EP2639505A1 - Gas Turbine Combustion System and Method of Flame Stabilization in such a System - Google Patents
Gas Turbine Combustion System and Method of Flame Stabilization in such a System Download PDFInfo
- Publication number
- EP2639505A1 EP2639505A1 EP12159203.4A EP12159203A EP2639505A1 EP 2639505 A1 EP2639505 A1 EP 2639505A1 EP 12159203 A EP12159203 A EP 12159203A EP 2639505 A1 EP2639505 A1 EP 2639505A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radial
- inflow swirler
- gas turbine
- combustion system
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims description 12
- 230000006641 stabilisation Effects 0.000 title claims description 11
- 238000011105 stabilization Methods 0.000 title 1
- 239000000446 fuel Substances 0.000 claims description 43
- 239000012530 fluid Substances 0.000 claims description 31
- 239000007800 oxidant agent Substances 0.000 claims description 12
- 230000001590 oxidative effect Effects 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 9
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 24
- 238000009792 diffusion process Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000000571 coke Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/10—Air inlet arrangements for primary air
- F23R3/12—Air inlet arrangements for primary air inducing a vortex
- F23R3/14—Air inlet arrangements for primary air inducing a vortex by using swirl vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
- F23C7/004—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/07001—Air swirling vanes incorporating fuel injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/14—Special features of gas burners
- F23D2900/14021—Premixing burners with swirling or vortices creating means for fuel or air
Definitions
- the present invention relates to a gas turbine combustion system and to flame stabilisation in a gas turbine combustion system.
- the invention relates to flame stabilisation in swirl stabilized diffusion flames.
- US 6,311,496 B1 describes a gas turbine combustion system with two radial inflow swirlers that are successively used by the airstream.
- the first objective is achieved by a gas turbine combustion system as claimed in claim 1.
- the second objective is achieved by a method of flame stabilisation in a gas turbine combustion system as claimed in claim 9.
- the depending claims contain further developments of the invention.
- An inventive gas turbine combustion system comprises a central axis and a radial direction with respect to said central axis, a first radial inflow swirler and a second radial inflow swirler.
- the first radial inflow swirler has radial outer intake openings located at a radial outer circumference of the first radial inflow swirler.
- the radial outer intake openings of the first radial inflow swirler are refered to as first radial outer intake openings in the following.
- the first radial inflow swirler has outlet openings located at a radial inner circumference of the first radial inflow swirler. These outlet openings are referred to as first radial inner outlet openings in the following.
- Flow passages named first flow passages in the following, extend from the first radial outer intake openings to the first radial inner outlet openings. Each first flow passage includes a first angle with respect to the radial direction.
- the gas turbine combustion system further comprises a second radial inflow swirler having radial outer intake openings which are located at a radial outer circumference of the second radial inflow swirler and which are referred to as second radial outer intake openings in the following.
- the second radial inflow swirler has radial inner outlet openings, which are referred to as second radial inner outlet openings in the following and which are located at a radial inner circumference of the second radial inflow swirler.
- Flow passages named second flow passages in the following, extend from the second radial outer intake openings to the second radial inner outlet openings.
- Each second flow passage includes an angle with respect to the radial direction. This angle is referred to as a second angle in the following.
- the number of second flow passages may be identical to the number of first flow passages.
- the radial outer circumference of the second radial inflow swirler has a diameter that is at least slightly smaller than the diameter of the radial inner circumference of the first radial inflow swirler, and the second radial inflow swirler is located coaxially with and radially inside the first radial inflow swirler.
- the first angle has a different sign than the second angle with respect to the radial direction.
- the second radial inflow swirler produces a swirl counterrotating with respect to the swirl generated by the first radial inflow swirler.
- the counterrotation produced by the two swirlers leads to a more uniform mixing of an oxidant, like in particular the oxygen in the air, and fuel and to a stable flame which has the advantages of lesser flameouts, a more distributed mixing of fuel and the oxidant, a better control of the combustion burner, lesser hotspots and a lower heat load across the metal surfaces like, for example, the combustor walls.
- the first angle and the second angle may have the same absolute value so that they only differ in their orientation with respect to the radial direction.
- fuel injection openings are located in the second radial inflow swirler and are open towards the second flow passages. More preferably, the fuel injection openings are located inside the second flow passages, in particular in the radial outer half of the second flow passages, preferably in the outer third of the second flow passages.
- a radial gap may be present between the radial inner circumference of the first radial inflow swirler and the radial outer circumference of the second radial inflow swirler.
- the flow cross section of the second flow passages may be smaller than the flow cross section of the first flow passages since part of the fluid can be introduced into a combustion chamber through the radial gap while another part will be introduced into the combustion chamber through the second radial inflow swirler.
- a method of flame stabilisation in a gas turbine combustion system is provided.
- a fluid flows along a flow path with a radial component from a fluid inlet to a fluid outlet.
- the fluid is a fluid that comprises an oxidant
- a fuel is mixed with the fluid that comprises an oxidant so as to transform the fluid into a mixture comprising fuel and the oxidant.
- air is used as the fluid (that comprises oxygen as the oxidant) the fluid is transformed into a fuel/air mixture.
