EP2637254B1 - Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, auf dem Luftweg transportiertes Endgerät und Satellitentelekommunikationssystem, das mindestens eine solche Antenne umfasst - Google Patents
Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, auf dem Luftweg transportiertes Endgerät und Satellitentelekommunikationssystem, das mindestens eine solche Antenne umfasst Download PDFInfo
- Publication number
- EP2637254B1 EP2637254B1 EP13155128.5A EP13155128A EP2637254B1 EP 2637254 B1 EP2637254 B1 EP 2637254B1 EP 13155128 A EP13155128 A EP 13155128A EP 2637254 B1 EP2637254 B1 EP 2637254B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiating
- waveguide
- input
- planar antenna
- waveguides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000009977 dual effect Effects 0.000 title claims 3
- 230000008878 coupling Effects 0.000 claims description 28
- 238000010168 coupling process Methods 0.000 claims description 28
- 238000005859 coupling reaction Methods 0.000 claims description 28
- 238000000926 separation method Methods 0.000 claims description 3
- 230000010287 polarization Effects 0.000 description 50
- 238000010586 diagram Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000005192 partition Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 235000021183 entrée Nutrition 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0037—Particular feeding systems linear waveguide fed arrays
- H01Q21/0043—Slotted waveguides
- H01Q21/005—Slotted waveguides arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/068—Two dimensional planar arrays using parallel coplanar travelling wave or leaky wave aerial units
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
Definitions
- the present invention relates to a plane antenna for terminal operating in circular double polarization, an airborne terminal and a satellite telecommunication system comprising at least one such antenna. It applies in particular to the field of high-speed satellite telecommunications and more particularly to configurations comprising multi-spot satellite systems operating in a Ku, K or Ka frequency band, the antenna being mountable on an airborne terminal at board an airplane, a helicopter or a drone.
- the airborne terminal may, because of its mobility, have to change spot during its mission to route telecommunications signals to different areas land-based fixed This mechanism called "hand over inter-spots" (English), occurs when the mobile terminal flies over a geographical area covered by two adjacent different spots.
- the circular polarization defined for the spots covering different geographical areas may further change direction, that is to say go from a left circular polarization to a right circular polarization or vice versa.
- this modification can be performed preferably automatically, without mechanical or human intervention.
- an antenna comprising a radiating panel comprising a plurality of radiating elements consisting of metal patches etched on a multi-layer substrate and supplied with circular polarization.
- the patches are arranged in columns, the patches of the same column being put in series.
- the circular polarization is obtained by exciting each patch by two signals in phase quadrature, that is to say out of phase by 90 °, and of the same amplitude. According to the sign of the phase shift, the circular polarization is right or left.
- the patches being deposited on dielectric substrates the main defect of this technology is its poor performance due to losses in dielectrics and conductive surfaces, the yield decreasing as the number of patches in each column increases.
- Each radiating element consists of two radiating quadrature slits, the two radiating slits being arranged chevron and forming an angle of about 90 ° between them. Two adjacent radiating elements are spaced apart by a distance of about one wavelength.
- This waveguide is optimized to operate in a single wave propagation direction and thus in a single direction of circular polarization. He therefore presents a operation symmetry problem and unacceptable radiation characteristics for circular double-polarization application.
- the object of the invention is to provide a terminal antenna operating in circular double polarization having no polarizing gate, having a good efficiency, having a radiation pattern almost identical in both directions of circular polarization, right and left, allowing a polarization direction change without operating asymmetry and capable of switching from one beam to another irrespective of the polarization direction of said beams.
- each radiating waveguide equipped with the radiating elements and the two input / output ports is symmetrical.
- each distribution waveguide comprises at least one transverse wall for separating the two parts of the distribution waveguide, the upper part and the lower part of the same distribution waveguide being coupled to one and the same radiating waveguide respectively via a first coupling slot constituting the upper input / output port and via a second coupling slot constituting the lower input / output port.
- the upper input / output ports are positioned at an upper end of the radiating waveguides and in that the lower input / output ports are positioned at a lower end of the radiating waveguides.
- the switches are positioned on the antenna panel at the upper input / output ports of the radiating waveguides.
