EP2670078B1 - Communication device for a redundant industrial communication network and method for operating a communication device - Google Patents
Communication device for a redundant industrial communication network and method for operating a communication device Download PDFInfo
- Publication number
- EP2670078B1 EP2670078B1 EP12169919.3A EP12169919A EP2670078B1 EP 2670078 B1 EP2670078 B1 EP 2670078B1 EP 12169919 A EP12169919 A EP 12169919A EP 2670078 B1 EP2670078 B1 EP 2670078B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal processing
- transmitting
- processing unit
- redundancy
- messages
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/22—Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/40169—Flexible bus arrangements
- H04L12/40176—Flexible bus arrangements involving redundancy
- H04L12/40182—Flexible bus arrangements involving redundancy by using a plurality of communication lines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4604—LAN interconnection over a backbone network, e.g. Internet, Frame Relay
- H04L12/462—LAN interconnection over a bridge based backbone
- H04L12/4625—Single bridge functionality, e.g. connection of two networks over a single bridge
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/55—Prevention, detection or correction of errors
- H04L49/557—Error correction, e.g. fault recovery or fault tolerance
Definitions
- An industrial automation system usually includes a plurality of networked via an industrial communication network automation devices and is used in the context of manufacturing or process automation for the control or regulation of equipment, machinery or equipment. Due to time-critical framework conditions in technical systems automated by means of industrial automation systems, in industrial communication networks for communication between automation devices predominantly real-time communication protocols such as Profinet, Profibus or Real-Time Ethernet are used.
- Interruptions of communication links between computer units of an industrial automation system or automation devices may lead to an undesirable or unnecessary repetition of a transmission of a service request. This causes an additional load communication links of the industrial automation system, which may lead to further system faults or errors.
- a particular problem arises in industrial automation systems regularly from a message traffic with relatively many, but relatively short messages, whereby the above problems are amplified.
- MRP Media Redundancy Protocol
- Impacted media redundancy methods can basically be implemented with relatively little effort.
- the disadvantage is that, on the one hand, messages can be lost in the event of a fault and, on the other hand, a fault condition is present during a reconfiguration of a communications network.
- Such a fault condition must be secured by a higher-level communication protocol, for example by means of TCP / IP at the switching or transport layer level, in order to avoid an interruption of a communication connection.
- High-availability Seamless Redundancy (HSR) and Parallel Redundancy Protocol (PRP) are defined in the standard IEC 62439-3 and enable a bumpless redundant transmission of messages.
- HSR High-availability Seamless Redundancy
- PRP Parallel Redundancy Protocol
- each message is duplicated and transmitted by a sending communication device sent two different ways to a recipient.
- a receiver-side communication device duplicate representing redundant messages are filtered out of a received data stream.
- a network component that provides access to the redundant communication network may take on different roles.
- Such a network component which transmits messages between subscribers or terminals in an HSR or PRP communication network on the one hand and terminals or network segments without HSR / PRP functionality on the other hand, is referred to as HSR / PRP proxy or RedBox.
- a network component for accessing a redundant HSR or PRP communication network can connect multiple HSR rings or implement communication between HSR and PRP network segments, see eg EP 1 657 888 , In this case, the network component is referred to as HSR-HSR coupler or QuadBox or HSR-PRP coupler.
- a method for operating a network that has a switch and network infrastructure devices connected thereto.
- the switch is controlled by a control unit.
- a redundancy unit connected between the switch and the control unit analyzes a data flow between the switch and the control unit and, depending on an analysis result, inserts data into the data stream or removes data from the data stream.
- EP 2 282 452 A1 a method for data transmission within a ring-like communication network is described in which the data transmission takes place according to High-availability Seamless Redundancy and the communication network comprises at least one master node, a source node and a destination node.
- Each node has a first and a second one Communication interface with a respective first and second neighboring node.
- each node receives data frames via the first communication interface and forwards the received data frame either changed or unchanged via the second communication interface without additional delay.
- the master node sends first and second redundant data frames or empty data frames to its first and second neighboring nodes, respectively.
- the source node fills the respective data frames in a predetermined reserved area with process data. Each filled data frame is then forwarded immediately and individually to the first or second neighboring node of the source node.
- the destination node finally extracts the process data from the first received filled data frame of a pair of redundant data frames.
- EP 2 413 538 A1 there is known a method of redundant communication in a communication system that includes multiple communication networks.
- the communication networks are connected to each other via at least one coupling node.
- a retransmission of data originating from a first communication network from a second communication network back into the first communication network is prevented on the basis of information defined before data transmission.
- the present invention has for its object to provide a powerful and cost-effective communication device for efficient coupling of a plurality of HSR or PRP network segments to a redundancy-free subnet or to a simply connected network node and a method for operating such a communication device.
- a signal processing unit is connected to the first and second transmitting and receiving units.
- the signal processing unit has a multiplexer unit for parallel transmission of messages to be transmitted to both transmission units and a redundancy treatment unit for processing received units of both reception units.
- the redundancy handling unit also includes a filter unit configured to detect received redundant messages. Depending on the protocol level, a message can be represented, for example, by a data segment, a data packet or a data frame.
- a coupling element is connected, via which a simply connected network node or a redundancy-free subnet is connected to the signal processing unit.
- the coupling element is preferably a high-speed bus, via which, for example, further simply connected network nodes or redundancy-free subnetworks can be connected to the signal processing unit.
- the coupling element in principle be realized by means of a matrix switching network. A data transmission within the industrial communication network, for example, according to high-availability Seamless Redundancy or according to Parallel Redundancy Protocol.
- the signal processing unit according to the invention is connected via the coupling element to a plurality of first and second transmitting and receiving units.
- a first transmitting and receiving unit and a second transmitting and receiving unit assigned thereto have an identical network address and an identical device identifier.
- the coupling element is assigned a control unit which is set up for operation of virtual local networks.
- Virtual local networks are subsumed, for example, as logical VLANs of communication users or connections.
- a device of a virtual local network can be port-based or dynamic.
- the signal processing unit is configured for the parallel forwarding of messages to be transmitted and for the detection of received redundant messages for all first and second transmitting and receiving units on the basis of an identifier of the respective virtual local network.
- the communication device enables a coupling of several HSR or PRP network segments with only one signal processing unit.
- the signal processing unit is preferably by means of a field programmable gate array (FPGA) realized, and the coupling element is, for example, a backplane switch with associated controller.
- FPGA field programmable gate array
- an FPGA can act as a coprocessor for a backplane switch controller network coupling tasks.
- the backplane switch can be connected to the signal processing unit via at least one interlink connection with the simply connected network node or redundancy-free subnetwork. Since backplane switch controllers typically have VLAN functionality, interfacing an FPGA as a backplane switch coprocessor can be simplified.
- the FPGA can differentially handle messages according to respective HSR or PRP network segments based on respective VLAN identifiers in data frames. In this way, a considerable effort reduction for a coupling of multiple redundant network segments is possible. This affects on the one hand manufacturing costs and energy consumption of the communication device according to the invention, on the other hand, but also on a smaller footprint due to more compact dimensions.
- an FPGA for storing a table (proxy node table) with information on all connected to the coupling element simply connected network nodes can be used.
- the communication device according to the invention can be used as a basis to implement devices such as HSR / PRP proxy or HSR / PRP RedBox in a simple manner.
- the communication device according to the invention can be designed as a RedBox, QuadBox or HSR-PRP coupler, depending on the field of application. Different fields of application thus represent no restriction for the usability of the communication device according to the invention.
- a backplane switch is designed for a multiple data throughput in comparison to subordinate redundant network segments. For example, if multiple HSR rings to be coupled are implemented in 1OOMBit technology, using a Backplane Switch in IGBit technology will not result in throughput problems for a typical number of HSR rings to be coupled.