- a first swirl with a first rotational direction is introduced into the flowing fluid in a radial upstream section of the flow path.
- a second swirl with a second rotational direction is introduced into at least a portion of the fluid in a radial downstream section of the flow path.
- the second rotational direction represents a counterrotation with respect to the first rotational direction.
- the inventive method is particularly effective in improving flame stability and uniform mixing of fuel and oxidant if fuel is introduced into the fluid where the second swirl is generated.
- the fuel is introduced into the fluid at a location where generation of the second swirl begins.
- no second swirl is introduced into a portion of the fluid.
- inventive combustion system will be described with respect to Figures 1 and 2 in the context of a combustor arrangement including an inventive combustion system.
- inventive combustion system is adapted for performing the inventive method of flame stabilisation in a gas turbine combustion system which will also be described with respect to Figures 1 and 2 .
- Figure 1 shows part of a combustor arrangement in a sectional view.
- the combustor arrangement comprises a combustion chamber 3 and a combustion system 1 that is connected to a combustion chamber 3 via a small pre-chamber 5.
- the pre-chamber is sometimes also called transition section and may be part of the combustion system 1 like in the present embodiment.
- the pre-chamber 5 may as well be a part of the combustion chamber 3 or a distinct part that is neither part of the combustion system 1 nor of the combustion chamber 3.
- the combustion system 1 comprises a first radial inflow swirler 7 that, shows rotational symmetry with respect to a central combustor axis A.
- the first radial inflow swirler is equipped with a number of vanes 9 that are distributed along the circumferential direction of the swirler 7 and are spaced apart from each other.
- Flow passages 11 are formed between neighbouring vanes 9.
- Each flow passage 11 extends from a first radial outer intake opening 13 located at a radial outer circumference of the swirler 7 to a first radial inner outlet opening 15 located at a radial inner circumference of the swirler 7.
- the flow passages 11 of the first swirler 7 are angled with respect to the radial direction of the swirler with a first angle ⁇ so that a swirl is imparted to a fluid flowing through the flow channel 11.
- the combustion system 1 further comprises a second radial inflow swirler 17 that, like the first radial inflow swirler, shows radial symmetry.
- the second radial inflow swirler 17 has an outer circumference the diameter of which is smaller than the inner circumference of the first radial inflow swirler 11.
- the second radial inflow swirler 17 is located inside an opening formed by the inner circumference of the first radial inflow swirler 7 so that a fluid that exists the outlet openings 15 of the first radial inflow swirler 7 is directed towards the second radial inflow swirler 17.
- the second radial inflow swirler 17 comprises a number of vanes 19 that are distributed in circumferential direction of the swirler such that second flow passages 21 are formed between them.
- Each second flow passages 21, i.e. each flow passage of the second radial inflow swirler 17, extends from a second radial outer intake opening 23 located at the radial outer circumference of the second swirler to a second radial inner outlet opening 25, i.e. an outlet opening of the second swirler 17 that is located at the inner circumference of the second radial inflow swirler 17.
- the flow channels 21 of the second radial inflow swirler 17 include an angle with the radial direction (denominated ⁇ in Figure 2 ) which has, in the present embodiment, the same absolute value as the angle of the flow channels 11 of the first radial inflow swirler 7 but a different sign.
- the flow channels 11 of the first radial inflow swirler 7 impart a clockwise swirl to a flowing fluid
- the flow channels 21 of the second radial inflow swirler 17 impart a counter-clockwise swirl to a fluid flowing therethrough, or vice versa.
- Both swirlers 7, 17 are mounted to a base plate 31 such that they are arranged coaxially with each other and with respect to the combustor axis A. Moreover, in the present embodiment they are arranged such that a radial gap 27 is formed between the inner circumference of the first radial inflow swirler 7 and the outer circumference of the second radial inflow swirler 17.
- Fuel channels 33 extend through the base plate 31 and lead to fuel opening 29 in the flow passages 21 of the second radial inflow swirler 7.
- the fuel openings 29 are located in the outer half of the second flow passages 21, preferably in the outer third of the second flow passages 21, and more preferably in the outer fourth of the second flow passages 21.
- the first radial inflow swirler 7 is surrounded by a flow channel 35 which allows feeding a fluid, in particular air or any other suitable fluid that comprises an oxidant, to the intake openings 13 of the first radial inflow swirler.
- the intake openings 23 of the second radial inflow swirler generate turbulences in the flow channel sections adjoining the intake openings 15.
- the turbulences are generated due to a reversal in rotation direction that is necessary for the air to enter the flow passages 21 of the second swirler 17.
- the turbulence are highest in a flow passage zone adjoining the intake openings 23 of the flow passages.
- a fuel gas like, for example, syngas or coke oven gas (COG) is introduced into the turbulent airstreams in the second flow passages 21 through the fuel holes 29.
- the strong turbulence leads to a highly uniform mixing of fuel and air until the fuel/air mixture leaves the second flow channels 21 through the second outlet openings 25.
- Due to the angle ⁇ the second flow passages 21 include with the radial direction a second swirl (indicate by arrow 39) with a counter-clockwise rotation is imparted to the fuel/air mixture flowing through the second flow passages 21.