- the switches are positioned on the antenna panel, at a center line L of the antenna panel, equidistant from the upper and lower input / output ports of the antenna guides. 'radiating wave.
- the two upper and lower parts of the same distribution waveguide are identical and arranged symmetrically on either side of the center line L.
- the switches can be shifted relative to each other on the antenna panel.
- each distribution waveguide comprises two partition walls disposed on either side of the central line L and each switch is mounted in a respective distribution waveguide between the two walls.
- the N radiating waveguides form N radiating lines arranged parallel to each other, each radiating waveguide extending in a longitudinal direction X, having a width P corresponding to the pitch of the grating in a Y direction. and having a rectangular YZ cross-section.
- each radiating waveguide is aligned, etched periodically and regularly spaced by the same distance D in the longitudinal direction X of the radiating waveguide, each radiating element consisting of one or more slots radiating in a geometric pattern radiating directly in double circular polarization.
- the engraved pattern of each radiating element has a shape chosen from a circle, a square or a combination of a cross and a symmetrical chevron.
- the invention also relates to an airborne terminal and a satellite telecommunication system comprising at least one such plane antenna.
- the figure 1a shows an example of an antenna that can be mounted on an airborne terminal.
- the antenna comprises a first panel 10 comprising a first radiating surface operating in emission TX and a second panel 11 comprising a second radiating surface operating in reception RX, the two panels 10, 11 of the antenna being mounted on an azimuthal platform common 12, rotated about an azimuthal central axis 17 by a first motor 13.
- Each panel 10, 11 of the antenna is furthermore actuated in rotation about a first, respectively a second, elevation axis 18 by a second, respectively by a third, motor 14, 15.
- Each panel 10, 11 is an active antenna on an electronic misalignment axis, for example horizontal, and thus performs an electronic scanning 16 beams according to this axis of misalignment.
- the Figures 2a and 2b are two diagrams in perspective of an exemplary embodiment of a panel of an antenna, according to a first embodiment of the invention.
- the antenna panel comprises a support 20 having a flat front face, arranged parallel to an XY plane, on which is fixed a radiating network 21 and a rear face, opposite to the front face, on which is fixed an electronic card 22 comprising active devices for controlling and controlling the operation of the radiating network 21.
- Passages are arranged in the support 20 and transition interfaces are arranged between the support 20 and the radiating network 21 of the antenna to enable the control signals , control and feed the antenna to cross the support and to ensure the links between the active devices and the radiating network.
- the support 20 may comprise cooling means, such as heat pipes 25, for dissipating the heat of the active devices of the panel.
- the radiating network 21 comprises a first radiating level consisting of an array of N radiating waveguides 26, where N is an integer greater than 1, arranged parallel to one another and a second distribution level comprising a network N distribution waveguides 23 arranged parallel to each other, the first radiating level being superimposed above the second distribution level.
- Each radiating waveguide 26 is coupled to a distribution waveguide 23 which is dedicated thereto, via at least two coupling slots constituting input / output ports 40, 41, of the waveguide. radiating wave, as represented for example on Figures 3a and 3b and on Figures 5a and 5b .
- the N radiating waveguides 26 form N radiating lines arranged parallel to each other, each radiating waveguide 26 of the radiating network 21 extending in a longitudinal direction X, having a width P corresponding to the pitch of the grating in a Y direction and having a rectangular YZ cross-section.
- Each radiating waveguide 26 comprises a longitudinal front wall constituting a radiating face of the guide, a longitudinal rear wall opposite the front face, and two transverse walls, the set of radiating faces of the N waveguides forming a radiating surface. of the antenna panel.
- the front wall of each radiating waveguide 26 comprises a plurality of aligned radiating elements 27, etched periodically and regularly spaced from the same distance D along the longitudinal direction X of the waveguide.
- Each radiating element 27 consists of one or more radiating slots etched in the upper wall of the waveguide in a previously chosen geometric pattern.
