 20
- 239000002699 waste material Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 19
- 238000001816 cooling Methods 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- -1 tires Substances 0.000 description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 239000000356 contaminant Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 239000013043 chemical agent Substances 0.000 description 5
- 239000003245 coal Substances 0.000 description 5
- 238000011143 downstream manufacturing Methods 0.000 description 5
- 239000002440 industrial waste Substances 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000010813 municipal solid waste Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000012773 agricultural material Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000010828 animal waste Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 239000004035 construction material Substances 0.000 description 3
- 239000002921 fermentation waste Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 229920005610 lignin Polymers 0.000 description 3
- 239000012263 liquid product Substances 0.000 description 3
- 244000144972 livestock Species 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000010908 plant waste Substances 0.000 description 3
- 244000144977 poultry Species 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000010801 sewage sludge Substances 0.000 description 3
- 239000004458 spent grain Substances 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 239000002916 wood waste Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000012717 electrostatic precipitator Substances 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000002536 laser-induced breakdown spectroscopy Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 238000010744 Boudouard reaction Methods 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002906 medical waste Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/82—Gas withdrawal means
- C10J3/84—Gas withdrawal means with means for removing dust or tar from the gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/36—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/721—Multistage gasification, e.g. plural parallel or serial gasification stages
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/723—Controlling or regulating the gasification process
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/726—Start-up
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/86—Other features combined with waste-heat boilers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/02—Dust removal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/04—Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/001—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
- C10K3/003—Reducing the tar content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/001—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
- C10K3/003—Reducing the tar content
- C10K3/005—Reducing the tar content by partial oxidation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/001—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
- C10K3/003—Reducing the tar content
- C10K3/008—Reducing the tar content by cracking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
- F22B1/1838—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/025—Processes for making hydrogen or synthesis gas containing a partial oxidation step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0872—Methods of cooling
- C01B2203/0877—Methods of cooling by direct injection of fluid
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0872—Methods of cooling
- C01B2203/0888—Methods of cooling by evaporation of a fluid
- C01B2203/0894—Generation of steam
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/142—At least two reforming, decomposition or partial oxidation steps in series
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/142—At least two reforming, decomposition or partial oxidation steps in series
- C01B2203/143—Three or more reforming, decomposition or partial oxidation steps in series
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/09—Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/15—Details of feeding means
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1603—Integration of gasification processes with another plant or parts within the plant with gas treatment
- C10J2300/1606—Combustion processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1846—Partial oxidation, i.e. injection of air or oxygen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1884—Heat exchange between at least two process streams with one stream being synthesis gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- a process for gasification of carbonaceous materials to produce producer gas or synthesis gas or syngas comprising carbon monoxide and hydrogen. More specifically, the process is effective for producing cooled syngas for downstream use.
- the process utilizes gasification of carbonaceous materials to produce a syngas followed by cooling of said syngas to produce cooled syngas and optionally cleaning said cooled syngas to produce a clean syngas for several downstream processes.
- Gasification of carbonaceous materials to produce producer gas or synthesis gas or syngas comprising carbon monoxide and hydrogen is well known in the art.
- a gasification process involves a partial oxidation or starved-air oxidation of carbonaceous material in which a sub-stoichiometric amount of oxygen is supplied to the gasification process to promote production of carbon monoxide as disclosed in PCT Patent Application No. WO 93/018341 .
- Gaseous products produced by partial oxidation of carbonaceous materials are often treated in a high temperature heat treatment unit, e.g. for destruction of tar.
- WO 2009/154788 discloses a two stage gasifier in which carbonaceous material is fed to the first stage in which air, oxygen-enriched air or pure oxygen can be injected at controlled rate.
- the first stage temperature and oxygen input is controlled such that only partial oxidation of carbonaceous material occurs.
- the gaseous product from the first stage moves to the second stage (heat treatment unit). Pure oxygen is introduced into the second stage in order to accomplish cracking and partial oxidation of any tar contained in the gaseous stream from the first stage.
- Product syngas is removed from the second stage.
- DE 40 35 293 discloses a method for starting up a gasifier by decreasing the amount of oxygen provided to the gasifier after a first temperature has been reached.
- US 2010/0090166 provides an example of recycling cooled synthesis gas as quench gas for the gas leaving the gasifier.
- Hot syngas produced by gasification processes described in the art can be hot and needs cooling prior to downstream processing. Recovery and use of this heat content of hot syngas can be very important for process economics.
- Hot syngas comprising carbon monoxide generated in gasification apparatus is cooled in a heat exchanger or waste heat boiler downstream of the gasification apparatus. See for example US Patent No. 6,435,139 ; US Patent No. 7,587,995 and US Patent No. 7,552,701 .
- carbon monoxide is a stable product. However when carbon monoxide is cooled, carbon monoxide may oxidize into carbon dioxide, and produce carbon (graphite) that precipitates as soot: 2CO(g) ⁇ CO 2 (g) + C(s)
- This reaction is generally known as Boudouard reaction and is believed to take place at or below about 760°C. Fouling of heat transfer surface caused by deposit of carbon can cause disruption in operation of a syngas cooler. It is, therefore, important to eliminate or reduce fouling of the syngas cooler.
- Sulfur in carbonaceous matter transforms to H 2 S in reductive mode of operation, to SO 2 in oxidative mode of operation. It is advantageous to make SO 2 during start-up so that it can be scrubbed easily prior to disposal.
- a process not according to the invention is provided for producing syngas that is effective for use in downstream processes.
- the process for producing syngas includes operating a gasification apparatus in a start-up mode until the gasification apparatus and equipment downstream of the gasification apparatus are adequately warmed up to a first target temperature. Upon reaching a first target temperature, the process is then operated in a production mode to produce a second syngas with a higher CO/CO 2 molar ratio. Operation in a start-up mode until reaching a first target temperature provides a process that is effective for reducing fouling in downstream equipment and for providing a second syngas can be more effectively cooled and cleaned.
- the second syngas with a higher CO/CO 2 molar ratio that is cooled and cleaned is especially useful for fermentation processes.
- the process for producing syngas includes gasifying carbonaceous material to provide a first syngas having a CO to CO 2 molar ratio of less than about 0.5 until the first syngas reaches a first target temperature. Upon reaching the first target temperature, carbonaceous material is gasified to provide a second syngas having a CO to CO 2 molar ratio of greater than the first syngas. Gasifying of carbonaceous material occurs in a gasification apparatus and molecular oxygen is introduced at a rate of about 0 to about 45,4 kg-mole (100 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis to provide the first syngas. The temperature of the first syngas may be measured at one or more points inside and/or downstream of the gasification apparatus.
- the temperature of the first syngas at one or more points inside and/or outside the gasification apparatus reaches the first target temperature
- molecular oxygen is introduced at a rate of a rate of 0 to about 45,4 kg-mole (100 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis to provide the second syngas.
- the first target temperature is about 700° C to about 1000°C.
- At least a portion of the first syngas is passed through a syngas cooler to produce a cooled first syngas and at least a portion of the second syngas is passed through a syngas cooler to produce a cooled second syngas.
- syngas is passed through the syngas cooler at a linear velocity of greater than about 24 meters per second.
- At least a portion of the first syngas is provided to a thermal oxidation unit until the first syngas reaches the first target temperature.
- a process is provided to produce syngas that includes adding carbonaceous material and molecular oxygen to a gasification apparatus to produce a first syngas with CO/CO 2 molar ratio less than 0.5.
- the temperature of the first syngas is measured downstream of the gasification apparatus. Temperature is measured prior to entry into a syngas cooler. Once the syngas reaches a first temperature prior to entry into a syngas cooler, addition of molecular oxygen is reduced per unit mass of carbonaceous material in the gasification apparatus to produce a second syngas with CO/CO 2 molar ratio greater than that of said first syngas.
- the first target temperature can be about 700°C to about 1000°C.
- Reduction of addition of molecular oxygen per unit mass of carbonaceous material may be accomplished by increasing rate of addition of carbonaceous material.
- reduction of addition of molecular oxygen per unit mass of carbonaceous material may be accomplished by decreasing rate of addition of molecular oxygen.
- At least a portion of the first syngas is passed through the syngas cooler to produce a cooled first syngas and at least a portion of the second syngas is passed through a syngas cooler to produce a cooled second syngas.
- At least a portion of the cooled first syngas is mixed with a portion of the first syngas prior to its passing through said syngas cooler to produce the cooled first syngas.
- At least a portion of the cooled second syngas is mixed with at least a portion of the second syngas prior to passing through the syngas cooler to produce the cooled second syngas.
- the mixture of the cooled first syngas and the first syngas flowing through the syngas cooler has a linear velocity of greater than about 24 meter/second.
- the mixture of the cooled second syngas and the second syngas flowing through the syngas cooler has a linear velocity of greater than about 24 meter/second.
- one or more of steam and CO 2 may be added to the gasification apparatus prior to reduction of the addition of molecular oxygen per unit mass of carbonaceous material or prior to reaching a first target temperature.
- first target temperature less than about 22,7 kg-mole (50 lb-mole) steam per ton of carbonaceous material on a dry basis or less than about 22,7 kg-mole (50 lb-mole) CO 2 per ton of carbonaceous material on a dry basis is added.
- a process in another aspect not according to the invention, includes gasifying carbonaceous material in a gasification apparatus to produce a clean syngas.
- the method includes adding carbonaceous material and adding molecular oxygen in the gasification apparatus to produce a first syngas with CO/CO 2 molar ratio less than 0.5. At least a portion of the first syngas is passed through the syngas cooler to produce a cooled first syngas. At least a portion of the first cooled syngas is passed through a dust collection system to produce a clean syngas. The temperature of the clean syngas is measured at an exit of the dust collection system.
- the second target temperature is about 100°C to about 200°C.
- the process is effective for providing a syngas having less than about 10 ppm tars.
- a process for cooling syngas.
- the process includes passing a syngas through a syngas cooler to produce a cooled syngas; and recycling at least a portion of the cooled syngas to an inlet of the syngas cooler to maintain a temperature at the inlet of the syngas cooler of 760°C or less and a linear velocity through the syngas cooler of at least 24 meters per second.
- any amount refers to the variation in that amount encountered in real world conditions, e.g., in the lab, pilot plant, or production facility.
- an amount of an ingredient or measurement employed in a mixture or quantity when modified by “about” includes the variation and degree of care typically employed in measuring in an experimental condition in production plant or lab.
- the amount of a component of a product when modified by “about” includes the variation between batches in a multiple experiments in the plant or lab and the variation inherent in the analytical method. Whether or not modified by “about,” the amounts include equivalents to those amounts. Any quantity stated herein and modified by “about” can also be employed in the present disclosure as the amount not modified by "about”.
- bag-house or “baghouse” means process or equipment designed for the use of engineered fabric filter tubes, envelopes or cartridges for capturing, separation or filtering of solid particles (fine particles, dust) contained in a gas. Dust-laden or solid-laden gases enter the bag-house and pass through fabric bags that act as filters.
- the bags can be of woven or felted cotton, synthetic, or glass-fiber material in either a tube or envelope shape. Common types of bag-houses include mechanical shaker, reverse air, and reverse jet.
- Carbonaceous material refers to carbon rich material such as coal, and petrochemicals.
- carbonaceous material includes any carbon material whether in solid, liquid, gas, or plasma state.
- the present disclosure contemplates: carbonaceous material, carbonaceous liquid product, carbonaceous industrial liquid recycle, carbonaceous municipal solid waste (MSW or msw), carbonaceous urban waste, carbonaceous agricultural material, carbonaceous forestry material, carbonaceous wood waste, carbonaceous construction material, carbonaceous vegetative material, carbonaceous industrial waste, carbonaceous fermentation waste, carbonaceous petrochemical co products, carbonaceous alcohol production co-products, carbonaceous coal, tires, plastics, waste plastic, coke oven tar, fibersoft, lignin, black liquor, polymers, waste polymers, polyethylene terephthalate (PETA), polystyrene (PS), sewage sludge, animal waste, crop residues, energy crops, forest processing residue
- dust collector or “dust collection system” means process or equipment designed for capturing, separation or filtering of solid particles (fine particles, dust) contained in a gas.
- a dust collection system generally consists of a blower, dust filter, a filter-cleaning system, and a dust receptacle or dust removal system.
- Principal types of industrial dust collectors include inertial separators, fabric filters or bag-houses, wet scrubbers, electrostatic precipitators, and unit collectors.
- fibersoft or “Fibersoft” or “fibrosoft” or “fibrousoft” means a type of carbonaceous material that is produced as a result of softening and concentration of various substances; in an example carbonaceous material is produced via steam autoclaving of various substances.
- the fibersoft can include steam autoclaving of municipal, industrial, commercial, and medical waste resulting in a fibrous mushy material.
- municipal solid waste or "MSW” or “msw” means waste that may include household, commercial, industrial and/or residual waste.
- syngas or "synthesis gas” means synthesis gas which is the name given to a gas mixture that contains varying amounts of carbon monoxide and hydrogen.
- production methods include steam reforming of natural gas or hydrocarbons to produce hydrogen, the gasification of coal and in some types of waste-to-energy gasification facilities. The name comes from their use as intermediates in creating synthetic natural gas (SNG) and for producing ammonia or methanol.
- Syngas comprises use as an intermediate in producing synthetic petroleum for use as a fuel or lubricant via Fischer-Tropsch synthesis and previously the Mobil methanol to gasoline process.
- Syngas consists primarily of hydrogen, carbon monoxide, and some carbon dioxide, and has less than half the energy density (i.e., BTU content) of natural gas. Syngas is combustible and is often used as a fuel source or as an intermediate for the production of other chemicals.
- Ton or “ton” refers to U.S. short ton, i.e. about 907.2 kg (2000 lbs).
- tar includes, without limitation, a gaseous tar, a liquid tar, a solid tar, a tar-forming substances, or mixtures thereof, which generally comprise hydrocarbons and derivatives thereof.
- One large family of techniques includes analytical methods based on liquid or gas phase chromatography coupled with a detector. The most frequent detectors in the case of measurement of tars are the flame-ionization detector (FID) and the mass spectrometer.
- FID flame-ionization detector
- Another family of techniques includes spectrometric methods, which include detecting and analyzing a spectrum.
- the amount of tar may be expressed as equivalent ppm of carbon.
- the hydrocarbon may be benzene or an alcohol, such as methanol.
- a tar concentration equivalent or tar equivalents most preferably corresponds to as equivalent ppm (molar) of benzene. The tar concentration is usefully measured at the outlet of the gasification apparatus and upstream of any substantial cooling of the syngas.
- a gasification process for producing syngas includes gasifying carbonaceous material in a gasification apparatus to produce syngas that includes carbon monoxide (CO) and carbon dioxide (CO 2 ) and cooling said syngas in a syngas cooler or waste heat boiler and optionally further treating the cooled syngas with chemicals to remove contaminants and then further treating the chemical containing syngas in a dust collection system, e.g. a bag-house.
- a gasification apparatus to produce syngas that includes carbon monoxide (CO) and carbon dioxide (CO 2 ) and cooling said syngas in a syngas cooler or waste heat boiler and optionally further treating the cooled syngas with chemicals to remove contaminants and then further treating the chemical containing syngas in a dust collection system, e.g. a bag-house.
- the process includes operating the gasification apparatus in a start-up mode with a reduced rate of feed, optionally with a high oxygen input per unit mass of carbonaceous material (e.g., stoichiometric or near stoichiometric or above stoichiometric amount of oxygen) to produce a first syngas with low CO content i.e. with low CO/CO 2 ratio, e.g. CO/CO 2 molar ratio less than about 0.5.