- a further effect of giving the angle of the flow channels of the first and second swirlers a different sign with respect to the radial direction is that the fuel/air mixture has a different direction of rotation than the air entering the pre-chamber 5 through the gap 27 that is present between both swirlers 7, 17 in the described embodiment.
- the air rotating clockwise in the present embodiment can form an envelop around the fuel/air mixture rotating counter-clockwise in the present embodiment which makes it more difficult for fuel/air mixture to reach the wall of the pre-chamber 5 and the combustion chamber 3, thereby reducing heat load across the metal surface of the combustor wall.
- a further advantage is that turbulences are formed where the counter-clockwise swirling fuel/air mixture is in contact with the clockwise swirling air, which turbulences lead to a more distributed mixing of fuel and air.
- the mentioned effects contribute to leading to less flameouts and less hotspots, in particular with use of H 2 containing gases like syngas or COG. In the end, this leads to a better controllable combustion burner.
- the present invention has been described with respect to a specific embodiment to describe a method of improve mixing of gas and air and to stabilise the flame by using the concepts of swirl strength in diffusion flames to anchor it in a stabile way.
- counterrotating swirls are used to improve mixing and stabilising of the flame.
- the invention shall not be restricted to the specific embodiment described with respect to the figures, since deviations thereform are possible.
- both swirlers have the same number of flow passages the second wirler could have a higher or lower number of flow passages than the first swirler.
- the flow passages of both swirlers are angled by the same absolute value with respect to the radial direction but with a different sign.
- a further possible deviation from the embodiment described with respect to the figures is the number of fuel opening that are present in each flow passage of the second swirler. While in the described embodiment only one fuel openings is present in each flow passage a higher number of fuel openings may be present as well. Moreover, the fuel openings do not need to be present in the base plate. Alternatively or additionally, fuel openings could be located in the sidewalls of the vanes. Since the location of the fuel openings is closely related to the geometry of the swirler and the fuel to be used the exact position of the fuel openings may depend on the concrete design of the first and second radial inflow swirler and/or on the intended use of the combustion system.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
A gas turbine combustion system (1) which comprises
- a first radial inflow swirler (7) having first radial outer intake openings (13) and first flow passages (11) extending from the first radial outer intake openings (13) to the first radial inner outlet openings (15), each first flow passage (11) including a first angle (α) with respect to the radial direction;
- a second radial inflow swirler (17) having second radial outer intake openings (23), second radial inner outlet openings (25) and second flow passages (21) extending from the second radial outer intake openings (23) to the second radial inner outlet openings (25), each second flow passage (21) including a second angle (β) with respect to the radial direction;
- where the radial outer circumference of the second radial inflow swirler (17) has a diameter that is smaller than the diameter of the radial inner circumference of the first radial inflow swirler (7) and the second radial inflow swirler (17) is located coaxially with and radially inside the first radial inflow swirler (7).
- a first radial inflow swirler (7) having first radial outer intake openings (13) and first flow passages (11) extending from the first radial outer intake openings (13) to the first radial inner outlet openings (15), each first flow passage (11) including a first angle (α) with respect to the radial direction;
- a second radial inflow swirler (17) having second radial outer intake openings (23), second radial inner outlet openings (25) and second flow passages (21) extending from the second radial outer intake openings (23) to the second radial inner outlet openings (25), each second flow passage (21) including a second angle (β) with respect to the radial direction;
- where the radial outer circumference of the second radial inflow swirler (17) has a diameter that is smaller than the diameter of the radial inner circumference of the first radial inflow swirler (7) and the second radial inflow swirler (17) is located coaxially with and radially inside the first radial inflow swirler (7).
The first angle (α) has a different sign than the second angle (β) with respect to the radial direction.
Description
- The present invention relates to a gas turbine combustion system and to flame stabilisation in a gas turbine combustion system. In particular, the invention relates to flame stabilisation in swirl stabilized diffusion flames.
- Although conventional diffusion flames that are swirl stabilised are not as prone to flame instabilities as are the flames in dry low emission burners (DLE-burners), in which the air/fuel ratio is at or near stoichiometric in order to reduce pollutants, the conventional burners still need a proper stable mixing to avoid any flameouts. In particular, if conventional burners are to be driven with a fuel containing H2, which is for example present to a considerable amount in syngas or coke oven gas (COG), flame stabilisation is still an issue because these gases will lead to higher flame speeds which might end up in more flameouts.
- Multiple swirler concepts for manipulating mixing of fuel and air in gas turbine combustion systems are known from the state of the art. For example Bassam Mohammad and San-Mou Jeng "The Effect of Geometry on the Aerodynamics of a Prototype Gas Turbine Combustor", Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air GT 2010, June 14 - 18, 2010, Glasgow, UK,
EP 2 192 347 A1 andUS 6,253,555 B1 describe combustion systems in which two radial inflow swirlers are arranged axially along a combustor central axis. In these combustion systems each radial swirler is used by different airstreams. While in the first two mentioned documents both swirlers produce a swirl with the same rotational direction the swirlers ofUS 6,253,555 B1 produce swirls of different rotational direction. - Yehida A. Eldrainy, et al. "A Multiple Inlet Swirler for Gas Turbine Combustors", World Academy of Science, Engineering and Technology, 53, 2009 describe a combustion system, in which a radial inflow swirler and an axial inflow swirler are combined.