- Each radiating waveguide 26 comprises a first input / output port 40 constituted by a first coupling slot and a second input / output port 41 constituted by a second coupling slot, a feed signal of the guide of radiating wave 26 that can be applied either to the first input / output port 40 to obtain a radiation in a first direction of circular polarization, for example circular right, or on the second input / output port 41 to obtain a radiation in a second direction of circular polarization, for example circular left.
- the chosen radiating elements 27 are able to radiate directly in circular double polarization, without the addition of a polarizing gate, the direction of the circular polarization depending on the direction of supply of the radiating waveguide 26.
- the first input port / output 40 may be arranged for example at an upper end 28 of the radiating waveguide 26 and the second input / output port 41 may be located for example at a lower end 29 of the radiating waveguide 26.
- each radiating waveguide 26 equipped with the radiating elements 27 is preferably symmetrical with respect to the two input / output ports 40, 41.
- the coupling slots corresponding to the input / output ports 40, 41 are arranged in the superimposed longitudinal walls of each distribution waveguide 23 and each waveguide with corresponding radiating slots 26.
- the first coupling slot constituting the first input / output port 40 is placed at the upper end 28 of the radiating waveguide 26 and the second coupling slot constituting the second input / output port 41 is placed at the top lower end 29 of the radiating waveguide 26.
- Each radiating waveguide is fed through a corresponding distribution waveguide 23 and via either the upper coupling slot corresponding to the port 40, or the lower coupling slot corresponding to the port 41, in the direction of the selected circular polarization.
- each radiating waveguide 26 is selected via a dedicated microwave switch 30, an example of which is shown diagrammatically in FIG. figure 4 , the number N of switches being equal to the number N of radiating waveguides.
- Each microwave switch 30 comprises a microwave input 31 intended to receive a microwave supply signal 32, a control input 33 intended to receive a control signal 38 for selecting the direction of the polarization, a first output 34 intended to deliver the signal. supplying power to a first input / output port 36 of a distribution guide 23, and a second output 35 for supplying the power supply signal to a second input / output port 37 of a distribution guide 23.
- the two outputs 34, 35 of the microwave switch 30 are respectively connected, by means of transitions means not shown, to the first and second input / output ports 36, 37 of a distribution guide.
- the control signal of the polarization applied to the control input 33 of the microwave switch 30 selects the position 1, 2 of the switch 30 and connects the microwave input 31 of the switch 30 to the first output 34 or the second output 35 of the switch 30.
- a signal d microwave power supply 32 applied to the microwave input 31 of the switch 30 is then transmitted either to the first input / output port 36 or to the second input / output port 37, of the distribution guide to which the switch 30 is connected, according to the position 1, 2 of the selected switch 30.
- the N switches 30 respectively associated with the N distribution guides 23 and the N radiating waveguides 26 are mounted on the front face of the support 20, in a housing 24 arranged in an upper part of the antenna panel.
- the distribution waveguide 23 has two guide portions, upper 50 and lower 51, separate separated by a transverse inner wall 52, each portion 50, 51 of distribution guide being respectively coupled to the corresponding radiating waveguide 26 via either the upper coupling slot corresponding to the first input / output port 40, or the lower coupling slot corresponding to the second input / output port 41.
- the inner wall transverse 52 is disposed near the upper end 28 of the radiating guide 26, just downstream of the upper coupling slot.
- the two upper 50 and lower 51 parts of the distribution guide 23 therefore have very different lengths.
- the first output 34 of the switch 30 is connected to the first upper input / output port 40 of a radiating waveguide 26 through the upper portion 50 of the distribution guide 23.
- the second output 35 of the switch 30 is connected to the second lower input / output port 41 of the same radiating waveguide 26 via the lower portion 51 of the distribution guide 23.
- a power supply signal applied to the microwave input of the switch 30 is transmitted on the first output of the switch 30, for example upper 34, selected by the position control signal 38 of the switch 30 and applied to the upper input / output port 40 of a radiating waveguide 26 via the upper portion 50 of a corresponding distribution waveguide 23 to which the switch 30 is connected.
- the signal energy then propagates in the radiating waveguide 26, from the upper port 40 to the lower end 29 of the radiating waveguide 26, and is radiated by the various radiating elements 27 etched in the front wall of said corresponding radiating waveguide 26 of the antenna.