- the coupling element is connected to a plurality of simply connected network nodes or redundancy-free subnets.
- an additional virtual local area network is set up for the simply connected network node or the redundancy-free subnetworks assigned connections as well as the connection assigned to the signal processing unit.
- This allows multiple redundant HSR or PRP network segments to be easily connected to multiple redundancy-free network segments.
- the signal processing unit and the coupling element can furthermore be connected to one another via a plurality of terminals. For this purpose, only a configuration adaptation of the virtual local networks is required.
- Mutually redundant messages are identified by a uniform sequence number according to a further embodiment of the communication device according to the invention.
- the signal processing unit is assigned a memory unit which is set up to store sequence numbers of messages already received without errors.
- the redundancy treatment unit is set up in this further embodiment for checking for an already stored sequence number upon receipt of a new message. In this way, a relief of the coupling element from a determination and treatment redundantly sent messages possible, so that a corresponding functionality can be integrated into a signal processing unit based coprocessor for the coupling element.
- the communication device comprises at least a first and a second transmitting and receiving unit, each having an interface for a network connection of the industrial communication network. Both transmit and receive units have an identical network address and an identical device identifier. Connected to the first and second transmitting and receiving units is a signal processing unit which forwards messages to be transmitted in parallel to both transmitting units and detects redundant messages received by the receiving units.
- a coupling element is connected to the signal processing unit, via which a simply connected network node or a redundancy-free subnetwork is connected to the signal processing unit.
- messages can be transmitted, for example, according to High-availability Seamless Redundancy or according to Parallel Redundancy Protocol.
- the signal processing unit is connected according to the inventive method via the coupling element with a plurality of first and second transmitting and receiving units.
- a first transmitting and receiving unit and a second transmitting and receiving unit assigned thereto have an identical network address and an identical device identifier.
- the coupling element is further associated with a control unit, which is set up for operation of virtual local area networks. For every couple A virtual local area network is set up in each case by a first transmission and reception unit and a connection assigned to a second transmission and reception unit and a connection assigned to the signal processing unit.
- the signal processing unit for all first and second transmitting and receiving units based on an identifier of the respective virtual local area network to send messages in parallel to the respective first and second transmitting and receiving unit and detects received redundant messages.
- the identifier of a virtual local area network can be realized, for example, by means of frame tagging in accordance with IEEE 802.1Q, Inter-Switch Link (ISL) or FDDI 802.10 (Fiber Distributed Data Interface).
- ISL Inter-Switch Link
- FDDI 802.10 Fiber Distributed Data Interface
- the coupling element is connected to a plurality of simply connected network nodes or redundancy-free subnets.
- an additional virtual local area network is set up for the simply connected network node or the redundancy-free subnetworks assigned connections as well as the connection assigned to the signal processing unit.
- mutually redundant messages are identified in accordance with a preferred embodiment of the method according to the invention by a uniform sequence number.
- sequence numbers of messages already received without error are preferably stored in a memory unit assigned to the signal processing unit. Upon receipt of a new message, the signal processing unit can therefore easily check its sequence number for correspondence with an already stored sequence number.
- the communication device 1 shown in the figure for a redundantly operable industrial communication network comprises a plurality of first 101, 103, 105 and second transmitting and receiving units 102, 104, 106, each having an interface for a network connection of a redundantly operated subnet 21-23.
- messages within a first and second subnetwork 21, 22 are transmitted in accordance with high availability seamless redundancy, while messages within a third subnetwork 23 are transmitted in accordance with a parallel redundancy protocol.
- a message comprises at least one data frame.
- the first two subnetworks 21, 22 each comprise a plurality of HSR network nodes 211-216, 221-226 interconnected in a ring structure via network connections. For this purpose, for example counting an HSR node associated with a supervisory control and data acquisition (SCADA) system of an industrial manufacturing or process automation system.
- SCADA supervisory control and data acquisition
- In the ring structure of the first two subnetworks 21, 22 and the communication device 1 shown in the figure is involved, which represents in the present embodiment, a RedBox connected to several redundantly operated subnets 21-23.
- the third subnetwork 23 comprises two mutually redundant network segments 231, 232, to which a plurality of PRP network nodes 51-53 are connected twice.
- Merged first and second transmit and receive units 101-102, 103-104, 105-106 have an identical network address and an identical MAC address.
- a coupling element 12 realized by a backplane switch
- the first and second transmitting and receiving units 101-106 are connected to a signal processing unit 11 implemented by a field programmable gate array (FPGA).
- FPGA field programmable gate array
- signal processing unit 11 and the coupling element 12 are connected to each other in the present embodiment, only via a single terminal 13.
- the signal processing unit 11 and the coupling element 12 can also be connected to one another via a plurality of terminals for increased performance.
- the signal processing unit 11 has a multiplexer unit 111 for the parallel forwarding of messages to be transmitted to the transmitting and receiving units 101-106 and a redundancy handling unit 112 for processing of the messages 41, 42 received by the transmitting and receiving units 101-106.
- the redundancy handling unit 112 includes a filter unit 113 that is configured to detect received redundant messages.
- the coupling element 12 having an associated controller 121 is connected in each case via an interlink connection 11, 12, In to a simply connected network node 31-33.
- the coupling element 12 could also be connected to one or more redundancy-free subnetworks. The following explanations apply equally to such an application.
- the signal processing unit 11 additionally has a memory unit 116, in which a table (proxy node table) is stored with information on all the single-connected network nodes 31-33 connected to the coupling element 12. This allows easy management of simply connected network nodes 31-33 connected to the communication device 1.
- a table proxy node table
- the controller 121 of the coupling element 12 includes a control unit 122 for configuring and managing virtual local area networks for aggregating subscriber groups across broadcast domain boundaries.
- the controller 121 is configured for operation of virtual local area networks.
- An / Bn of a first transmitting and receiving unit 101, 103, 105 and one of these associated second transmitting and receiving unit 102, 104, 106 associated terminals and the terminal 13 between the signal processing unit 11 and Coupling element each a virtual local area network is established.
- Messages associated with a virtual local area network are identified, for example, by an identifier of the virtual local area network inserted in a respective data frame.
- This identifier is evaluated by a special evaluation unit 114 of the redundancy treatment unit 112.
- the signal processing unit 11 for all first and second transmitting and receiving units 101-106 on the basis of the identifier of the respective virtual local network to send messages in parallel to the respective first and second transmitting and receiving unit and detect received redundant messages.
- only one signal processing unit 11 is required instead of a plurality of signal processing units, which is set up for parallel forwarding of messages to be transmitted and for detecting received redundant messages for all first and second transmitting and receiving units 101-106 based on an identifier of the respective virtual local area network.
- an additional virtual local area network is also set up for the simply connected network node 31-33 or the redundancy-free subnetworks, and the connection 13 between the signal processing unit 11 and the coupling element 12.
- the redundancy handling unit 112 is associated with a memory unit 115 which is set up for storing sequence numbers of messages already received without error or for messages already received without errors.
- the signal processing unit 11 checks its sequence number for correspondence with an already stored sequence number and initiates a redundancy treatment for all the redundantly operated subnetworks 21-23 connected to the communication device 1.