-
US 6,311,496 B1 describes a gas turbine combustion system with two radial inflow swirlers that are successively used by the airstream. - However, in particular for combustion systems using fuel gas with hydrogen (H2) like syngas or coke oven gas there is still need of improving flame stabilisation.
- Hence, it is an objective of the present invention to provide a design for a gas turbine combustion system with increased stability of diffusion flames. It is a further objective of the present invention to provide a method of flame stabilisation in a gas turbine combustion system, in particular for diffusion flames.
- The first objective is achieved by a gas turbine combustion system as claimed in claim 1. The second objective is achieved by a method of flame stabilisation in a gas turbine combustion system as claimed in
claim 9. The depending claims contain further developments of the invention. - An inventive gas turbine combustion system comprises a central axis and a radial direction with respect to said central axis, a first radial inflow swirler and a second radial inflow swirler.
- The first radial inflow swirler has radial outer intake openings located at a radial outer circumference of the first radial inflow swirler. The radial outer intake openings of the first radial inflow swirler are refered to as first radial outer intake openings in the following. Moreover, the first radial inflow swirler has outlet openings located at a radial inner circumference of the first radial inflow swirler. These outlet openings are referred to as first radial inner outlet openings in the following. Flow passages, named first flow passages in the following, extend from the first radial outer intake openings to the first radial inner outlet openings. Each first flow passage includes a first angle with respect to the radial direction.
- The gas turbine combustion system further comprises a second radial inflow swirler having radial outer intake openings which are located at a radial outer circumference of the second radial inflow swirler and which are referred to as second radial outer intake openings in the following. In addition, the second radial inflow swirler has radial inner outlet openings, which are referred to as second radial inner outlet openings in the following and which are located at a radial inner circumference of the second radial inflow swirler. Flow passages, named second flow passages in the following, extend from the second radial outer intake openings to the second radial inner outlet openings. Each second flow passage includes an angle with respect to the radial direction. This angle is referred to as a second angle in the following. In a particular embodiment of the inventive gas turbine combustion system, the number of second flow passages may be identical to the number of first flow passages.
- The radial outer circumference of the second radial inflow swirler has a diameter that is at least slightly smaller than the diameter of the radial inner circumference of the first radial inflow swirler, and the second radial inflow swirler is located coaxially with and radially inside the first radial inflow swirler.
- According to the invention, the first angle has a different sign than the second angle with respect to the radial direction. In other words, the second radial inflow swirler produces a swirl counterrotating with respect to the swirl generated by the first radial inflow swirler. The counterrotation produced by the two swirlers leads to a more uniform mixing of an oxidant, like in particular the oxygen in the air, and fuel and to a stable flame which has the advantages of lesser flameouts, a more distributed mixing of fuel and the oxidant, a better control of the combustion burner, lesser hotspots and a lower heat load across the metal surfaces like, for example, the combustor walls. In a further development of the inventive gas turbine combustion system, the first angle and the second angle may have the same absolute value so that they only differ in their orientation with respect to the radial direction.
- Preferably, fuel injection openings are located in the second radial inflow swirler and are open towards the second flow passages. More preferably, the fuel injection openings are located inside the second flow passages, in particular in the radial outer half of the second flow passages, preferably in the outer third of the second flow passages. By injecting fuel into the second flow passages a particular effective flame stabilisation can be achieved.
- In an advantageous further development of the inventive combustion system, a radial gap may be present between the radial inner circumference of the first radial inflow swirler and the radial outer circumference of the second radial inflow swirler. In this case, the flow cross section of the second flow passages may be smaller than the flow cross section of the first flow passages since part of the fluid can be introduced into a combustion chamber through the radial gap while another part will be introduced into the combustion chamber through the second radial inflow swirler.
- According to a second aspect of the present invention, a method of flame stabilisation in a gas turbine combustion system is provided. In the combustion system, a fluid flows along a flow path with a radial component from a fluid inlet to a fluid outlet. The fluid is a fluid that comprises an oxidant, and a fuel is mixed with the fluid that comprises an oxidant so as to transform the fluid into a mixture comprising fuel and the oxidant. When air is used as the fluid (that comprises oxygen as the oxidant) the fluid is transformed into a fuel/air mixture. A first swirl with a first rotational direction is introduced into the flowing fluid in a radial upstream section of the flow path. Moreover, a second swirl with a second rotational direction is introduced into at least a portion of the fluid in a radial downstream section of the flow path. According to the inventive method, the second rotational direction represents a counterrotation with respect to the first rotational direction. By introducing a counterrotation a better stability of the diffusion flame and a more uniform mixing of fuel and the oxidant can be achieved, as mentioned above with respect to the inventive combustion system. This is, in particular, true if the fuel contains hydrogen.
- The inventive method is particularly effective in improving flame stability and uniform mixing of fuel and oxidant if fuel is introduced into the fluid where the second swirl is generated. In particular, the fuel is introduced into the fluid at a location where generation of the second swirl begins.
- According to a further development of the invention, no second swirl is introduced into a portion of the fluid.