- a supply signal 32 applied to the microwave input 31 of the switch 30 is transmitted on the second output of the switch, for example lower 35, selected by the control signal 38.
- the supply signal then propagates in the lower distribution waveguide 51 to the lower input / output port 41 constituted by the lower coupling slot coupling the lower distribution waveguide 51 to the guide of corresponding radiating wave 26.
- the energy of the signal transmitted via the lower coupling slot then propagates in the corresponding radiating waveguide in the opposite direction to that corresponding to the right circular polarization, that is to say in the present case , from the lower input / output port 41 towards the upper end 28 of the radiating waveguide, and then is radiated by the different radiating elements 27 etched in the front wall of said corresponding radiating waveguide of the antenna.
- This first embodiment has several disadvantages.
- the supply of the radiating network in the two circular polarization directions can not be symmetrical because of the positioning imbalance of the switches 30.
- the switches 30 being positioned near the port upper input / output 40 of the radiating waveguides 26, this upper input / output port 40 is favored from the point of view of RF microwave losses.
- the switches 30 are remote from the lower port 41 of the radiating waveguides 26, which causes additional RF losses with respect to the upper input / output port 40.
- this first embodiment does not optimize the radiating surface of the antenna due to the size of the switches 30 which occupy the upper part of the front panel of the antenna panel, which causes a loss of directivity of the antenna which does not can occupy the entire physical surface of the panel.
- the panel of the antenna comprises, mounted on its front face, a first radiating level having N radiating waveguides 26 arranged parallel to each other and a second distribution level having N distribution waveguides 23 arranged parallel to each other, the first radiating level being superimposed above the second distribution level, each radiating waveguide 26 being coupled to a corresponding distribution waveguide 23.
- Each distribution waveguide 23 is separated, in the middle, at a center line L of the antenna panel, the line L being parallel to the Y axis, in two portions of the waveguide of the antenna.
- each radiating waveguide 26 is coupled to the two half-waveguides, upper 50 and lower 51, of the corresponding distribution guide 23 via at least two coupling slots, upper and lower, arranged in the longitudinal walls superimposed each upper half distribution guide 50 and lower 51 and the corresponding radiating slot waveguide 26.
- the first coupling slot is placed at the upper end of the radiating waveguide 26 and the second coupling slot is placed at the lower end of the radiating waveguide 26.
- the two coupling slots, upper and lower constitute respectively the first and second input / output ports 40, 41 of the radiating waveguides 26.
- the N radiating waveguides 26 and the N distribution waveguides 23 are closed by a transverse wall forming a short circuit at their respective two ends, upper 28 'and lower 29'.
- the N microwave switches 30 respectively associated with the N radiating waveguides 26 are mounted on the front face of the support of the antenna panel, at the center line of the panel.
- the antenna and at the separation wall 52 of the distribution half waveguides 50, 51, and the two outputs 34, 35 of each switch 30 are respectively connected to two corresponding inputs 36, 37 arranged in each half distribution waveguide 23, on either side of the partition wall 52 between two half-waveguides 50, 51 of the same distribution guide 23.
- the N switches 30 can be located in a housing arranged between the support 20 of the antenna panel and the two levels of distribution waveguides and radiating waveguides.
- the N switches 30 can be located in a housing arranged inside each distribution waveguide 23.
- the transverse partition wall 52 of the upper and lower distribution half-waveguides is replaced by two transverse partition walls 60, 61, spaced from one another, the space between the two partition walls forming the housing in which each switch 30 is inserted.
- Such a network supply configuration radiating through the middle of the antenna panel makes it possible, on the one hand, to symmetrize perfectly the microwave behaviors of the antenna radiating network for the two directions of circular polarization, and secondly, a complete use of the panel surface for radiation purposes.
- the operation of the antenna is similar to that corresponding to the first embodiment.
- a supply signal 32 applied to the microwave input 31 of the switch 30 is transmitted on the first output of the switch, for example upper 34, selected by the control signal 38.
- the feed signal then propagates in the upper distribution half-waveguide 50 to the upper coupling slot corresponding to the upper input / output port 40 of a corresponding radiating waveguide 26.