- the process includes operating the gasification apparatus in a production mode, i.e.
- CO/CO 2 molar ratio in the second syngas is greater than about 1.0.
- the process includes operating the gasification apparatus in a start-up mode until the gasification apparatus and equipment downstream of the gasification apparatus are adequately warmed up.
- the process therefore, includes measuring temperatures of at one or more points (locations) inside and downstream of the gasification apparatus.
- the process includes measuring temperatures of syngas (e.g. first syngas) at one or more points (locations) inside and downstream of the gasification apparatus.
- operation of the gasification apparatus transitions from start-up mode to production mode after one or more points (locations) inside and downstream of the gasification apparatus attain target temperatures.
- operation of the gasification apparatus transitions from start-up mode to production mode after temperature of syngas (first syngas) prior to entering syngas cooler attains a first target temperature.
- operation of the gasification apparatus transitions from start-up mode to production mode after temperature of syngas (first syngas) at exit of dust-collection system (e.g. bag-house) attains a second target temperature.
- all or part of the first syngas produced during this start-up mode of operation can be passed through the syngas cooler to produce a cooled first syngas.
- all or part of the first syngas produced during this start-up mode of operation can be sent to a thermal oxidation unit for processing and disposal.
- all or a part of first syngas is sent to a thermal oxidation unit until temperature of first syngas at entry of said syngas cooler attains the first target temperature.
- all or a part of first syngas is sent to a thermal oxidation unit during operation of gasification apparatus in start-up mode.
- operation of the gasification apparatus transitions to production mode after the temperature of first syngas at syngas cooler entry attains a first target temperature. In one aspect, operation of the gasification apparatus transitions to production mode after the temperature of first syngas at exit of dust collection system (e.g. bag-house) attains a second target temperature. Addition of carbonaceous material and molecular oxygen into the gasification apparatus is continued, however, addition of molecular oxygen per unit mass of carbonaceous material in said gasification apparatus is reduced in order to produce a second syngas with high CO content or with high CO/CO 2 ratio, e.g. CO/CO 2 molar ratio greater than that of first syngas.
- CO/CO 2 molar ratio in the second syngas is greater than about 1.0.
- All or part of the first syngas produced during this production mode of operation can be passed through the syngas cooler to produce a cooled second syngas.
- all or part of the second syngas produced during this production mode of operation can be sent to a thermal oxidation unit for processing and disposal.
- the process is effective for providing a CO/CO 2 molar ratio in said first syngas of less than about 0.5. In one aspect, the CO/CO 2 molar ratio in said first syngas is less than about 0.25. In another aspect, the CO/CO 2 molar ratio in said first syngas is less than about 0.1. It is desirable to have more CO and less CO 2 in the second syngas. In one aspect, the process is effective for providing a CO/CO 2 molar ratio in said second syngas of greater than about 1.0. In one aspect, the CO/CO 2 molar ratio in said second syngas is greater than about 1.5.
- a sub-stoichiometric amount of oxygen is supplied to the gasification apparatus in order to promote production of carbon monoxide during operation in production mode. Therefore, in one aspect, during operation in production mode, the ratio of amount of molecular oxygen input to total amount of molecular oxygen required to completely oxidize all carbon contained in carbonaceous material feed to carbon dioxide is in a range of 0.1 to 0.9, in one aspect 0.1 to 0.8, in another aspect 0.1 to 0.7, and in another aspect 0.1 to 0.45. In one aspect, during operation in start-up mode, the ratio of amount of molecular oxygen input to total amount of molecular oxygen required to completely oxidize all carbon contained in carbonaceous material feed to carbon dioxide is in a range of 0.5 to 2.0.
- the ratio of amount of molecular oxygen input to total amount of molecular oxygen required to completely oxidize all carbon contained in carbonaceous material feed to carbon dioxide is in a range of 0.75 to 1.5. In one aspect, during operation in start-up mode, the ratio of amount of molecular oxygen input to total amount of molecular oxygen required to completely oxidize all carbon contained in carbonaceous material feed to carbon dioxide is in a range of 0.9 to 1.1.
- the target temperatures are selected in a way that occurrence of fouling or deposit formation inside and downstream of the gasification apparatus can be avoided or reduced.
- the first target temperature can be about 700°C to about 1000°C. In one aspect, the first target temperature can be about 750°C to about 850°C.
- the second target temperature at an exit of the dust collection system can be about 100°C to about 200°C. In one aspect, the second target temperature can be about 100°C to about 150°C.
- the reduction of the rate of addition of molecular oxygen per unit mass of carbonaceous material can be accomplished by increasing the rate of addition of carbonaceous material.
- the rate of addition of carbonaceous material feed is kept significantly lower than that for production mode of operation while keeping the rate of addition of molecular oxygen at the same level as in each mode of operation.
- the reduction of the rate of addition of molecular oxygen per unit mass of carbonaceous material can be accomplished by decreasing rate of addition of molecular oxygen.
- the rate of addition of carbonaceous material feed is kept the same for start-up mode of operation and the production mode of operation but the rate of addition of molecular oxygen is decreased.
- the rate of addition of molecular oxygen is decreased as the mode of operation is changed from start-up mode to production mode while rate of addition of carbonaceous material is increased.
- Occurrence of fouling or deposit formation can be avoided or reduced in the syngas cooler by taking an additional measure of assuring a high enough linear velocity of gas flowing through the syngas cooler.
- a linear velocity measured at the inlet of the syngas cooler is greater than about 15 meters/second, in another aspect, greater than about 20 meters/second, and in another aspect, about 24 meters/second is desirable.
- the linear velocity measured at an inlet of the syngas cooler is between about 15 to about 30 meters/second, and in another aspect, about 22 to about 26 meters/second.
- Increased linear velocity can be accomplished by increasing the volumetric flow rate of gas and/or decreasing the cross sectional area of flow.
- the volumetric flow rate can be increased by recycling all or part of the gas exiting the syngas cooler back to the syngas cooler inlet.
- an increased linear velocity is attained by mixing at least a portion of the cooled first syngas with at least a portion of first syngas prior to passing through said syngas cooler.
- an increased linear velocity is attained by mixing at least a portion of cooled second syngas with at least a portion of second syngas prior to passing through said syngas cooler.
- Increased volumetric flow rate can also be obtained by increasing the inert content of the gas.
- the use of recycled cooled syngas enables optimum exchanger velocities to be maintained when the syngas production rate is reduced for whatever reason, including during start-up, shut-down and feedstock transitions.
- an increased linear velocity is attained by using air as a molecular oxygen source especially during start-up mode of operation.
- the gasification apparatus may include any gasification equipment described in prior art such as, but not limited to moving bed, fixed bed, fluidized bed, entrained flow, counter-current ("up draft"), co-current ("down draft"), counter-current fixed bed, co-current fixed bed, counter-current moving bed, co-current moving bed cross draft, hybrid, cross flow, cross flow moving bed, or a part thereof.
- the gasification apparatus comprises a cross flow unit.
- the gasification apparatus comprises a cross flow moving bed unit.
- the gasification apparatus includes a gasification zone wherein carbonaceous material is contacted with oxygen containing gas at a relatively low temperature (e.g. below the ash fusion temperature) to produce a raw syngas and a heat treatment zone wherein the raw syngas undergoes heat treatment or conditioning in the presence of an additional amount of oxygen at a higher temperature (e.g. above the ash fusion temperature) to produce a hot syngas.
- a relatively low temperature e.g. below the ash fusion temperature
- a heat treatment zone wherein the raw syngas undergoes heat treatment or conditioning in the presence of an additional amount of oxygen at a higher temperature (e.g. above the ash fusion temperature) to produce a hot syngas.
- pressure is atmospheric or greater than atmospheric.
- air leakage may be allowed.
- the gasification apparatus or the gasification zone includes multiple sections or gasification hearths for contacting said carbonaceous material with a first molecular oxygen-containing gas and optionally with one or more of steam and CO 2 to gasify a portion of said carbonaceous material and to produce a first gaseous product.
- the gasification apparatus or gasification zone comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 sections or gasification hearths.
- Gas inlets for introduction of molecular oxygen can be attached to the gasification apparatus or gasification zone or one or more hearths contained therein.
- Steam or CO 2 may also be introduced through one or more of these gas inlets.
- one or more of molecular oxygen, steam and CO 2 are pre-mixed prior to supplying to the gas inlets attached to the gasification apparatus or the gasification zone or to one or more hearths contained therein.
- the heat treatment zone may accomplish one or more of cracking and partial oxidation of any tar contained in raw syngas.
- the heat treatment zone can be a horizontal or a vertical chamber with circular or square or rectangular or any other cross section.
- the heat treatment zone can be inclined to the horizontal or vertical direction.
- the heat treatment zone is connected to the gasification zone through one or more connecting zones.
- a gas inlet can be attached directly to the heat treatment zone.
- One or more gas inlets can be attached to one or more connecting zones (throats).
- Molecular oxygen containing gas can be introduced directly into the heat treatment zone.
- Molecular oxygen containing gas can be introduced into the heat treatment zone through one or more gas inlets attached to one or more connecting zones.
- Undesirable hot spots might be created in said gasification-apparatus or in the gasification zone or hearths contained therein due to uneven distribution of molecular oxygen containing gas in said carbonaceous material feed. This may produce poor quality syngas. Formation of hot spots can be reduced or prevented by injecting one or more of steam and carbon dioxide into one or more of said gasification apparatus.
- carbonaceous material feed may be treated with steam along with molecular oxygen in the gasification apparatus.
- Carbonaceous material feed may be treated with CO 2 gas along with molecular oxygen in the gasification apparatus.
- co-feeding steam or CO 2 may not be advantageous. Co-feeding steam or CO 2 may be advantageous and important during operation in production mode.
- the source of molecular oxygen can be one or more of air, oxygen enriched air or pure oxygen.
- the total amount of molecular oxygen introduced in the gasification apparatus during operation in production mode can be about 0 to about 34 kg-mole (75 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis, in another aspect about 0 to about 22,7 kg-mole (50 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis, and in another aspect about 18,1 kg-mole (40 lb-mole) to about 27,2 kg-mole (60 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis.
- the total amount of molecular oxygen introduced in the gasification apparatus during operation in start-up mode can be in a range of about 0 to about 56,7 kg-mole (125 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis, in another aspect about 0 to about 45,4 kg-mole (100 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis, and in another aspect about 0 to about 22,7 kg-mole (50 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis.
- the total amount of steam introduced in the gasification apparatus can be about 0 to about 22,7 kg-mole (50 lb-mole) per 907 kg (short ton) of carbonaceous material feed on a dry basis.
- the total amount of carbon dioxide gas introduced in the gasification apparatus can be about 0 to about 22,7 kg-mole (50 lb-mole) per 907 kg (short ton) of carbonaceous material feed on a dry basis.
- both steam and carbon dioxide gas are introduced in the gasification apparatus.
- the carbonaceous material fed to the gasifier may include carbonaceous material, carbonaceous liquid product, carbonaceous industrial liquid recycle, carbonaceous municipal solid waste (msw), carbonaceous urban waste, carbonaceous agricultural material, carbonaceous forestry material, carbonaceous wood waste, carbonaceous construction material, carbonaceous vegetative material, carbonaceous industrial waste, carbonaceous fermentation waste, carbonaceous petrochemical co-products, carbonaceous alcohol production co-products, carbonaceous coal, tires, plastics, waste plastic, coke oven tar, fibersoft, lignin, black liquor, polymers, waste polymers, polyethylene terephthalate (PETA), polystyrene (PS), sewage sludge, animal waste, crop residues, energy crops, forest processing residues, wood processing residues, livestock wastes, poultry wastes, food processing residues, fermentative process wastes, ethanol co-products, spent grain, spent microorganisms, or their combinations.
- carbonaceous material carbonaceous liquid product
- the carbonaceous material fed to the gasifier comprises a plurality of carbonaceous materials selected from carbonaceous material, carbonaceous liquid product, carbonaceous industrial liquid recycle, carbonaceous municipal solid waste (msw), carbonaceous urban waste, carbonaceous agricultural material, carbonaceous forestry material, carbonaceous wood waste, carbonaceous construction material, carbonaceous vegetative material, carbonaceous industrial waste, carbonaceous fermentation waste, carbonaceous petrochemical co-products, carbonaceous alcohol production co-products, carbonaceous coal, tires, plastics, waste plastic, coke oven tar, fibersoft, lignin, black liquor, polymers, waste polymers, polyethylene terephthalate (PETA), polystyrene (PS), sewage sludge, animal waste, crop residues, energy crops, forest processing residues, wood processing residues, livestock wastes, poultry wastes, food processing residues, fermentative process wastes, ethanol co-products, spent grain, spent microorganisms, or their combinations.
- carbonaceous materials selected
- said carbonaceous material includes water. In one aspect, said carbonaceous material includes less than about 50 wt% water. In one aspect, said carbonaceous material includes less than about 25 wt% water. In one aspect, said carbonaceous material includes less than about 15 wt% water. In one aspect, the moisture content of said carbonaceous material is decreased by pre-drying. In one aspect, said carbonaceous material includes greater than about 25 wt% carbon on a dry or water free basis. In one aspect said carbonaceous material includes greater than about 50 wt% carbon on a dry or water free basis. In one aspect, said carbonaceous material includes about 0 to about 50 wt% oxygen on a dry or water free basis.
- said carbonaceous material includes about 0 to about 25 wt% hydrogen on a dry or water free basis. In one aspect, said carbonaceous material includes less than about 25 wt% ash on a dry or water free basis. In one aspect said carbonaceous material includes less than about 15 wt% ash on a dry or water free basis.
- syngas produced by the gasification apparatus can be cooled in a syngas cooler to produce a cooled syngas for downstream use, e.g. fermentation to produce chemicals such as acetic acid, ethanol, etc.
- the syngas cooler may be heat exchange equipment or a heat exchanger known in the art.
- a syngas cooler can be a selection from: shell-and-tube heat exchanger, plate heat exchanger, plate-and-frame heat exchanger, tubular heat exchanger, double-pipe heat exchanger, hair-pin heat exchanger, single-pass heat exchanger, multi-pass heat exchanger, plate-fin heat exchanger, spiral heat exchanger, and combinations thereof.
- Cooled syngas may contain contaminants that should be removed prior to downstream use. Removal of contaminants can be accomplished by treating cooled syngas with chemical agents. Thus, one or more chemical agents may be added to cooled syngas to produce a chemical containing cooled syngas.
- the chemical containing cooled syngas may be processed in a dust collection system (e.g. a bag-house) to remove chemical residues to thus produce a clean cooled syngas.
- Clean cooled syngas may be sent to a down stream processing or to a thermal oxidation unit. The clean cooled syngas can be optionally further cooled in a quench tower prior to downstream use.
- the dust collection system is effective for capturing, separation or filtering of solid particles (fine particles, dust) from the gas.
- the dust collection system may include one or more of a blower, a dust filter, a filter-cleaning system, and a dust receptacle or dust removal system.
- the dust collection system can be an inertial separator type dust collector, a fabric filter type dust collector (bag-house), a wet scrubber, an electrostatic precipitator, or a unit collector.
- the dust collection system is a bag-house.
- the heat treatment zone may be cold during start-up and may be prone to fouling or deposit formation or may contribute to fouling or deposit formation in the downstream piping or syngas cooler. It is, therefore, often preferred that the gasification apparatus is operated in start-up mode until the heat treatment zone is adequately warmed up.
- the gasification apparatus is operated in start-up mode until the heat treatment zone attains a temperature of about 900°C. Operation in production mode is not started until the heat treatment zone attains at least about 900°C temperature.