- Further features, properties and advantages of the present invention will become clear from the following description of embodiments in conjunction with the accompanying drawings.
-
Figure 1 schematically shows a combustor arrangement for a gas turbine with an inventive combustion system and a combustion chamber. -
Figure 2 shows the combustion system as seen from the combustion chamber. - An inventive combustion system will be described with respect to
Figures 1 and2 in the context of a combustor arrangement including an inventive combustion system. The inventive combustion system is adapted for performing the inventive method of flame stabilisation in a gas turbine combustion system which will also be described with respect toFigures 1 and2 . -
Figure 1 shows part of a combustor arrangement in a sectional view. The combustor arrangement comprises acombustion chamber 3 and a combustion system 1 that is connected to acombustion chamber 3 via a small pre-chamber 5. The pre-chamber is sometimes also called transition section and may be part of the combustion system 1 like in the present embodiment. However, the pre-chamber 5 may as well be a part of thecombustion chamber 3 or a distinct part that is neither part of the combustion system 1 nor of thecombustion chamber 3. - The combustion system 1 comprises a first
radial inflow swirler 7 that, shows rotational symmetry with respect to a central combustor axis A. The first radial inflow swirler is equipped with a number ofvanes 9 that are distributed along the circumferential direction of theswirler 7 and are spaced apart from each other.Flow passages 11 are formed between neighbouringvanes 9. Eachflow passage 11 extends from a first radialouter intake opening 13 located at a radial outer circumference of theswirler 7 to a first radial inner outlet opening 15 located at a radial inner circumference of theswirler 7. Theflow passages 11 of thefirst swirler 7 are angled with respect to the radial direction of the swirler with a first angle α so that a swirl is imparted to a fluid flowing through theflow channel 11. - The combustion system 1 further comprises a second
radial inflow swirler 17 that, like the first radial inflow swirler, shows radial symmetry. However, the secondradial inflow swirler 17 has an outer circumference the diameter of which is smaller than the inner circumference of the firstradial inflow swirler 11. The secondradial inflow swirler 17 is located inside an opening formed by the inner circumference of the firstradial inflow swirler 7 so that a fluid that exists theoutlet openings 15 of the firstradial inflow swirler 7 is directed towards the secondradial inflow swirler 17. - Like the first
radial inflow swirler 7, the secondradial inflow swirler 17 comprises a number ofvanes 19 that are distributed in circumferential direction of the swirler such thatsecond flow passages 21 are formed between them. Eachsecond flow passages 21, i.e. each flow passage of the secondradial inflow swirler 17, extends from a second radialouter intake opening 23 located at the radial outer circumference of the second swirler to a second radial inner outlet opening 25, i.e. an outlet opening of thesecond swirler 17 that is located at the inner circumference of the secondradial inflow swirler 17. Theflow channels 21 of the secondradial inflow swirler 17 include an angle with the radial direction (denominated β inFigure 2 ) which has, in the present embodiment, the same absolute value as the angle of theflow channels 11 of the firstradial inflow swirler 7 but a different sign. Hence, theflow channels 11 of the firstradial inflow swirler 7 impart a clockwise swirl to a flowing fluid and theflow channels 21 of the secondradial inflow swirler 17 impart a counter-clockwise swirl to a fluid flowing therethrough, or vice versa. - Both
swirlers base plate 31 such that they are arranged coaxially with each other and with respect to the combustor axis A. Moreover, in the present embodiment they are arranged such that aradial gap 27 is formed between the inner circumference of the firstradial inflow swirler 7 and the outer circumference of the secondradial inflow swirler 17. -
Fuel channels 33 extend through thebase plate 31 and lead tofuel opening 29 in theflow passages 21 of the secondradial inflow swirler 7. Thefuel openings 29 are located in the outer half of thesecond flow passages 21, preferably in the outer third of thesecond flow passages 21, and more preferably in the outer fourth of thesecond flow passages 21. - The first
radial inflow swirler 7 is surrounded by aflow channel 35 which allows feeding a fluid, in particular air or any other suitable fluid that comprises an oxidant, to theintake openings 13 of the first radial inflow swirler. - During operation of a gas turbine air is fed to the
intake openings 13 of the firstradial inflow swirler 7 through theflow channel 35. The air then flows through theflow passages 11 of the firstradial inflow swirler 7 whereby a first swirl (indicated by arrow 37) is imparted to the flowing air. Hence, in the present embodiment, the air swirls with a clockwise rotation after exciting the first swirler through theoutlet openings 15. A part of the clockwise swirling air reaches the pre-chamber 5 through theradial gap 27. Another part of the clockwise swirling air enters theflow passages 21 of the secondradial inflow swirler 17 through theintake openings 23. Thereby, theintake openings 23 of the second radial inflow swirler generate turbulences in the flow channel sections adjoining theintake openings 15. The turbulences are generated due to a reversal in rotation direction that is necessary for the air to enter theflow passages 21 of thesecond swirler 17. The turbulence are highest in a flow passage zone adjoining theintake openings 23 of the flow passages. - A fuel gas like, for example, syngas or coke oven gas (COG) is introduced into the turbulent airstreams in the
second flow passages 21 through the fuel holes 29. The strong turbulence leads to a highly uniform mixing of fuel and air until the fuel/air mixture leaves thesecond flow channels 21 through the second outlet openings 25. Due to the angle β thesecond flow passages 21 include with the radial direction a second swirl (indicate by arrow 39) with a counter-clockwise rotation is imparted to the fuel/air mixture flowing through thesecond flow passages 21. - A further effect of giving the angle of the flow channels of the first and second swirlers a different sign with respect to the radial direction is that the fuel/air mixture has a different direction of rotation than the air entering the pre-chamber 5 through the