- the energy of the signal transmitted through the upper coupling slot then propagates in the radiating waveguide 26, from the upper input / output port 40 to the lower end 29 of the radiating waveguide, then is radiated by the different radiating elements 27 etched in the front wall of said radiating waveguide of the antenna.
- a supply signal 32 applied to the microwave input 31 of the switch 30 is transmitted on the second output of the switch, for example lower 35, selected by the control signal 38.
- the feed signal then propagates in the lower distribution half waveguide 51 to the lower coupling slot coupling the lower distribution half waveguide 51 to a corresponding radiating waveguide 26.
- the energy of the signal transmitted via the lower coupling slot then propagates in the radiating waveguide 26 in the opposite direction to that corresponding to the right circular polarization, that is to say in this case, the lower input / output port 41 to the upper end 28 of the radiating waveguide, and is radiated by the various radiating elements 27 etched in the front wall of said guide radiating wave 26 of the antenna.
- the N switches 30 being located between the support 20 of the antenna panel and the two levels of distribution waveguides and radiating waveguides, this allows to have of the entire surface of the panel for the radiating surface.
- the N switches 30 being located in the median zone of the antenna, at the separation walls 52 of the upper and lower distribution half-waveguides, the propagation of the signals and the antenna performance. in both directions of polarization are perfectly symmetrical.
- This antenna configuration therefore has an advantage in terms of radiofrequency performance, directivity and gain of the antenna and makes it possible to increase the energy density radiated by the antenna without increasing its bulk, which is even more critical that the terminals are small and work in mobility.
- switches at the center line of the antenna panel allows perfect balancing of the antenna behavior in each polarization.
- the switches may not all be positioned in a single line and, for example, it is possible to arrange the switches in staggered rows on either side of the median line of the antenna panel, or to shift them relative to each other so as to simplify their housing within the panel of the antenna.
- the shift of the switches can be made from the midline up the antenna panel and move closer to the upper input / output port 40 or down the antenna panel and move closer to the port of the antenna. lower input / output 41 or alternatively up and then down the antenna panel.
- the figure 7d illustrates in particular an example in which three successive switches are shifted from the center line to the top of the antenna panel.
- a first switch is positioned at the centerline L of the panel
- a second switch is shifted upwardly from the panel, slightly above the centerline
- a third switch is shifted upwardly more significantly. above the median line.
- the shift of the switches from the center line and in the same direction, for example towards the top of the panel, can be realized on a few successive switches, for example four successive switches, then reproduced identically on the following four switches, the fifth switch being placed at the center line, and so on until the last switch.
- each radiating element may consist of an engraved pattern comprising two identical first slots arranged in a symmetrical cross and forming an angle of 90 ° between them and two identical second slots arranged in a symmetrical chevron and forming an angle of 90 ° between them.
- the cross and the chevron of the same pattern are engraved on both sides of a longitudinal center line of the front wall of the slotted waveguide and have a same axis of symmetry perpendicular to said median line and passing through the center of the cross. Said axis of symmetry then corresponds to the phase center of the signal radiated by the corresponding radiating element, in both right and left circular polarization directions.
- the engraved pattern of each radiating element may comprise a square or circular geometrical shape, this geometrical shape being able to be centered or offset with respect to a median line of the waveguide radiating or can be combined with another geometric shape of slots, for example cross or chevron.
- the circular slot is offset from the longitudinal centerline of the front wall of the radiating waveguide.
- the square slot is also offset from the longitudinal centerline of the front wall of the radiating waveguide.
- the waveguides used can be made in machined metal waveguide technology or in printed circuit board (PCB) technology.
- this technology known as SIW (in English: Substrate Integrated Waveguide) or under the name of laminate (in English: laminated)
- the waveguides are printed in a layer of dielectric located between two metal planes of a multi-layer structure, the two metal planes constituting the longitudinal front and rear walls of the waveguides, and the transverse walls of the waveguides are made by regular arrangements of metallized holes passing through the dielectric and connecting the two metal planes.