- all or part of the first syngas produced is sent to a thermal oxidation unit until the heat treatment zone attains at least about 900°C temperature.
- the gasification apparatus is operated in a start-up mode until the heat treatment zone attains a temperature of about 1000°C. Operation in production mode is not started until the heat treatment zone attains at least about 1000°C.
- all or part of the first syngas produced is sent to a thermal oxidation unit until the heat treatment zone attains at least about1000°C.
- At least a portion of syngas exiting the syngas cooler is recycled back to the gasification apparatus in order to cool the syngas cooler inlet temperature and/or increase the linear velocity of gas entering syngas cooler. In one aspect, at least a portion of syngas exiting the syngas cooler is recycled back to the connecting zone of a gasification apparatus in order to increase the linear velocity of gas entering syngas cooler as well as through the connecting zone wherein the gasification zone includes a gasification zone and a heat treatment zone connected by a connecting zone.
- Figures 1 to 4 illustrates various aspects of the process.
- Figure 1 is a schematic diagram of one aspect of a process comprising gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas.
- a carbonaceous material feed (100) is introduced in the gasification-apparatus (200).
- a molecular oxygen containing gas (150) is supplied to the gasification apparatus and thus the carbonaceous material feed is treated with molecular oxygen in order to initiate and facilitate chemical transformation of carbonaceous material.
- At least a portion of the carbonaceous material feed is gasified in the gasification apparatus to produce a gaseous product or syngas (250).
- Supply of oxygen into the gasification-apparatus can be controlled in order to control relative amounts of carbon monoxide (CO) and carbon dioxide (CO 2 ) produced from gasification of the carbonaceous material.
- Hot syngas is subsequently cooled in a syngas cooler (300) to produce a cooled syngas (350).
- a stream of ash (220) is removed from the gasification apparatus.
- FIG. 2 is a schematic diagram of an aspect of a process including gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas; wherein at least a part of said cooled syngas is recycled and mixed with said hot syngas prior to entry into syngas cooler.
- a carbonaceous material feed (100) is introduced in the gasification-apparatus (200).
- a molecular oxygen containing gas (150) is supplied to the gasification apparatus and thus the carbonaceous material feed is treated with molecular oxygen in order to initiate and facilitate chemical transformation of carbonaceous material.
- At least a portion of the carbonaceous material feed is gasified in the gasification apparatus to produce a gaseous product or syngas (250).
- Supply of oxygen into the gasification-apparatus can be controlled in order to control relative amounts of carbon monoxide (CO) and carbon dioxide (CO 2 ) produced from gasification of the carbonaceous material.
- Hot syngas is subsequently cooled in a syngas cooler (300) to produce a cooled syngas (350). At least a part of said cooled syngas (450) is recycled and mixed with said hot syngas prior to entry into syngas cooler.
- a compressor (400) is used to facilitate recycle of cooled syngas.
- a stream of ash (220) is removed from the gasification apparatus.
- Figure 3 is a schematic diagram of an aspect of a process that includes gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas; wherein at least a part of said cooled syngas is recycled and mixed with said hot syngas prior to entry into syngas cooler; and wherein the gasification apparatus comprises two reaction zones, e.g., a gasification zone and a heat treatment zone connected through a connecting zone.
- a carbonaceous material feed (100) is introduced in the gasification zone (201) of said gasification-apparatus.
- a molecular oxygen containing gas (150) is supplied to the gasification zone of said gasification apparatus and thus the carbonaceous material feed is treated with molecular oxygen in order to initiate and facilitate chemical transformation of carbonaceous material.
- At least a portion of the carbonaceous material feed is gasified in the gasification zone to produce a raw gaseous product (raw syngas).
- the raw syngas passes through the connecting zone (203).
- Molecular oxygen (202) is introduced in the connecting zone to be mixed with said raw syngas.
- Mixture comprising raw syngas and molecular oxygen enters the heat treatment zone (204).
- Molecular oxygen can also be introduced in the heat treatment zone.
- Raw syngas undergoes heat treatment in the heat treatment zone to produce a hot syngas (250).
- Supply of oxygen into the gasification-apparatus can be controlled in order to control relative amounts of carbon monoxide (CO) and carbon dioxide (CO 2 ) produced from gasification of the carbonaceous material.
- Hot syngas is subsequently cooled in a syngas cooler (300) to produce a cooled syngas (350). At least a part of said cooled syngas (450) is recycled and mixed with said hot syngas prior to entry into syngas cooler.
- a compressor (400) is used to facilitate recycle of cooled syngas.
- a stream of ash (220) is removed from the gasification apparatus.
- Figure 4 is a schematic diagram of a process that includes gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas; wherein at least a part of said cooled syngas is recycled and mixed with said hot syngas prior to entry into syngas cooler; wherein at least a portion of one or more of hot and cooled syngas can be sent to a thermal oxidation unit; and wherein at least a portion of said cooled syngas can be processed in a bag-house.
- a carbonaceous material feed (100) is introduced in the gasification-apparatus (200).
- a molecular oxygen containing gas (150) is supplied to the gasification apparatus and thus the carbonaceous material feed is treated with molecular oxygen in order to initiate and facilitate chemical transformation of carbonaceous material.
- At least a portion of the carbonaceous material feed is gasified in the gasification apparatus to produce a gaseous product or syngas (250).
- Supply of oxygen into the gasification-apparatus can be controlled in order to control relative amounts of carbon monoxide (CO) and carbon dioxide (CO 2 ) produced from gasification of the carbonaceous material.
- Hot syngas is subsequently cooled in a syngas cooler (300) to produce a cooled syngas (350). At least a part of said cooled syngas (450) is recycled and mixed with said hot syngas prior to entry into syngas cooler.
- a compressor (400) is used to facilitate recycle of cooled syngas. At least a portion of hot syngas can be sent to a thermal oxidation unit (700) for processing and disposal (750). At least portion of cooled syngas can be sent to a thermal oxidation unit. Cooled syngas may contain contaminants that should be removed prior to downstream use. Removal of contaminants can be accomplished by adding chemical agents. Thus one or more chemical agents (500) can be added to cooled syngas to produce a chemical containing cooled syngas (550). The chemical containing cooled syngas is processed in a bag-house (600) to remove chemical residues (chemical agents with contaminants) and to produce a clean cooled syngas (650) that is either sent to down stream processing or to thermal oxidation unit. The clean cooled syngas can be optionally further cooled in a quench tower prior to downstream use (not shown on diagram). A stream of ash (220) is removed from the gasification apparatus.
- Example 1 Solid Load of Syngas Produced by Gasification in Production Mode
- the gasification apparatus was operated in a start-up mode by providing carbonaceous materials to the gasifier at a feed rate of about half as much as that used in a production mode.
- Oxygen was supplied to the gasifier at a feed rate of about 18,1 kg-mole (40 lb-mole) to 22,7 kg-mole (50 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis.
- some air leakage into the gasifier was allowed that increase oxygen availability.
- a carbonaceous material feed rate was increased into the gasification apparatus.
- a molecular oxygen containing gas was supplied to the gasification apparatus at the rate of about 22,7 kg-mole (50 lb-mole) to about 40,8 kg-mole (90 lb-mole) per 907 kg (short ton) of water-free carbonaceous material.
- the gasifier was also fed a stream of carbon dioxide at the rate of about 4,5 kg-mole (10 lb-mole) to about 6,8 kg-mole (15 lb-mole) per 907 kg (short ton) of water-free carbonaceous material.
- Hot syngas is produced during this operation is subsequently cooled in a syngas cooler to produce a cooled syngas.
- Cooled syngas is processed in a bag-house to remove solid residues and to produce a clean cooled syngas.
- the clean cooled syngas comprised CO in the range of about 25 to about 35 mole%, CO 2 in the range of about 30 to about 40 mole%, H 2 in the range of about 10 to about 20 mole%, N 2 in the range of about 15 to about 25 mole% and small amount of CH 4 .
- the bag-house removed about 0,7 kg-mole (1,5 lb-mole) to about 1,6 kg-mole (3,5 lb-mole) solid per hour per 453,6 kg-mole (1000 lb-mole) per hour clean cooled syngas produced.
- Start-up Mode Low level of solid residue in syngas; operation in production modecan follow.
- Production Mode Operable level of solid residue in syngas (3 fold increase of solids over start-up mode)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Processing Of Solid Wastes (AREA)
- Industrial Gases (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Treatment Of Sludge (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
- A process is provided for gasification of carbonaceous materials to produce producer gas or synthesis gas or syngas comprising carbon monoxide and hydrogen. More specifically, the process is effective for producing cooled syngas for downstream use. The process utilizes gasification of carbonaceous materials to produce a syngas followed by cooling of said syngas to produce cooled syngas and optionally cleaning said cooled syngas to produce a clean syngas for several downstream processes.
- Gasification of carbonaceous materials to produce producer gas or synthesis gas or syngas comprising carbon monoxide and hydrogen is well known in the art. Typically, such a gasification process involves a partial oxidation or starved-air oxidation of carbonaceous material in which a sub-stoichiometric amount of oxygen is supplied to the gasification process to promote production of carbon monoxide as disclosed in
PCT Patent Application No. WO 93/018341 WO 2009/154788 that discloses a two stage gasifier in which carbonaceous material is fed to the first stage in which air, oxygen-enriched air or pure oxygen can be injected at controlled rate. The first stage temperature and oxygen input is controlled such that only partial oxidation of carbonaceous material occurs. The gaseous product from the first stage moves to the second stage (heat treatment unit). Pure oxygen is introduced into the second stage in order to accomplish cracking and partial oxidation of any tar contained in the gaseous stream from the first stage. Product syngas is removed from the second stage. -
DE 40 35 293 discloses a method for starting up a gasifier by decreasing the amount of oxygen provided to the gasifier after a first temperature has been reached. -
US2010/0180503 adUS 6,033,447 provide examples of start up procedures of a gasifier. -
US 2010/0090166 provides an example of recycling cooled synthesis gas as quench gas for the gas leaving the gasifier. - Syngas produced by gasification processes described in the art can be hot and needs cooling prior to downstream processing. Recovery and use of this heat content of hot syngas can be very important for process economics. Hot syngas comprising carbon monoxide generated in gasification apparatus, is cooled in a heat exchanger or waste heat boiler downstream of the gasification apparatus. See for example
US Patent No. 6,435,139 ;US Patent No. 7,587,995 andUS Patent No. 7,552,701 . - At high temperature reducing environment carbon monoxide is a stable product. However when carbon monoxide is cooled, carbon monoxide may oxidize into carbon dioxide, and produce carbon (graphite) that precipitates as soot:
2CO(g) → CO2(g) + C(s)
- This reaction is generally known as Boudouard reaction and is believed to take place at or below about 760°C. Fouling of heat transfer surface caused by deposit of carbon can cause disruption in operation of a syngas cooler. It is, therefore, important to eliminate or reduce fouling of the syngas cooler.
- Sulfur in carbonaceous matter transforms to H2S in reductive mode of operation, to SO2 in oxidative mode of operation. It is advantageous to make SO2 during start-up so that it can be scrubbed easily prior to disposal.
- There is a need for method of operation of a process comprising gasifying carbonaceous material in a gasification apparatus to produce syngas comprising carbon monoxide (CO) and carbon dioxide (CO2) and cooling said syngas in a syngas cooler in a way that fouling or carbon deposit formation is reduced or eliminated.
- A process not according to the invention, is provided for producing syngas that is effective for use in downstream processes. The process for producing syngas includes operating a gasification apparatus in a start-up mode until the gasification apparatus and equipment downstream of the gasification apparatus are adequately warmed up to a first target temperature. Upon reaching a first target temperature, the process is then operated in a production mode to produce a second syngas with a higher CO/CO2 molar ratio. Operation in a start-up mode until reaching a first target temperature provides a process that is effective for reducing fouling in downstream equipment and for providing a second syngas can be more effectively cooled and cleaned. The second syngas with a higher CO/CO2 molar ratio that is cooled and cleaned is especially useful for fermentation processes.
- The process for producing syngas includes gasifying carbonaceous material to provide a first syngas having a CO to CO2 molar ratio of less than about 0.5 until the first syngas reaches a first target temperature. Upon reaching the first target temperature, carbonaceous material is gasified to provide a second syngas having a CO to CO2 molar ratio of greater than the first syngas. Gasifying of carbonaceous material occurs in a gasification apparatus and molecular oxygen is introduced at a rate of about 0 to about 45,4 kg-mole (100 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis to provide the first syngas. The temperature of the first syngas may be measured at one or more points inside and/or downstream of the gasification apparatus. When the temperature of the first syngas at one or more points inside and/or outside the gasification apparatus reaches the first target temperature, molecular oxygen is introduced at a rate of a rate of 0 to about 45,4 kg-mole (100 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis to provide the second syngas. In this aspect, the first target temperature is about 700° C to about 1000°C.
- In one aspect, at least a portion of the first syngas is passed through a syngas cooler to produce a cooled first syngas and at least a portion of the second syngas is passed through a syngas cooler to produce a cooled second syngas. In this aspect, syngas is passed through the syngas cooler at a linear velocity of greater than about 24 meters per second. At least a portion of the first syngas is provided to a thermal oxidation unit until the first syngas reaches the first target temperature.
- According to the invention, a process is provided to produce syngas that includes adding carbonaceous material and molecular oxygen to a gasification apparatus to produce a first syngas with CO/CO2 molar ratio less than 0.5. The temperature of the first syngas is measured downstream of the gasification apparatus. Temperature is measured prior to entry into a syngas cooler. Once the syngas reaches a first temperature prior to entry into a syngas cooler, addition of molecular oxygen is reduced per unit mass of carbonaceous material in the gasification apparatus to produce a second syngas with CO/CO2 molar ratio greater than that of said first syngas. The first target temperature can be about 700°C to about 1000°C. Reduction of addition of molecular oxygen per unit mass of carbonaceous material may be accomplished by increasing rate of addition of carbonaceous material. Alternatively, reduction of addition of molecular oxygen per unit mass of carbonaceous material may be accomplished by decreasing rate of addition of molecular oxygen.
- At least a portion of the first syngas is passed through the syngas cooler to produce a cooled first syngas and at least a portion of the second syngas is passed through a syngas cooler to produce a cooled second syngas. At least a portion of the cooled first syngas is mixed with a portion of the first syngas prior to its passing through said syngas cooler to produce the cooled first syngas. At least a portion of the cooled second syngas is mixed with at least a portion of the second syngas prior to passing through the syngas cooler to produce the cooled second syngas. The mixture of the cooled first syngas and the first syngas flowing through the syngas cooler has a linear velocity of greater than about 24 meter/second. The mixture of the cooled second syngas and the second syngas flowing through the syngas cooler has a linear velocity of greater than about 24 meter/second.
- In another aspect, one or more of steam and CO2 may be added to the gasification apparatus prior to reduction of the addition of molecular oxygen per unit mass of carbonaceous material or prior to reaching a first target temperature. When additions are made prior to reaching a first target temperature, less than about 22,7 kg-mole (50 lb-mole) steam per ton of carbonaceous material on a dry basis or less than about 22,7 kg-mole (50 lb-mole) CO2 per ton of carbonaceous material on a dry basis is added.
- In another aspect not according to the invention, a process is provided that includes gasifying carbonaceous material in a gasification apparatus to produce a clean syngas. The method includes adding carbonaceous material and adding molecular oxygen in the gasification apparatus to produce a first syngas with CO/CO2 molar ratio less than 0.5. At least a portion of the first syngas is passed through the syngas cooler to produce a cooled first syngas. At least a portion of the first cooled syngas is passed through a dust collection system to produce a clean syngas. The temperature of the clean syngas is measured at an exit of the dust collection system. Upon the temperature of clean syngas attaining a second target temperature, reducing addition of molecular oxygen per unit mass of carbonaceous material in the gasification apparatus is reduced to produce a second syngas with CO/CO2 molar ratio greater than that of the first syngas. In this aspect, the second target temperature is about 100°C to about 200°C. The process is effective for providing a syngas having less than about 10 ppm tars.