gap 27 that is present between bothswirlers combustion chamber 3, thereby reducing heat load across the metal surface of the combustor wall. A further advantage is that turbulences are formed where the counter-clockwise swirling fuel/air mixture is in contact with the clockwise swirling air, which turbulences lead to a more distributed mixing of fuel and air. The mentioned effects contribute to leading to less flameouts and less hotspots, in particular with use of H2 containing gases like syngas or COG. In the end, this leads to a better controllable combustion burner. - The present invention has been described with respect to a specific embodiment to describe a method of improve mixing of gas and air and to stabilise the flame by using the concepts of swirl strength in diffusion flames to anchor it in a stabile way. In particular, counterrotating swirls are used to improve mixing and stabilising of the flame. However, the invention shall not be restricted to the specific embodiment described with respect to the figures, since deviations thereform are possible. For example, while in the Figures both swirlers have the same number of flow passages the second wirler could have a higher or lower number of flow passages than the first swirler. Moreover, the flow passages of both swirlers are angled by the same absolute value with respect to the radial direction but with a different sign. In other embodiments it may be useful to also have different absolute values of the angles between the flow passages and the radial direction. A further possible deviation from the embodiment described with respect to the figures is the number of fuel opening that are present in each flow passage of the second swirler. While in the described embodiment only one fuel openings is present in each flow passage a higher number of fuel openings may be present as well. Moreover, the fuel openings do not need to be present in the base plate. Alternatively or additionally, fuel openings could be located in the sidewalls of the vanes. Since the location of the fuel openings is closely related to the geometry of the swirler and the fuel to be used the exact position of the fuel openings may depend on the concrete design of the first and second radial inflow swirler and/or on the intended use of the combustion system.
- Since many deviations from the embodiment are possible, the present invention shall only be limited by the appended claims.
Claims (12)
- A gas turbine combustion system (1) comprising- a central axis (A) and a radial direction with respect to said central axis (A);- a first radial inflow swirler (7) having first radial outer intake openings (13) located at a radial outer circumference of the first radial inflow swirler (7), first radial inner outlet openings (15) located at a radial inner circumference of the first radial inflow swirler (7), and first flow passages (11) extending from the first radial outer intake openings (13) to the first radial inner outlet openings (15), each first flow passage (11) including a first angle (α) with respect to the radial direction;- a second radial inflow swirler (17) having second radial outer intake openings (23) located at a radial outer circumference of the second radial inflow swirler (17), second radial inner outlet openings (25) located at a radial inner circumference of the second radial inflow swirler (17), and second flow passages (21) extending from the second radial outer intake openings (23) to the second radial inner outlet openings (25), each second flow passage (21) including a second angle (β) with respect to the radial direction;- where the radial outer circumference of the second radial inflow swirler (17) has a diameter that is smaller than the diameter of the radial inner circumference of the first radial inflow swirler (7) and the second radial inflow swirler (17) is located coaxially with and radially inside the first radial inflow swirler (7),
characterised in that
the first angle (α) has a different sign than the second angle (β) with respect to the radial direction. - The gas turbine combustion system (1) as claimed in claim 1, characterised in that fuel injection openings (29) are located in the second radial inflow swirler (17) and are open towards the second flow passages (21).
- The gas turbine combustion system (1) as claimed in claim 2, characterised in that the fuel injection openings (29) are located inside the second flow passages (21).
- The gas turbine combustion system (1) as claimed in claim 3, characterised in that the fuel injection openings (29) are located in the radial outer half of the second flow passages (21) .
- The gas turbine combustion system (1) as claimed in any of the claims 1 to 4, characterised in that the number of second flow passages (21) is identical to the number of first flow passages (11).
- The gas turbine combustion system (1) as claimed in any of the claims 1 to 5, characterised in that a radial gap (27) is present between the radial inner circumference of the first radial inflow swirler (7) and the radial outer circumference of the second radial inflow swirler (17).
- The gas turbine combustion system (1) as claimed in claim 6, characterised in that the flow cross section of the second flow passages (21) is smaller than the flow cross section of the first flow passages (11).
- The gas turbine combustion system (1) as claimed in any of the claims 1 to 7, characterised in that the first angle (α) and the second angle (β) have the same absolute value.
- A method of flame stabilisation in a gas turbine combustion system (1) in which a fluid flows along a flow path with a radial component, where- the fluid is a fluid that comprises an oxidant and a fuel is mixed with the fluid that comprises an oxidant so as to transform the fluid into a mixture comprising fuel and the oxidant;- a first swirl with a first rotational direction (37) is generated in the flowing fluid in a radial upstream section of the flow path; and- a second swirl with a second rotational direction (39) is generated in at least a portion of the fluid in a radial downstream section of the flow path, characterised in that
the second rotational direction represents a counter rotation (39) with respect to the first rotational direction (37). - The method as claimed in claim 9, characterised in that fuel is introduced into the fluid where the second swirl is generated.