- the radiating elements are made by a photolithography process allowing the location of the slits of the radiating pattern, locally remove the upper metal layer in the upper metal plane of each radiating waveguide.
- the switch used may be of different technologies. The choice is made according to the space available, the acceptable losses, and the ease of interfacing with a mechanical and electrical structure.
- the switch may be a ferrite switch which makes it possible to minimize the switching losses or an electromechanical switch, which makes it possible to minimize its bulk.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Claims (14)
- Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, die mindestens eine Platte aufweist, die sich gemäß einer XY-Ebene erstreckt, dadurch gekennzeichnet, dass die Platte der Antenne aufweist:- ein erstes Netzwerk aus N strahlenden Wellenleitern (26), das in Doppelrichtung strahlende Kreispolarisierungselemente (27) aufweist, wobei N eine ganze Zahl größer als 1 ist, wobei jeder strahlende Wellenleiter (26) zwei Eingangs-/Ausgangsports, jeweils einen oberen (40) und unteren (41), aufweist,- ein zweites Netzwerk aus N Distributionswellenleitern (23), die jeweils an die N strahlenden Wellenleiter (26) gekoppelt sind, wobei jeder Distributionswellenleiter (23) zwei unabhängige Teile, jeweils einen oberen (50) und unteren (51), aufweist,- N Hyperfrequenzumschalter (30), wobei jeder Hyperfrequenzumschalter (30) einen Hyperfrequenzeingang (31), einen ersten Hyperfrequenzausgang (34), der mit dem ersten oberen Eingangs-/Ausgangsport (40) eines strahlenden Wellenleiters (26) über den oberen Teil (50) eines an den strahlenden Wellenleiter (26) gekoppelten Distributionswellenleiters (23) verbunden ist und einen zweiten Hyperfrequenzausgang (35), der mit dem zweiten unteren Eingangs-/Ausgangsport (41) desselben strahlenden Wellenleiters (26) über den unteren Teil (51) desselben an den strahlenden Wellenleiter (26) gekoppelten Distributionswellenleiters (23) verbunden ist, einen Steuereingang (33) der Position (1, 2) des Umschalters (30), der imstande ist, den Hyperfrequenzeingang (31) des Umschalters (30) in Abhängigkeit von der Richtung der Kreispolarisierung auf den ersten oder den zweiten Hyperfrequenzausgang (34, 35) umzuschalten, umfasst.
- Flachantenne nach Anspruch 1, dadurch gekennzeichnet, dass jeder mit den strahlenden Elementen (27) und den zwei Eingangs-/Ausgangsports ausgestattete strahlende Wellenleiter (26) symmetrisch ist.
- Flachantenne nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass jeder Distributionswellenleiter (23) mindestens eine transversale Trennwand (52) der zwei Teile (50, 51) des Distributionswellenleiters aufweist, wobei der obere Teil (50) und der untere Teil (51) eines selben Distributionswellenleiters (23) jeweils über einen ersten Kopplungsschlitz, der den oberen Eingangs-/Ausgangsport (40) bildet, und über einen zweiten Kopplungsschlitz, der den unteren Eingangs-/Ausgangsport (41) bildet, an einen selben strahlenden Wellenleiter (26) gekoppelt ist.
- Flachantenne nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die oberen Eingangs-/Ausgangsports (40) an einem oberen Ende (28) der strahlenden Wellenleiter (26) positioniert sind und dass die unteren Eingangs-/Ausgangsports (41) an einem unteren Ende (29) der strahlenden Wellenleiter (26) positioniert sind.
- Flachantenne nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Umschalter (30) auf der Platte der Antenne auf Ebene der oberen Eingangs-/Ausgangsports (40) der strahlenden Wellenleiter (26) positioniert sind.
- Flachantenne nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Umschalter (30) auf der Platte der Antenne auf Ebene einer Mittellinie L der Platte der Antenne in gleichem Abstand von den oberen (40) und unteren (41) Eingangs-/Ausgangsports der strahlenden Wellenleiter (26) positioniert sind.
- Flachantenne nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Umschalter (30) auf der Platte der Antenne positioniert und im Verhältnis zueinander ab einer Mittellinie L der Platte der Antenne versetzt sind.