- the two messages 41, 42 received redundantly from the first subnetwork 21 is forwarded as the resulting message 4 to a simply connected destination network node 31.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Small-Scale Networks (AREA)
Description
In verteilten industriellen Automatisierungssystemen ist bei einer Erfassung, Auswertung und Übermittlung von Meß- und Steuerungsdaten ist sicherzustellen, daß vollständige und unveränderte Daten insbesondere bei zeitkritischen industriellen Produktionsprozessen in Echtzeit vorliegen. Absichtliche, unabsichtliche oder durch einen technischen Fehler bedingte Veränderungen sind zu vermeiden, da dies innerhalb eines industriellen Automatisierungssystems zu inkonsistenten Systemzuständen und Systemausfällen mit wirtschaftlich gravierenden Stillstandszeiten führen kann.In distributed industrial automation systems, when acquiring, evaluating and transmitting measurement and control data, it must be ensured that complete and unchanged data are available in real time, especially in time-critical industrial production processes. Deliberate, unintentional or due to a technical error changes are to be avoided, as this can lead to inconsistent system conditions and system failures with economically serious downtime within an industrial automation system.
Ein industrielles Automatisierungssystem umfaßt üblicherweise eine Vielzahl von über ein industrielles Kommunikationsnetz miteinander vernetzten Automatisierungsgeräten und dient im Rahmen einer Fertigungs- oder Prozeßautomatisierung zur Steuerung oder Regelung von Anlagen, Maschinen bzw. Geräten. Aufgrund zeitkritischer Rahmenbedingungen in mittels industrieller Automatisierungssysteme automatisierten technischen Systemen werden in industriellen Kommunikationsnetzen zur Kommunikation zwischen Automatisierungsgeräten überwiegend Echzeit-Kommunikationsprotokolle, wie Profinet, Profibus oder Real-Time-Ethernet, verwendet.An industrial automation system usually includes a plurality of networked via an industrial communication network automation devices and is used in the context of manufacturing or process automation for the control or regulation of equipment, machinery or equipment. Due to time-critical framework conditions in technical systems automated by means of industrial automation systems, in industrial communication networks for communication between automation devices predominantly real-time communication protocols such as Profinet, Profibus or Real-Time Ethernet are used.
Unterbrechungen von Kommunikationsverbindungen zwischen Rechnereinheiten eines industriellen Automatisierungssystems oder Automatisierungsgeräten können zu einer unerwünschten oder unnötigen Wiederholung einer Übermittlung einer Dienstanforderung führen. Dies verursacht eine zusätzliche Auslastung von Kommunikationsverbindungen des industriellen Automatisierungssystems, was zu weiteren Systemstörungen oder -fehlern führen kann. Eine besondere Problematik resultiert in industriellen Automatisierungssystemen regelmäßig aus einem Meldungsverkehr mit verhältnismäßig vielen, aber relativ kurzen Nachrichten, wodurch obige Probleme verstärkt werden.Interruptions of communication links between computer units of an industrial automation system or automation devices may lead to an undesirable or unnecessary repetition of a transmission of a service request. This causes an additional load communication links of the industrial automation system, which may lead to further system faults or errors. A particular problem arises in industrial automation systems regularly from a message traffic with relatively many, but relatively short messages, whereby the above problems are amplified.
Um Ausfälle von Kommunikationsverbindungen oder -geräten kompensieren zu können, sind Kommunikationsprotokolle, wie Media Redundancy Protocol, High-availability Seamless Redundancy oder Parallel Redundancy Protocol, für hochverfügbare, redundant betreibbare in industriellen Kommunikationsnetze entwickelt worden. Media Redundancy Protocol (MRP) ist im Standard IEC 62439 definiert und ermöglicht eine Kompensation einzelner Verbindungsausfälle in Netzen mit einfacher Ringtopologie bei stoßbehafteter redundanter Übertragung von Nachrichten.To be able to compensate for failures of communication links or devices, communication protocols such as Media Redundancy Protocol, High-availability Seamless Redundancy or Parallel Redundancy Protocol have been developed for high-availability, redundantly operable in industrial communication networks. Media Redundancy Protocol (MRP) is defined in the IEC 62439 standard and allows compensation for individual link failures in simple ring topology networks in the event of a bursty redundant transmission of messages.
Stoßbehaftete Medienredundanzverfahren lassen sich grundsätzlich mit relativ geringem Aufwand realisieren. Nachteilig ist jedoch, daß einerseits Nachrichten im Fehlerfall verloren gehen können und andererseits während einer Rekonfiguration eines Kommunikationsnetzes zunächst ein Störungszustand vorliegt. Ein derartiger Störungszustand muß durch ein überlagertes Kommunikationsprotokoll, beispielsweise mittels TCP/IP auf Vermittlungs- bzw. Transportschichtebene, gesichert werden, um eine Unterbrechung einer Kommunikationsverbindung zu vermeiden.Impacted media redundancy methods can basically be implemented with relatively little effort. The disadvantage, however, is that, on the one hand, messages can be lost in the event of a fault and, on the other hand, a fault condition is present during a reconfiguration of a communications network. Such a fault condition must be secured by a higher-level communication protocol, for example by means of TCP / IP at the switching or transport layer level, in order to avoid an interruption of a communication connection.
High-availability Seamless Redundancy (HSR) und Parallel Redundancy Protocol (PRP) sind im Standard IEC 62439-3 definiert und ermöglichen eine stoßfreie redundante Übertragung von Nachrichten. Entsprechend High-availability Seamless Redundancy und Parallel Redundancy Protocol wird jede Nachricht von einem sendenden Kommunikationsgerät dupliziert und auf zwei verschiedenen Wegen zu einem Empfänger geschickt. Durch ein empfängerseitiges Kommunikationsgerät werden Duplikate darstellende redundante Nachrichten aus einem empfangenen Datenstrom ausgefiltert.High-availability Seamless Redundancy (HSR) and Parallel Redundancy Protocol (PRP) are defined in the standard IEC 62439-3 and enable a bumpless redundant transmission of messages. According to High-availability Seamless Redundancy and Parallel Redundancy Protocol, each message is duplicated and transmitted by a sending communication device sent two different ways to a recipient. By a receiver-side communication device duplicate representing redundant messages are filtered out of a received data stream.
In einem redundanten HSR- oder PRP-Kommunikationsnetz kann eine Netzkomponente, die einen Zugriff auf das redundante Kommunikationsnetz bereitstellt, unterschiedliche Rollen annehmen. Eine solche Netzkomponente, die Telegramme zwischen Teilnehmern oder Endgeräten in einem HSR- oder PRP-Kommunikationsnetz einerseits und Endgeräten bzw. Netzsegmenten ohne HSR/PRP-Funktionalität andererseits vermittelt, wird als HSR/PRP-Proxy oder RedBox bezeichnet. Grundsätzlich kann eine Netzkomponente für einen Zugriff auf ein redundantes HSR-oder PRP-Kommunikationsnetz mehrere HSR-Ringe verbinden oder Kommunikation zwischen HSR- und PRP-Netzsegmenten umsetzen, siehe z.B.
Aus
In
Aus
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein leistungsfähiges und kostengünstiges Kommunikationsgerät zur effizienten Ankopplung einer Mehrzahl von HSR- bzw. PRP-Netzsegmenten an ein redundanzfreies Teilnetz oder an einen einfach angebundenen Netzknoten und ein Verfahren zum Betrieb eines solchen Kommunikationsgeräts anzugeben.The present invention has for its object to provide a powerful and cost-effective communication device for efficient coupling of a plurality of HSR or PRP network segments to a redundancy-free subnet or to a simply connected network node and a method for operating such a communication device.