- In another aspect not according to the invention, a process is provided for cooling syngas. The process includes passing a syngas through a syngas cooler to produce a cooled syngas; and recycling at least a portion of the cooled syngas to an inlet of the syngas cooler to maintain a temperature at the inlet of the syngas cooler of 760°C or less and a linear velocity through the syngas cooler of at least 24 meters per second.
- The above and other aspects, features and advantages of several aspects of the process will be more apparent from the following drawings.
-
Figure 1 is a schematic diagram of an aspect of a process that includes gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas. -
Figure 2 is a schematic diagram of an aspect of a process that includes gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas; wherein at least a part of said cooled syngas is recycled and mixed with said hot syngas prior to entry into syngas cooler. -
Figure 3 is a schematic diagram of an aspect of a process that includes gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas; wherein at least a part of said cooled syngas is recycled and mixed with said hot syngas prior to entry into syngas cooler; and wherein the gasification apparatus includes two reaction zones, e.g., a gasification zone and a heat treatment zone connected through a connecting zone. -
Figure 4 is a schematic diagram of an aspect of a process that includes gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas; wherein at least a part of said cooled syngas is recycled and mixed with said hot syngas prior to entry into syngas cooler; wherein at least a portion of one or more of hot and cooled syngas can be sent to a thermal oxidation unit; and wherein at least a portion of said cooled syngas can be processed in a bag-house. - Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various aspects of the present process and apparatus. Also, common but well-understood elements that are useful or necessary in commercially feasible aspects are often not depicted in order to facilitate a less obstructed view of these various aspects.
- Unless otherwise defined, the following terms as used throughout this specification for the present disclosure are defined as follows and can include either the singular or plural forms of definitions below defined:
The term "about" modifying any amount refers to the variation in that amount encountered in real world conditions, e.g., in the lab, pilot plant, or production facility. For example, an amount of an ingredient or measurement employed in a mixture or quantity when modified by "about" includes the variation and degree of care typically employed in measuring in an experimental condition in production plant or lab. For example, the amount of a component of a product when modified by "about" includes the variation between batches in a multiple experiments in the plant or lab and the variation inherent in the analytical method. Whether or not modified by "about," the amounts include equivalents to those amounts. Any quantity stated herein and modified by "about" can also be employed in the present disclosure as the amount not modified by "about". - The term "bag-house" or "baghouse" means process or equipment designed for the use of engineered fabric filter tubes, envelopes or cartridges for capturing, separation or filtering of solid particles (fine particles, dust) contained in a gas. Dust-laden or solid-laden gases enter the bag-house and pass through fabric bags that act as filters. The bags can be of woven or felted cotton, synthetic, or glass-fiber material in either a tube or envelope shape. Common types of bag-houses include mechanical shaker, reverse air, and reverse jet.
- "Carbonaceous material" as used herein refers to carbon rich material such as coal, and petrochemicals. However, in this specification, carbonaceous material includes any carbon material whether in solid, liquid, gas, or plasma state. Among the numerous items that can be considered carbonaceous material, the present disclosure contemplates: carbonaceous material, carbonaceous liquid product, carbonaceous industrial liquid recycle, carbonaceous municipal solid waste (MSW or msw), carbonaceous urban waste, carbonaceous agricultural material, carbonaceous forestry material, carbonaceous wood waste, carbonaceous construction material, carbonaceous vegetative material, carbonaceous industrial waste, carbonaceous fermentation waste, carbonaceous petrochemical co products, carbonaceous alcohol production co-products, carbonaceous coal, tires, plastics, waste plastic, coke oven tar, fibersoft, lignin, black liquor, polymers, waste polymers, polyethylene terephthalate (PETA), polystyrene (PS), sewage sludge, animal waste, crop residues, energy crops, forest processing residues, wood processing residues, livestock wastes, poultry wastes, food processing residues, fermentative process wastes, ethanol co-products, spent grain, spent microorganisms, or their combinations.
- The term "dust collector" or "dust collection system" means process or equipment designed for capturing, separation or filtering of solid particles (fine particles, dust) contained in a gas. A dust collection system generally consists of a blower, dust filter, a filter-cleaning system, and a dust receptacle or dust removal system. Principal types of industrial dust collectors include inertial separators, fabric filters or bag-houses, wet scrubbers, electrostatic precipitators, and unit collectors.
- The term "fibersoft" or "Fibersoft" or "fibrosoft" or "fibrousoft" means a type of carbonaceous material that is produced as a result of softening and concentration of various substances; in an example carbonaceous material is produced via steam autoclaving of various substances. In another example, the fibersoft can include steam autoclaving of municipal, industrial, commercial, and medical waste resulting in a fibrous mushy material.
- The term "municipal solid waste" or "MSW" or "msw" means waste that may include household, commercial, industrial and/or residual waste.
- The term "syngas" or "synthesis gas" means synthesis gas which is the name given to a gas mixture that contains varying amounts of carbon monoxide and hydrogen. Examples of production methods include steam reforming of natural gas or hydrocarbons to produce hydrogen, the gasification of coal and in some types of waste-to-energy gasification facilities. The name comes from their use as intermediates in creating synthetic natural gas (SNG) and for producing ammonia or methanol. Syngas comprises use as an intermediate in producing synthetic petroleum for use as a fuel or lubricant via Fischer-Tropsch synthesis and previously the Mobil methanol to gasoline process. Syngas consists primarily of hydrogen, carbon monoxide, and some carbon dioxide, and has less than half the energy density (i.e., BTU content) of natural gas. Syngas is combustible and is often used as a fuel source or as an intermediate for the production of other chemicals.
- "Ton" or "ton" refers to U.S. short ton, i.e. about 907.2 kg (2000 lbs).
- As used herein, the term "tar" includes, without limitation, a gaseous tar, a liquid tar, a solid tar, a tar-forming substances, or mixtures thereof, which generally comprise hydrocarbons and derivatives thereof. A large number of well known tar measurement methods exist that may be utilized to measure tar. One large family of techniques includes analytical methods based on liquid or gas phase chromatography coupled with a detector. The most frequent detectors in the case of measurement of tars are the flame-ionization detector (FID) and the mass spectrometer. Another family of techniques includes spectrometric methods, which include detecting and analyzing a spectrum. This is for example infrared, ultraviolet (UV) or luminescence spectrometry, and LIBS (Laser-Induced Breakdown Spectroscopy) technique. Another technique for monitoring of combustion gases is FTIR (Fourier Transform InfraRed) infrared spectrometry. Miscellaneous documents mention this technique, such as for example
WO2006015660 ,WO03060480 U.S. Pat. No. 5,984,998 . - There exist other known electronic methods which allow continuous monitoring of tars. These techniques include detectors with electrochemical cells and sensors with semiconductors. Various gravimetric techniques may also be utilized for tar measurements. In one aspect, the amount of tar may be expressed as equivalent ppm of carbon. In this aspect, the hydrocarbon may be benzene or an alcohol, such as methanol. In this aspect, a tar concentration equivalent or tar equivalents most preferably corresponds to as equivalent ppm (molar) of benzene. The tar concentration is usefully measured at the outlet of the gasification apparatus and upstream of any substantial cooling of the syngas.
- The following description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of exemplary embodiments. The scope of the invention should be determined with reference to the claims.
- A gasification process for producing syngas is provided that includes gasifying carbonaceous material in a gasification apparatus to produce syngas that includes carbon monoxide (CO) and carbon dioxide (CO2) and cooling said syngas in a syngas cooler or waste heat boiler and optionally further treating the cooled syngas with chemicals to remove contaminants and then further treating the chemical containing syngas in a dust collection system, e.g. a bag-house. The process includes operating the gasification apparatus in a start-up mode with a reduced rate of feed, optionally with a high oxygen input per unit mass of carbonaceous material (e.g., stoichiometric or near stoichiometric or above stoichiometric amount of oxygen) to produce a first syngas with low CO content i.e. with low CO/CO2 ratio, e.g. CO/CO2 molar ratio less than about 0.5. The process includes operating the gasification apparatus in a production mode, i.e. with a low oxygen input per unit mass of carbonaceous material (e.g., sub-stoichiometric amount of oxygen) in order to preferentially promote production of carbon monoxide and to produce a second syngas with high CO content i.e. with high CO/CO2 ratio, e.g. CO/CO2 molar ratio greater than that of first syngas. In one embodiment, CO/CO2 molar ratio in the second syngas is greater than about 1.0.
- The process includes operating the gasification apparatus in a start-up mode until the gasification apparatus and equipment downstream of the gasification apparatus are adequately warmed up. The process, therefore, includes measuring temperatures of at one or more points (locations) inside and downstream of the gasification apparatus. In one aspect, the process includes measuring temperatures of syngas (e.g. first syngas) at one or more points (locations) inside and downstream of the gasification apparatus. According to the process, operation of the gasification apparatus transitions from start-up mode to production mode after one or more points (locations) inside and downstream of the gasification apparatus attain target temperatures. In one aspect, operation of the gasification apparatus transitions from start-up mode to production mode after temperature of syngas (first syngas) prior to entering syngas cooler attains a first target temperature. In one aspect, operation of the gasification apparatus transitions from start-up mode to production mode after temperature of syngas (first syngas) at exit of dust-collection system (e.g. bag-house) attains a second target temperature.
- Until the temperature of first syngas attains the first target temperature, all or part of the first syngas produced during this start-up mode of operation can be passed through the syngas cooler to produce a cooled first syngas. Alternatively, all or part of the first syngas produced during this start-up mode of operation can be sent to a thermal oxidation unit for processing and disposal. In one embodiment, all or a part of first syngas is sent to a thermal oxidation unit until temperature of first syngas at entry of said syngas cooler attains the first target temperature. In one aspect, all or a part of first syngas is sent to a thermal oxidation unit during operation of gasification apparatus in start-up mode.
- In one aspect, operation of the gasification apparatus transitions to production mode after the temperature of first syngas at syngas cooler entry attains a first target temperature. In one aspect, operation of the gasification apparatus transitions to production mode after the temperature of first syngas at exit of dust collection system (e.g. bag-house) attains a second target temperature. Addition of carbonaceous material and molecular oxygen into the gasification apparatus is continued, however, addition of molecular oxygen per unit mass of carbonaceous material in said gasification apparatus is reduced in order to produce a second syngas with high CO content or with high CO/CO2 ratio, e.g. CO/CO2 molar ratio greater than that of first syngas. For example, in one embodiment, CO/CO2 molar ratio in the second syngas is greater than about 1.0. All or part of the first syngas produced during this production mode of operation can be passed through the syngas cooler to produce a cooled second syngas. Optionally, all or part of the second syngas produced during this production mode of operation can be sent to a thermal oxidation unit for processing and disposal.
- It is desirable to have little or no CO and mostly CO2 in the first syngas. In one aspect, the process is effective for providing a CO/CO2 molar ratio in said first syngas of less than about 0.5. In one aspect, the CO/CO2 molar ratio in said first syngas is less than about 0.25. In another aspect, the CO/CO2 molar ratio in said first syngas is less than about 0.1. It is desirable to have more CO and less CO2 in the second syngas. In one aspect, the process is effective for providing a CO/CO2 molar ratio in said second syngas of greater than about 1.0. In one aspect, the CO/CO2 molar ratio in said second syngas is greater than about 1.5.
- A sub-stoichiometric amount of oxygen is supplied to the gasification apparatus in order to promote production of carbon monoxide during operation in production mode. Therefore, in one aspect, during operation in production mode, the ratio of amount of molecular oxygen input to total amount of molecular oxygen required to completely oxidize all carbon contained in carbonaceous material feed to carbon dioxide is in a range of 0.1 to 0.9, in one aspect 0.1 to 0.8, in another aspect 0.1 to 0.7, and in another aspect 0.1 to 0.45. In one aspect, during operation in start-up mode, the ratio of amount of molecular oxygen input to total amount of molecular oxygen required to completely oxidize all carbon contained in carbonaceous material feed to carbon dioxide is in a range of 0.5 to 2.0. In one aspect, during operation in start-up mode, the ratio of amount of molecular oxygen input to total amount of molecular oxygen required to completely oxidize all carbon contained in carbonaceous material feed to carbon dioxide is in a range of 0.75 to 1.5. In one aspect, during operation in start-up mode, the ratio of amount of molecular oxygen input to total amount of molecular oxygen required to completely oxidize all carbon contained in carbonaceous material feed to carbon dioxide is in a range of 0.9 to 1.1.
- The target temperatures are selected in a way that occurrence of fouling or deposit formation inside and downstream of the gasification apparatus can be avoided or reduced. The first target temperature can be about 700°C to about 1000°C. In one aspect, the first target temperature can be about 750°C to about 850°C. The second target temperature at an exit of the dust collection system can be about 100°C to about 200°C. In one aspect, the second target temperature can be about 100°C to about 150°C.
- The reduction of the rate of addition of molecular oxygen per unit mass of carbonaceous material can be accomplished by increasing the rate of addition of carbonaceous material. For example in one aspect, for start-up mode of operation, the rate of addition of carbonaceous material feed is kept significantly lower than that for production mode of operation while keeping the rate of addition of molecular oxygen at the same level as in each mode of operation. The reduction of the rate of addition of molecular oxygen per unit mass of carbonaceous material can be accomplished by decreasing rate of addition of molecular oxygen. For example in one aspect, the rate of addition of carbonaceous material feed is kept the same for start-up mode of operation and the production mode of operation but the rate of addition of molecular oxygen is decreased. In one aspect, the rate of addition of molecular oxygen is decreased as the mode of operation is changed from start-up mode to production mode while rate of addition of carbonaceous material is increased.
- Occurrence of fouling or deposit formation can be avoided or reduced in the syngas cooler by taking an additional measure of assuring a high enough linear velocity of gas flowing through the syngas cooler. A linear velocity measured at the inlet of the syngas cooler is greater than about 15 meters/second, in another aspect, greater than about 20 meters/second, and in another aspect, about 24 meters/second is desirable. In another aspect, the linear velocity measured at an inlet of the syngas cooler is between about 15 to about 30 meters/second, and in another aspect, about 22 to about 26 meters/second. Increased linear velocity can be accomplished by increasing the volumetric flow rate of gas and/or decreasing the cross sectional area of flow. The volumetric flow rate can be increased by recycling all or part of the gas exiting the syngas cooler back to the syngas cooler inlet. For example in one aspect, an increased linear velocity is attained by mixing at least a portion of the cooled first syngas with at least a portion of first syngas prior to passing through said syngas cooler. In another aspect, an increased linear velocity is attained by mixing at least a portion of cooled second syngas with at least a portion of second syngas prior to passing through said syngas cooler. Increased volumetric flow rate can also be obtained by increasing the inert content of the gas. The use of recycled cooled syngas enables optimum exchanger velocities to be maintained when the syngas production rate is reduced for whatever reason, including during start-up, shut-down and feedstock transitions. Thus in one aspect, an increased linear velocity is attained by using air as a molecular oxygen source especially during start-up mode of operation.