- Flachantenne nach Anspruch 6, dadurch gekennzeichnet, dass die zwei Teile, der obere (50) und untere (51), eines selben Distributionswellenleiters (23) identisch und symmetrisch auf der einen und der anderen Seite der Mittellinie L angeordnet sind.
- Flachantenne nach Anspruch 6, dadurch gekennzeichnet, dass jeder Distributionswellenleiter (23) zwei Trennwände (60, 61) aufweist, die auf der einen und der anderen Seite der Mittellinie L angeordnet sind und dass jeder Umschalter (30) in einen jeweiligen Distributionswellenleiter (23) zwischen den zwei Wänden (60, 61) eingebaut ist.
- Flachantenne nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die N strahlenden Wellenleiter (26) N strahlende Linien bilden, die parallel nebeneinander angeordnet sind, wobei sich jeder strahlende Wellenleiter (26) gemäß einer Längsrichtung X mit einer Breite P erstreckt, die der Teilung des Netzwerks gemäß einer Richtung Y entspricht und einen rechteckigen transversalen Querschnitt YZ hat.
- Flachantenne nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die strahlenden Elemente (27) jedes strahlenden Wellenleiters (26) fluchten, periodisch graviert und regelmäßig in einem selben Abstand D gemäß der Längsrichtung X des strahlenden Wellenleiters (26) beabstandet sind, wobei jedes strahlende Element (27) aus einem oder mehreren strahlenden Schlitzen besteht, die gemäß einem geometrischen Motiv graviert sind, das direkt mit einer doppelten Kreispolarisation strahlt.
- Flachantenne nach Anspruch 11, dadurch gekennzeichnet, dass das gravierte Motiv jedes strahlenden Elements eine Form hat, die aus einem Kreis, einen Quadrat oder aus einer Kombination eines Kreuzes und eines symmetrischen Fischgratmusters ausgewählt ist.
- Auf dem Luftweg transportiertes Endgerät, das mindestens eine Flachantenne nach einem der vorangehenden Ansprüche aufweist.
- Satellitentelekommunikationssystem, das mindestens eine Flachantenne nach einem der Ansprüche 1 bis 12 aufweist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1200699A FR2987941B1 (fr) | 2012-03-08 | 2012-03-08 | Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2637254A1 EP2637254A1 (de) | 2013-09-11 |
EP2637254B1 true EP2637254B1 (de) | 2014-10-01 |
Family
ID=46785471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13155128.5A Active EP2637254B1 (de) | 2012-03-08 | 2013-02-13 | Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, auf dem Luftweg transportiertes Endgerät und Satellitentelekommunikationssystem, das mindestens eine solche Antenne umfasst |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2637254B1 (de) |
CA (1) | CA2808511C (de) |
ES (1) | ES2524693T3 (de) |
FR (1) | FR2987941B1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3030911B1 (fr) * | 2014-12-17 | 2018-05-18 | Thales | Source monolithique d'antenne pour application spatiale |
CN110459857B (zh) * | 2019-06-27 | 2024-05-24 | 安徽四创电子股份有限公司 | 一种用于船舶交通管理系统的雷达天线 |
CN115064866A (zh) * | 2022-05-24 | 2022-09-16 | 中国人民解放军海军工程大学 | 一种产生高纯度涡旋波的圆极化天线阵列 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6977621B2 (en) * | 2004-01-07 | 2005-12-20 | Motia, Inc. | Vehicle mounted satellite antenna system with inverted L-shaped waveguide |
US7436371B1 (en) * | 2006-01-31 | 2008-10-14 | Rockwell Collins, Inc. | Waveguide crescent slot array for low-loss, low-profile dual-polarization antenna |
EP2245704B1 (de) * | 2007-12-28 | 2015-02-18 | SELEX ES S.p.A. | Schlitzantenne und verfahren zu ihrem betrieb |
-
2012
- 2012-03-08 FR FR1200699A patent/FR2987941B1/fr not_active Expired - Fee Related
-
2013
- 2013-02-13 ES ES13155128.5T patent/ES2524693T3/es active Active
- 2013-02-13 EP EP13155128.5A patent/EP2637254B1/de active Active
- 2013-03-01 CA CA2808511A patent/CA2808511C/fr active Active
Also Published As
Publication number | Publication date |
---|---|
FR2987941B1 (fr) | 2014-04-11 |
EP2637254A1 (de) | 2013-09-11 |
CA2808511C (fr) | 2020-03-24 |
ES2524693T3 (es) | 2014-12-11 |