Diese Aufgabe wird erfindungsgemäß durch ein Kommunikationsgerät mit den in Anspruch 1 angegebenen Merkmalen und durch ein Verfahren mit den in Anspruch 8 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved by a communication device having the features specified in
Das erfindungsgemäße Kommunikationsgerät für ein redundant betreibbares industrielles Kommunikationsnetz umfaßt zumindest eine erste und eine zweite Sende- und Empfangseinheit, die jeweils eine Schnittstelle für eine Netzverbindung des industriellen Kommunikationsnetzes aufweisen. Dabei weisen beide Sende- und Empfangseinheiten eine identische Netzadresse und einen identischen Geräteidentifikator auf. Bei dem Geräteidentifikator kann es sich beispielsweise um eine MAC-Adresse handeln. Mit der ersten und zweiten Sende- und Empfangseinheit ist eine Signalverarbeitungseinheit verbunden. Die Signalverarbeitungseinheit weist eine Multiplexereinheit zur parallelen Weiterleitung zu sendender Nachrichten an beide Sendeeinheiten und eine Redundanzbehandlungseinheit zur Verarbeitung von beiden Empfangseinheiten empfangener Nachrichten auf. Die Redundanzbehandlungseinheit umfaßt außerdem eine Filtereinheit, die für eine Detektion empfangener redundanter Nachrichten eingerichtet ist. Je nach Protokollebene kann eine Nachricht beispielsweise durch ein Datensegment, ein Datenpaket oder einen Datenrahmen repräsentiert werden.The communication device according to the invention for a redundantly operable industrial communication network comprises at least a first and a second transmitting and receiving unit, each having an interface for a network connection of the industrial communication network. Both transmit and receive units have an identical network address and an identical device identifier. The device identifier may be, for example, a MAC address. A signal processing unit is connected to the first and second transmitting and receiving units. The signal processing unit has a multiplexer unit for parallel transmission of messages to be transmitted to both transmission units and a redundancy treatment unit for processing received units of both reception units. The redundancy handling unit also includes a filter unit configured to detect received redundant messages. Depending on the protocol level, a message can be represented, for example, by a data segment, a data packet or a data frame.
Mit der Signalverarbeitungseinheit ist erfindungsgemäß ein Koppelelement verbunden, über das ein einfach angebundener Netzknoten oder ein redundanzfreies Teilnetz mit der Signalverarbeitungseinheit verbunden ist. Das Koppelelement ist vorzugsweise ein Hochgeschwindigkeitsbus, über den beispielsweise weitere einfach angebundene Netzknoten oder redundanzfreie Teilnetze mit der Signalverarbeitungseinheit verbunden sein können. Alternativ hierzu kann das Koppelelement grundsätzlich auch mittels eines Matrix-Schaltnetzes realisiert sein. Eine Datenübertragung innerhalb des industriellen Kommunikationsnetzes kann beispielsweise entsprechend High-availability Seamless Redundancy bzw. entsprechend Parallel Redundancy Protocol erfolgen.With the signal processing unit according to the invention a coupling element is connected, via which a simply connected network node or a redundancy-free subnet is connected to the signal processing unit. The coupling element is preferably a high-speed bus, via which, for example, further simply connected network nodes or redundancy-free subnetworks can be connected to the signal processing unit. Alternatively, the coupling element in principle be realized by means of a matrix switching network. A data transmission within the industrial communication network, for example, according to high-availability Seamless Redundancy or according to Parallel Redundancy Protocol.
Darüber hinaus ist die Signalverarbeitungseinheit erfindungsgemäß über das Koppelelement mit einer Mehrzahl von ersten und zweiten Sende- und Empfangseinheiten verbunden. Dabei weisen jeweils eine erste Sende- und Empfangseinheit und eine dieser zugeordnete zweite Sende- und Empfangseinheit eine identische Netzadresse und einen identischen Geräteidentifikator auf. Dem Koppelelement ist eine Steuerungseinheit zugeordnet, die für einen Betrieb von virtuellen lokalen Netzen eingerichtet ist. Unter virtuelle lokale Netze sind beispielsweise als VLAN bezeichnete logische Gruppierungen von Kommunikationsteilnehmern bzw. Anschlüssen zu subsumieren. Für jedes Paar von einer ersten Sende- und Empfangseinheit und einer dieser zugeordneten zweiten Sende- und Empfangseinheit zugeordneten Anschlüssen sowie einem der Signalverarbeitungseinheit zugeordneten Anschluß ist jeweils ein virtuelles lokales Netz eingerichtet. Eine Einrichtung eines virtuellen lokalen Netzes kann dabei portbasiert oder dynamisch erfolgen. Des weiteren ist die Signalverarbeitungseinheit zur parallelen Weiterleitung zu sendender Nachrichten und zur Detektion empfangener redundanter Nachrichten für sämtliche ersten und zweiten Sende- und Empfangseinheiten anhand einer Kennung des jeweiligen virtuellen lokalen Netzes eingerichtet.In addition, the signal processing unit according to the invention is connected via the coupling element to a plurality of first and second transmitting and receiving units. In each case, a first transmitting and receiving unit and a second transmitting and receiving unit assigned thereto have an identical network address and an identical device identifier. The coupling element is assigned a control unit which is set up for operation of virtual local networks. Virtual local networks are subsumed, for example, as logical VLANs of communication users or connections. For each pair of a first transmitting and receiving unit and one of these associated second transmitting and receiving unit associated terminals and one of the signal processing unit associated port each have a virtual local area network is established. A device of a virtual local network can be port-based or dynamic. Furthermore, the signal processing unit is configured for the parallel forwarding of messages to be transmitted and for the detection of received redundant messages for all first and second transmitting and receiving units on the basis of an identifier of the respective virtual local network.
Das erfindungsgemäße Kommunikationsgerät ermöglicht eine Kopplung mehrerer HSR- oder PRP-Netzsegmente mit nur einer Signalverarbeitungseinheit. Die Signalverarbeitungseinheit ist vorzugsweise mittels eines Field Programmable Gate Arrays (FPGA) realisiert, und das Koppelelement ist beispielsweise ein Backplane Switch mit zugeordnetem Controller. Somit kann ein FPGA quasi als Coprozessor für einen Backplane Switch Controller Netzkopplungsaufgaben übernehmen. Außerdem kann der Backplane Switch über zumindest einen Interlink-Anschluß mit dem einfach angebundenen Netzknoten oder redundanzfreien Teilnetz mit der Signalverarbeitungseinheit verbunden sein. Da Backplane Switch Controller üblicherweise eine VLAN-Funktionalität aufweisen, kann eine Anbindung eines FPGA als Coprozessor für einen Backplane Switch vereinfacht werden. Das FPGA kann nämlich anhand jeweiliger VLAN-Kennungen in Datenrahmen Nachrichten nach jeweiligen HSR- oder PRP-Netzsegmenten differenziert behandeln. Auf diese Weise ist eine erhebliche Aufwandsreduktion für eine Kopplung mehrerer redundanter Netzsegmente möglich. Dies wirkt sich einerseits Herstellungskosten und Energieverbrauch des erfindungsgemäßen Kommunikationsgeräts, andererseits aber auch auf einen geringeren Platzbedarf durch kompaktere Abmessungen aus.The communication device according to the invention enables a coupling of several HSR or PRP network segments with only one signal processing unit. The signal processing unit is preferably by means of a field programmable gate array (FPGA) realized, and the coupling element is, for example, a backplane switch with associated controller. Thus, an FPGA can act as a coprocessor for a backplane switch controller network coupling tasks. In addition, the backplane switch can be connected to the signal processing unit via at least one interlink connection with the simply connected network node or redundancy-free subnetwork. Since backplane switch controllers typically have VLAN functionality, interfacing an FPGA as a backplane switch coprocessor can be simplified. Namely, the FPGA can differentially handle messages according to respective HSR or PRP network segments based on respective VLAN identifiers in data frames. In this way, a considerable effort reduction for a coupling of multiple redundant network segments is possible. This affects on the one hand manufacturing costs and energy consumption of the communication device according to the invention, on the other hand, but also on a smaller footprint due to more compact dimensions.