- The gasification apparatus may include any gasification equipment described in prior art such as, but not limited to moving bed, fixed bed, fluidized bed, entrained flow, counter-current ("up draft"), co-current ("down draft"), counter-current fixed bed, co-current fixed bed, counter-current moving bed, co-current moving bed cross draft, hybrid, cross flow, cross flow moving bed, or a part thereof. In one aspect, the gasification apparatus comprises a cross flow unit. In one embodiment, the gasification apparatus comprises a cross flow moving bed unit.
- In one aspect, the gasification apparatus includes a gasification zone wherein carbonaceous material is contacted with oxygen containing gas at a relatively low temperature (e.g. below the ash fusion temperature) to produce a raw syngas and a heat treatment zone wherein the raw syngas undergoes heat treatment or conditioning in the presence of an additional amount of oxygen at a higher temperature (e.g. above the ash fusion temperature) to produce a hot syngas. In one aspect, for example during start-up, pressure is atmospheric or greater than atmospheric. In another aspect, for example during start-up mode, air leakage may be allowed.
- In one aspect, the gasification apparatus or the gasification zone includes multiple sections or gasification hearths for contacting said carbonaceous material with a first molecular oxygen-containing gas and optionally with one or more of steam and CO2 to gasify a portion of said carbonaceous material and to produce a first gaseous product. In various aspects, the gasification apparatus or gasification zone comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 sections or gasification hearths. Gas inlets for introduction of molecular oxygen can be attached to the gasification apparatus or gasification zone or one or more hearths contained therein. Steam or CO2 may also be introduced through one or more of these gas inlets. In one aspect, one or more of molecular oxygen, steam and CO2 are pre-mixed prior to supplying to the gas inlets attached to the gasification apparatus or the gasification zone or to one or more hearths contained therein.
- The heat treatment zone may accomplish one or more of cracking and partial oxidation of any tar contained in raw syngas. The heat treatment zone can be a horizontal or a vertical chamber with circular or square or rectangular or any other cross section. The heat treatment zone can be inclined to the horizontal or vertical direction. In one aspect, the heat treatment zone is connected to the gasification zone through one or more connecting zones. A gas inlet can be attached directly to the heat treatment zone. One or more gas inlets can be attached to one or more connecting zones (throats). Molecular oxygen containing gas can be introduced directly into the heat treatment zone. Molecular oxygen containing gas can be introduced into the heat treatment zone through one or more gas inlets attached to one or more connecting zones.
- Undesirable hot spots might be created in said gasification-apparatus or in the gasification zone or hearths contained therein due to uneven distribution of molecular oxygen containing gas in said carbonaceous material feed. This may produce poor quality syngas. Formation of hot spots can be reduced or prevented by injecting one or more of steam and carbon dioxide into one or more of said gasification apparatus. Thus, in order to prevent undesirable hot spots, carbonaceous material feed may be treated with steam along with molecular oxygen in the gasification apparatus. Carbonaceous material feed may be treated with CO2 gas along with molecular oxygen in the gasification apparatus. However, during operation in start-up mode wherein an objective can be rapid heating of the process, co-feeding steam or CO2 may not be advantageous. Co-feeding steam or CO2 may be advantageous and important during operation in production mode.
- The source of molecular oxygen can be one or more of air, oxygen enriched air or pure oxygen. The total amount of molecular oxygen introduced in the gasification apparatus during operation in production mode can be about 0 to about 34 kg-mole (75 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis, in another aspect about 0 to about 22,7 kg-mole (50 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis, and in another aspect about 18,1 kg-mole (40 lb-mole) to about 27,2 kg-mole (60 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis. The total amount of molecular oxygen introduced in the gasification apparatus during operation in start-up mode can be in a range of about 0 to about 56,7 kg-mole (125 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis, in another aspect about 0 to about 45,4 kg-mole (100 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis, and in another aspect about 0 to about 22,7 kg-mole (50 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis. The total amount of steam introduced in the gasification apparatus can be about 0 to about 22,7 kg-mole (50 lb-mole) per 907 kg (short ton) of carbonaceous material feed on a dry basis.
The total amount of carbon dioxide gas introduced in the gasification apparatus can be about 0 to about 22,7 kg-mole (50 lb-mole) per 907 kg (short ton) of carbonaceous material feed on a dry basis. In one aspect, both steam and carbon dioxide gas are introduced in the gasification apparatus. - The carbonaceous material fed to the gasifier may include carbonaceous material, carbonaceous liquid product, carbonaceous industrial liquid recycle, carbonaceous municipal solid waste (msw), carbonaceous urban waste, carbonaceous agricultural material, carbonaceous forestry material, carbonaceous wood waste, carbonaceous construction material, carbonaceous vegetative material, carbonaceous industrial waste, carbonaceous fermentation waste, carbonaceous petrochemical co-products, carbonaceous alcohol production co-products, carbonaceous coal, tires, plastics, waste plastic, coke oven tar, fibersoft, lignin, black liquor, polymers, waste polymers, polyethylene terephthalate (PETA), polystyrene (PS), sewage sludge, animal waste, crop residues, energy crops, forest processing residues, wood processing residues, livestock wastes, poultry wastes, food processing residues, fermentative process wastes, ethanol co-products, spent grain, spent microorganisms, or their combinations. In one embodiment of the present disclosure the carbonaceous material fed to the gasifier comprises a plurality of carbonaceous materials selected from carbonaceous material, carbonaceous liquid product, carbonaceous industrial liquid recycle, carbonaceous municipal solid waste (msw), carbonaceous urban waste, carbonaceous agricultural material, carbonaceous forestry material, carbonaceous wood waste, carbonaceous construction material, carbonaceous vegetative material, carbonaceous industrial waste, carbonaceous fermentation waste, carbonaceous petrochemical co-products, carbonaceous alcohol production co-products, carbonaceous coal, tires, plastics, waste plastic, coke oven tar, fibersoft, lignin, black liquor, polymers, waste polymers, polyethylene terephthalate (PETA), polystyrene (PS), sewage sludge, animal waste, crop residues, energy crops, forest processing residues, wood processing residues, livestock wastes, poultry wastes, food processing residues, fermentative process wastes, ethanol co-products, spent grain, spent microorganisms, or their combinations.
- In one aspect, said carbonaceous material includes water. In one aspect, said carbonaceous material includes less than about 50 wt% water. In one aspect, said carbonaceous material includes less than about 25 wt% water. In one aspect, said carbonaceous material includes less than about 15 wt% water. In one aspect, the moisture content of said carbonaceous material is decreased by pre-drying. In one aspect, said carbonaceous material includes greater than about 25 wt% carbon on a dry or water free basis. In one aspect said carbonaceous material includes greater than about 50 wt% carbon on a dry or water free basis. In one aspect, said carbonaceous material includes about 0 to about 50 wt% oxygen on a dry or water free basis. In one aspect said carbonaceous material includes about 0 to about 25 wt% hydrogen on a dry or water free basis. In one aspect, said carbonaceous material includes less than about 25 wt% ash on a dry or water free basis. In one aspect said carbonaceous material includes less than about 15 wt% ash on a dry or water free basis.
- As described above, syngas produced by the gasification apparatus can be cooled in a syngas cooler to produce a cooled syngas for downstream use, e.g. fermentation to produce chemicals such as acetic acid, ethanol, etc. The syngas cooler may be heat exchange equipment or a heat exchanger known in the art. For example a syngas cooler can be a selection from: shell-and-tube heat exchanger, plate heat exchanger, plate-and-frame heat exchanger, tubular heat exchanger, double-pipe heat exchanger, hair-pin heat exchanger, single-pass heat exchanger, multi-pass heat exchanger, plate-fin heat exchanger, spiral heat exchanger, and combinations thereof.
- Cooled syngas may contain contaminants that should be removed prior to downstream use. Removal of contaminants can be accomplished by treating cooled syngas with chemical agents. Thus, one or more chemical agents may be added to cooled syngas to produce a chemical containing cooled syngas. The chemical containing cooled syngas may be processed in a dust collection system (e.g. a bag-house) to remove chemical residues to thus produce a clean cooled syngas. Clean cooled syngas may be sent to a down stream processing or to a thermal oxidation unit. The clean cooled syngas can be optionally further cooled in a quench tower prior to downstream use.
- The dust collection system is effective for capturing, separation or filtering of solid particles (fine particles, dust) from the gas. The dust collection system may include one or more of a blower, a dust filter, a filter-cleaning system, and a dust receptacle or dust removal system. The dust collection system can be an inertial separator type dust collector, a fabric filter type dust collector (bag-house), a wet scrubber, an electrostatic precipitator, or a unit collector. In one aspect, the dust collection system is a bag-house.
- For a gasification apparatus that includes a gasification zone and a heat treatment zone, the heat treatment zone may be cold during start-up and may be prone to fouling or deposit formation or may contribute to fouling or deposit formation in the downstream piping or syngas cooler. It is, therefore, often preferred that the gasification apparatus is operated in start-up mode until the heat treatment zone is adequately warmed up. For example in one aspect, the gasification apparatus is operated in start-up mode until the heat treatment zone attains a temperature of about 900°C. Operation in production mode is not started until the heat treatment zone attains at least about 900°C temperature. Optionally, all or part of the first syngas produced is sent to a thermal oxidation unit until the heat treatment zone attains at least about 900°C temperature. In one embodiment, the gasification apparatus is operated in a start-up mode until the heat treatment zone attains a temperature of about 1000°C. Operation in production mode is not started until the heat treatment zone attains at least about 1000°C. Optionally, all or part of the first syngas produced is sent to a thermal oxidation unit until the heat treatment zone attains at least about1000°C.
- In one aspect, at least a portion of syngas exiting the syngas cooler is recycled back to the gasification apparatus in order to cool the syngas cooler inlet temperature and/or increase the linear velocity of gas entering syngas cooler. In one aspect, at least a portion of syngas exiting the syngas cooler is recycled back to the connecting zone of a gasification apparatus in order to increase the linear velocity of gas entering syngas cooler as well as through the connecting zone wherein the gasification zone includes a gasification zone and a heat treatment zone connected by a connecting zone.
-
Figures 1 to 4 illustrates various aspects of the process.Figure 1 is a schematic diagram of one aspect of a process comprising gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas. Referring now toFigure 1 , a carbonaceous material feed (100) is introduced in the gasification-apparatus (200). A molecular oxygen containing gas (150) is supplied to the gasification apparatus and thus the carbonaceous material feed is treated with molecular oxygen in order to initiate and facilitate chemical transformation of carbonaceous material. At least a portion of the carbonaceous material feed is gasified in the gasification apparatus to produce a gaseous product or syngas (250). Supply of oxygen into the gasification-apparatus can be controlled in order to control relative amounts of carbon monoxide (CO) and carbon dioxide (CO2) produced from gasification of the carbonaceous material. Hot syngas is subsequently cooled in a syngas cooler (300) to produce a cooled syngas (350). A stream of ash (220) is removed from the gasification apparatus. -
Figure 2 is a schematic diagram of an aspect of a process including gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas; wherein at least a part of said cooled syngas is recycled and mixed with said hot syngas prior to entry into syngas cooler. Referring now toFigure 2 , a carbonaceous material feed (100) is introduced in the gasification-apparatus (200). A molecular oxygen containing gas (150) is supplied to the gasification apparatus and thus the carbonaceous material feed is treated with molecular oxygen in order to initiate and facilitate chemical transformation of carbonaceous material. At least a portion of the carbonaceous material feed is gasified in the gasification apparatus to produce a gaseous product or syngas (250). Supply of oxygen into the gasification-apparatus can be controlled in order to control relative amounts of carbon monoxide (CO) and carbon dioxide (CO2) produced from gasification of the carbonaceous material. Hot syngas is subsequently cooled in a syngas cooler (300) to produce a cooled syngas (350). At least a part of said cooled syngas (450) is recycled and mixed with said hot syngas prior to entry into syngas cooler. A compressor (400) is used to facilitate recycle of cooled syngas. A stream of ash (220) is removed from the gasification apparatus. -
Figure 3 is a schematic diagram of an aspect of a process that includes gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas; wherein at least a part of said cooled syngas is recycled and mixed with said hot syngas prior to entry into syngas cooler; and wherein the gasification apparatus comprises two reaction zones, e.g., a gasification zone and a heat treatment zone connected through a connecting zone. Referring now toFigure 3 , a carbonaceous material feed (100) is introduced in the gasification zone (201) of said gasification-apparatus. A molecular oxygen containing gas (150) is supplied to the gasification zone of said gasification apparatus and thus the carbonaceous material feed is treated with molecular oxygen in order to initiate and facilitate chemical transformation of carbonaceous material. At least a portion of the carbonaceous material feed is gasified in the gasification zone to produce a raw gaseous product (raw syngas). The raw syngas passes through the connecting zone (203). Molecular oxygen (202) is introduced in the connecting zone to be mixed with said raw syngas. Mixture comprising raw syngas and molecular oxygen enters the heat treatment zone (204). Molecular oxygen can also be introduced in the heat treatment zone. Raw syngas undergoes heat treatment in the heat treatment zone to produce a hot syngas (250). Supply of oxygen into the gasification-apparatus (one or more of gasification zone, connecting zone and heat treatment zone) can be controlled in order to control relative amounts of carbon monoxide (CO) and carbon dioxide (CO2) produced from gasification of the carbonaceous material. Hot syngas is subsequently cooled in a syngas cooler (300) to produce a cooled syngas (350). At least a part of said cooled syngas (450) is recycled and mixed with said hot syngas prior to entry into syngas cooler. A compressor (400) is used to facilitate recycle of cooled syngas. A stream of ash (220) is removed from the gasification apparatus. -
Figure 4 is a schematic diagram of a process that includes gasification of carbonaceous material by treating with molecular oxygen in a gasification apparatus to produce a hot syngas and subsequent cooling of said hot syngas in a syngas cooler to produce a cooled syngas; wherein at least a part of said cooled syngas is recycled and mixed with said hot syngas prior to entry into syngas cooler; wherein at least a portion of one or more of hot and cooled syngas can be sent to a thermal oxidation unit; and wherein at least a portion of said cooled syngas can be processed in a bag-house. Referring now toFigure 4 , a carbonaceous material feed (100) is introduced in the gasification-apparatus (200). A molecular oxygen containing gas (150) is supplied to the gasification apparatus and thus the carbonaceous material feed is treated with molecular oxygen in order to initiate and facilitate chemical transformation of carbonaceous material. At least a portion of the carbonaceous material feed is gasified in the gasification apparatus to produce a gaseous product or syngas (250). Supply of oxygen into the gasification-apparatus can be controlled in order to control relative amounts of carbon monoxide (CO) and carbon dioxide (CO2) produced from gasification of the carbonaceous material. Hot syngas is subsequently cooled in a syngas cooler (300) to produce a cooled syngas (350). At least a part of said cooled syngas (450) is recycled and mixed with said hot syngas prior to entry into syngas cooler. A compressor (400) is used to facilitate recycle of cooled syngas. At least a portion of hot syngas can be sent to a thermal oxidation unit (700) for processing and disposal (750). At least portion of cooled syngas can be sent to a thermal oxidation unit. Cooled syngas may contain contaminants that should be removed prior to downstream use. Removal of contaminants can be accomplished by adding chemical agents. Thus one or more chemical agents (500) can be added to cooled syngas to produce a chemical containing cooled syngas (550). The chemical containing cooled syngas is processed in a bag-house (600) to remove chemical residues (chemical agents with contaminants) and to produce a clean cooled syngas (650) that is either sent to down stream processing or to thermal oxidation unit. The clean cooled syngas can be optionally further cooled in a quench tower prior to downstream use (not shown on diagram). A stream of ash (220) is removed from the gasification apparatus. - The gasification apparatus was operated in a start-up mode by providing carbonaceous materials to the gasifier at a feed rate of about half as much as that used in a production mode. Oxygen was supplied to the gasifier at a feed rate of about 18,1 kg-mole (40 lb-mole) to 22,7 kg-mole (50 lb-mole) per 907 kg (short ton) of carbonaceous material on a dry basis. As described previously, some air leakage into the gasifier was allowed that increase oxygen availability.