- The method as claimed in claim 10, characterised in that the fuel is introduced into the fluid at a location where generation of the second swirl begins.
- The method as claimed in any of the claims 9 to 11, characterised in that no second swirl is introduced into a portion of the fluid.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12159203.4A EP2639505A1 (en) | 2012-03-13 | 2012-03-13 | Gas Turbine Combustion System and Method of Flame Stabilization in such a System |
EP12798270.0A EP2825823B1 (en) | 2012-03-13 | 2012-12-05 | Gas turbine combustion system and method of flame stabilization in such a system |
US14/382,314 US20150033752A1 (en) | 2012-03-13 | 2012-12-05 | Gas turbine combustion system and method of flame stabilization in such a system |
PCT/EP2012/074412 WO2013135324A1 (en) | 2012-03-13 | 2012-12-05 | Gas turbine combustion system and method of flame stabilization in such a system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12159203.4A EP2639505A1 (en) | 2012-03-13 | 2012-03-13 | Gas Turbine Combustion System and Method of Flame Stabilization in such a System |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2639505A1 true EP2639505A1 (en) | 2013-09-18 |
Family
ID=47324135
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12159203.4A Withdrawn EP2639505A1 (en) | 2012-03-13 | 2012-03-13 | Gas Turbine Combustion System and Method of Flame Stabilization in such a System |
EP12798270.0A Not-in-force EP2825823B1 (en) | 2012-03-13 | 2012-12-05 | Gas turbine combustion system and method of flame stabilization in such a system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12798270.0A Not-in-force EP2825823B1 (en) | 2012-03-13 | 2012-12-05 | Gas turbine combustion system and method of flame stabilization in such a system |
Country Status (3)
Country | Link |
---|---|
US (1) | US20150033752A1 (en) |
EP (2) | EP2639505A1 (en) |
WO (1) | WO2013135324A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115247789A (en) * | 2022-06-30 | 2022-10-28 | 华北电力科学研究院有限责任公司 | Method and device for determining radial swirling vane angle |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012003076A1 (en) * | 2010-07-02 | 2012-01-05 | Exxonmobil Upstream Research Company | Low emission triple-cycle power generation systems and methods |
US20150285502A1 (en) * | 2014-04-08 | 2015-10-08 | General Electric Company | Fuel nozzle shroud and method of manufacturing the shroud |
EP3882547A1 (en) * | 2020-03-20 | 2021-09-22 | Primetals Technologies Germany GmbH | Burner tube, burner tube assembly and burner unit |
US20240263792A1 (en) * | 2023-02-07 | 2024-08-08 | Pratt & Whitney Canada Corp. | Perforated plate fuel distributor with simiplified swirler |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0660038A2 (en) * | 1993-12-23 | 1995-06-28 | ROLLS-ROYCE plc | Fuel injection apparatus |
EP0939275A2 (en) * | 1997-12-30 | 1999-09-01 | United Technologies Corporation | Fuel nozzle and nozzle guide for gas turbine engine |
WO2000049337A1 (en) * | 1999-02-16 | 2000-08-24 | Siemens Aktiengesellschaft | Burner arrangement and method for operating a burner arrangement |
US6253555B1 (en) | 1998-08-21 | 2001-07-03 | Rolls-Royce Plc | Combustion chamber comprising mixing ducts with fuel injectors varying in number and cross-sectional area |
US6311496B1 (en) | 1997-12-19 | 2001-11-06 | Alstom Gas Turbines Limited | Gas turbine fuel/air mixing arrangement with outer and inner radial inflow swirlers |
US20050257530A1 (en) * | 2004-05-21 | 2005-11-24 | Honeywell International Inc. | Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions |
EP2192347A1 (en) | 2008-11-26 | 2010-06-02 | Siemens Aktiengesellschaft | Dual swirler |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5165241A (en) * | 1991-02-22 | 1992-11-24 | General Electric Company | Air fuel mixer for gas turbine combustor |
EP0895024B1 (en) * | 1993-07-30 | 2003-01-02 | United Technologies Corporation | Swirl mixer for a combustor |
US5511375A (en) * | 1994-09-12 | 1996-04-30 | General Electric Company | Dual fuel mixer for gas turbine combustor |
US5613363A (en) * | 1994-09-26 | 1997-03-25 | General Electric Company | Air fuel mixer for gas turbine combustor |
US5590529A (en) * | 1994-09-26 | 1997-01-07 | General Electric Company | Air fuel mixer for gas turbine combustor |
DE59704739D1 (en) * | 1996-12-20 | 2001-10-31 | Siemens Ag | BURNER FOR FLUIDIC FUELS |
US6550251B1 (en) * | 1997-12-18 | 2003-04-22 | General Electric Company | Venturiless swirl cup |
US6826913B2 (en) * | 2002-10-31 | 2004-12-07 | Honeywell International Inc. | Airflow modulation technique for low emissions combustors |