Zusätzlich kann ein FPGA zur Speicherung einer Tabelle (proxy node table) mit Angaben zu sämtlichen mit dem Koppelelement verbundenen einfach angebundenen Netzknoten genutzt werden. Dies ermöglicht eine einfache Verwaltung von mit dem erfindungsgemäßen Kommunikationsgerät verbundenen einfach angebundenen Netzknoten. Daher kann das erfindungsgemäße Kommunikationsgerät als Grundlage genutzt werden, um auf einfache Weise Geräte wie HSR/PRP-Proxy oder HSR/PRP-RedBox zu realisieren. Grundsätzlich kann das erfindungsgemäße Kommunikationsgerät je nach Anwendungsgebiet als RedBox, QuadBox oder HSR-PRP-Koppler ausgeführt sein. Unterschiedliche Anwendungsgebiete stellen somit keine Einschränkung für eine Verwendbarkeit des erfindungsgemäßen Kommunikationsgeräts dar. Vorteilhafterweise ist ein Backplane Switch auf einen mehrfachen Datendurchsatz im Vergleich zu unterlagerten redundanten Netzsegmenten ausgelegt. Sind beispielsweise mehrere zu koppelnden HSR-Ringe in 1OOMBit-Technik ausgeführt, kommt es bei Verwendung eines Backplane Switch in IGBit-Technik bei einer typischen Anzahl zu koppelnder HSR-Ringe nicht zu Durchsatzproblemen.In addition, an FPGA for storing a table (proxy node table) with information on all connected to the coupling element simply connected network nodes can be used. This allows easy management of connected to the communication device according to the invention easily connected network nodes. Therefore, the communication device according to the invention can be used as a basis to implement devices such as HSR / PRP proxy or HSR / PRP RedBox in a simple manner. In principle, the communication device according to the invention can be designed as a RedBox, QuadBox or HSR-PRP coupler, depending on the field of application. Different fields of application thus represent no restriction for the usability of the communication device according to the invention. Advantageously, a backplane switch is designed for a multiple data throughput in comparison to subordinate redundant network segments. For example, if multiple HSR rings to be coupled are implemented in 1OOMBit technology, using a Backplane Switch in IGBit technology will not result in throughput problems for a typical number of HSR rings to be coupled.
Entsprechend einer bevorzugten Weiterbildung des erfindungsgemäßen Kommunikationsgeräts ist das Koppelelement mit einer Mehrzahl einfach angebundener Netzknoten oder redundanzfreier Teilnetze verbunden. Dabei ist für den einfach angebundenen Netzknoten oder den redundanzfreien Teilnetzen zugeordnete Anschlüsse sowie dem der Signalverarbeitungseinheit zugeordneten Anschluß ein zusätzliches virtuelles lokales Netz eingerichtet. Damit können mehrere redundante HSR- oder PRP-Netzsegmente auf einfache Weise mit mehreren redundanzfreien Netzsegmenten verbunden werden. Zur Leistungs- bzw. Durchsatzsteigerung können die Signalverarbeitungseinheit und das Koppelelement darüber hinaus über eine Mehrzahl von Anschlüssen miteinander verbunden sein. Hierzu ist lediglich eine Konfigurationsanpassung der virtuellen lokalen Netze erforderlich.According to a preferred embodiment of the communication device according to the invention, the coupling element is connected to a plurality of simply connected network nodes or redundancy-free subnets. In this case, an additional virtual local area network is set up for the simply connected network node or the redundancy-free subnetworks assigned connections as well as the connection assigned to the signal processing unit. This allows multiple redundant HSR or PRP network segments to be easily connected to multiple redundancy-free network segments. To increase the output or throughput, the signal processing unit and the coupling element can furthermore be connected to one another via a plurality of terminals. For this purpose, only a configuration adaptation of the virtual local networks is required.
Zueinander redundante Nachrichten sind entsprechend einer weiteren Ausgestaltung des erfindungsgemäßen Kommunikationsgeräts durch eine einheitliche Sequenznummer gekennzeichnet. Dabei ist der Signalverarbeitungseinheit eine Speichereinheit zugeordnet, die für eine Speicherung von Sequenznummern bereits fehlerfrei empfangener Nachrichten eingerichtet ist. Zudem ist die Redundanzbehandlungseinheit bei dieser weiteren Ausgestaltung für eine Überprüfung auf eine bereits gespeicherte Sequenznummer bei Empfang einer neuen Nachricht eingerichtet. Auf diese Weise ist eine Entlastung des Koppelelements von einer Ermittlung und Behandlung redundant gesendeter Nachrichten möglich, so daß eine entsprechende Funktionalität in einen auf der Signalverarbeitungseinheit basierenden Coprozessor für das Koppelelement integriert werden kann.Mutually redundant messages are identified by a uniform sequence number according to a further embodiment of the communication device according to the invention. In this case, the signal processing unit is assigned a memory unit which is set up to store sequence numbers of messages already received without errors. In addition, the redundancy treatment unit is set up in this further embodiment for checking for an already stored sequence number upon receipt of a new message. In this way, a relief of the coupling element from a determination and treatment redundantly sent messages possible, so that a corresponding functionality can be integrated into a signal processing unit based coprocessor for the coupling element.
Entsprechend dem erfindungsgemäßen Verfahren zum Betrieb eines Kommunikationsgeräts in einem redundanten industriellen Kommunikationsnetz umfaßt das Kommunikationsgerät zumindest eine erste und eine zweite Sende- und Empfangseinheit, die jeweils eine Schnittstelle für eine Netzverbindung des industriellen Kommunikationsnetzes aufweisen. Dabei weisen beide Sende- und Empfangseinheiten eine identische Netzadresse und einen identischen Geräteidentifikator auf. Mit der ersten und zweiten Sende- und Empfangseinheit ist eine Signalverarbeitungseinheit verbunden, die zu sendende Nachrichten parallel an beide Sendeeinheiten weiterleitet und von den Empfangseinheiten empfangene redundante Nachrichten detektiert. Mit der Signalverarbeitungseinheit wird ein Koppelelement verbunden, über das ein einfach angebundener Netzknoten oder ein redundanzfreies Teilnetz mit der Signalverarbeitungseinheit verbunden ist. Innerhalb des industriellen Kommunikationsnetzes können Nachrichten beispielsweise entsprechend High-availability Seamless Redundancy bzw. entsprechend Parallel Redundancy Protocol übertragen werden.According to the inventive method for operating a communication device in a redundant industrial communication network, the communication device comprises at least a first and a second transmitting and receiving unit, each having an interface for a network connection of the industrial communication network. Both transmit and receive units have an identical network address and an identical device identifier. Connected to the first and second transmitting and receiving units is a signal processing unit which forwards messages to be transmitted in parallel to both transmitting units and detects redundant messages received by the receiving units. A coupling element is connected to the signal processing unit, via which a simply connected network node or a redundancy-free subnetwork is connected to the signal processing unit. Within the industrial communication network, messages can be transmitted, for example, according to High-availability Seamless Redundancy or according to Parallel Redundancy Protocol.