- Upon starting up a gasifier under start-up mode as described above to obtain a first target temperature in a range of about 700 °C to about 1000 °C, a carbonaceous material feed rate was increased into the gasification apparatus. A molecular oxygen containing gas was supplied to the gasification apparatus at the rate of about 22,7 kg-mole (50 lb-mole) to about 40,8 kg-mole (90 lb-mole) per 907 kg (short ton) of water-free carbonaceous material. The gasifier was also fed a stream of carbon dioxide at the rate of about 4,5 kg-mole (10 lb-mole) to about 6,8 kg-mole (15 lb-mole) per 907 kg (short ton) of water-free carbonaceous material.
- Hot syngas is produced during this operation is subsequently cooled in a syngas cooler to produce a cooled syngas. Cooled syngas is processed in a bag-house to remove solid residues and to produce a clean cooled syngas. The clean cooled syngas comprised CO in the range of about 25 to about 35 mole%, CO2 in the range of about 30 to about 40 mole%, H2 in the range of about 10 to about 20 mole%, N2 in the range of about 15 to about 25 mole% and small amount of CH4. The bag-house removed about 0,7 kg-mole (1,5 lb-mole) to about 1,6 kg-mole (3,5 lb-mole) solid per hour per 453,6 kg-mole (1000 lb-mole) per hour clean cooled syngas produced.
- Start-up Mode: Low level of solid residue in syngas; operation in production modecan follow.
Production Mode: Operable level of solid residue in syngas (3 fold increase of solids over start-up mode)
Claims (15)
- A process to produce syngas, said method comprising:(a) adding carbonaceous material and molecular oxygen to a gasification apparatus to produce a first syngas with CO/CO2 molar ratio less than 0.5;(b) measuring temperature of said first syngas downstream of said gasification apparatus and prior to entry into a syngas cooler; and(c) wherein at least a portion of said first syngas is passed through said syngas cooler to produce a cooled first syngas and at least a portion of said cooled first syngas is mixed with said portion of first syngas prior to passing through said syngas cooler to produce said cooled first syngasand upon said temperature of said first syngas prior to entry in said syngas cooler attaining a first target temperature, reducing the addition of molecular oxygen per unit mass of carbonaceous material in said gasification apparatus to produce a second syngas with CO/CO2 molar ratio greater than that of said first syngas,
wherein at least a portion of said second syngas is passed through said syngas cooler to produce a cooled second syngas, and at least a portion of said cooled second syngas is mixed with at least a portion of said second syngas prior to passing through said syngas cooler,
and further wherein the linear velocity of the mixture of said cooled first syngas and said first syngas flowing through said syngas cooler is greater than 24 metres/second, and the linear velocity of the mixture of said cooled second syngas and said second syngas flowing through said syngas cooler is greater than 24 metres/second. - The process of claim 1 wherein a source of molecular oxygen in step (a) and/or step (c) is selected from the group consisting of air, oxygen enriched air, pure oxygen, and combinations thereof.
- The process of claim 1 wherein said first target temperature is 700°C to 1000°C, preferably 750°C to 850°C.
- The process of claim 1 wherein reduction or addition of molecular oxygen per unit mass of carbonaceous material is accomplished by increasing the rate of addition of carbonaceous material or by decreasing the rate of addition of molecular oxygen.
- The process of claim 1 wherein the CO/CO2 molar ratio of said second syngas is greater than 1.0, preferably greater than 1.5.
- The process of claim 1 wherein said gasification apparatus is selected from the group consisting of moving bed, fixed bed, fluidized bed, entrained flow, counter-current ("up draft"), co-current ("down draft"), counter-current fixed bed, co-current fixed bed, counter-current moving bed, co-current moving bed cross draft, hybrid, cross flow, cross flow moving bed, part thereof, and combinations thereof.
- The process of claim 1 wherein said gasification apparatus comprises one or more reaction zones.
- The process of claim 1 wherein said gasification apparatus comprises a gasification zone for gasification of carbonaceous material to produce a raw syngas and a heat treatment zone for thermal treatment of said raw syngas to produce first syngas or second syngas.
- The process of claim 8 further comprising: attaining at least 900°C, preferably at least 1000°C, temperature in said heat treatment zone prior to step (c).
- The process of claim 1 further comprising treating at least a portion of one or more of said first syngas, second syngas, cooled first syngas, and cooled second syngas in a thermal oxidation unit.
- The process of claim 1 further comprising treating at least a portion of said first syngas in a thermal oxidation unit until said temperature of first syngas downstream of said gasification apparatus attains a first target temperature.
- The process of claim 10 further comprising treating at least a portion of said first syngas in a thermal oxidation unit until attaining at least 900°C temperature in said heat treatment zone.
- The process of claim 1 wherein said syngas cooler is selected from the group consisting of shell-and-tube heat exchanger, plate heat exchanger, plate-and-frame heat exchanger, tubular heat exchanger, double-pipe heat exchanger, hair-pin heat exchanger, single-pass heat exchanger, multi-pass heat exchanger, plate-fin heat exchanger, spiral heat exchanger, and combinations thereof.
- The process of claim 1 further comprising adding one or more of steam and CO2 in step (c).
- The process of claim 1 wherein less than 22,7 kg-mole (50 lb-mole) steam per 907 kg (short ton) of carbonaceous material on a dry basis or less than 22,7 kg-mole (50 lb-mole) CO2 per 907 kg (short ton) of carbonaceous material on a dry basis is added in step (a).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18203543.6A EP3453747A1 (en) | 2011-04-06 | 2012-04-04 | Process to produce syngas from carbonaceous material |
PL12715788T PL2694624T3 (en) | 2011-04-06 | 2012-04-04 | Method of operation of process to produce syngas from carbonaceous material |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161516646P | 2011-04-06 | 2011-04-06 | |
US201161516704P | 2011-04-06 | 2011-04-06 | |
US201161516667P | 2011-04-06 | 2011-04-06 | |
US13/427,247 US20120256131A1 (en) | 2011-04-06 | 2012-03-22 | Method of Operation of Process to Produce Syngas from Carbonaceous Material |
PCT/US2012/032168 WO2013032537A1 (en) | 2011-04-06 | 2012-04-04 | Method of operation of process to produce syngas from carbonaceous material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18203543.6A Division EP3453747A1 (en) | 2011-04-06 | 2012-04-04 | Process to produce syngas from carbonaceous material |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2694624A1 EP2694624A1 (en) | 2014-02-12 |
EP2694624B1 true EP2694624B1 (en) | 2018-10-31 |
Family
ID=46965027
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12870334.5A Active EP2694432B1 (en) | 2011-04-06 | 2012-04-03 | Process for gasification of carbonaceous materials to produce syngas |
EP18173324.7A Active EP3381997B1 (en) | 2011-04-06 | 2012-04-03 | Apparatus for gasification of carbonaceous materials to produce syngas |
EP19179231.6A Withdrawn EP3556828A1 (en) | 2011-04-06 | 2012-04-04 | Syngas cooler system and method of operation |
EP12721013.6A Active EP2694625B1 (en) | 2011-04-06 | 2012-04-04 | Method for tar removal from syngas |
EP17202313.7A Active EP3301143B1 (en) | 2011-04-06 | 2012-04-04 | Process for cooling syngas |
EP12715788.1A Active EP2694624B1 (en) | 2011-04-06 | 2012-04-04 | Method of operation of process to produce syngas from carbonaceous material |
EP12713837.8A Active EP2694623B1 (en) | 2011-04-06 | 2012-04-04 | Syngas cooler system and method of operation |
EP12714187.7A Active EP2694626B1 (en) | 2011-04-06 | 2012-04-04 | Process for generating high pressure steam from a syngas fermentation proces |
EP18203543.6A Withdrawn EP3453747A1 (en) | 2011-04-06 | 2012-04-04 | Process to produce syngas from carbonaceous material |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12870334.5A Active EP2694432B1 (en) | 2011-04-06 | 2012-04-03 | Process for gasification of carbonaceous materials to produce syngas |
EP18173324.7A Active EP3381997B1 (en) | 2011-04-06 | 2012-04-03 | Apparatus for gasification of carbonaceous materials to produce syngas |
EP19179231.6A Withdrawn EP3556828A1 (en) | 2011-04-06 | 2012-04-04 | Syngas cooler system and method of operation |
EP12721013.6A Active EP2694625B1 (en) | 2011-04-06 | 2012-04-04 | Method for tar removal from syngas |
EP17202313.7A Active EP3301143B1 (en) | 2011-04-06 | 2012-04-04 | Process for cooling syngas |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12713837.8A Active EP2694623B1 (en) | 2011-04-06 | 2012-04-04 | Syngas cooler system and method of operation |
EP12714187.7A Active EP2694626B1 (en) | 2011-04-06 | 2012-04-04 | Process for generating high pressure steam from a syngas fermentation proces |
EP18203543.6A Withdrawn EP3453747A1 (en) | 2011-04-06 | 2012-04-04 | Process to produce syngas from carbonaceous material |
Country Status (20)
Country | Link |
---|---|
US (9) | US20120255301A1 (en) |
EP (9) | EP2694432B1 (en) |
JP (6) | JP6415320B2 (en) |
KR (6) | KR101959581B1 (en) |
CN (8) | CN103874751B (en) |
AR (4) | AR085932A1 (en) |
AU (4) | AU2012375190B2 (en) |
BR (5) | BR112013025720B1 (en) |
CA (5) | CA2832554C (en) |
CR (4) | CR20130575A (en) |
EA (4) | EA027557B1 (en) |
ES (5) | ES2686289T3 (en) |
MX (4) | MX2013011570A (en) |
MY (5) | MY166661A (en) |
NZ (1) | NZ710264A (en) |
PL (5) | PL2694432T3 (en) |
RU (1) | RU2603663C2 (en) |
TW (5) | TWI537375B (en) |
WO (5) | WO2013147918A2 (en) |
ZA (5) | ZA201308271B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021185827A1 (en) | 2020-03-17 | 2021-09-23 | Velocys Technologies Limited | Process for the manufacture of a useful product from waste materials and/or biomass |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012528925A (en) | 2009-06-02 | 2012-11-15 | サーモケム リカバリー インターナショナル インコーポレイテッド | Gasifier with integrated fuel cell power generation system |
BR112013010886A2 (en) | 2010-11-05 | 2016-08-02 | Thermochem Recovery Int Inc | solids circulation system and process for capturing and converting reactive solids |
US20120255301A1 (en) | 2011-04-06 | 2012-10-11 | Bell Peter S | System for generating power from a syngas fermentation process |
US9291390B2 (en) * | 2011-05-11 | 2016-03-22 | Shell Oil Company | Process for producing purified synthesis gas |
US8673181B2 (en) * | 2011-08-11 | 2014-03-18 | Kellogg Brown & Root Llc | Systems and methods for starting up a gasifier |
ES2987543T3 (en) | 2011-09-27 | 2024-11-15 | Thermochem Recovery Int Inc | System and method for cleaning synthesis gas |
CA2867054A1 (en) * | 2012-03-29 | 2013-10-03 | Her Majesty The Queen In Right Of Canada As Represented By The Ministeof Natural Resources | Supplemental burner for conversion of biomass and related solid fuel |
JP6248495B2 (en) * | 2013-09-18 | 2017-12-20 | 株式会社Ihi | Equipment for reforming tar in gasification gas |
US9631151B2 (en) * | 2014-09-04 | 2017-04-25 | Ag Energy Solutions, Inc. | Apparatuses, systems, tar crackers, and methods for gasifying having at least two modes of operation |
FI126357B (en) * | 2014-11-14 | 2016-10-31 | Teknologian Tutkimuskeskus Vtt Oy | Method and apparatus for gasification of raw material and gaseous product |
US10774267B2 (en) * | 2014-11-21 | 2020-09-15 | Kevin Phan | Method and device for converting municipal waste into energy |
CN104845677A (en) * | 2015-03-30 | 2015-08-19 | 天津渤化永利化工股份有限公司 | Method for reducing synthetic gas temperature at overheating section inlet for coal gasifier |
GB2539447B (en) | 2015-06-16 | 2017-07-05 | Sage & Time Llp | Converting a carbonaceous feedstock into a product gas e.g. methane gas |
US11041006B2 (en) | 2015-12-28 | 2021-06-22 | Riken | Compositions for use in recovering or ameliorating deterioration of physiological functions due to aging |
MX2018009906A (en) | 2016-02-16 | 2018-09-07 | Thermochem Recovery Int Inc | Two-stage energy-integrated product gas generation system and method. |
EP3210939A1 (en) * | 2016-02-24 | 2017-08-30 | Casale SA | A reactor for oxidation of ammonia in the production of nitric acid |
CN109153929B (en) | 2016-03-25 | 2019-12-20 | 国际热化学恢复股份有限公司 | Three-stage energy integrated product gas generation system and method |
ES2966552T3 (en) * | 2016-06-03 | 2024-04-22 | Wildfire Energy Pty Ltd | Production of a gas and methods for it |
US10197014B2 (en) | 2016-08-30 | 2019-02-05 | Thermochem Recovery International, Inc. | Feed zone delivery system having carbonaceous feedstock density reduction and gas mixing |
US10197015B2 (en) | 2016-08-30 | 2019-02-05 | Thermochem Recovery International, Inc. | Feedstock delivery system having carbonaceous feedstock splitter and gas mixing |
US10364398B2 (en) | 2016-08-30 | 2019-07-30 | Thermochem Recovery International, Inc. | Method of producing product gas from multiple carbonaceous feedstock streams mixed with a reduced-pressure mixing gas |
JP6822025B2 (en) * | 2016-09-12 | 2021-01-27 | 株式会社Ihi | Tar reformer |
US11203725B2 (en) * | 2017-04-06 | 2021-12-21 | LLT International (Ireland) Ltd. | Systems and methods for gasification of carbonaceous materials |
US10329506B2 (en) | 2017-04-10 | 2019-06-25 | Thermochem Recovery International, Inc. | Gas-solids separation system having a partitioned solids transfer conduit |
US10717102B2 (en) | 2017-05-31 | 2020-07-21 | Thermochem Recovery International, Inc. | Pressure-based method and system for measuring the density and height of a fluidized bed |
US9920926B1 (en) | 2017-07-10 | 2018-03-20 | Thermochem Recovery International, Inc. | Pulse combustion heat exchanger system and method |