CA2808511A1 (fr) | 2013-09-08 |
FR2987941A1 (fr) | 2013-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2807702B1 (de) | Zweidimensionaler mehrstrahlformer, antenne mit einem solchen mehrstrahlformer und satellitentelekommunikationssystem mit einer derartigen antenne | |
EP2532050B1 (de) | Bordinterne direktionale flachplattenantenne, fahrzeug mit einer solchen antenne und satellitentelekommunikationssystem mit einem solchen fahrzeug | |
EP0089084B1 (de) | Flache Höchstfrequenz Antennenstruktur | |
EP2564466B1 (de) | Kompaktes strahlungselement mit hohlraumresonatoren | |
EP2194602B1 (de) | Antenne mit gemeinsam benützten Elementarstrahlern und Verfahren zum Entwurf einer Mehrstrahlantenne mit gemeinsam benützten Elementarstrahlern | |
EP3073569B1 (de) | Butler matrix compact, bi-dimensionales planare beam-former und planarantenne mit einer solchen butler matrix | |
EP2654126B1 (de) | Mobile Richtantenne mit Polarisierungsschaltung durch Bewegung der Strahlungspaneele | |
EP2869400B1 (de) | Doppelpolarisierter kompakter Leistungsverteiler, Netz aus mehreren Verteilern, kompaktes Strahlungselement und Flachantenne, die einen solchen Verteiler umfasst | |
FR2810164A1 (fr) | Perfectionnement aux antennes source d'emission/reception d'ondes electromagnetiques pour systemes de telecommunications par satellite | |
EP0542595A1 (de) | Mikrostreifenleiterantenne, insbesondere für Fernsprechübertragungen von Satelliten | |
WO2011095384A1 (fr) | Antenne plane à balayage pour application mobile terrestre, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule | |
EP2688142B1 (de) | Mehrfachstrahl-Sende- und Empfangsantenne mit mehreren Quellen pro Strahl, Antennensystem und Satellitentelekommunikationssystem, die eine solche Antenne umfassen | |
EP2710676B1 (de) | Strahlerelement für eine aktive gruppenantenne aus elementarfliesen | |
EP3011639B1 (de) | Speiseanordnung für eine parabolantenne | |
EP4078728B1 (de) | Doppelpolarisationsantenne | |
EP2637254B1 (de) | Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, auf dem Luftweg transportiertes Endgerät und Satellitentelekommunikationssystem, das mindestens eine solche Antenne umfasst | |
EP0377155B1 (de) | Doppelfrequenz strahlende Vorrichtung | |
EP2764577B1 (de) | Mehrstrahlige quelle | |
EP4046241B1 (de) | Grupenantennen | |
FR2678438A1 (fr) | Antenne reseau lineaire. | |
FR3151945A1 (fr) | Antenne à réseau transmetteur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20140311 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 21/24 20060101ALI20140326BHEP Ipc: H01Q 21/00 20060101AFI20140326BHEP Ipc: H01Q 21/06 20060101ALI20140326BHEP |
|
INTG | Intention to grant announced |
Effective date: 20140422 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 689925 Country of ref document: AT Kind code of ref document: T Effective date: 20141015 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013000293 Country of ref document: DE Effective date: 20141113 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2524693 Country of ref document: ES Kind code of ref document: T3 Effective date: 20141211 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20141001 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 689925 Country of ref document: AT Kind code of ref document: T Effective date: 20141001 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150101 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150201 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013000293 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 |
|
26N | No opposition filed |
Effective date: 20150702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141001 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240305 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240116 Year of fee payment: 12 Ref country code: GB Payment date: 20240118 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240123 Year of fee payment: 12 |