Die Signalverarbeitungseinheit wird entsprechend dem erfindungsgemäßen Verfahren über das Koppelelement mit einer Mehrzahl von ersten und zweiten Sende- und Empfangseinheiten verbunden. Dabei weisen jeweils eine erste Sende- und Empfangseinheit und eine dieser zugeordnete zweite Sende- und Empfangseinheit eine identische Netzadresse und einen identischen Geräteidentifikator auf. Dem Koppelelement ist ferner eine Steuerungseinheit zugeordnet, die für einen Betrieb von virtuellen lokalen Netzen eingerichtet wird. Für jedes Paar von einer ersten Sende- und Empfangseinheit und einer dieser zugeordneten zweiten Sende- und Empfangseinheit zugeordneten Anschlüssen sowie einem der Signalverarbeitungseinheit zugeordneten Anschluß wird jeweils ein virtuelles lokales Netz eingerichtet. Die Signalverarbeitungseinheit leitet für sämtliche ersten und zweiten Sende- und Empfangseinheiten anhand einer Kennung des jeweiligen virtuellen lokalen Netzes zu sendende Nachrichten parallel an die jeweilige erste und zweite Sende- und Empfangseinheit weiter und detektiert empfangene redundante Nachrichten. Die Kennung eines virtuellen lokalen Netzes kann beispielsweise mittels Frame-Tagging entsprechend IEEE 802.1Q, Inter-Switch Link (ISL) oder FDDI 802.10 (Fiber Distributed Data Interface) realisiert sein. Insgesamt ermöglicht das erfindungsgemäße Verfahren eine erhebliche Aufwandsreduktion für eine Kopplung mehrerer redundanter Netzsegmente und insbesondere eine Kopplung mehrerer HSR- oder PRP-Netzsegmente mit nur einer Signalverarbeitungseinheit.The signal processing unit is connected according to the inventive method via the coupling element with a plurality of first and second transmitting and receiving units. In each case, a first transmitting and receiving unit and a second transmitting and receiving unit assigned thereto have an identical network address and an identical device identifier. The coupling element is further associated with a control unit, which is set up for operation of virtual local area networks. For every couple A virtual local area network is set up in each case by a first transmission and reception unit and a connection assigned to a second transmission and reception unit and a connection assigned to the signal processing unit. The signal processing unit for all first and second transmitting and receiving units based on an identifier of the respective virtual local area network to send messages in parallel to the respective first and second transmitting and receiving unit and detects received redundant messages. The identifier of a virtual local area network can be realized, for example, by means of frame tagging in accordance with IEEE 802.1Q, Inter-Switch Link (ISL) or FDDI 802.10 (Fiber Distributed Data Interface). Overall, the method according to the invention allows a significant reduction in expenditure for coupling a plurality of redundant network segments, and in particular a coupling of several HSR or PRP network segments with only one signal processing unit.
Eine Leistungsverbesserung durch Durchsatzsteigerung ergibt sich entsprechend einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens, wenn die Signalverarbeitungseinheit und das Koppelelement über eine Mehrzahl von Anschlüssen miteinander verbunden werden. Entsprechend einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird das Koppelelement mit einer Mehrzahl einfach angebundener Netzknoten oder redundanzfreier Teilnetze verbunden. Dabei wird für den einfach angebundenen Netzknoten oder den redundanzfreien Teilnetzen zugeordnete Anschlüsse sowie dem der Signalverarbeitungseinheit zugeordneten Anschluß ein zusätzliches virtuelles lokales Netz eingerichtet. Auf diese Weise können mehrere redundante HSR- oder PRP-Netzsegmente effizient mit mehreren redundanzfreien Netzsegmenten gekoppelt werden. Zueinander redundante Nachrichten werden entsprechend einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens durch eine einheitliche Sequenznummer gekennzeichnet. Darüber hinaus werden vorzugsweise in einer der Signalverarbeitungseinheit zugeordneten Speichereinheit Sequenznummern von bereits fehlerfrei empfangenen Nachrichten gespeichert. Bei Empfang einer neuen Nachricht kann die Signalverarbeitungseinheit deren Sequenznummer damit auf Übereinstimmung mit einer bereits gespeicherten Sequenznummer auf einfache Weise überprüfen.An improvement in performance through increased throughput results in accordance with an advantageous embodiment of the method according to the invention, when the signal processing unit and the coupling element are connected to each other via a plurality of terminals. According to a further embodiment of the method according to the invention, the coupling element is connected to a plurality of simply connected network nodes or redundancy-free subnets. In this case, an additional virtual local area network is set up for the simply connected network node or the redundancy-free subnetworks assigned connections as well as the connection assigned to the signal processing unit. In this way, multiple redundant HSR or PRP network segments can be efficiently coupled to multiple redundancy-free network segments. Mutually redundant messages are identified in accordance with a preferred embodiment of the method according to the invention by a uniform sequence number. In addition, sequence numbers of messages already received without error are preferably stored in a memory unit assigned to the signal processing unit. Upon receipt of a new message, the signal processing unit can therefore easily check its sequence number for correspondence with an already stored sequence number.
Die vorliegende Erfindung wird nachfolgend an einem Ausführungsbeispiel anhand der Zeichnung näher erläutert. Es zeigt die
- Figur
- eine schematische Darstellung eines Kommunikationsgeräts für ein redundant betreibbares industrielles Kommunikationsnetz.
- figure
- a schematic representation of a communication device for a redundant operable industrial communication network.
Das in der Figur dargestellte Kommunikationsgerät 1 für ein redundant betreibbares industrielles Kommunikationsnetz umfaßt mehrere erste 101, 103, 105 und zweite Sende- und Empfangseinheiten 102, 104, 106, die jeweils eine Schnittstelle für eine Netzverbindung eines redundant betriebenen Teilnetzes 21-23 aufweisen. Im vorliegenden Ausführungsbeispiel werden Nachrichten innerhalb eines ersten und zweiten Teilnetzes 21, 22 entsprechend High Availability Seamless Redundancy, während Nachrichten innerhalb eines dritten Teilnetzes 23 entsprechend Parallel Redundancy Protocol übertragen werden. Dabei umfaßt eine Nachricht zumindest einen Datenrahmen.The
Die ersten beiden Teilnetze 21, 22 umfassen jeweils mehrere in einer Ringstruktur über Netzverbindungen miteinander verbundene HSR-Netzknoten 211-216, 221-226. Hierzu kann beispielsweise ein HSR-Netzknoten zählen, der einem SCADA-System (supervisory control and data acquisition) eines industriellen Fertigungs- oder Prozeßautomatisierungssystems zugeordnet ist. In die Ringstruktur der ersten beiden Teilnetze 21, 22 ist auch das in der Figur dargestellte Kommunikationsgerät 1 eingebunden, das im vorliegenden Ausführungsbeispiel eine mit mehreren redundant betriebenen Teilnetzen 21-23 verbundene RedBox darstellt. Das dritte Teilnetz 23 umfaßt zwei zueinander redundante Netzsegmente 231, 232, an die mehrere PRP-Netzknoten 51-53 doppelt angebunden sind.The first two
Einander zugeordnete erste und zweite Sende- und Empfangseinheiten 101-102, 103-104, 105-106 weisen eine identische Netzadresse und eine identische MAC-Adresse auf. Über ein durch einen Backplane Switch realisiertes Koppelelement 12 sind die ersten und zweiten Sende- und Empfangseinheiten 101-106 mit einer durch ein Field Programmable Gate Array (FPGA) realisierte Signalverarbeitungseinheit 11 verbunden. Dabei sind Signalverarbeitungseinheit 11 und das Koppelelement 12 im vorliegenden Ausführungsbeispiel lediglich über einen einzelnen Anschluß 13 miteinander verbunden. Grundsätzlich können die Signalverarbeitungseinheit 11 und das Koppelelement 12 zur Leistungssteigerung auch über eine Mehrzahl von Anschlüssen miteinander verbunden werden.Merged first and second transmit and receive units 101-102, 103-104, 105-106 have an identical network address and an identical MAC address. Via a
Die Signalverarbeitungseinheit 11 weist eine Multiplexereinheit 111 zur parallelen Weiterleitung zu sendender Nachrichten an die Sende- und Empfangseinheiten 101-106 und eine Redundanzbehandlungseinheit 112 zur Verarbeitung von den durch die Sende- und Empfangseinheiten 101-106 empfangenen Nachrichten 41, 42 auf. Die Redundanzbehandlungseinheit 112 umfaßt eine Filtereinheit 113, die für eine Detektion empfangener redundanter Nachrichten eingerichtet ist.The
Das einen zugeordneten Controller 121 aufweisende Koppelelement 12 ist über jeweils einen Interlink-Anschluß 11, 12, In mit einem einfach angebundenen Netzknoten 31-33 verbunden. Grundsätzlich könnte das Koppelelement 12 auch mit einem oder mehreren redundanzfreien Teilnetzen verbunden sein. Nachfolgende Ausführungen gelten für einen derartigen Anwendungsfall gleichermaßen.The