GB2567229A (en) * | 2017-10-07 | 2019-04-10 | Narasimhamurthy Prakashkumar | Set-up for continuous production of H2 , CO, granulated fertiliser slag from the molten slag and sequestering CO2 from the flue exhaust |
EP3694956B1 (en) * | 2017-10-12 | 2023-07-12 | Danmarks Tekniske Universitet | A gasification unit, a method for producing a product gas and use of such a method |
US10099200B1 (en) | 2017-10-24 | 2018-10-16 | Thermochem Recovery International, Inc. | Liquid fuel production system having parallel product gas generation |
US11401496B2 (en) | 2018-05-21 | 2022-08-02 | Jupeng Bio, Inc. | System and process for increasing protein product yield from bacterial cells |
CA3120151C (en) * | 2018-11-19 | 2024-04-30 | Lanzatech, Inc. | Integration of fermentation and gasification |
CN109652127A (en) * | 2018-11-30 | 2019-04-19 | 浙江天禄环境科技有限公司 | A kind of method and system using hydro carbons of the volatile matter preparation comprising C1-C2 in low-order coal |
US11447576B2 (en) * | 2019-02-04 | 2022-09-20 | Eastman Chemical Company | Cellulose ester compositions derived from recycled plastic content syngas |
US11370983B2 (en) | 2019-02-04 | 2022-06-28 | Eastman Chemical Company | Gasification of plastics and solid fossil fuels |
GB2589426B (en) * | 2019-08-21 | 2021-10-27 | Ags Energy Ireland Ltd | A gasification apparatus and method |
US11555157B2 (en) | 2020-03-10 | 2023-01-17 | Thermochem Recovery International, Inc. | System and method for liquid fuel production from carbonaceous materials using recycled conditioned syngas |
US11466223B2 (en) | 2020-09-04 | 2022-10-11 | Thermochem Recovery International, Inc. | Two-stage syngas production with separate char and product gas inputs into the second stage |
US11827859B1 (en) | 2022-05-03 | 2023-11-28 | NuPhY, Inc. | Biomass gasifier system with rotating distribution manifold |
WO2024107792A1 (en) * | 2022-11-16 | 2024-05-23 | Sungas Renewables, Inc. | Increased processing flexibility in gasification |
WO2024237861A1 (en) | 2023-05-17 | 2024-11-21 | Actinon Pte. Ltd. | Integrated synthesis gas cleaning and thermal decomposition reactor |
Family Cites Families (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2815007A (en) * | 1951-12-12 | 1957-12-03 | Babcock & Wilcox Co | Synthesis gas generator |
US3787192A (en) * | 1972-03-02 | 1974-01-22 | Mcdowell Wellman Eng Co | Process for coal gasification |
NL178134C (en) * | 1974-06-17 | 1986-02-03 | Shell Int Research | METHOD AND APPARATUS FOR TREATING A HOT PRODUCT GAS. |
US3963457A (en) * | 1974-11-08 | 1976-06-15 | Koppers Company, Inc. | Coal gasification process |
US3980592A (en) | 1974-12-23 | 1976-09-14 | Texaco Development Corporation | Recovery of particulate carbon from synthesis gas |
US4072625A (en) | 1975-03-03 | 1978-02-07 | Imperial Chemical Industries Limited | Steam-hydrocarbon process |
US4017271A (en) | 1975-06-19 | 1977-04-12 | Rockwell International Corporation | Process for production of synthesis gas |
US4172425A (en) * | 1977-10-31 | 1979-10-30 | Consumat Systems, Inc. | Incinerator with improved means for transferring burning waste through the combustion chamber |
DE2836175A1 (en) * | 1978-08-18 | 1980-02-28 | Metallgesellschaft Ag | METHOD FOR GASIFYING SOLID, FINE-GRAIN FUELS |
US4270493A (en) * | 1979-01-08 | 1981-06-02 | Combustion Engineering, Inc. | Steam generating heat exchanger |
US4326856A (en) * | 1979-05-30 | 1982-04-27 | Texaco Development Corporation | Production of cleaned and cooled synthesis gas |
US4248604A (en) * | 1979-07-13 | 1981-02-03 | Texaco Inc. | Gasification process |
US4279622A (en) * | 1979-07-13 | 1981-07-21 | Texaco Inc. | Gas-gas quench cooling and solids separation process |
US4308034A (en) * | 1980-05-19 | 1981-12-29 | Hoang Dinh C | Apparatus for incinerating and gasifying biomass material |
US4490156A (en) * | 1981-06-10 | 1984-12-25 | Texaco Inc. | Partial oxidation system |
IN156182B (en) * | 1981-11-16 | 1985-06-01 | Shell Int Research | |
US4461674A (en) * | 1981-12-31 | 1984-07-24 | Allis-Chalmers Corporation | Apparatus for recovery of different weight fractions of oil from shale |
US4497637A (en) * | 1982-11-22 | 1985-02-05 | Georgia Tech Research Institute | Thermochemical conversion of biomass to syngas via an entrained pyrolysis/gasification process |
JPS61250092A (en) * | 1985-04-30 | 1986-11-07 | Ishikawajima Harima Heavy Ind Co Ltd | Method for gasifying solid organic material |
US4749383A (en) * | 1986-06-04 | 1988-06-07 | Mansfield Carbon Products | Method for producing low and medium BTU gas from coal |
US4805562A (en) * | 1987-12-11 | 1989-02-21 | Shell Oil Company | Coal gasification process with inhibition of quench zone plugging |
US4823742A (en) * | 1987-12-11 | 1989-04-25 | Shell Oil Company | Coal gasification process with inhibition of quench zone plugging |
US4823741A (en) | 1987-12-11 | 1989-04-25 | Shell Oil Company | Coal gasification process with inhibition of quench zone plugging |
US4805561A (en) * | 1987-12-11 | 1989-02-21 | Shell Oil Company | Coal gasification process with inhibition of quench zone plugging |
US4865625A (en) * | 1988-05-02 | 1989-09-12 | Battelle Memorial Institute | Method of producing pyrolysis gases from carbon-containing materials |
DE3816340A1 (en) * | 1988-05-13 | 1989-11-23 | Krupp Koppers Gmbh | METHOD AND DEVICE FOR COOLING A HOT PRODUCT GAS THAT STICKY OR. MELT-LIQUID PARTICLES INCLUDED |
US4859213A (en) * | 1988-06-20 | 1989-08-22 | Shell Oil Company | Interchangeable quench gas injection ring |
DK315289A (en) * | 1988-06-30 | 1989-12-31 | Shell Int Research | PROCEDURE FOR CONVERSION OF POLLUTIONS IN A RAW HIGH PRESSURE SYNTHESIC GAS FLOW WITH HIGH TEMPERATURE |
JPH0816229B2 (en) * | 1988-10-18 | 1996-02-21 | 三菱重工業株式会社 | Device for decomposing tar and ammonia in gas |
US4959080A (en) * | 1989-06-29 | 1990-09-25 | Shell Oil Company | Process for gasification of coal utilizing reactor protected interally with slag coalescing materials |
DE3929766A1 (en) * | 1989-09-07 | 1991-03-14 | Krupp Koppers Gmbh | PLANT FOR THE PRODUCTION OF A PRODUCT GAS FROM A FINE-PARTIC CARBON SUPPORT |
DE4035293C1 (en) * | 1990-11-07 | 1992-01-02 | Metallgesellschaft Ag, 6000 Frankfurt, De | |
WO1993018341A1 (en) | 1992-03-05 | 1993-09-16 | Technische Universiteit Delft | Method and apparatus for combusting a carbonaceous material |
DE4310447A1 (en) * | 1993-03-31 | 1994-10-06 | Krupp Koppers Gmbh | Process for cooling raw gas obtained by gasification |
JP2544584B2 (en) * | 1994-04-11 | 1996-10-16 | 株式会社日立製作所 | Coal gasifier and method of using coal gasifier |
ZA969708B (en) * | 1995-12-15 | 1997-06-20 | Krupp Polysius Ag | Prevention of snowmen and removal of lumps in clinker coolers |
RU2117687C1 (en) * | 1996-12-20 | 1998-08-20 | Акционерное общество открытого типа "Энергетический институт им.Г.М.Кржижановского" | Plant for thermal processing of solid fuels |
US5944034A (en) * | 1997-03-13 | 1999-08-31 | Mcnick Recycling, Inc. | Apparatus and method for recycling oil laden waste materials |
US6033447A (en) | 1997-06-25 | 2000-03-07 | Eastman Chemical Company | Start-up process for a gasification reactor |
US5984998A (en) | 1997-11-14 | 1999-11-16 | American Iron And Steel Institute | Method and apparatus for off-gas composition sensing |
JP4137266B2 (en) | 1999-01-28 | 2008-08-20 | 新日本製鐵株式会社 | Reduced iron production method |
DE19949142C1 (en) * | 1999-10-12 | 2001-05-10 | Thermoselect Ag Vaduz | Process and device for the disposal and utilization of waste goods |
US7090707B1 (en) * | 1999-11-02 | 2006-08-15 | Barot Devendra T | Combustion chamber design for a quench gasifier |
NZ523484A (en) | 2000-07-25 | 2005-01-28 | Emmaus Foundation Inc | Methods for increasing the production of ethanol from microbial fermentation |
DE10062320A1 (en) | 2000-12-14 | 2002-06-20 | Borsig Gmbh | Heat recovery boiler for cooling hot synthesis gas |
US20030046868A1 (en) * | 2001-03-12 | 2003-03-13 | Lewis Frederic Michael | Generation of an ultra-superheated steam composition and gasification therewith |
JP2003161414A (en) * | 2001-11-27 | 2003-06-06 | Mitsubishi Heavy Ind Ltd | Stoker type waste gasification incineration equipment and incineration method |
US7022992B2 (en) | 2002-01-17 | 2006-04-04 | American Air Liquide, Inc. | Method and apparatus for real-time monitoring of furnace flue gases |
JP3824267B2 (en) * | 2002-11-20 | 2006-09-20 | 日本碍子株式会社 | Combustible gas recovery equipment from waste |
JP4255279B2 (en) * | 2002-12-27 | 2009-04-15 | 独立行政法人科学技術振興機構 | Solid fuel gasification system |
JP2005060533A (en) * | 2003-08-12 | 2005-03-10 | Chugai Ro Co Ltd | Device for modifying fuel gas in biomass gasification system |
US20050095183A1 (en) | 2003-11-05 | 2005-05-05 | Biomass Energy Solutions, Inc. | Process and apparatus for biomass gasification |
EP1531147A1 (en) * | 2003-11-06 | 2005-05-18 | CASALE ChEMICALS S.A. | Catalytic secondary reforming process and reactor for said process |
JP4312632B2 (en) * | 2004-03-03 | 2009-08-12 | 中外炉工業株式会社 | Biomass gasification system and operation method thereof |
KR100637340B1 (en) | 2004-04-09 | 2006-10-23 | 김현영 | A high temperature reformer |
JP2006028211A (en) * | 2004-07-12 | 2006-02-02 | Kawasaki Heavy Ind Ltd | Waste gasifier |
DE102004039076A1 (en) | 2004-08-12 | 2006-02-23 | Sms Demag Ag | Non-contact exhaust gas measurement by means of FTIR spectroscopy on metallurgical aggregates |
JP2006131820A (en) * | 2004-11-09 | 2006-05-25 | Ishikawajima Harima Heavy Ind Co Ltd | Fluidized bed gasification method and apparatus |
FI20055237L (en) | 2005-05-18 | 2006-11-19 | Foster Wheeler Energia Oy | Method and apparatus for gasification of carbonaceous material |
CN100543116C (en) * | 2005-08-19 | 2009-09-23 | 中国科学院过程工程研究所 | Oxygen-lean fluidized combustion downdraft gasification method and device for preparing tar-free product gas |
EP1940736B1 (en) * | 2005-10-21 | 2013-08-28 | Taylor Biomass Energy, LLC | Process and system for gasification with in-situ tar removal |
US7587995B2 (en) | 2005-11-03 | 2009-09-15 | Babcock & Wilcox Power Generation Group, Inc. | Radiant syngas cooler |
JP4790412B2 (en) * | 2005-12-28 | 2011-10-12 | 中外炉工業株式会社 | Biomass gasifier |
US7763088B2 (en) | 2006-03-24 | 2010-07-27 | Rentech, Inc. | Biomass gasification system |
NZ546496A (en) | 2006-04-07 | 2008-09-26 | Lanzatech New Zealand Ltd | Gas treatment process |
FI118647B (en) * | 2006-04-10 | 2008-01-31 | Valtion Teknillinen | Procedure for reforming gas containing tar-like pollutants |
US7857995B2 (en) * | 2006-04-11 | 2010-12-28 | Thermo Technologies, Llc | Methods and apparatus for solid carbonaceous materials synthesis gas generation |
AU2007247900A1 (en) * | 2006-05-05 | 2007-11-15 | Plascoenergy Ip Holdings, S.L., Bilbao, Schaffhausen Branch | A horizontally-oriented gasifier with lateral transfer system |
KR20090040406A (en) | 2006-05-05 | 2009-04-24 | 플라스코에너지 아이피 홀딩스, 에스.엘., 빌바오, 샤프하우젠 브랜치 | Gas Reconstruction System Using Plasma Torch Heating |
NZ573217A (en) | 2006-05-05 | 2011-11-25 | Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch | A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2 |
US20080210089A1 (en) | 2006-05-05 | 2008-09-04 | Andreas Tsangaris | Gas Conditioning System |
US7552701B2 (en) | 2006-05-16 | 2009-06-30 | Shell Oil Company | Boiler for making super heated steam and its use |
US20080169449A1 (en) | 2006-09-08 | 2008-07-17 | Eltron Research Inc. | Catalytic membrane reactor and method for production of synthesis gas |
US8444725B2 (en) | 2006-09-11 | 2013-05-21 | Purdue Research Foundation | System and process for producing synthetic liquid hydrocarbon |
CN1931959B (en) * | 2006-09-28 | 2010-10-20 | 武汉凯迪工程技术研究总院有限公司 | Compositely circulating high temperature gasifying process for making synthetic gas with biomass |
EP1918352B1 (en) | 2006-11-01 | 2009-12-09 | Shell Internationale Researchmaatschappij B.V. | Solid carbonaceous feed to liquid process |
EP2121874A4 (en) | 2007-02-16 | 2012-08-01 | Corky S Carbon And Comb Pty Ltd | Drying and gasification process |
JP5547659B2 (en) * | 2007-02-27 | 2014-07-16 | プラスコエナジー アイピー ホールディングス、エス.エル.、ビルバオ、シャフハウゼン ブランチ | Gasification system with processing raw material / char conversion and gas reforming |
CN101285004B (en) * | 2007-04-11 | 2010-12-15 | 中国科学院工程热物理研究所 | Multifunctional energy resource system |
JP5001355B2 (en) * | 2007-04-18 | 2012-08-15 | 優久雄 片山 | Coke oven gas reformer |
US20080280236A1 (en) | 2007-05-08 | 2008-11-13 | Wright Roger G | Solid fuel compositions, processes for preparing solid fuel, and combustion processes |
WO2009009388A2 (en) * | 2007-07-09 | 2009-01-15 | Range Fuels, Inc. | Methods and apparatus for producing syngas |
US8153027B2 (en) | 2007-07-09 | 2012-04-10 | Range Fuels, Inc. | Methods for producing syngas |
US20090014689A1 (en) * | 2007-07-09 | 2009-01-15 | Range Fuels, Inc. | Methods and apparatus for producing syngas and alcohols |
US8142530B2 (en) | 2007-07-09 | 2012-03-27 | Range Fuels, Inc. | Methods and apparatus for producing syngas and alcohols |
US8236071B2 (en) | 2007-08-15 | 2012-08-07 | General Electric Company | Methods and apparatus for cooling syngas within a gasifier system |
US9074152B2 (en) | 2007-09-12 | 2015-07-07 | General Electric Company | Plasma-assisted waste gasification system |
WO2009049063A1 (en) | 2007-10-09 | 2009-04-16 | Silvagas Corporation | Systems and methods for oxidation of synthesis gas tar |
US8328889B2 (en) * | 2007-12-12 | 2012-12-11 | Kellogg Brown & Root Llc | Efficiency of gasification processes |
US7932298B2 (en) | 2007-12-13 | 2011-04-26 | Gyco, Inc. | Method and apparatus for reducing CO2 in a stream by conversion to a syngas for production of energy |
US7923476B2 (en) | 2007-12-13 | 2011-04-12 | Gyco, Inc. | Method and apparatus for reducing CO2 in a stream by conversion to a syngas for production of energy |
DE102007062413B3 (en) * | 2007-12-20 | 2009-09-10 | Conera Process Solutions Gmbh | Process and apparatus for reprocessing CO2-containing exhaust gases |
JP5166910B2 (en) | 2008-01-29 | 2013-03-21 | 三菱重工業株式会社 | Coal gasifier startup method and starter |