US9115896B2 (en) * | 2012-07-31 | 2015-08-25 | General Electric Company | Fuel-air mixer for use with a combustor assembly |
CN104136845B (en) * | 2012-08-07 | 2015-09-23 | 日野自动车株式会社 | Emission-control equipment burner |
GB201303428D0 (en) * | 2013-02-27 | 2013-04-10 | Rolls Royce Plc | A vane structure and a method of manufacturing a vane structure |
US9513010B2 (en) * | 2013-08-07 | 2016-12-06 | Honeywell International Inc. | Gas turbine engine combustor with fluidic control of swirlers |
JP6104459B2 (en) * | 2014-03-11 | 2017-03-29 | 三菱日立パワーシステムズ株式会社 | Boiler combustion burner |
-
2012
- 2012-03-13 EP EP12159203.4A patent/EP2639505A1/en not_active Withdrawn
- 2012-12-05 WO PCT/EP2012/074412 patent/WO2013135324A1/en active Application Filing
- 2012-12-05 EP EP12798270.0A patent/EP2825823B1/en not_active Not-in-force
- 2012-12-05 US US14/382,314 patent/US20150033752A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0660038A2 (en) * | 1993-12-23 | 1995-06-28 | ROLLS-ROYCE plc | Fuel injection apparatus |
US6311496B1 (en) | 1997-12-19 | 2001-11-06 | Alstom Gas Turbines Limited | Gas turbine fuel/air mixing arrangement with outer and inner radial inflow swirlers |
EP0939275A2 (en) * | 1997-12-30 | 1999-09-01 | United Technologies Corporation | Fuel nozzle and nozzle guide for gas turbine engine |
US6253555B1 (en) | 1998-08-21 | 2001-07-03 | Rolls-Royce Plc | Combustion chamber comprising mixing ducts with fuel injectors varying in number and cross-sectional area |
WO2000049337A1 (en) * | 1999-02-16 | 2000-08-24 | Siemens Aktiengesellschaft | Burner arrangement and method for operating a burner arrangement |
US20050257530A1 (en) * | 2004-05-21 | 2005-11-24 | Honeywell International Inc. | Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions |
EP2192347A1 (en) | 2008-11-26 | 2010-06-02 | Siemens Aktiengesellschaft | Dual swirler |
Non-Patent Citations (2)
Title |
---|
BASSAM MOHAMMAD; SAN-MOU JENG: "The Effect of Geometry on the Aerodynamics of a Prototype Gas Turbine Combustor", PROCEEDINGS OF ASME TURBO EXPO 2010: POWER FOR LAND, SEA AND AIR GT 2010, 14 June 2010 (2010-06-14) |
YEHIDA A. ELDRAINY ET AL.: "A Multiple Inlet Swirler for Gas Turbine Combustors", WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, vol. 53, 2009 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115247789A (en) * | 2022-06-30 | 2022-10-28 | 华北电力科学研究院有限责任公司 | Method and device for determining radial swirling vane angle |
Also Published As
Publication number | Publication date |
---|---|
US20150033752A1 (en) | 2015-02-05 |
EP2825823B1 (en) | 2016-03-23 |
EP2825823A1 (en) | 2015-01-21 |
WO2013135324A1 (en) | 2013-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6335903B2 (en) | Flame sheet combustor dome | |
CN101375101B (en) | Gas turbine engine combustor and method of mixing fuel and air in the swirl region of the gas turbine engine combustor | |
CN104755844B (en) | Sequential combustion with diluent gas blender | |
US6993916B2 (en) | Burner tube and method for mixing air and gas in a gas turbine engine | |
US8925323B2 (en) | Fuel/air premixing system for turbine engine | |
US9518740B2 (en) | Axial swirler for a gas turbine burner | |
RU2495263C2 (en) | Combustion chamber of gas turbine, and method of reduction of pressure on it | |
US8579214B2 (en) | Swirler vane | |
US20090056336A1 (en) | Gas turbine premixer with radially staged flow passages and method for mixing air and gas in a gas turbine | |
EP2754963A1 (en) | Gas turbine combustor | |
EP1867925A1 (en) | Burner | |
JP5875647B2 (en) | Two-stage combustion with dilution gas mixer | |
US20160177837A1 (en) | Fuel/air mixing system for fuel nozzle | |
JP2006300448A (en) | Combustor for gas turbine | |
CN102378878A (en) | Swirler, combustion chamber, and gas turbine with improved swirl | |
KR20100061536A (en) | A multi-stage axial combustion system | |
JP2009250604A (en) | Burner tube premixer and method for mixing air with gas in gas turbine engine | |
EP1731833A1 (en) | Combustion apparatus | |
EP2825823B1 (en) | Gas turbine combustion system and method of flame stabilization in such a system | |
US20090139236A1 (en) | Premixing device for enhanced flameholding and flash back resistance | |
US8596074B2 (en) | Gas turbine combustor | |
EP1985924A1 (en) | Swirler | |
CN1507547A (en) | Combustion equipment for burning fuel and air | |
KR20140082659A (en) | Can-annular combustor with premixed tangential fuel-air nozzles for use on gas turbine engines | |
EP1921376A1 (en) | Fuel injection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140319 |