Die Signalverarbeitungseinheit 11 weist zusätzlich eine Speichereinheit 116 auf, in der eine Tabelle (proxy node table) mit Angaben zu sämtlichen mit dem Koppelelement 12 verbundenen einfach angebundenen Netzknoten 31-33 gespeichert ist. Dies ermöglicht eine einfache Verwaltung von mit dem Kommunikationsgerät 1 verbundenen einfach angebundenen Netzknoten 31-33.The
Der Controller 121 des Koppelelements 12 umfaßt eine Steuerungseinheit 122 zur Konfiguration und Verwaltung von virtuellen lokalen Netzen zur Zusammenfassung von Teilnehmer- bzw. Anschlußgruppen über Grenzen von Broadcast-Domänen hinweg. Damit ist der Controller 121 für einen Betrieb von virtuellen lokalen Netzen eingerichtet. Für jedes Paar A1/B1, A2/B2, An/Bn von einer ersten Sende- und Empfangseinheit 101, 103, 105 und einer dieser zugeordneten zweiten Sende- und Empfangseinheit 102, 104, 106 zugeordneten Anschlüssen sowie dem Anschluß 13 zwischen Signalverarbeitungseinheit 11 und Koppelelement wird jeweils ein virtuelles lokales Netz eingerichtet. Einem virtuellen lokalen Netz zugeordnete Nachrichten werden beispielsweise durch eine in einen jeweiligen Datenrahmen eingefügte Kennung des virtuellen lokalen Netzes gekennzeichnet. Diese Kennung wird durch eine spezielle Auswerteeinheit 114 der Redundanzbehandlungseinheit 112 ausgewertet. Damit kann die Signalverarbeitungseinheit 11 für sämtliche ersten und zweiten Sende- und Empfangseinheiten 101-106 anhand der Kennung des jeweiligen virtuellen lokalen Netzes zu sendende Nachrichten parallel an die jeweilige erste und zweite Sende- und Empfangseinheit weiterleiten und empfangene redundante Nachrichten detektieren. Somit ist lediglich eine Signalverarbeitungseinheit 11 anstelle einer Vielzahl von Signalverarbeitungseinheiten erforderlich, die zur parallelen Weiterleitung zu sendender Nachrichten und zur Detektion empfangener redundanter Nachrichten für sämtliche ersten und zweiten Sende- und Empfangseinheiten 101-106 anhand einer Kennung des jeweiligen virtuellen lokalen Netzes eingerichtet ist. In entsprechender Weise wird auch für den einfach angebundenen Netzknoten 31-33 oder den redundanzfreien Teilnetzen zugeordnete Anschlüsse sowie dem Anschluß 13 zwischen Signalverarbeitungseinheit 11 und Koppelelement 12 ein zusätzliches virtuelles lokales Netz eingerichtet.The
Zueinander redundante Nachrichten werden sowohl bei einer Datenübertragung entsprechend High-availability Seamless Redundancy als auch bei einer Datenübertragung entsprechend Parallel Redundancy Protocol durch eine einheitliche Sequenznummer gekennzeichnet. Daher ist der Redundanzbehandlungseinheit 112 eine Speichereinheit 115 zugeordnet, die für eine Speicherung von Sequenznummern bereits fehlerfrei empfangener Nachrichten bzw. für eine für eine Speicherung von bereits fehlerfrei empfangenen Nachrichten eingerichtet ist. Auf dieser Grundlage überprüft die Signalverarbeitungseinheit 11 bei Empfang einer neuen Nachricht dessen Sequenznummer auf Übereinstimmung mit einer bereits gespeicherten Sequenznummer und veranlaßt eine Redundanzbehandlung, und zwar für alle mit dem Kommunikationsgerät 1 verbundenen redundant betriebenen Teilnetze 21-23. So wird nach Überprüfung beispielsweise lediglich eine der beiden aus dem ersten Teilnetz 21 redundant empfangenen Nachrichten 41, 42 als resultierende Nachricht 4 an einen einfach angebundenen Ziel-Netzknoten 31 weitergeleitet. Die Merkmale der vorangehend beschriebenen Ausführungsbeispiele können sowohl einzeln als auch in beschriebener Kombination miteinander realisiert sein.Mutually redundant messages are characterized both by a data transmission according to High-availability Seamless Redundancy and in a data transmission according to Parallel Redundancy Protocol by a uniform sequence number. Therefore, the
Claims (11)
- Communication device for a redundantly operable industrial communication network comprising- at least one first and one second transmitting and receiving unit (101, 102) each having an interface for a network connection of the industrial communication network, both transmitting and receiving units having an identical network address and an identical device identifier,- a signal processing unit (13) which is connected to the first and second transmitting and receiving units and has a multiplexer unit for the parallel forwarding of messages to be transmitted to both transmitting units and a redundancy handling unit for processing messages received by both receiving units, the redundancy handling unit comprising a filter unit which is set up to detect received redundant messages,- a coupling element (12) which is connected to the signal processing unit and is used to connect a singly linked network node or a redundancy-free subnetwork to the signal processing unit,characterized in that- the signal processing unit is connected to a plurality of first and second transmitting and receiving units (101, 102, 103, 104) via the coupling element, a first transmitting and receiving unit and a second transmitting and receiving unit assigned to the latter each having an identical network address and an identical device identifier,- the coupling element is assigned a control unit (121) which is set up to operate virtual local networks, a virtual local network respectively being set up for each pair of connections assigned to a first transmitting and receiving unit and to a second transmitting and receiving unit assigned to the latter and for a connection assigned to the signal processing unit,- the signal processing unit is set up for the parallel forwarding of messages to be transmitted and for the detection of received redundant messages for all first and second transmitting and receiving units using an identifier of the respective virtual local network.
- Communication device according to Claim 1,
in which the coupling element is connected to a plurality of singly linked network nodes or redundancy-free subnetworks, an additional virtual local network being set up for connections assigned to the singly linked network nodes or the redundancy-free subnetworks and for the connection assigned to the signal processing unit. - Communication device according to either of Claims 1 and 2,
in which the signal processing unit and the coupling element are connected to one another via a plurality of connections. - Communication device according to one of Claims 1 to 3,
in which messages which are redundant with respect to one another are identified by a uniform sequence number, and in which the signal processing unit is assigned a storage unit which is set up to store sequence numbers of messages which have already been received without errors, and in which the redundancy handling unit is set up to check for a sequence number which has already been stored when a new message is received. - Communication device according to one of Claims 1 to 4,
in which the signal processing unit is realized by means of a field programmable gate array, and in which the coupling element is a backplane switch with an assigned controller, and in which the backplane switch is connected to the singly linked network node or redundancy-free subnetwork via at least one interlink connection. - Communication device according to one of Claims 1 to 5,
in which data are transmitted in accordance with high-availability seamless redundancy and/or in accordance with the parallel redundancy protocol. - Method for operating a communication device in a redundant industrial communication network, in which- the communication device comprises at least one first and one second transmitting and receiving unit each having an interface for a network connection of the industrial communication network, both transmitting and receiving units having an identical network address and an identical device identifier,- a signal processing unit is connected to the first and second transmitting and receiving units, which signal processing unit forwards messages to be transmitted to both transmitting units in a parallel manner and detects redundant messages which have been received by the receiving units,- a coupling element is connected to the signal processing unit and is used to connect a singly linked network node or a redundancy-free subnetwork to the signal processing unit,characterized in that- the signal processing unit is connected to a plurality of first and second transmitting and receiving units via the coupling element, a first transmitting and receiving unit and a second transmitting and receiving unit assigned to the latter each having an identical network address and an identical device identifier,- the coupling element is assigned a control unit which is set up to operate virtual local networks, a virtual local network respectively being set up for each pair of connections assigned to a first transmitting and receiving unit and to a second transmitting and receiving unit assigned to the latter and for a connection assigned to the signal processing unit,- the signal processing unit, for all first and second transmitting and receiving units, forwards messages to be transmitted to the respective first and second transmitting and receiving units in a parallel manner using an identifier of the respective virtual local network and detects received redundant messages.