UA104719C2 (en) | 2008-02-28 | 2014-03-11 | Кронес Аг | Method and device for converting carbonaceous raw material |
ES2378406T3 (en) | 2008-03-11 | 2012-04-12 | Ineos Bio Limited | Procedure for ethanol production |
DE102008027858A1 (en) | 2008-06-11 | 2009-12-17 | Jörg HO | Thermal carburetor for producing tar-less gaseous fuel for thermal engine i.e. internal combustion engine, has packing bed in flow connection with part of pyrolysis reactor or with inlet opening of gasification reactor |
JP5282455B2 (en) | 2008-06-17 | 2013-09-04 | 株式会社Ihi | Gasification gas reforming method and apparatus |
BRPI0913850B1 (en) * | 2008-06-20 | 2020-01-21 | Ineos Bio Sa | alcohol production method |
US8592190B2 (en) * | 2009-06-11 | 2013-11-26 | Ineos Bio Limited | Methods for sequestering carbon dioxide into alcohols via gasification fermentation |
BRPI0914765A2 (en) | 2008-06-25 | 2015-10-20 | Nexterra Systems Corp | generation of clean synthesis gas from biomass |
US20100044643A1 (en) | 2008-08-22 | 2010-02-25 | Hunton Energy Holdings, LLC | Low NOx Gasification Startup System |
AU2009301132B2 (en) * | 2008-10-08 | 2013-06-20 | Air Products And Chemicals, Inc. | Process to prepare a gas mixture of hydrogen and carbon monoxide |
US8192647B2 (en) | 2008-12-19 | 2012-06-05 | Enerkem Inc. | Production of synthesis gas through controlled oxidation of biomass |
TW201026395A (en) * | 2008-12-24 | 2010-07-16 | Conocophillips Co | Tar-free gasification system and process |
US8357216B2 (en) * | 2009-04-01 | 2013-01-22 | Phillips 66 Company | Two stage dry feed gasification system and process |
WO2010118022A2 (en) | 2009-04-06 | 2010-10-14 | Rentech, Inc. | System and method for conditioning biomass-derived synthesis gas |
US20100270505A1 (en) * | 2009-04-22 | 2010-10-28 | Range Fuels, Inc. | Integrated, high-efficiency processes for biomass conversion to synthesis gas |
US20100294179A1 (en) * | 2009-05-18 | 2010-11-25 | Covanta Energy Corporation | Gasification combustion system |
JP5400505B2 (en) * | 2009-07-06 | 2014-01-29 | バブコック日立株式会社 | Coke oven gas non-catalytic reforming method and reformer |
CA2772537C (en) * | 2009-07-29 | 2017-08-29 | James Matthew Mason | System and method for downdraft gasification |
US8759047B2 (en) * | 2009-09-16 | 2014-06-24 | Coskata, Inc. | Process for fermentation of syngas from indirect gasification |
US8597934B2 (en) * | 2009-10-30 | 2013-12-03 | Coskata, Inc. | Process for controlling sulfur in a fermentation syngas feed stream |
CA2756745C (en) * | 2010-03-01 | 2014-07-15 | Plasco Energy Group Inc. | Carbon conversion system with integrated processing zones |
US8999021B2 (en) | 2010-04-13 | 2015-04-07 | Ineos Usa Llc | Methods for gasification of carbonaceous materials |
US8585789B2 (en) | 2010-04-13 | 2013-11-19 | Ineos Usa Llc | Methods for gasification of carbonaceous materials |
US8580152B2 (en) | 2010-04-13 | 2013-11-12 | Ineos Usa Llc | Methods for gasification of carbonaceous materials |
US8691115B2 (en) * | 2010-04-29 | 2014-04-08 | Indiana University Research And Technology Corporation | System and method for controlling char in biomass reactors |
US8377154B2 (en) * | 2010-05-18 | 2013-02-19 | Kellogg Brown & Root Llc | Gasification system and process for maximizing production of syngas and syngas-derived products |
CN201713504U (en) * | 2010-05-24 | 2011-01-19 | 中国科学院广州能源研究所 | Biomass composite gasification device |
CN101906339A (en) * | 2010-08-05 | 2010-12-08 | 中国石油大学(北京) | Process and device for the integrated production of substitute natural gas by coal gasification and methanation |
US20120255301A1 (en) | 2011-04-06 | 2012-10-11 | Bell Peter S | System for generating power from a syngas fermentation process |
-
2011
- 2011-12-13 US US13/324,321 patent/US20120255301A1/en not_active Abandoned
- 2011-12-13 US US13/324,299 patent/US9028571B2/en active Active
-
2012
- 2012-03-22 US US13/427,193 patent/US8894885B2/en active Active
- 2012-03-22 US US13/427,247 patent/US20120256131A1/en not_active Abandoned
- 2012-03-22 US US13/427,144 patent/US9051523B2/en active Active
- 2012-04-03 CA CA2832554A patent/CA2832554C/en active Active
- 2012-04-03 CN CN201280024967.2A patent/CN103874751B/en active Active
- 2012-04-03 EP EP12870334.5A patent/EP2694432B1/en active Active
- 2012-04-03 CN CN201610387671.7A patent/CN105907423A/en active Pending
- 2012-04-03 ES ES12870334.5T patent/ES2686289T3/en active Active
- 2012-04-03 MY MYPI2013003652A patent/MY166661A/en unknown
- 2012-04-03 BR BR112013025720-2A patent/BR112013025720B1/en active IP Right Grant
- 2012-04-03 MX MX2013011570A patent/MX2013011570A/en active IP Right Grant
- 2012-04-03 KR KR1020137029384A patent/KR101959581B1/en active IP Right Grant
- 2012-04-03 EP EP18173324.7A patent/EP3381997B1/en active Active
- 2012-04-03 EA EA201370216A patent/EA027557B1/en not_active IP Right Cessation
- 2012-04-03 AR ARP120101151 patent/AR085932A1/en active IP Right Grant
- 2012-04-03 PL PL12870334T patent/PL2694432T3/en unknown
- 2012-04-03 AU AU2012375190A patent/AU2012375190B2/en active Active
- 2012-04-03 WO PCT/US2012/032006 patent/WO2013147918A2/en active Application Filing
- 2012-04-03 JP JP2014508366A patent/JP6415320B2/en active Active
- 2012-04-04 ES ES12715788T patent/ES2708221T3/en active Active
- 2012-04-04 BR BR112013025724-5A patent/BR112013025724B1/en active IP Right Grant
- 2012-04-04 EP EP19179231.6A patent/EP3556828A1/en not_active Withdrawn
- 2012-04-04 AR ARP120101187 patent/AR085864A1/en active IP Right Grant
- 2012-04-04 CA CA3035043A patent/CA3035043C/en active Active
- 2012-04-04 ES ES12721013.6T patent/ES2656948T3/en active Active
- 2012-04-04 MX MX2013011708A patent/MX2013011708A/en active IP Right Grant
- 2012-04-04 MY MYPI2013003653A patent/MY172095A/en unknown
- 2012-04-04 KR KR1020187037703A patent/KR102026047B1/en active IP Right Grant
- 2012-04-04 EA EA201370215A patent/EA027586B1/en not_active IP Right Cessation
- 2012-04-04 CN CN201280024944.1A patent/CN103874750B/en active Active
- 2012-04-04 CA CA2832434A patent/CA2832434C/en active Active
- 2012-04-04 EP EP12721013.6A patent/EP2694625B1/en active Active
- 2012-04-04 BR BR112013025722-9A patent/BR112013025722B1/en active IP Right Grant
- 2012-04-04 EP EP17202313.7A patent/EP3301143B1/en active Active
- 2012-04-04 CA CA2832419A patent/CA2832419C/en active Active
- 2012-04-04 WO PCT/US2012/032168 patent/WO2013032537A1/en active Application Filing
- 2012-04-04 EA EA201370218A patent/EA027587B1/en not_active IP Right Cessation
- 2012-04-04 JP JP2014503948A patent/JP6129818B2/en active Active
- 2012-04-04 CN CN201280025052.3A patent/CN104039935A/en active Pending
- 2012-04-04 WO PCT/US2012/032174 patent/WO2012138762A1/en active Application Filing
- 2012-04-04 ES ES12713837.8T patent/ES2660963T3/en active Active
- 2012-04-04 EA EA201370217A patent/EA029848B1/en not_active IP Right Cessation
- 2012-04-04 PL PL12715788T patent/PL2694624T3/en unknown
- 2012-04-04 CN CN201810359132.1A patent/CN108611124B/en active Active
- 2012-04-04 JP JP2014503954A patent/JP6102007B2/en active Active
- 2012-04-04 CN CN201711000695.3A patent/CN107880943A/en active Pending
- 2012-04-04 CN CN201280024943.7A patent/CN103874749B/en active Active
- 2012-04-04 ES ES17202313T patent/ES2740002T3/en active Active
- 2012-04-04 MY MYPI2013003644A patent/MY188922A/en unknown
- 2012-04-04 JP JP2014503951A patent/JP6127323B2/en active Active
- 2012-04-04 PL PL12721013T patent/PL2694625T3/en unknown
- 2012-04-04 EP EP12715788.1A patent/EP2694624B1/en active Active
- 2012-04-04 CA CA2832431A patent/CA2832431C/en active Active
- 2012-04-04 NZ NZ710264A patent/NZ710264A/en not_active IP Right Cessation
- 2012-04-04 WO PCT/US2012/032160 patent/WO2012138751A1/en active Application Filing
- 2012-04-04 RU RU2013149044/05A patent/RU2603663C2/en not_active IP Right Cessation
- 2012-04-04 CN CN201280024962.XA patent/CN103958649A/en active Pending
- 2012-04-04 MY MYPI2013003643A patent/MY181501A/en unknown
- 2012-04-04 AU AU2012240302A patent/AU2012240302B2/en active Active
- 2012-04-04 AU AU2012240219A patent/AU2012240219B2/en active Active
- 2012-04-04 MY MYPI2018001260A patent/MY195696A/en unknown
- 2012-04-04 MX MX2013011567A patent/MX354778B/en active IP Right Grant
- 2012-04-04 MX MX2013011571A patent/MX2013011571A/en active IP Right Grant
- 2012-04-04 EP EP12713837.8A patent/EP2694623B1/en active Active
- 2012-04-04 AU AU2012302236A patent/AU2012302236B2/en active Active
- 2012-04-04 EP EP12714187.7A patent/EP2694626B1/en active Active
- 2012-04-04 WO PCT/US2012/032180 patent/WO2012138766A2/en active Application Filing
- 2012-04-04 KR KR1020137029101A patent/KR101882544B1/en active IP Right Grant
- 2012-04-04 KR KR1020137029380A patent/KR101934688B1/en active IP Right Grant
- 2012-04-04 KR KR1020137029357A patent/KR101884494B1/en active IP Right Grant
- 2012-04-04 AR ARP120101186 patent/AR085863A1/en active IP Right Grant
- 2012-04-04 EP EP18203543.6A patent/EP3453747A1/en not_active Withdrawn
- 2012-04-04 BR BR112013025718A patent/BR112013025718B1/en active IP Right Grant
- 2012-04-04 KR KR1020187021348A patent/KR101959702B1/en active IP Right Grant
- 2012-04-04 BR BR112013025727-0A patent/BR112013025727B1/en active IP Right Grant
- 2012-04-04 PL PL12713837T patent/PL2694623T3/en unknown
- 2012-04-04 PL PL17202313T patent/PL3301143T3/en unknown
- 2012-04-04 AR ARP120101189 patent/AR085866A1/en active IP Right Grant
- 2012-04-05 TW TW101112070A patent/TWI537375B/en active
- 2012-04-05 TW TW101112052A patent/TWI541339B/en active
- 2012-04-05 TW TW101112059A patent/TWI541338B/en active
- 2012-04-05 TW TW101112053A patent/TWI586922B/en active
- 2012-04-05 TW TW101112062A patent/TWI541337B/en active
-
2013
- 2013-11-05 ZA ZA2013/08271A patent/ZA201308271B/en unknown
- 2013-11-05 ZA ZA2013/08267A patent/ZA201308267B/en unknown
- 2013-11-05 ZA ZA2013/08266A patent/ZA201308266B/en unknown
- 2013-11-05 ZA ZA2013/08265A patent/ZA201308265B/en unknown
- 2013-11-05 ZA ZA2013/08269A patent/ZA201308269B/en unknown
- 2013-11-06 CR CR20130575A patent/CR20130575A/en unknown
- 2013-11-06 CR CR20130576A patent/CR20130576A/en unknown
- 2013-11-06 CR CR20130574A patent/CR20130574A/en unknown
- 2013-11-06 CR CR20130573A patent/CR20130573A/en unknown
-
2014
- 2014-05-13 US US14/276,492 patent/US9045706B2/en active Active
- 2014-10-20 US US14/518,173 patent/US10487280B2/en active Active
-
2015
- 2015-05-05 US US14/704,063 patent/US9745529B2/en active Active
-
2017
- 2017-02-06 JP JP2017019641A patent/JP6698561B2/en active Active
- 2017-02-13 JP JP2017024323A patent/JP6483733B2/en active Active
-
2019
- 2019-09-24 US US16/580,365 patent/US20200017784A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021185827A1 (en) | 2020-03-17 | 2021-09-23 | Velocys Technologies Limited | Process for the manufacture of a useful product from waste materials and/or biomass |
US11578281B2 (en) | 2020-03-17 | 2023-02-14 | Velocys Technologies Ltd | Method for producing a saleable product from synthesis gas derived from and/or comprising waste material and/or biomass |
US11873458B2 (en) | 2020-03-17 | 2024-01-16 | Velocys Technologies Ltd | Process |
US12129439B2 (en) | 2020-03-17 | 2024-10-29 | Velocys Technologies Limited | Process for the manufacture of a useful product from waste materials and/or biomass |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2694624B1 (en) | Method of operation of process to produce syngas from carbonaceous material | |
NZ617115B2 (en) | Method of operation of process to produce syngas from carbonaceous material | |
US20130165535A1 (en) | Methanation Of A Syngas | |
NZ617114B2 (en) | Apparatus and methods for tar removal from syngas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131031 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20161104 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180601 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1059364 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012052849 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: JUPENG BIO (HK) LIMITED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602012052849 Country of ref document: DE Owner name: JUPENG BIO (HK) LIMITED, CN Free format text: FORMER OWNER: INEOS BIO SA, ROLLE, CH |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: PD Owner name: JUPENG BIO (HK) LIMITED; CN Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: INEOS BIO SA Effective date: 20190107 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20181031 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2708221 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190409 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: JUPENG BIO (HK) LIMITED; CN Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: INEOS BIO SA Effective date: 20190125 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1059364 Country of ref document: AT Kind code of ref document: T Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190131 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190301 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190426 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20190429 Year of fee payment: 14 Ref country code: ES Payment date: 20190503 Year of fee payment: 8 Ref country code: FI Payment date: 20190429 Year of fee payment: 8 Ref country code: NO Payment date: 20190429 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012052849 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20190429 Year of fee payment: 8 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190404 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20200813 AND 20200819 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200404 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120404 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200404 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200404 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240429 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240429 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240425 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240429 Year of fee payment: 13 |