- Method according to Claim 7,
in which the coupling element is connected to a plurality of singly linked network nodes or redundancy-free subnetworks, an additional virtual local network being set up for connections assigned to the singly linked network nodes or the redundancy-free subnetworks and for the connection assigned to the signal processing unit. - Method according to either of Claims 7 and 8,
in which the signal processing unit and the coupling element are connected to one another via a plurality of connections. - Method according to one of Claims 7 to 9,
in which messages which are redundant with respect to one another are identified by a uniform sequence number, and in which sequence numbers of messages which have already been received without errors are stored in a storage unit assigned to the signal processing unit, and in which, when a new message is received, the signal processing unit checks its sequence number for a match with a sequence number which has already been stored. - Method according to one of Claims 7 to 10,
in which messages are transmitted in accordance with high-availability seamless redundancy and/or in accordance with the parallel redundancy protocol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12169919.3A EP2670078B1 (en) | 2012-05-30 | 2012-05-30 | Communication device for a redundant industrial communication network and method for operating a communication device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12169919.3A EP2670078B1 (en) | 2012-05-30 | 2012-05-30 | Communication device for a redundant industrial communication network and method for operating a communication device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2670078A1 EP2670078A1 (en) | 2013-12-04 |
EP2670078B1 true EP2670078B1 (en) | 2015-04-15 |
Family
ID=46245841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12169919.3A Active EP2670078B1 (en) | 2012-05-30 | 2012-05-30 | Communication device for a redundant industrial communication network and method for operating a communication device |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2670078B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3301523A1 (en) | 2016-09-30 | 2018-04-04 | Siemens Aktiengesellschaft | Redundant operable communications system for an industrial automation system and method of operation |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013211406A1 (en) * | 2013-06-18 | 2014-12-18 | Siemens Aktiengesellschaft | Communication device for connecting a field device of an industrial automation system with a fail-safe control unit and industrial automation system |
CN103683218B (en) * | 2013-12-18 | 2017-06-23 | 南京国电南自电网自动化有限公司 | Distributed Busbar Protection Device based on HSR looped networks |
CN107359978A (en) * | 2017-07-03 | 2017-11-17 | 南京南瑞继保电气有限公司 | A kind of HSR/PRP network samples synchronous method based on data forwarding Time delay measurement |
CN114745403B (en) * | 2022-03-31 | 2024-02-06 | 西门子(中国)有限公司 | Industrial network communication system and industrial network communication method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7577088B2 (en) * | 2003-01-17 | 2009-08-18 | Adtran, Inc. | System and method to backup communication occurring across a plurality of subscriber lines |
EP1657888A1 (en) * | 2004-11-16 | 2006-05-17 | Abb Research Ltd. | Reception of redundant and non-redundant frames |
DE102006060222B4 (en) * | 2006-12-20 | 2010-02-04 | Bachmann Gmbh | Redundant Ethernet connection |
US20100061229A1 (en) | 2007-07-05 | 2010-03-11 | Werner Maisch | Fast ring redundancy of a network |
ATE552672T1 (en) | 2009-07-31 | 2012-04-15 | Abb Research Ltd | DATA TRANSMISSION IN A RING COMMUNICATIONS NETWORK |
ES2411081T3 (en) | 2010-07-30 | 2013-07-04 | Siemens Aktiengesellschaft | Transmission loop prevention in a redundant ring network |
-
2012
- 2012-05-30 EP EP12169919.3A patent/EP2670078B1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3301523A1 (en) | 2016-09-30 | 2018-04-04 | Siemens Aktiengesellschaft | Redundant operable communications system for an industrial automation system and method of operation |
Also Published As
Publication number | Publication date |
---|---|
EP2670078A1 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2634973B1 (en) | Communication device for a redundant industrial communication network and method for operating a communication device | |
EP2688249B1 (en) | Method for message transmission in a redundant industrial communication network and communication device for a redundant industrial communication network | |
EP2661023B1 (en) | Communication device for a redundant industrial communication network and method for operating a communication device | |
EP2838220B1 (en) | Method for the redundant transmission of messages in an industrial communication network and communication device | |
EP2712124B1 (en) | Redundant industrial communication system and method for its operation | |
EP2693700B1 (en) | Method for message transmission in a redundant industrial communication network and communication device for a redundant industrial communication network | |
EP3211838B1 (en) | Redundant industrial communication system, method of operating same and radio transceiver station | |
EP3427538B1 (en) | Redundant industrial communication system, method of operating the same and wireless device station | |
EP2670078B1 (en) | Communication device for a redundant industrial communication network and method for operating a communication device | |
EP3151476B1 (en) | Method for cross-traffic between two slaves of a ring -shaped data network | |
EP2680503B1 (en) | Communication device for a redundant industrial communication network and method for operating a communication device | |
EP3211962B1 (en) | Radio communication system for an industrial automation system, method of operating the same and radio transceiver station | |
EP2704370B1 (en) | Method for message transmission in a redundant industrial communication network and communication device for a redundant industrial communication network | |
EP3343303B1 (en) | Radio communication system and method for an industrial automation system | |
WO2017036508A1 (en) | Communication device for a redundantly operable industrial communication network and method for operating a communication network | |
DE102013211406A1 (en) | Communication device for connecting a field device of an industrial automation system with a fail-safe control unit and industrial automation system | |
EP3518471B1 (en) | Radio communication system for an industrial automation system and method for operating a radio communication system | |
EP2784988B1 (en) | Communication interface module for a modular control device of an industrial automation system | |
WO2021037466A1 (en) | Method for data transmission in a redundantly operable communications network and coupling communication device | |
EP2750310A1 (en) | Method for synchronizing local clocks in a communication network of an industrial automation system and network infrastructure device | |
EP2854345B1 (en) | Method and coupling communication device for message delivery in a redundantly operable industrial communication network | |
EP3629550A1 (en) | Method for transmitting data within an industrial communication system and coupling communication device | |
EP4125253B1 (en) | Method for transmitting time-critical data, communication system and coupling communication device | |
WO2018177537A1 (en) | Method for operating an industrial automation system communication network comprising a plurality of communication devices, and control unit | |
WO2019001828A1 (en) | Method for message transmission in a redundantly operable industrial communications network and communications device for the implementation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20140603 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502012002844 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04L0001220000 Ipc: H04L0012939000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04L 12/939 20130101AFI20141010BHEP |
|
INTG | Intention to grant announced |
Effective date: 20141112 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 722504 Country of ref document: AT Kind code of ref document: T Effective date: 20150515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012002844 Country of ref document: DE Effective date: 20150528 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20150415 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150715 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150815 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150716 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012002844 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150415 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 |
|
26N | No opposition filed |
Effective date: 20160118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150530 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120530 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150530 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 722504 Country of ref document: AT Kind code of ref document: T Effective date: 20170530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502012002844 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04L0012939000 Ipc: H04L0049113000 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240603 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240515 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240522 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 13 |